• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71 
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *tty;
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
delayed_put_task_struct(struct rcu_head * rhp)167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
put_task_struct_rcu_user(struct task_struct * task)176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 	if (refcount_dec_and_test(&task->rcu_users))
179 		call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181 
release_task(struct task_struct * p)182 void release_task(struct task_struct *p)
183 {
184 	struct task_struct *leader;
185 	struct pid *thread_pid;
186 	int zap_leader;
187 repeat:
188 	/* don't need to get the RCU readlock here - the process is dead and
189 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 	rcu_read_lock();
191 	atomic_dec(&__task_cred(p)->user->processes);
192 	rcu_read_unlock();
193 
194 	cgroup_release(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	thread_pid = get_pid(p->thread_pid);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	seccomp_filter_release(p);
222 	proc_flush_pid(thread_pid);
223 	put_pid(thread_pid);
224 	release_thread(p);
225 	put_task_struct_rcu_user(p);
226 
227 	p = leader;
228 	if (unlikely(zap_leader))
229 		goto repeat;
230 }
231 
rcuwait_wake_up(struct rcuwait * w)232 int rcuwait_wake_up(struct rcuwait *w)
233 {
234 	int ret = 0;
235 	struct task_struct *task;
236 
237 	rcu_read_lock();
238 
239 	/*
240 	 * Order condition vs @task, such that everything prior to the load
241 	 * of @task is visible. This is the condition as to why the user called
242 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
243 	 * barrier (A) in rcuwait_wait_event().
244 	 *
245 	 *    WAIT                WAKE
246 	 *    [S] tsk = current	  [S] cond = true
247 	 *        MB (A)	      MB (B)
248 	 *    [L] cond		  [L] tsk
249 	 */
250 	smp_mb(); /* (B) */
251 
252 	task = rcu_dereference(w->task);
253 	if (task)
254 		ret = wake_up_process(task);
255 	rcu_read_unlock();
256 
257 	return ret;
258 }
259 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
260 
261 /*
262  * Determine if a process group is "orphaned", according to the POSIX
263  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
264  * by terminal-generated stop signals.  Newly orphaned process groups are
265  * to receive a SIGHUP and a SIGCONT.
266  *
267  * "I ask you, have you ever known what it is to be an orphan?"
268  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)269 static int will_become_orphaned_pgrp(struct pid *pgrp,
270 					struct task_struct *ignored_task)
271 {
272 	struct task_struct *p;
273 
274 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 		if ((p == ignored_task) ||
276 		    (p->exit_state && thread_group_empty(p)) ||
277 		    is_global_init(p->real_parent))
278 			continue;
279 
280 		if (task_pgrp(p->real_parent) != pgrp &&
281 		    task_session(p->real_parent) == task_session(p))
282 			return 0;
283 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 
285 	return 1;
286 }
287 
is_current_pgrp_orphaned(void)288 int is_current_pgrp_orphaned(void)
289 {
290 	int retval;
291 
292 	read_lock(&tasklist_lock);
293 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
294 	read_unlock(&tasklist_lock);
295 
296 	return retval;
297 }
298 
has_stopped_jobs(struct pid * pgrp)299 static bool has_stopped_jobs(struct pid *pgrp)
300 {
301 	struct task_struct *p;
302 
303 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
304 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
305 			return true;
306 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
307 
308 	return false;
309 }
310 
311 /*
312  * Check to see if any process groups have become orphaned as
313  * a result of our exiting, and if they have any stopped jobs,
314  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315  */
316 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)317 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
318 {
319 	struct pid *pgrp = task_pgrp(tsk);
320 	struct task_struct *ignored_task = tsk;
321 
322 	if (!parent)
323 		/* exit: our father is in a different pgrp than
324 		 * we are and we were the only connection outside.
325 		 */
326 		parent = tsk->real_parent;
327 	else
328 		/* reparent: our child is in a different pgrp than
329 		 * we are, and it was the only connection outside.
330 		 */
331 		ignored_task = NULL;
332 
333 	if (task_pgrp(parent) != pgrp &&
334 	    task_session(parent) == task_session(tsk) &&
335 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
336 	    has_stopped_jobs(pgrp)) {
337 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
338 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
339 	}
340 }
341 
342 #ifdef CONFIG_MEMCG
343 /*
344  * A task is exiting.   If it owned this mm, find a new owner for the mm.
345  */
mm_update_next_owner(struct mm_struct * mm)346 void mm_update_next_owner(struct mm_struct *mm)
347 {
348 	struct task_struct *c, *g, *p = current;
349 
350 retry:
351 	/*
352 	 * If the exiting or execing task is not the owner, it's
353 	 * someone else's problem.
354 	 */
355 	if (mm->owner != p)
356 		return;
357 	/*
358 	 * The current owner is exiting/execing and there are no other
359 	 * candidates.  Do not leave the mm pointing to a possibly
360 	 * freed task structure.
361 	 */
362 	if (atomic_read(&mm->mm_users) <= 1) {
363 		WRITE_ONCE(mm->owner, NULL);
364 		return;
365 	}
366 
367 	read_lock(&tasklist_lock);
368 	/*
369 	 * Search in the children
370 	 */
371 	list_for_each_entry(c, &p->children, sibling) {
372 		if (c->mm == mm)
373 			goto assign_new_owner;
374 	}
375 
376 	/*
377 	 * Search in the siblings
378 	 */
379 	list_for_each_entry(c, &p->real_parent->children, sibling) {
380 		if (c->mm == mm)
381 			goto assign_new_owner;
382 	}
383 
384 	/*
385 	 * Search through everything else, we should not get here often.
386 	 */
387 	for_each_process(g) {
388 		if (g->flags & PF_KTHREAD)
389 			continue;
390 		for_each_thread(g, c) {
391 			if (c->mm == mm)
392 				goto assign_new_owner;
393 			if (c->mm)
394 				break;
395 		}
396 	}
397 	read_unlock(&tasklist_lock);
398 	/*
399 	 * We found no owner yet mm_users > 1: this implies that we are
400 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
401 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
402 	 */
403 	WRITE_ONCE(mm->owner, NULL);
404 	return;
405 
406 assign_new_owner:
407 	BUG_ON(c == p);
408 	get_task_struct(c);
409 	/*
410 	 * The task_lock protects c->mm from changing.
411 	 * We always want mm->owner->mm == mm
412 	 */
413 	task_lock(c);
414 	/*
415 	 * Delay read_unlock() till we have the task_lock()
416 	 * to ensure that c does not slip away underneath us
417 	 */
418 	read_unlock(&tasklist_lock);
419 	if (c->mm != mm) {
420 		task_unlock(c);
421 		put_task_struct(c);
422 		goto retry;
423 	}
424 	WRITE_ONCE(mm->owner, c);
425 	task_unlock(c);
426 	put_task_struct(c);
427 }
428 #endif /* CONFIG_MEMCG */
429 
430 /*
431  * Turn us into a lazy TLB process if we
432  * aren't already..
433  */
exit_mm(void)434 static void exit_mm(void)
435 {
436 	struct mm_struct *mm = current->mm;
437 	struct core_state *core_state;
438 
439 	exit_mm_release(current, mm);
440 	if (!mm)
441 		return;
442 	sync_mm_rss(mm);
443 	/*
444 	 * Serialize with any possible pending coredump.
445 	 * We must hold mmap_lock around checking core_state
446 	 * and clearing tsk->mm.  The core-inducing thread
447 	 * will increment ->nr_threads for each thread in the
448 	 * group with ->mm != NULL.
449 	 */
450 	mmap_read_lock(mm);
451 	core_state = mm->core_state;
452 	if (core_state) {
453 		struct core_thread self;
454 
455 		mmap_read_unlock(mm);
456 
457 		self.task = current;
458 		if (self.task->flags & PF_SIGNALED)
459 			self.next = xchg(&core_state->dumper.next, &self);
460 		else
461 			self.task = NULL;
462 		/*
463 		 * Implies mb(), the result of xchg() must be visible
464 		 * to core_state->dumper.
465 		 */
466 		if (atomic_dec_and_test(&core_state->nr_threads))
467 			complete(&core_state->startup);
468 
469 		for (;;) {
470 			set_current_state(TASK_UNINTERRUPTIBLE);
471 			if (!self.task) /* see coredump_finish() */
472 				break;
473 			freezable_schedule();
474 		}
475 		__set_current_state(TASK_RUNNING);
476 		mmap_read_lock(mm);
477 	}
478 	mmgrab(mm);
479 	BUG_ON(mm != current->active_mm);
480 	/* more a memory barrier than a real lock */
481 	task_lock(current);
482 	current->mm = NULL;
483 	mmap_read_unlock(mm);
484 	enter_lazy_tlb(mm, current);
485 	task_unlock(current);
486 	mm_update_next_owner(mm);
487 	mmput(mm);
488 	if (test_thread_flag(TIF_MEMDIE))
489 		exit_oom_victim();
490 }
491 
find_alive_thread(struct task_struct * p)492 static struct task_struct *find_alive_thread(struct task_struct *p)
493 {
494 	struct task_struct *t;
495 
496 	for_each_thread(p, t) {
497 		if (!(t->flags & PF_EXITING))
498 			return t;
499 	}
500 	return NULL;
501 }
502 
find_child_reaper(struct task_struct * father,struct list_head * dead)503 static struct task_struct *find_child_reaper(struct task_struct *father,
504 						struct list_head *dead)
505 	__releases(&tasklist_lock)
506 	__acquires(&tasklist_lock)
507 {
508 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
509 	struct task_struct *reaper = pid_ns->child_reaper;
510 	struct task_struct *p, *n;
511 
512 	if (likely(reaper != father))
513 		return reaper;
514 
515 	reaper = find_alive_thread(father);
516 	if (reaper) {
517 		pid_ns->child_reaper = reaper;
518 		return reaper;
519 	}
520 
521 	write_unlock_irq(&tasklist_lock);
522 
523 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
524 		list_del_init(&p->ptrace_entry);
525 		release_task(p);
526 	}
527 
528 	zap_pid_ns_processes(pid_ns);
529 	write_lock_irq(&tasklist_lock);
530 
531 	return father;
532 }
533 
534 /*
535  * When we die, we re-parent all our children, and try to:
536  * 1. give them to another thread in our thread group, if such a member exists
537  * 2. give it to the first ancestor process which prctl'd itself as a
538  *    child_subreaper for its children (like a service manager)
539  * 3. give it to the init process (PID 1) in our pid namespace
540  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)541 static struct task_struct *find_new_reaper(struct task_struct *father,
542 					   struct task_struct *child_reaper)
543 {
544 	struct task_struct *thread, *reaper;
545 
546 	thread = find_alive_thread(father);
547 	if (thread)
548 		return thread;
549 
550 	if (father->signal->has_child_subreaper) {
551 		unsigned int ns_level = task_pid(father)->level;
552 		/*
553 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
554 		 * We can't check reaper != child_reaper to ensure we do not
555 		 * cross the namespaces, the exiting parent could be injected
556 		 * by setns() + fork().
557 		 * We check pid->level, this is slightly more efficient than
558 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
559 		 */
560 		for (reaper = father->real_parent;
561 		     task_pid(reaper)->level == ns_level;
562 		     reaper = reaper->real_parent) {
563 			if (reaper == &init_task)
564 				break;
565 			if (!reaper->signal->is_child_subreaper)
566 				continue;
567 			thread = find_alive_thread(reaper);
568 			if (thread)
569 				return thread;
570 		}
571 	}
572 
573 	return child_reaper;
574 }
575 
576 /*
577 * Any that need to be release_task'd are put on the @dead list.
578  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)579 static void reparent_leader(struct task_struct *father, struct task_struct *p,
580 				struct list_head *dead)
581 {
582 	if (unlikely(p->exit_state == EXIT_DEAD))
583 		return;
584 
585 	/* We don't want people slaying init. */
586 	p->exit_signal = SIGCHLD;
587 
588 	/* If it has exited notify the new parent about this child's death. */
589 	if (!p->ptrace &&
590 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
591 		if (do_notify_parent(p, p->exit_signal)) {
592 			p->exit_state = EXIT_DEAD;
593 			list_add(&p->ptrace_entry, dead);
594 		}
595 	}
596 
597 	kill_orphaned_pgrp(p, father);
598 }
599 
600 /*
601  * This does two things:
602  *
603  * A.  Make init inherit all the child processes
604  * B.  Check to see if any process groups have become orphaned
605  *	as a result of our exiting, and if they have any stopped
606  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
607  */
forget_original_parent(struct task_struct * father,struct list_head * dead)608 static void forget_original_parent(struct task_struct *father,
609 					struct list_head *dead)
610 {
611 	struct task_struct *p, *t, *reaper;
612 
613 	if (unlikely(!list_empty(&father->ptraced)))
614 		exit_ptrace(father, dead);
615 
616 	/* Can drop and reacquire tasklist_lock */
617 	reaper = find_child_reaper(father, dead);
618 	if (list_empty(&father->children))
619 		return;
620 
621 	reaper = find_new_reaper(father, reaper);
622 	list_for_each_entry(p, &father->children, sibling) {
623 		for_each_thread(p, t) {
624 			RCU_INIT_POINTER(t->real_parent, reaper);
625 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
626 			if (likely(!t->ptrace))
627 				t->parent = t->real_parent;
628 			if (t->pdeath_signal)
629 				group_send_sig_info(t->pdeath_signal,
630 						    SEND_SIG_NOINFO, t,
631 						    PIDTYPE_TGID);
632 		}
633 		/*
634 		 * If this is a threaded reparent there is no need to
635 		 * notify anyone anything has happened.
636 		 */
637 		if (!same_thread_group(reaper, father))
638 			reparent_leader(father, p, dead);
639 	}
640 	list_splice_tail_init(&father->children, &reaper->children);
641 }
642 
643 /*
644  * Send signals to all our closest relatives so that they know
645  * to properly mourn us..
646  */
exit_notify(struct task_struct * tsk,int group_dead)647 static void exit_notify(struct task_struct *tsk, int group_dead)
648 {
649 	bool autoreap;
650 	struct task_struct *p, *n;
651 	LIST_HEAD(dead);
652 
653 	write_lock_irq(&tasklist_lock);
654 	forget_original_parent(tsk, &dead);
655 
656 	if (group_dead)
657 		kill_orphaned_pgrp(tsk->group_leader, NULL);
658 
659 	tsk->exit_state = EXIT_ZOMBIE;
660 	if (unlikely(tsk->ptrace)) {
661 		int sig = thread_group_leader(tsk) &&
662 				thread_group_empty(tsk) &&
663 				!ptrace_reparented(tsk) ?
664 			tsk->exit_signal : SIGCHLD;
665 		autoreap = do_notify_parent(tsk, sig);
666 	} else if (thread_group_leader(tsk)) {
667 		autoreap = thread_group_empty(tsk) &&
668 			do_notify_parent(tsk, tsk->exit_signal);
669 	} else {
670 		autoreap = true;
671 	}
672 
673 	if (autoreap) {
674 		tsk->exit_state = EXIT_DEAD;
675 		list_add(&tsk->ptrace_entry, &dead);
676 	}
677 
678 	/* mt-exec, de_thread() is waiting for group leader */
679 	if (unlikely(tsk->signal->notify_count < 0))
680 		wake_up_process(tsk->signal->group_exit_task);
681 	write_unlock_irq(&tasklist_lock);
682 
683 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
684 		list_del_init(&p->ptrace_entry);
685 		release_task(p);
686 	}
687 }
688 
689 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)690 static void check_stack_usage(void)
691 {
692 	static DEFINE_SPINLOCK(low_water_lock);
693 	static int lowest_to_date = THREAD_SIZE;
694 	unsigned long free;
695 
696 	free = stack_not_used(current);
697 
698 	if (free >= lowest_to_date)
699 		return;
700 
701 	spin_lock(&low_water_lock);
702 	if (free < lowest_to_date) {
703 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
704 			current->comm, task_pid_nr(current), free);
705 		lowest_to_date = free;
706 	}
707 	spin_unlock(&low_water_lock);
708 }
709 #else
check_stack_usage(void)710 static inline void check_stack_usage(void) {}
711 #endif
712 
do_exit(long code)713 void __noreturn do_exit(long code)
714 {
715 	struct task_struct *tsk = current;
716 	int group_dead;
717 
718 	/*
719 	 * We can get here from a kernel oops, sometimes with preemption off.
720 	 * Start by checking for critical errors.
721 	 * Then fix up important state like USER_DS and preemption.
722 	 * Then do everything else.
723 	 */
724 
725 	WARN_ON(blk_needs_flush_plug(tsk));
726 
727 	if (unlikely(in_interrupt()))
728 		panic("Aiee, killing interrupt handler!");
729 	if (unlikely(!tsk->pid))
730 		panic("Attempted to kill the idle task!");
731 
732 	/*
733 	 * If do_exit is called because this processes oopsed, it's possible
734 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
735 	 * continuing. Amongst other possible reasons, this is to prevent
736 	 * mm_release()->clear_child_tid() from writing to a user-controlled
737 	 * kernel address.
738 	 */
739 	force_uaccess_begin();
740 
741 	if (unlikely(in_atomic())) {
742 		pr_info("note: %s[%d] exited with preempt_count %d\n",
743 			current->comm, task_pid_nr(current),
744 			preempt_count());
745 		preempt_count_set(PREEMPT_ENABLED);
746 	}
747 
748 	profile_task_exit(tsk);
749 	kcov_task_exit(tsk);
750 
751 	ptrace_event(PTRACE_EVENT_EXIT, code);
752 
753 	validate_creds_for_do_exit(tsk);
754 
755 	/*
756 	 * We're taking recursive faults here in do_exit. Safest is to just
757 	 * leave this task alone and wait for reboot.
758 	 */
759 	if (unlikely(tsk->flags & PF_EXITING)) {
760 		pr_alert("Fixing recursive fault but reboot is needed!\n");
761 		futex_exit_recursive(tsk);
762 		set_current_state(TASK_UNINTERRUPTIBLE);
763 		schedule();
764 	}
765 
766 	io_uring_files_cancel(tsk->files);
767 	exit_signals(tsk);  /* sets PF_EXITING */
768 	sched_exit(tsk);
769 
770 	/* sync mm's RSS info before statistics gathering */
771 	if (tsk->mm)
772 		sync_mm_rss(tsk->mm);
773 	acct_update_integrals(tsk);
774 	group_dead = atomic_dec_and_test(&tsk->signal->live);
775 	if (group_dead) {
776 		/*
777 		 * If the last thread of global init has exited, panic
778 		 * immediately to get a useable coredump.
779 		 */
780 		if (unlikely(is_global_init(tsk)))
781 			panic("Attempted to kill init! exitcode=0x%08x\n",
782 				tsk->signal->group_exit_code ?: (int)code);
783 
784 #ifdef CONFIG_POSIX_TIMERS
785 		hrtimer_cancel(&tsk->signal->real_timer);
786 		exit_itimers(tsk->signal);
787 #endif
788 		if (tsk->mm)
789 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
790 	}
791 	acct_collect(code, group_dead);
792 	if (group_dead)
793 		tty_audit_exit();
794 	audit_free(tsk);
795 
796 	tsk->exit_code = code;
797 	taskstats_exit(tsk, group_dead);
798 
799 	exit_mm();
800 
801 	if (group_dead)
802 		acct_process();
803 	trace_sched_process_exit(tsk);
804 
805 	exit_sem(tsk);
806 	exit_shm(tsk);
807 	exit_files(tsk);
808 	exit_fs(tsk);
809 	if (group_dead)
810 		disassociate_ctty(1);
811 	exit_task_namespaces(tsk);
812 	exit_task_work(tsk);
813 	exit_thread(tsk);
814 
815 	/*
816 	 * Flush inherited counters to the parent - before the parent
817 	 * gets woken up by child-exit notifications.
818 	 *
819 	 * because of cgroup mode, must be called before cgroup_exit()
820 	 */
821 	perf_event_exit_task(tsk);
822 
823 	sched_autogroup_exit_task(tsk);
824 	cgroup_exit(tsk);
825 
826 	/*
827 	 * FIXME: do that only when needed, using sched_exit tracepoint
828 	 */
829 	flush_ptrace_hw_breakpoint(tsk);
830 
831 	exit_tasks_rcu_start();
832 	exit_notify(tsk, group_dead);
833 	proc_exit_connector(tsk);
834 	mpol_put_task_policy(tsk);
835 #ifdef CONFIG_FUTEX
836 	if (unlikely(current->pi_state_cache))
837 		kfree(current->pi_state_cache);
838 #endif
839 	/*
840 	 * Make sure we are holding no locks:
841 	 */
842 	debug_check_no_locks_held();
843 
844 	if (tsk->io_context)
845 		exit_io_context(tsk);
846 
847 	if (tsk->splice_pipe)
848 		free_pipe_info(tsk->splice_pipe);
849 
850 	if (tsk->task_frag.page)
851 		put_page(tsk->task_frag.page);
852 
853 	validate_creds_for_do_exit(tsk);
854 
855 	check_stack_usage();
856 	preempt_disable();
857 	if (tsk->nr_dirtied)
858 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
859 	exit_rcu();
860 	exit_tasks_rcu_finish();
861 
862 	lockdep_free_task(tsk);
863 	do_task_dead();
864 }
865 EXPORT_SYMBOL_GPL(do_exit);
866 
complete_and_exit(struct completion * comp,long code)867 void complete_and_exit(struct completion *comp, long code)
868 {
869 	if (comp)
870 		complete(comp);
871 
872 	do_exit(code);
873 }
874 EXPORT_SYMBOL(complete_and_exit);
875 
SYSCALL_DEFINE1(exit,int,error_code)876 SYSCALL_DEFINE1(exit, int, error_code)
877 {
878 	do_exit((error_code&0xff)<<8);
879 }
880 
881 /*
882  * Take down every thread in the group.  This is called by fatal signals
883  * as well as by sys_exit_group (below).
884  */
885 void
do_group_exit(int exit_code)886 do_group_exit(int exit_code)
887 {
888 	struct signal_struct *sig = current->signal;
889 
890 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
891 
892 	if (signal_group_exit(sig))
893 		exit_code = sig->group_exit_code;
894 	else if (!thread_group_empty(current)) {
895 		struct sighand_struct *const sighand = current->sighand;
896 
897 		spin_lock_irq(&sighand->siglock);
898 		if (signal_group_exit(sig))
899 			/* Another thread got here before we took the lock.  */
900 			exit_code = sig->group_exit_code;
901 		else {
902 			sig->group_exit_code = exit_code;
903 			sig->flags = SIGNAL_GROUP_EXIT;
904 			zap_other_threads(current);
905 		}
906 		spin_unlock_irq(&sighand->siglock);
907 	}
908 
909 	do_exit(exit_code);
910 	/* NOTREACHED */
911 }
912 
913 /*
914  * this kills every thread in the thread group. Note that any externally
915  * wait4()-ing process will get the correct exit code - even if this
916  * thread is not the thread group leader.
917  */
SYSCALL_DEFINE1(exit_group,int,error_code)918 SYSCALL_DEFINE1(exit_group, int, error_code)
919 {
920 	do_group_exit((error_code & 0xff) << 8);
921 	/* NOTREACHED */
922 	return 0;
923 }
924 
925 struct waitid_info {
926 	pid_t pid;
927 	uid_t uid;
928 	int status;
929 	int cause;
930 };
931 
932 struct wait_opts {
933 	enum pid_type		wo_type;
934 	int			wo_flags;
935 	struct pid		*wo_pid;
936 
937 	struct waitid_info	*wo_info;
938 	int			wo_stat;
939 	struct rusage		*wo_rusage;
940 
941 	wait_queue_entry_t		child_wait;
942 	int			notask_error;
943 };
944 
eligible_pid(struct wait_opts * wo,struct task_struct * p)945 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
946 {
947 	return	wo->wo_type == PIDTYPE_MAX ||
948 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
949 }
950 
951 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)952 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
953 {
954 	if (!eligible_pid(wo, p))
955 		return 0;
956 
957 	/*
958 	 * Wait for all children (clone and not) if __WALL is set or
959 	 * if it is traced by us.
960 	 */
961 	if (ptrace || (wo->wo_flags & __WALL))
962 		return 1;
963 
964 	/*
965 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
966 	 * otherwise, wait for non-clone children *only*.
967 	 *
968 	 * Note: a "clone" child here is one that reports to its parent
969 	 * using a signal other than SIGCHLD, or a non-leader thread which
970 	 * we can only see if it is traced by us.
971 	 */
972 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
973 		return 0;
974 
975 	return 1;
976 }
977 
978 /*
979  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
980  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
981  * the lock and this task is uninteresting.  If we return nonzero, we have
982  * released the lock and the system call should return.
983  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)984 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
985 {
986 	int state, status;
987 	pid_t pid = task_pid_vnr(p);
988 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
989 	struct waitid_info *infop;
990 
991 	if (!likely(wo->wo_flags & WEXITED))
992 		return 0;
993 
994 	if (unlikely(wo->wo_flags & WNOWAIT)) {
995 		status = p->exit_code;
996 		get_task_struct(p);
997 		read_unlock(&tasklist_lock);
998 		sched_annotate_sleep();
999 		if (wo->wo_rusage)
1000 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1001 		put_task_struct(p);
1002 		goto out_info;
1003 	}
1004 	/*
1005 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1006 	 */
1007 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1008 		EXIT_TRACE : EXIT_DEAD;
1009 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1010 		return 0;
1011 	/*
1012 	 * We own this thread, nobody else can reap it.
1013 	 */
1014 	read_unlock(&tasklist_lock);
1015 	sched_annotate_sleep();
1016 
1017 	/*
1018 	 * Check thread_group_leader() to exclude the traced sub-threads.
1019 	 */
1020 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1021 		struct signal_struct *sig = p->signal;
1022 		struct signal_struct *psig = current->signal;
1023 		unsigned long maxrss;
1024 		u64 tgutime, tgstime;
1025 
1026 		/*
1027 		 * The resource counters for the group leader are in its
1028 		 * own task_struct.  Those for dead threads in the group
1029 		 * are in its signal_struct, as are those for the child
1030 		 * processes it has previously reaped.  All these
1031 		 * accumulate in the parent's signal_struct c* fields.
1032 		 *
1033 		 * We don't bother to take a lock here to protect these
1034 		 * p->signal fields because the whole thread group is dead
1035 		 * and nobody can change them.
1036 		 *
1037 		 * psig->stats_lock also protects us from our sub-theads
1038 		 * which can reap other children at the same time. Until
1039 		 * we change k_getrusage()-like users to rely on this lock
1040 		 * we have to take ->siglock as well.
1041 		 *
1042 		 * We use thread_group_cputime_adjusted() to get times for
1043 		 * the thread group, which consolidates times for all threads
1044 		 * in the group including the group leader.
1045 		 */
1046 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047 		spin_lock_irq(&current->sighand->siglock);
1048 		write_seqlock(&psig->stats_lock);
1049 		psig->cutime += tgutime + sig->cutime;
1050 		psig->cstime += tgstime + sig->cstime;
1051 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1052 		psig->cmin_flt +=
1053 			p->min_flt + sig->min_flt + sig->cmin_flt;
1054 		psig->cmaj_flt +=
1055 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1056 		psig->cnvcsw +=
1057 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1058 		psig->cnivcsw +=
1059 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1060 		psig->cinblock +=
1061 			task_io_get_inblock(p) +
1062 			sig->inblock + sig->cinblock;
1063 		psig->coublock +=
1064 			task_io_get_oublock(p) +
1065 			sig->oublock + sig->coublock;
1066 		maxrss = max(sig->maxrss, sig->cmaxrss);
1067 		if (psig->cmaxrss < maxrss)
1068 			psig->cmaxrss = maxrss;
1069 		task_io_accounting_add(&psig->ioac, &p->ioac);
1070 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1071 		write_sequnlock(&psig->stats_lock);
1072 		spin_unlock_irq(&current->sighand->siglock);
1073 	}
1074 
1075 	if (wo->wo_rusage)
1076 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1077 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1078 		? p->signal->group_exit_code : p->exit_code;
1079 	wo->wo_stat = status;
1080 
1081 	if (state == EXIT_TRACE) {
1082 		write_lock_irq(&tasklist_lock);
1083 		/* We dropped tasklist, ptracer could die and untrace */
1084 		ptrace_unlink(p);
1085 
1086 		/* If parent wants a zombie, don't release it now */
1087 		state = EXIT_ZOMBIE;
1088 		if (do_notify_parent(p, p->exit_signal))
1089 			state = EXIT_DEAD;
1090 		p->exit_state = state;
1091 		write_unlock_irq(&tasklist_lock);
1092 	}
1093 	if (state == EXIT_DEAD)
1094 		release_task(p);
1095 
1096 out_info:
1097 	infop = wo->wo_info;
1098 	if (infop) {
1099 		if ((status & 0x7f) == 0) {
1100 			infop->cause = CLD_EXITED;
1101 			infop->status = status >> 8;
1102 		} else {
1103 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1104 			infop->status = status & 0x7f;
1105 		}
1106 		infop->pid = pid;
1107 		infop->uid = uid;
1108 	}
1109 
1110 	return pid;
1111 }
1112 
task_stopped_code(struct task_struct * p,bool ptrace)1113 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1114 {
1115 	if (ptrace) {
1116 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1117 			return &p->exit_code;
1118 	} else {
1119 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1120 			return &p->signal->group_exit_code;
1121 	}
1122 	return NULL;
1123 }
1124 
1125 /**
1126  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1127  * @wo: wait options
1128  * @ptrace: is the wait for ptrace
1129  * @p: task to wait for
1130  *
1131  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1132  *
1133  * CONTEXT:
1134  * read_lock(&tasklist_lock), which is released if return value is
1135  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1136  *
1137  * RETURNS:
1138  * 0 if wait condition didn't exist and search for other wait conditions
1139  * should continue.  Non-zero return, -errno on failure and @p's pid on
1140  * success, implies that tasklist_lock is released and wait condition
1141  * search should terminate.
1142  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1143 static int wait_task_stopped(struct wait_opts *wo,
1144 				int ptrace, struct task_struct *p)
1145 {
1146 	struct waitid_info *infop;
1147 	int exit_code, *p_code, why;
1148 	uid_t uid = 0; /* unneeded, required by compiler */
1149 	pid_t pid;
1150 
1151 	/*
1152 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1153 	 */
1154 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1155 		return 0;
1156 
1157 	if (!task_stopped_code(p, ptrace))
1158 		return 0;
1159 
1160 	exit_code = 0;
1161 	spin_lock_irq(&p->sighand->siglock);
1162 
1163 	p_code = task_stopped_code(p, ptrace);
1164 	if (unlikely(!p_code))
1165 		goto unlock_sig;
1166 
1167 	exit_code = *p_code;
1168 	if (!exit_code)
1169 		goto unlock_sig;
1170 
1171 	if (!unlikely(wo->wo_flags & WNOWAIT))
1172 		*p_code = 0;
1173 
1174 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1175 unlock_sig:
1176 	spin_unlock_irq(&p->sighand->siglock);
1177 	if (!exit_code)
1178 		return 0;
1179 
1180 	/*
1181 	 * Now we are pretty sure this task is interesting.
1182 	 * Make sure it doesn't get reaped out from under us while we
1183 	 * give up the lock and then examine it below.  We don't want to
1184 	 * keep holding onto the tasklist_lock while we call getrusage and
1185 	 * possibly take page faults for user memory.
1186 	 */
1187 	get_task_struct(p);
1188 	pid = task_pid_vnr(p);
1189 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1190 	read_unlock(&tasklist_lock);
1191 	sched_annotate_sleep();
1192 	if (wo->wo_rusage)
1193 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1194 	put_task_struct(p);
1195 
1196 	if (likely(!(wo->wo_flags & WNOWAIT)))
1197 		wo->wo_stat = (exit_code << 8) | 0x7f;
1198 
1199 	infop = wo->wo_info;
1200 	if (infop) {
1201 		infop->cause = why;
1202 		infop->status = exit_code;
1203 		infop->pid = pid;
1204 		infop->uid = uid;
1205 	}
1206 	return pid;
1207 }
1208 
1209 /*
1210  * Handle do_wait work for one task in a live, non-stopped state.
1211  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1212  * the lock and this task is uninteresting.  If we return nonzero, we have
1213  * released the lock and the system call should return.
1214  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1215 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1216 {
1217 	struct waitid_info *infop;
1218 	pid_t pid;
1219 	uid_t uid;
1220 
1221 	if (!unlikely(wo->wo_flags & WCONTINUED))
1222 		return 0;
1223 
1224 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1225 		return 0;
1226 
1227 	spin_lock_irq(&p->sighand->siglock);
1228 	/* Re-check with the lock held.  */
1229 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1230 		spin_unlock_irq(&p->sighand->siglock);
1231 		return 0;
1232 	}
1233 	if (!unlikely(wo->wo_flags & WNOWAIT))
1234 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1235 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1236 	spin_unlock_irq(&p->sighand->siglock);
1237 
1238 	pid = task_pid_vnr(p);
1239 	get_task_struct(p);
1240 	read_unlock(&tasklist_lock);
1241 	sched_annotate_sleep();
1242 	if (wo->wo_rusage)
1243 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1244 	put_task_struct(p);
1245 
1246 	infop = wo->wo_info;
1247 	if (!infop) {
1248 		wo->wo_stat = 0xffff;
1249 	} else {
1250 		infop->cause = CLD_CONTINUED;
1251 		infop->pid = pid;
1252 		infop->uid = uid;
1253 		infop->status = SIGCONT;
1254 	}
1255 	return pid;
1256 }
1257 
1258 /*
1259  * Consider @p for a wait by @parent.
1260  *
1261  * -ECHILD should be in ->notask_error before the first call.
1262  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1263  * Returns zero if the search for a child should continue;
1264  * then ->notask_error is 0 if @p is an eligible child,
1265  * or still -ECHILD.
1266  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1267 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1268 				struct task_struct *p)
1269 {
1270 	/*
1271 	 * We can race with wait_task_zombie() from another thread.
1272 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1273 	 * can't confuse the checks below.
1274 	 */
1275 	int exit_state = READ_ONCE(p->exit_state);
1276 	int ret;
1277 
1278 	if (unlikely(exit_state == EXIT_DEAD))
1279 		return 0;
1280 
1281 	ret = eligible_child(wo, ptrace, p);
1282 	if (!ret)
1283 		return ret;
1284 
1285 	if (unlikely(exit_state == EXIT_TRACE)) {
1286 		/*
1287 		 * ptrace == 0 means we are the natural parent. In this case
1288 		 * we should clear notask_error, debugger will notify us.
1289 		 */
1290 		if (likely(!ptrace))
1291 			wo->notask_error = 0;
1292 		return 0;
1293 	}
1294 
1295 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1296 		/*
1297 		 * If it is traced by its real parent's group, just pretend
1298 		 * the caller is ptrace_do_wait() and reap this child if it
1299 		 * is zombie.
1300 		 *
1301 		 * This also hides group stop state from real parent; otherwise
1302 		 * a single stop can be reported twice as group and ptrace stop.
1303 		 * If a ptracer wants to distinguish these two events for its
1304 		 * own children it should create a separate process which takes
1305 		 * the role of real parent.
1306 		 */
1307 		if (!ptrace_reparented(p))
1308 			ptrace = 1;
1309 	}
1310 
1311 	/* slay zombie? */
1312 	if (exit_state == EXIT_ZOMBIE) {
1313 		/* we don't reap group leaders with subthreads */
1314 		if (!delay_group_leader(p)) {
1315 			/*
1316 			 * A zombie ptracee is only visible to its ptracer.
1317 			 * Notification and reaping will be cascaded to the
1318 			 * real parent when the ptracer detaches.
1319 			 */
1320 			if (unlikely(ptrace) || likely(!p->ptrace))
1321 				return wait_task_zombie(wo, p);
1322 		}
1323 
1324 		/*
1325 		 * Allow access to stopped/continued state via zombie by
1326 		 * falling through.  Clearing of notask_error is complex.
1327 		 *
1328 		 * When !@ptrace:
1329 		 *
1330 		 * If WEXITED is set, notask_error should naturally be
1331 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1332 		 * so, if there are live subthreads, there are events to
1333 		 * wait for.  If all subthreads are dead, it's still safe
1334 		 * to clear - this function will be called again in finite
1335 		 * amount time once all the subthreads are released and
1336 		 * will then return without clearing.
1337 		 *
1338 		 * When @ptrace:
1339 		 *
1340 		 * Stopped state is per-task and thus can't change once the
1341 		 * target task dies.  Only continued and exited can happen.
1342 		 * Clear notask_error if WCONTINUED | WEXITED.
1343 		 */
1344 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1345 			wo->notask_error = 0;
1346 	} else {
1347 		/*
1348 		 * @p is alive and it's gonna stop, continue or exit, so
1349 		 * there always is something to wait for.
1350 		 */
1351 		wo->notask_error = 0;
1352 	}
1353 
1354 	/*
1355 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1356 	 * is used and the two don't interact with each other.
1357 	 */
1358 	ret = wait_task_stopped(wo, ptrace, p);
1359 	if (ret)
1360 		return ret;
1361 
1362 	/*
1363 	 * Wait for continued.  There's only one continued state and the
1364 	 * ptracer can consume it which can confuse the real parent.  Don't
1365 	 * use WCONTINUED from ptracer.  You don't need or want it.
1366 	 */
1367 	return wait_task_continued(wo, p);
1368 }
1369 
1370 /*
1371  * Do the work of do_wait() for one thread in the group, @tsk.
1372  *
1373  * -ECHILD should be in ->notask_error before the first call.
1374  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1375  * Returns zero if the search for a child should continue; then
1376  * ->notask_error is 0 if there were any eligible children,
1377  * or still -ECHILD.
1378  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1379 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1380 {
1381 	struct task_struct *p;
1382 
1383 	list_for_each_entry(p, &tsk->children, sibling) {
1384 		int ret = wait_consider_task(wo, 0, p);
1385 
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1393 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1394 {
1395 	struct task_struct *p;
1396 
1397 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1398 		int ret = wait_consider_task(wo, 1, p);
1399 
1400 		if (ret)
1401 			return ret;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1407 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1408 				int sync, void *key)
1409 {
1410 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1411 						child_wait);
1412 	struct task_struct *p = key;
1413 
1414 	if (!eligible_pid(wo, p))
1415 		return 0;
1416 
1417 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1418 		return 0;
1419 
1420 	return default_wake_function(wait, mode, sync, key);
1421 }
1422 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1423 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1424 {
1425 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1426 			   TASK_INTERRUPTIBLE, p);
1427 }
1428 
do_wait(struct wait_opts * wo)1429 static long do_wait(struct wait_opts *wo)
1430 {
1431 	struct task_struct *tsk;
1432 	int retval;
1433 
1434 	trace_sched_process_wait(wo->wo_pid);
1435 
1436 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1437 	wo->child_wait.private = current;
1438 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1439 repeat:
1440 	/*
1441 	 * If there is nothing that can match our criteria, just get out.
1442 	 * We will clear ->notask_error to zero if we see any child that
1443 	 * might later match our criteria, even if we are not able to reap
1444 	 * it yet.
1445 	 */
1446 	wo->notask_error = -ECHILD;
1447 	if ((wo->wo_type < PIDTYPE_MAX) &&
1448 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1449 		goto notask;
1450 
1451 	set_current_state(TASK_INTERRUPTIBLE);
1452 	read_lock(&tasklist_lock);
1453 	tsk = current;
1454 	do {
1455 		retval = do_wait_thread(wo, tsk);
1456 		if (retval)
1457 			goto end;
1458 
1459 		retval = ptrace_do_wait(wo, tsk);
1460 		if (retval)
1461 			goto end;
1462 
1463 		if (wo->wo_flags & __WNOTHREAD)
1464 			break;
1465 	} while_each_thread(current, tsk);
1466 	read_unlock(&tasklist_lock);
1467 
1468 notask:
1469 	retval = wo->notask_error;
1470 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1471 		retval = -ERESTARTSYS;
1472 		if (!signal_pending(current)) {
1473 			schedule();
1474 			goto repeat;
1475 		}
1476 	}
1477 end:
1478 	__set_current_state(TASK_RUNNING);
1479 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1480 	return retval;
1481 }
1482 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1483 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1484 			  int options, struct rusage *ru)
1485 {
1486 	struct wait_opts wo;
1487 	struct pid *pid = NULL;
1488 	enum pid_type type;
1489 	long ret;
1490 	unsigned int f_flags = 0;
1491 
1492 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1493 			__WNOTHREAD|__WCLONE|__WALL))
1494 		return -EINVAL;
1495 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1496 		return -EINVAL;
1497 
1498 	switch (which) {
1499 	case P_ALL:
1500 		type = PIDTYPE_MAX;
1501 		break;
1502 	case P_PID:
1503 		type = PIDTYPE_PID;
1504 		if (upid <= 0)
1505 			return -EINVAL;
1506 
1507 		pid = find_get_pid(upid);
1508 		break;
1509 	case P_PGID:
1510 		type = PIDTYPE_PGID;
1511 		if (upid < 0)
1512 			return -EINVAL;
1513 
1514 		if (upid)
1515 			pid = find_get_pid(upid);
1516 		else
1517 			pid = get_task_pid(current, PIDTYPE_PGID);
1518 		break;
1519 	case P_PIDFD:
1520 		type = PIDTYPE_PID;
1521 		if (upid < 0)
1522 			return -EINVAL;
1523 
1524 		pid = pidfd_get_pid(upid, &f_flags);
1525 		if (IS_ERR(pid))
1526 			return PTR_ERR(pid);
1527 
1528 		break;
1529 	default:
1530 		return -EINVAL;
1531 	}
1532 
1533 	wo.wo_type	= type;
1534 	wo.wo_pid	= pid;
1535 	wo.wo_flags	= options;
1536 	wo.wo_info	= infop;
1537 	wo.wo_rusage	= ru;
1538 	if (f_flags & O_NONBLOCK)
1539 		wo.wo_flags |= WNOHANG;
1540 
1541 	ret = do_wait(&wo);
1542 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1543 		ret = -EAGAIN;
1544 
1545 	put_pid(pid);
1546 	return ret;
1547 }
1548 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1550 		infop, int, options, struct rusage __user *, ru)
1551 {
1552 	struct rusage r;
1553 	struct waitid_info info = {.status = 0};
1554 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1555 	int signo = 0;
1556 
1557 	if (err > 0) {
1558 		signo = SIGCHLD;
1559 		err = 0;
1560 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1561 			return -EFAULT;
1562 	}
1563 	if (!infop)
1564 		return err;
1565 
1566 	if (!user_write_access_begin(infop, sizeof(*infop)))
1567 		return -EFAULT;
1568 
1569 	unsafe_put_user(signo, &infop->si_signo, Efault);
1570 	unsafe_put_user(0, &infop->si_errno, Efault);
1571 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1572 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1573 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1574 	unsafe_put_user(info.status, &infop->si_status, Efault);
1575 	user_write_access_end();
1576 	return err;
1577 Efault:
1578 	user_write_access_end();
1579 	return -EFAULT;
1580 }
1581 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1583 		  struct rusage *ru)
1584 {
1585 	struct wait_opts wo;
1586 	struct pid *pid = NULL;
1587 	enum pid_type type;
1588 	long ret;
1589 
1590 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1591 			__WNOTHREAD|__WCLONE|__WALL))
1592 		return -EINVAL;
1593 
1594 	/* -INT_MIN is not defined */
1595 	if (upid == INT_MIN)
1596 		return -ESRCH;
1597 
1598 	if (upid == -1)
1599 		type = PIDTYPE_MAX;
1600 	else if (upid < 0) {
1601 		type = PIDTYPE_PGID;
1602 		pid = find_get_pid(-upid);
1603 	} else if (upid == 0) {
1604 		type = PIDTYPE_PGID;
1605 		pid = get_task_pid(current, PIDTYPE_PGID);
1606 	} else /* upid > 0 */ {
1607 		type = PIDTYPE_PID;
1608 		pid = find_get_pid(upid);
1609 	}
1610 
1611 	wo.wo_type	= type;
1612 	wo.wo_pid	= pid;
1613 	wo.wo_flags	= options | WEXITED;
1614 	wo.wo_info	= NULL;
1615 	wo.wo_stat	= 0;
1616 	wo.wo_rusage	= ru;
1617 	ret = do_wait(&wo);
1618 	put_pid(pid);
1619 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1620 		ret = -EFAULT;
1621 
1622 	return ret;
1623 }
1624 
kernel_wait(pid_t pid,int * stat)1625 int kernel_wait(pid_t pid, int *stat)
1626 {
1627 	struct wait_opts wo = {
1628 		.wo_type	= PIDTYPE_PID,
1629 		.wo_pid		= find_get_pid(pid),
1630 		.wo_flags	= WEXITED,
1631 	};
1632 	int ret;
1633 
1634 	ret = do_wait(&wo);
1635 	if (ret > 0 && wo.wo_stat)
1636 		*stat = wo.wo_stat;
1637 	put_pid(wo.wo_pid);
1638 	return ret;
1639 }
1640 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1641 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1642 		int, options, struct rusage __user *, ru)
1643 {
1644 	struct rusage r;
1645 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1646 
1647 	if (err > 0) {
1648 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1649 			return -EFAULT;
1650 	}
1651 	return err;
1652 }
1653 
1654 #ifdef __ARCH_WANT_SYS_WAITPID
1655 
1656 /*
1657  * sys_waitpid() remains for compatibility. waitpid() should be
1658  * implemented by calling sys_wait4() from libc.a.
1659  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1660 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1661 {
1662 	return kernel_wait4(pid, stat_addr, options, NULL);
1663 }
1664 
1665 #endif
1666 
1667 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1668 COMPAT_SYSCALL_DEFINE4(wait4,
1669 	compat_pid_t, pid,
1670 	compat_uint_t __user *, stat_addr,
1671 	int, options,
1672 	struct compat_rusage __user *, ru)
1673 {
1674 	struct rusage r;
1675 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1676 	if (err > 0) {
1677 		if (ru && put_compat_rusage(&r, ru))
1678 			return -EFAULT;
1679 	}
1680 	return err;
1681 }
1682 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1683 COMPAT_SYSCALL_DEFINE5(waitid,
1684 		int, which, compat_pid_t, pid,
1685 		struct compat_siginfo __user *, infop, int, options,
1686 		struct compat_rusage __user *, uru)
1687 {
1688 	struct rusage ru;
1689 	struct waitid_info info = {.status = 0};
1690 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1691 	int signo = 0;
1692 	if (err > 0) {
1693 		signo = SIGCHLD;
1694 		err = 0;
1695 		if (uru) {
1696 			/* kernel_waitid() overwrites everything in ru */
1697 			if (COMPAT_USE_64BIT_TIME)
1698 				err = copy_to_user(uru, &ru, sizeof(ru));
1699 			else
1700 				err = put_compat_rusage(&ru, uru);
1701 			if (err)
1702 				return -EFAULT;
1703 		}
1704 	}
1705 
1706 	if (!infop)
1707 		return err;
1708 
1709 	if (!user_write_access_begin(infop, sizeof(*infop)))
1710 		return -EFAULT;
1711 
1712 	unsafe_put_user(signo, &infop->si_signo, Efault);
1713 	unsafe_put_user(0, &infop->si_errno, Efault);
1714 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1715 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1716 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1717 	unsafe_put_user(info.status, &infop->si_status, Efault);
1718 	user_write_access_end();
1719 	return err;
1720 Efault:
1721 	user_write_access_end();
1722 	return -EFAULT;
1723 }
1724 #endif
1725 
1726 /**
1727  * thread_group_exited - check that a thread group has exited
1728  * @pid: tgid of thread group to be checked.
1729  *
1730  * Test if the thread group represented by tgid has exited (all
1731  * threads are zombies, dead or completely gone).
1732  *
1733  * Return: true if the thread group has exited. false otherwise.
1734  */
thread_group_exited(struct pid * pid)1735 bool thread_group_exited(struct pid *pid)
1736 {
1737 	struct task_struct *task;
1738 	bool exited;
1739 
1740 	rcu_read_lock();
1741 	task = pid_task(pid, PIDTYPE_PID);
1742 	exited = !task ||
1743 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1744 	rcu_read_unlock();
1745 
1746 	return exited;
1747 }
1748 EXPORT_SYMBOL(thread_group_exited);
1749 
abort(void)1750 __weak void abort(void)
1751 {
1752 	BUG();
1753 
1754 	/* if that doesn't kill us, halt */
1755 	panic("Oops failed to kill thread");
1756 }
1757 EXPORT_SYMBOL(abort);
1758