• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "nir_deref.h"
27 
28 #include "util/bitscan.h"
29 #include "util/u_dynarray.h"
30 
31 static const bool debug = false;
32 
33 /**
34  * Variable-based copy propagation
35  *
36  * Normally, NIR trusts in SSA form for most of its copy-propagation needs.
37  * However, there are cases, especially when dealing with indirects, where SSA
38  * won't help you.  This pass is for those times.  Specifically, it handles
39  * the following things that the rest of NIR can't:
40  *
41  *  1) Copy-propagation on variables that have indirect access.  This includes
42  *     propagating from indirect stores into indirect loads.
43  *
44  *  2) Removal of redundant load_deref intrinsics.  We can't trust regular CSE
45  *     to do this because it isn't aware of variable writes that may alias the
46  *     value and make the former load invalid.
47  *
48  * This pass uses an intermediate solution between being local / "per-block"
49  * and a complete data-flow analysis.  It follows the control flow graph, and
50  * propagate the available copy information forward, invalidating data at each
51  * cf_node.
52  *
53  * Removal of dead writes to variables is handled by another pass.
54  */
55 
56 struct vars_written {
57    nir_variable_mode modes;
58 
59    /* Key is deref and value is the uintptr_t with the write mask. */
60    struct hash_table *derefs;
61 };
62 
63 struct value {
64    bool is_ssa;
65    union {
66       struct {
67          nir_ssa_def *def[NIR_MAX_VEC_COMPONENTS];
68          uint8_t component[NIR_MAX_VEC_COMPONENTS];
69       } ssa;
70       nir_deref_and_path deref;
71    };
72 };
73 
74 static void
value_set_ssa_components(struct value * value,nir_ssa_def * def,unsigned num_components)75 value_set_ssa_components(struct value *value, nir_ssa_def *def,
76                          unsigned num_components)
77 {
78    if (!value->is_ssa)
79       memset(&value->ssa, 0, sizeof(value->ssa));
80    value->is_ssa = true;
81    for (unsigned i = 0; i < num_components; i++) {
82       value->ssa.def[i] = def;
83       value->ssa.component[i] = i;
84    }
85 }
86 
87 struct copy_entry {
88    struct value src;
89 
90    nir_deref_and_path dst;
91 };
92 
93 struct copy_prop_var_state {
94    nir_function_impl *impl;
95 
96    void *mem_ctx;
97    void *lin_ctx;
98 
99    /* Maps nodes to vars_written.  Used to invalidate copy entries when
100     * visiting each node.
101     */
102    struct hash_table *vars_written_map;
103 
104    bool progress;
105 };
106 
107 static bool
value_equals_store_src(struct value * value,nir_intrinsic_instr * intrin)108 value_equals_store_src(struct value *value, nir_intrinsic_instr *intrin)
109 {
110    assert(intrin->intrinsic == nir_intrinsic_store_deref);
111    nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin);
112 
113    for (unsigned i = 0; i < intrin->num_components; i++) {
114       if ((write_mask & (1 << i)) &&
115           (value->ssa.def[i] != intrin->src[1].ssa ||
116            value->ssa.component[i] != i))
117          return false;
118    }
119 
120    return true;
121 }
122 
123 static struct vars_written *
create_vars_written(struct copy_prop_var_state * state)124 create_vars_written(struct copy_prop_var_state *state)
125 {
126    struct vars_written *written =
127       linear_zalloc_child(state->lin_ctx, sizeof(struct vars_written));
128    written->derefs = _mesa_pointer_hash_table_create(state->mem_ctx);
129    return written;
130 }
131 
132 static void
gather_vars_written(struct copy_prop_var_state * state,struct vars_written * written,nir_cf_node * cf_node)133 gather_vars_written(struct copy_prop_var_state *state,
134                     struct vars_written *written,
135                     nir_cf_node *cf_node)
136 {
137    struct vars_written *new_written = NULL;
138 
139    switch (cf_node->type) {
140    case nir_cf_node_function: {
141       nir_function_impl *impl = nir_cf_node_as_function(cf_node);
142       foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
143          gather_vars_written(state, NULL, cf_node);
144       break;
145    }
146 
147    case nir_cf_node_block: {
148       if (!written)
149          break;
150 
151       nir_block *block = nir_cf_node_as_block(cf_node);
152       nir_foreach_instr(instr, block) {
153          if (instr->type == nir_instr_type_call) {
154             written->modes |= nir_var_shader_out |
155                               nir_var_shader_temp |
156                               nir_var_function_temp |
157                               nir_var_mem_ssbo |
158                               nir_var_mem_shared |
159                               nir_var_mem_global;
160             continue;
161          }
162 
163          if (instr->type != nir_instr_type_intrinsic)
164             continue;
165 
166          nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
167          switch (intrin->intrinsic) {
168          case nir_intrinsic_control_barrier:
169          case nir_intrinsic_group_memory_barrier:
170          case nir_intrinsic_memory_barrier:
171             written->modes |= nir_var_shader_out |
172                               nir_var_mem_ssbo |
173                               nir_var_mem_shared |
174                               nir_var_mem_global;
175             break;
176 
177          case nir_intrinsic_scoped_barrier:
178             if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
179                written->modes |= nir_intrinsic_memory_modes(intrin);
180             break;
181 
182          case nir_intrinsic_emit_vertex:
183          case nir_intrinsic_emit_vertex_with_counter:
184             written->modes = nir_var_shader_out;
185             break;
186 
187          case nir_intrinsic_trace_ray:
188          case nir_intrinsic_execute_callable:
189          case nir_intrinsic_rt_trace_ray:
190          case nir_intrinsic_rt_execute_callable: {
191             nir_deref_instr *payload =
192                nir_src_as_deref(*nir_get_shader_call_payload_src(intrin));
193 
194             nir_component_mask_t mask =
195                BITFIELD_MASK(glsl_get_vector_elements(payload->type));
196 
197             struct hash_entry *ht_entry =
198                _mesa_hash_table_search(written->derefs, payload);
199             if (ht_entry) {
200                ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
201             } else {
202                _mesa_hash_table_insert(written->derefs, payload,
203                                        (void *)(uintptr_t)mask);
204             }
205             break;
206          }
207 
208          case nir_intrinsic_report_ray_intersection:
209             written->modes |= nir_var_mem_ssbo |
210                               nir_var_mem_global |
211                               nir_var_shader_call_data |
212                               nir_var_ray_hit_attrib;
213             break;
214 
215          case nir_intrinsic_ignore_ray_intersection:
216          case nir_intrinsic_terminate_ray:
217             written->modes |= nir_var_mem_ssbo |
218                               nir_var_mem_global |
219                               nir_var_shader_call_data;
220             break;
221 
222          case nir_intrinsic_deref_atomic_add:
223          case nir_intrinsic_deref_atomic_fadd:
224          case nir_intrinsic_deref_atomic_imin:
225          case nir_intrinsic_deref_atomic_umin:
226          case nir_intrinsic_deref_atomic_fmin:
227          case nir_intrinsic_deref_atomic_imax:
228          case nir_intrinsic_deref_atomic_umax:
229          case nir_intrinsic_deref_atomic_fmax:
230          case nir_intrinsic_deref_atomic_and:
231          case nir_intrinsic_deref_atomic_or:
232          case nir_intrinsic_deref_atomic_xor:
233          case nir_intrinsic_deref_atomic_exchange:
234          case nir_intrinsic_deref_atomic_comp_swap:
235          case nir_intrinsic_deref_atomic_fcomp_swap:
236          case nir_intrinsic_store_deref:
237          case nir_intrinsic_copy_deref:
238          case nir_intrinsic_memcpy_deref: {
239             /* Destination in all of store_deref, copy_deref and the atomics is src[0]. */
240             nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
241 
242             uintptr_t mask = intrin->intrinsic == nir_intrinsic_store_deref ?
243                nir_intrinsic_write_mask(intrin) : (1 << glsl_get_vector_elements(dst->type)) - 1;
244 
245             struct hash_entry *ht_entry = _mesa_hash_table_search(written->derefs, dst);
246             if (ht_entry)
247                ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
248             else
249                _mesa_hash_table_insert(written->derefs, dst, (void *)mask);
250 
251             break;
252          }
253 
254          default:
255             break;
256          }
257       }
258 
259       break;
260    }
261 
262    case nir_cf_node_if: {
263       nir_if *if_stmt = nir_cf_node_as_if(cf_node);
264 
265       new_written = create_vars_written(state);
266 
267       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
268          gather_vars_written(state, new_written, cf_node);
269 
270       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
271          gather_vars_written(state, new_written, cf_node);
272 
273       break;
274    }
275 
276    case nir_cf_node_loop: {
277       nir_loop *loop = nir_cf_node_as_loop(cf_node);
278 
279       new_written = create_vars_written(state);
280 
281       foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
282          gather_vars_written(state, new_written, cf_node);
283 
284       break;
285    }
286 
287    default:
288       unreachable("Invalid CF node type");
289    }
290 
291    if (new_written) {
292       /* Merge new information to the parent control flow node. */
293       if (written) {
294          written->modes |= new_written->modes;
295          hash_table_foreach(new_written->derefs, new_entry) {
296             struct hash_entry *old_entry =
297                _mesa_hash_table_search_pre_hashed(written->derefs, new_entry->hash,
298                                                   new_entry->key);
299             if (old_entry) {
300                nir_component_mask_t merged = (uintptr_t) new_entry->data |
301                                              (uintptr_t) old_entry->data;
302                old_entry->data = (void *) ((uintptr_t) merged);
303             } else {
304                _mesa_hash_table_insert_pre_hashed(written->derefs, new_entry->hash,
305                                                   new_entry->key, new_entry->data);
306             }
307          }
308       }
309       _mesa_hash_table_insert(state->vars_written_map, cf_node, new_written);
310    }
311 }
312 
313 static struct copy_entry *
copy_entry_create(struct util_dynarray * copies,nir_deref_and_path * deref)314 copy_entry_create(struct util_dynarray *copies,
315                   nir_deref_and_path *deref)
316 {
317    struct copy_entry new_entry = {
318       .dst = *deref,
319    };
320    util_dynarray_append(copies, struct copy_entry, new_entry);
321    return util_dynarray_top_ptr(copies, struct copy_entry);
322 }
323 
324 /* Remove copy entry by swapping it with the last element and reducing the
325  * size.  If used inside an iteration on copies, it must be a reverse
326  * (backwards) iteration.  It is safe to use in those cases because the swap
327  * will not affect the rest of the iteration.
328  */
329 static void
copy_entry_remove(struct util_dynarray * copies,struct copy_entry * entry)330 copy_entry_remove(struct util_dynarray *copies,
331                   struct copy_entry *entry)
332 {
333    const struct copy_entry *src =
334       util_dynarray_pop_ptr(copies, struct copy_entry);
335    if (src != entry)
336       *entry = *src;
337 }
338 
339 static bool
is_array_deref_of_vector(const nir_deref_and_path * deref)340 is_array_deref_of_vector(const nir_deref_and_path *deref)
341 {
342    if (deref->instr->deref_type != nir_deref_type_array)
343       return false;
344    nir_deref_instr *parent = nir_deref_instr_parent(deref->instr);
345    return glsl_type_is_vector(parent->type);
346 }
347 
348 static struct copy_entry *
lookup_entry_for_deref(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,nir_deref_compare_result allowed_comparisons,bool * equal)349 lookup_entry_for_deref(struct copy_prop_var_state *state,
350                        struct util_dynarray *copies,
351                        nir_deref_and_path *deref,
352                        nir_deref_compare_result allowed_comparisons,
353                        bool *equal)
354 {
355    struct copy_entry *entry = NULL;
356    util_dynarray_foreach(copies, struct copy_entry, iter) {
357       nir_deref_compare_result result =
358          nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref);
359       if (result & allowed_comparisons) {
360          entry = iter;
361          if (result & nir_derefs_equal_bit) {
362             if (equal != NULL)
363                *equal = true;
364             break;
365          }
366          /* Keep looking in case we have an equal match later in the array. */
367       }
368    }
369 
370    return entry;
371 }
372 
373 static struct copy_entry *
lookup_entry_and_kill_aliases(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,unsigned write_mask)374 lookup_entry_and_kill_aliases(struct copy_prop_var_state *state,
375                               struct util_dynarray *copies,
376                               nir_deref_and_path *deref,
377                               unsigned write_mask)
378 {
379    /* TODO: Take into account the write_mask. */
380 
381    nir_deref_instr *dst_match = NULL;
382    util_dynarray_foreach_reverse(copies, struct copy_entry, iter) {
383       if (!iter->src.is_ssa) {
384          /* If this write aliases the source of some entry, get rid of it */
385          nir_deref_compare_result result =
386             nir_compare_derefs_and_paths(state->mem_ctx, &iter->src.deref, deref);
387          if (result & nir_derefs_may_alias_bit) {
388             copy_entry_remove(copies, iter);
389             continue;
390          }
391       }
392 
393       nir_deref_compare_result comp =
394          nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref);
395 
396       if (comp & nir_derefs_equal_bit) {
397          /* Removing entries invalidate previous iter pointers, so we'll
398           * collect the matching entry later.  Just make sure it is unique.
399           */
400          assert(!dst_match);
401          dst_match = iter->dst.instr;
402       } else if (comp & nir_derefs_may_alias_bit) {
403          copy_entry_remove(copies, iter);
404       }
405    }
406 
407    struct copy_entry *entry = NULL;
408    if (dst_match) {
409       util_dynarray_foreach(copies, struct copy_entry, iter) {
410          if (iter->dst.instr == dst_match) {
411             entry = iter;
412             break;
413          }
414       }
415       assert(entry);
416    }
417    return entry;
418 }
419 
420 static void
kill_aliases(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,unsigned write_mask)421 kill_aliases(struct copy_prop_var_state *state,
422              struct util_dynarray *copies,
423              nir_deref_and_path *deref,
424              unsigned write_mask)
425 {
426    /* TODO: Take into account the write_mask. */
427 
428    struct copy_entry *entry =
429       lookup_entry_and_kill_aliases(state, copies, deref, write_mask);
430    if (entry)
431       copy_entry_remove(copies, entry);
432 }
433 
434 static struct copy_entry *
get_entry_and_kill_aliases(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_deref_and_path * deref,unsigned write_mask)435 get_entry_and_kill_aliases(struct copy_prop_var_state *state,
436                            struct util_dynarray *copies,
437                            nir_deref_and_path *deref,
438                            unsigned write_mask)
439 {
440    /* TODO: Take into account the write_mask. */
441 
442    struct copy_entry *entry =
443       lookup_entry_and_kill_aliases(state, copies, deref, write_mask);
444 
445    if (entry == NULL)
446       entry = copy_entry_create(copies, deref);
447 
448    return entry;
449 }
450 
451 static void
apply_barrier_for_modes(struct util_dynarray * copies,nir_variable_mode modes)452 apply_barrier_for_modes(struct util_dynarray *copies,
453                         nir_variable_mode modes)
454 {
455    util_dynarray_foreach_reverse(copies, struct copy_entry, iter) {
456       if (nir_deref_mode_may_be(iter->dst.instr, modes) ||
457           (!iter->src.is_ssa && nir_deref_mode_may_be(iter->src.deref.instr, modes)))
458          copy_entry_remove(copies, iter);
459    }
460 }
461 
462 static void
value_set_from_value(struct value * value,const struct value * from,unsigned base_index,unsigned write_mask)463 value_set_from_value(struct value *value, const struct value *from,
464                      unsigned base_index, unsigned write_mask)
465 {
466    /* We can't have non-zero indexes with non-trivial write masks */
467    assert(base_index == 0 || write_mask == 1);
468 
469    if (from->is_ssa) {
470       /* Clear value if it was being used as non-SSA. */
471       if (!value->is_ssa)
472          memset(&value->ssa, 0, sizeof(value->ssa));
473       value->is_ssa = true;
474       /* Only overwrite the written components */
475       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
476          if (write_mask & (1 << i)) {
477             value->ssa.def[base_index + i] = from->ssa.def[i];
478             value->ssa.component[base_index + i] = from->ssa.component[i];
479          }
480       }
481    } else {
482       /* Non-ssa stores always write everything */
483       value->is_ssa = false;
484       value->deref = from->deref;
485    }
486 }
487 
488 /* Try to load a single element of a vector from the copy_entry.  If the data
489  * isn't available, just let the original intrinsic do the work.
490  */
491 static bool
load_element_from_ssa_entry_value(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,struct value * value,unsigned index)492 load_element_from_ssa_entry_value(struct copy_prop_var_state *state,
493                                   struct copy_entry *entry,
494                                   nir_builder *b, nir_intrinsic_instr *intrin,
495                                   struct value *value, unsigned index)
496 {
497    assert(index < glsl_get_vector_elements(entry->dst.instr->type));
498 
499    /* We don't have the element available, so let the instruction do the work. */
500    if (!entry->src.ssa.def[index])
501       return false;
502 
503    b->cursor = nir_instr_remove(&intrin->instr);
504    intrin->instr.block = NULL;
505 
506    assert(entry->src.ssa.component[index] <
507           entry->src.ssa.def[index]->num_components);
508    nir_ssa_def *def = nir_channel(b, entry->src.ssa.def[index],
509                                      entry->src.ssa.component[index]);
510 
511    *value = (struct value) {
512       .is_ssa = true,
513       {
514 	.ssa = {
515 	  .def = { def },
516 	  .component = { 0 },
517 	},
518       }
519    };
520 
521    return true;
522 }
523 
524 /* Do a "load" from an SSA-based entry return it in "value" as a value with a
525  * single SSA def.  Because an entry could reference multiple different SSA
526  * defs, a vecN operation may be inserted to combine them into a single SSA
527  * def before handing it back to the caller.  If the load instruction is no
528  * longer needed, it is removed and nir_instr::block is set to NULL.  (It is
529  * possible, in some cases, for the load to be used in the vecN operation in
530  * which case it isn't deleted.)
531  */
532 static bool
load_from_ssa_entry_value(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,nir_deref_and_path * src,struct value * value)533 load_from_ssa_entry_value(struct copy_prop_var_state *state,
534                           struct copy_entry *entry,
535                           nir_builder *b, nir_intrinsic_instr *intrin,
536                           nir_deref_and_path *src, struct value *value)
537 {
538    if (is_array_deref_of_vector(src)) {
539       if (nir_src_is_const(src->instr->arr.index)) {
540          unsigned index = nir_src_as_uint(src->instr->arr.index);
541          return load_element_from_ssa_entry_value(state, entry, b, intrin,
542                                                   value, index);
543       }
544 
545       /* An SSA copy_entry for the vector won't help indirect load. */
546       if (glsl_type_is_vector(entry->dst.instr->type)) {
547          assert(entry->dst.instr->type == nir_deref_instr_parent(src->instr)->type);
548          /* TODO: If all SSA entries are there, try an if-ladder. */
549          return false;
550       }
551    }
552 
553    *value = entry->src;
554    assert(value->is_ssa);
555 
556    const struct glsl_type *type = entry->dst.instr->type;
557    unsigned num_components = glsl_get_vector_elements(type);
558 
559    nir_component_mask_t available = 0;
560    bool all_same = true;
561    for (unsigned i = 0; i < num_components; i++) {
562       if (value->ssa.def[i])
563          available |= (1 << i);
564 
565       if (value->ssa.def[i] != value->ssa.def[0])
566          all_same = false;
567 
568       if (value->ssa.component[i] != i)
569          all_same = false;
570    }
571 
572    if (all_same) {
573       /* Our work here is done */
574       b->cursor = nir_instr_remove(&intrin->instr);
575       intrin->instr.block = NULL;
576       return true;
577    }
578 
579    if (available != (1 << num_components) - 1 &&
580        intrin->intrinsic == nir_intrinsic_load_deref &&
581        (available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
582       /* If none of the components read are available as SSA values, then we
583        * should just bail.  Otherwise, we would end up replacing the uses of
584        * the load_deref a vecN() that just gathers up its components.
585        */
586       return false;
587    }
588 
589    b->cursor = nir_after_instr(&intrin->instr);
590 
591    nir_ssa_def *load_def =
592       intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->dest.ssa : NULL;
593 
594    bool keep_intrin = false;
595    nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS];
596    for (unsigned i = 0; i < num_components; i++) {
597       if (value->ssa.def[i]) {
598          comps[i] = nir_channel(b, value->ssa.def[i], value->ssa.component[i]);
599       } else {
600          /* We don't have anything for this component in our
601           * list.  Just re-use a channel from the load.
602           */
603          if (load_def == NULL)
604             load_def = nir_load_deref(b, entry->dst.instr);
605 
606          if (load_def->parent_instr == &intrin->instr)
607             keep_intrin = true;
608 
609          comps[i] = nir_channel(b, load_def, i);
610       }
611    }
612 
613    nir_ssa_def *vec = nir_vec(b, comps, num_components);
614    value_set_ssa_components(value, vec, num_components);
615 
616    if (!keep_intrin) {
617       /* Removing this instruction should not touch the cursor because we
618        * created the cursor after the intrinsic and have added at least one
619        * instruction (the vec) since then.
620        */
621       assert(b->cursor.instr != &intrin->instr);
622       nir_instr_remove(&intrin->instr);
623       intrin->instr.block = NULL;
624    }
625 
626    return true;
627 }
628 
629 /**
630  * Specialize the wildcards in a deref chain
631  *
632  * This function returns a deref chain identical to \param deref except that
633  * some of its wildcards are replaced with indices from \param specific.  The
634  * process is guided by \param guide which references the same type as \param
635  * specific but has the same wildcard array lengths as \param deref.
636  */
637 static nir_deref_instr *
specialize_wildcards(nir_builder * b,nir_deref_path * deref,nir_deref_path * guide,nir_deref_path * specific)638 specialize_wildcards(nir_builder *b,
639                      nir_deref_path *deref,
640                      nir_deref_path *guide,
641                      nir_deref_path *specific)
642 {
643    nir_deref_instr **deref_p = &deref->path[1];
644    nir_deref_instr **guide_p = &guide->path[1];
645    nir_deref_instr **spec_p = &specific->path[1];
646    nir_deref_instr *ret_tail = deref->path[0];
647    for (; *deref_p; deref_p++) {
648       if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) {
649          /* This is where things get tricky.  We have to search through
650           * the entry deref to find its corresponding wildcard and fill
651           * this slot in with the value from the src.
652           */
653          while (*guide_p &&
654                 (*guide_p)->deref_type != nir_deref_type_array_wildcard) {
655             guide_p++;
656             spec_p++;
657          }
658          assert(*guide_p && *spec_p);
659 
660          ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p);
661 
662          guide_p++;
663          spec_p++;
664       } else {
665          ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p);
666       }
667    }
668 
669    return ret_tail;
670 }
671 
672 /* Do a "load" from an deref-based entry return it in "value" as a value.  The
673  * deref returned in "value" will always be a fresh copy so the caller can
674  * steal it and assign it to the instruction directly without copying it
675  * again.
676  */
677 static bool
load_from_deref_entry_value(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,nir_deref_and_path * src,struct value * value)678 load_from_deref_entry_value(struct copy_prop_var_state *state,
679                             struct copy_entry *entry,
680                             nir_builder *b, nir_intrinsic_instr *intrin,
681                             nir_deref_and_path *src, struct value *value)
682 {
683    *value = entry->src;
684 
685    b->cursor = nir_instr_remove(&intrin->instr);
686 
687    nir_deref_path *entry_dst_path = nir_get_deref_path(state->mem_ctx, &entry->dst);
688    nir_deref_path *src_path = nir_get_deref_path(state->mem_ctx, src);
689 
690    bool need_to_specialize_wildcards = false;
691    nir_deref_instr **entry_p = &entry_dst_path->path[1];
692    nir_deref_instr **src_p = &src_path->path[1];
693    while (*entry_p && *src_p) {
694       nir_deref_instr *entry_tail = *entry_p++;
695       nir_deref_instr *src_tail = *src_p++;
696 
697       if (src_tail->deref_type == nir_deref_type_array &&
698           entry_tail->deref_type == nir_deref_type_array_wildcard)
699          need_to_specialize_wildcards = true;
700    }
701 
702    /* If the entry deref is longer than the source deref then it refers to a
703     * smaller type and we can't source from it.
704     */
705    assert(*entry_p == NULL);
706 
707    value->deref._path = NULL;
708 
709    if (need_to_specialize_wildcards) {
710       /* The entry has some wildcards that are not in src.  This means we need
711        * to construct a new deref based on the entry but using the wildcards
712        * from the source and guided by the entry dst.  Oof.
713        */
714       nir_deref_path *entry_src_path =
715          nir_get_deref_path(state->mem_ctx, &entry->src.deref);
716       value->deref.instr = specialize_wildcards(b, entry_src_path,
717                                                 entry_dst_path, src_path);
718    }
719 
720    /* If our source deref is longer than the entry deref, that's ok because
721     * it just means the entry deref needs to be extended a bit.
722     */
723    while (*src_p) {
724       nir_deref_instr *src_tail = *src_p++;
725       value->deref.instr = nir_build_deref_follower(b, value->deref.instr, src_tail);
726    }
727 
728    return true;
729 }
730 
731 static bool
try_load_from_entry(struct copy_prop_var_state * state,struct copy_entry * entry,nir_builder * b,nir_intrinsic_instr * intrin,nir_deref_and_path * src,struct value * value)732 try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
733                     nir_builder *b, nir_intrinsic_instr *intrin,
734                     nir_deref_and_path *src, struct value *value)
735 {
736    if (entry == NULL)
737       return false;
738 
739    if (entry->src.is_ssa) {
740       return load_from_ssa_entry_value(state, entry, b, intrin, src, value);
741    } else {
742       return load_from_deref_entry_value(state, entry, b, intrin, src, value);
743    }
744 }
745 
746 static void
invalidate_copies_for_cf_node(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_cf_node * cf_node)747 invalidate_copies_for_cf_node(struct copy_prop_var_state *state,
748                               struct util_dynarray *copies,
749                               nir_cf_node *cf_node)
750 {
751    struct hash_entry *ht_entry = _mesa_hash_table_search(state->vars_written_map, cf_node);
752    assert(ht_entry);
753 
754    struct vars_written *written = ht_entry->data;
755    if (written->modes) {
756       util_dynarray_foreach_reverse(copies, struct copy_entry, entry) {
757          if (nir_deref_mode_may_be(entry->dst.instr, written->modes))
758             copy_entry_remove(copies, entry);
759       }
760    }
761 
762    hash_table_foreach (written->derefs, entry) {
763       nir_deref_instr *deref_written = (nir_deref_instr *)entry->key;
764       nir_deref_and_path deref = {deref_written, NULL};
765       kill_aliases(state, copies, &deref, (uintptr_t)entry->data);
766    }
767 }
768 
769 static void
print_value(struct value * value,unsigned num_components)770 print_value(struct value *value, unsigned num_components)
771 {
772    if (!value->is_ssa) {
773       printf(" %s ", glsl_get_type_name(value->deref.instr->type));
774       nir_print_deref(value->deref.instr, stdout);
775       return;
776    }
777 
778    bool same_ssa = true;
779    for (unsigned i = 0; i < num_components; i++) {
780       if (value->ssa.component[i] != i ||
781           (i > 0 && value->ssa.def[i - 1] != value->ssa.def[i])) {
782          same_ssa = false;
783          break;
784       }
785    }
786    if (same_ssa) {
787       printf(" ssa_%d", value->ssa.def[0]->index);
788    } else {
789       for (int i = 0; i < num_components; i++) {
790          if (value->ssa.def[i])
791             printf(" ssa_%d[%u]", value->ssa.def[i]->index, value->ssa.component[i]);
792          else
793             printf(" _");
794       }
795    }
796 }
797 
798 static void
print_copy_entry(struct copy_entry * entry)799 print_copy_entry(struct copy_entry *entry)
800 {
801    printf("    %s ", glsl_get_type_name(entry->dst.instr->type));
802    nir_print_deref(entry->dst.instr, stdout);
803    printf(":\t");
804 
805    unsigned num_components = glsl_get_vector_elements(entry->dst.instr->type);
806    print_value(&entry->src, num_components);
807    printf("\n");
808 }
809 
810 static void
dump_instr(nir_instr * instr)811 dump_instr(nir_instr *instr)
812 {
813    printf("  ");
814    nir_print_instr(instr, stdout);
815    printf("\n");
816 }
817 
818 static void
dump_copy_entries(struct util_dynarray * copies)819 dump_copy_entries(struct util_dynarray *copies)
820 {
821    util_dynarray_foreach(copies, struct copy_entry, iter)
822       print_copy_entry(iter);
823    printf("\n");
824 }
825 
826 static void
copy_prop_vars_block(struct copy_prop_var_state * state,nir_builder * b,nir_block * block,struct util_dynarray * copies)827 copy_prop_vars_block(struct copy_prop_var_state *state,
828                      nir_builder *b, nir_block *block,
829                      struct util_dynarray *copies)
830 {
831    if (debug) {
832       printf("# block%d\n", block->index);
833       dump_copy_entries(copies);
834    }
835 
836    nir_foreach_instr_safe(instr, block) {
837       if (debug && instr->type == nir_instr_type_deref)
838          dump_instr(instr);
839 
840       if (instr->type == nir_instr_type_call) {
841          if (debug) dump_instr(instr);
842          apply_barrier_for_modes(copies, nir_var_shader_out |
843                                          nir_var_shader_temp |
844                                          nir_var_function_temp |
845                                          nir_var_mem_ssbo |
846                                          nir_var_mem_shared |
847                                          nir_var_mem_global);
848          if (debug) dump_copy_entries(copies);
849          continue;
850       }
851 
852       if (instr->type != nir_instr_type_intrinsic)
853          continue;
854 
855       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
856       switch (intrin->intrinsic) {
857       case nir_intrinsic_control_barrier:
858       case nir_intrinsic_memory_barrier:
859          if (debug) dump_instr(instr);
860 
861          apply_barrier_for_modes(copies, nir_var_shader_out |
862                                          nir_var_mem_ssbo |
863                                          nir_var_mem_shared |
864                                          nir_var_mem_global);
865          break;
866 
867       case nir_intrinsic_memory_barrier_buffer:
868          if (debug) dump_instr(instr);
869 
870          apply_barrier_for_modes(copies, nir_var_mem_ssbo |
871                                          nir_var_mem_global);
872          break;
873 
874       case nir_intrinsic_memory_barrier_shared:
875          if (debug) dump_instr(instr);
876 
877          apply_barrier_for_modes(copies, nir_var_mem_shared);
878          break;
879 
880       case nir_intrinsic_memory_barrier_tcs_patch:
881          if (debug) dump_instr(instr);
882 
883          apply_barrier_for_modes(copies, nir_var_shader_out);
884          break;
885 
886       case nir_intrinsic_scoped_barrier:
887          if (debug) dump_instr(instr);
888 
889          if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
890             apply_barrier_for_modes(copies, nir_intrinsic_memory_modes(intrin));
891          break;
892 
893       case nir_intrinsic_emit_vertex:
894       case nir_intrinsic_emit_vertex_with_counter:
895          if (debug) dump_instr(instr);
896 
897          apply_barrier_for_modes(copies, nir_var_shader_out);
898          break;
899 
900       case nir_intrinsic_report_ray_intersection:
901          apply_barrier_for_modes(copies, nir_var_mem_ssbo |
902                                          nir_var_mem_global |
903                                          nir_var_shader_call_data |
904                                          nir_var_ray_hit_attrib);
905          break;
906 
907       case nir_intrinsic_ignore_ray_intersection:
908       case nir_intrinsic_terminate_ray:
909          apply_barrier_for_modes(copies, nir_var_mem_ssbo |
910                                          nir_var_mem_global |
911                                          nir_var_shader_call_data);
912          break;
913 
914       case nir_intrinsic_load_deref: {
915          if (debug) dump_instr(instr);
916 
917          if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
918             break;
919 
920          nir_deref_and_path src = {nir_src_as_deref(intrin->src[0]), NULL};
921 
922          /* If this is a load from a read-only mode, then all this pass would
923           * do is combine redundant loads and CSE should be more efficient for
924           * that.
925           */
926          nir_variable_mode ignore = nir_var_read_only_modes & ~nir_var_vec_indexable_modes;
927          if (nir_deref_mode_must_be(src.instr, ignore))
928             break;
929 
930          /* Direct array_derefs of vectors operate on the vectors (the parent
931           * deref).  Indirects will be handled like other derefs.
932           */
933          int vec_index = 0;
934          nir_deref_and_path vec_src = src;
935          if (is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) {
936             vec_src.instr = nir_deref_instr_parent(src.instr);
937             unsigned vec_comps = glsl_get_vector_elements(vec_src.instr->type);
938             vec_index = nir_src_as_uint(src.instr->arr.index);
939 
940             /* Loading from an invalid index yields an undef */
941             if (vec_index >= vec_comps) {
942                b->cursor = nir_instr_remove(instr);
943                nir_ssa_def *u = nir_ssa_undef(b, 1, intrin->dest.ssa.bit_size);
944                nir_ssa_def_rewrite_uses(&intrin->dest.ssa, u);
945                state->progress = true;
946                break;
947             }
948          }
949 
950          bool src_entry_equal = false;
951          struct copy_entry *src_entry =
952             lookup_entry_for_deref(state, copies, &src,
953                                    nir_derefs_a_contains_b_bit, &src_entry_equal);
954          struct value value = {0};
955          if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) {
956             if (value.is_ssa) {
957                /* lookup_load has already ensured that we get a single SSA
958                 * value that has all of the channels.  We just have to do the
959                 * rewrite operation.  Note for array derefs of vectors, the
960                 * channel 0 is used.
961                 */
962                if (intrin->instr.block) {
963                   /* The lookup left our instruction in-place.  This means it
964                    * must have used it to vec up a bunch of different sources.
965                    * We need to be careful when rewriting uses so we don't
966                    * rewrite the vecN itself.
967                    */
968                   nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
969                                                  value.ssa.def[0],
970                                                  value.ssa.def[0]->parent_instr);
971                } else {
972                   nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
973                                            value.ssa.def[0]);
974                }
975             } else {
976                /* We're turning it into a load of a different variable */
977                intrin->src[0] = nir_src_for_ssa(&value.deref.instr->dest.ssa);
978 
979                /* Put it back in again. */
980                nir_builder_instr_insert(b, instr);
981                value_set_ssa_components(&value, &intrin->dest.ssa,
982                                         intrin->num_components);
983             }
984             state->progress = true;
985          } else {
986             value_set_ssa_components(&value, &intrin->dest.ssa,
987                                      intrin->num_components);
988          }
989 
990          /* Now that we have a value, we're going to store it back so that we
991           * have the right value next time we come looking for it.  In order
992           * to do this, we need an exact match, not just something that
993           * contains what we're looking for.
994           *
995           * We avoid doing another lookup if src.instr == vec_src.instr.
996           */
997          struct copy_entry *entry = src_entry;
998          if (src.instr != vec_src.instr)
999             entry = lookup_entry_for_deref(state, copies, &vec_src,
1000                                            nir_derefs_equal_bit, NULL);
1001          else if (!src_entry_equal)
1002             entry = NULL;
1003 
1004          if (!entry)
1005             entry = copy_entry_create(copies, &vec_src);
1006 
1007          /* Update the entry with the value of the load.  This way
1008           * we can potentially remove subsequent loads.
1009           */
1010          value_set_from_value(&entry->src, &value, vec_index,
1011                               (1 << intrin->num_components) - 1);
1012          break;
1013       }
1014 
1015       case nir_intrinsic_store_deref: {
1016          if (debug) dump_instr(instr);
1017 
1018          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1019          assert(glsl_type_is_vector_or_scalar(dst.instr->type));
1020 
1021          /* Direct array_derefs of vectors operate on the vectors (the parent
1022           * deref).  Indirects will be handled like other derefs.
1023           */
1024          int vec_index = 0;
1025          nir_deref_and_path vec_dst = dst;
1026          if (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index)) {
1027             vec_dst.instr = nir_deref_instr_parent(dst.instr);
1028             unsigned vec_comps = glsl_get_vector_elements(vec_dst.instr->type);
1029 
1030             vec_index = nir_src_as_uint(dst.instr->arr.index);
1031 
1032             /* Storing to an invalid index is a no-op. */
1033             if (vec_index >= vec_comps) {
1034                nir_instr_remove(instr);
1035                state->progress = true;
1036                break;
1037             }
1038          }
1039 
1040          if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) {
1041             unsigned wrmask = nir_intrinsic_write_mask(intrin);
1042             kill_aliases(state, copies, &dst, wrmask);
1043             break;
1044          }
1045 
1046          struct copy_entry *entry =
1047             lookup_entry_for_deref(state, copies, &dst, nir_derefs_equal_bit, NULL);
1048          if (entry && value_equals_store_src(&entry->src, intrin)) {
1049             /* If we are storing the value from a load of the same var the
1050              * store is redundant so remove it.
1051              */
1052             nir_instr_remove(instr);
1053             state->progress = true;
1054          } else {
1055             struct value value = {0};
1056             value_set_ssa_components(&value, intrin->src[1].ssa,
1057                                      intrin->num_components);
1058             unsigned wrmask = nir_intrinsic_write_mask(intrin);
1059             struct copy_entry *entry =
1060                get_entry_and_kill_aliases(state, copies, &vec_dst, wrmask);
1061             value_set_from_value(&entry->src, &value, vec_index, wrmask);
1062          }
1063 
1064          break;
1065       }
1066 
1067       case nir_intrinsic_copy_deref: {
1068          if (debug) dump_instr(instr);
1069 
1070          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1071          nir_deref_and_path src = {nir_src_as_deref(intrin->src[1]), NULL};
1072 
1073          /* The copy_deref intrinsic doesn't keep track of num_components, so
1074           * get it ourselves.
1075           */
1076          unsigned num_components = glsl_get_vector_elements(dst.instr->type);
1077          unsigned full_mask = (1 << num_components) - 1;
1078 
1079          if ((nir_intrinsic_src_access(intrin) & ACCESS_VOLATILE) ||
1080              (nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE)) {
1081             kill_aliases(state, copies, &dst, full_mask);
1082             break;
1083          }
1084 
1085          nir_deref_compare_result comp =
1086             nir_compare_derefs_and_paths(state->mem_ctx, &src, &dst);
1087          if (comp & nir_derefs_equal_bit) {
1088             /* This is a no-op self-copy.  Get rid of it */
1089             nir_instr_remove(instr);
1090             state->progress = true;
1091             continue;
1092          }
1093 
1094          /* Copy of direct array derefs of vectors are not handled.  Just
1095           * invalidate what's written and bail.
1096           */
1097          if ((is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) ||
1098              (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index))) {
1099             kill_aliases(state, copies, &dst, full_mask);
1100             break;
1101          }
1102 
1103          struct copy_entry *src_entry =
1104             lookup_entry_for_deref(state, copies, &src, nir_derefs_a_contains_b_bit, NULL);
1105          struct value value;
1106          if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) {
1107             /* If load works, intrin (the copy_deref) is removed. */
1108             if (value.is_ssa) {
1109                nir_store_deref(b, dst.instr, value.ssa.def[0], full_mask);
1110             } else {
1111                /* If this would be a no-op self-copy, don't bother. */
1112                comp = nir_compare_derefs_and_paths(state->mem_ctx, &value.deref, &dst);
1113                if (comp & nir_derefs_equal_bit)
1114                   continue;
1115 
1116                /* Just turn it into a copy of a different deref */
1117                intrin->src[1] = nir_src_for_ssa(&value.deref.instr->dest.ssa);
1118 
1119                /* Put it back in again. */
1120                nir_builder_instr_insert(b, instr);
1121             }
1122 
1123             state->progress = true;
1124          } else {
1125             value = (struct value) {
1126                .is_ssa = false,
1127                { .deref = src },
1128             };
1129          }
1130 
1131          nir_variable *src_var = nir_deref_instr_get_variable(src.instr);
1132          if (src_var && src_var->data.cannot_coalesce) {
1133             /* The source cannot be coaleseced, which means we can't propagate
1134              * this copy.
1135              */
1136             break;
1137          }
1138 
1139          struct copy_entry *dst_entry =
1140             get_entry_and_kill_aliases(state, copies, &dst, full_mask);
1141          value_set_from_value(&dst_entry->src, &value, 0, full_mask);
1142          break;
1143       }
1144 
1145       case nir_intrinsic_trace_ray:
1146       case nir_intrinsic_execute_callable:
1147       case nir_intrinsic_rt_trace_ray:
1148       case nir_intrinsic_rt_execute_callable: {
1149          if (debug) dump_instr(instr);
1150 
1151          nir_deref_and_path payload = {
1152             nir_src_as_deref(*nir_get_shader_call_payload_src(intrin)), NULL};
1153          nir_component_mask_t full_mask =
1154             BITFIELD_MASK(glsl_get_vector_elements(payload.instr->type));
1155          kill_aliases(state, copies, &payload, full_mask);
1156          break;
1157       }
1158 
1159       case nir_intrinsic_memcpy_deref:
1160       case nir_intrinsic_deref_atomic_add:
1161       case nir_intrinsic_deref_atomic_fadd:
1162       case nir_intrinsic_deref_atomic_imin:
1163       case nir_intrinsic_deref_atomic_umin:
1164       case nir_intrinsic_deref_atomic_fmin:
1165       case nir_intrinsic_deref_atomic_imax:
1166       case nir_intrinsic_deref_atomic_umax:
1167       case nir_intrinsic_deref_atomic_fmax:
1168       case nir_intrinsic_deref_atomic_and:
1169       case nir_intrinsic_deref_atomic_or:
1170       case nir_intrinsic_deref_atomic_xor:
1171       case nir_intrinsic_deref_atomic_exchange:
1172       case nir_intrinsic_deref_atomic_comp_swap:
1173       case nir_intrinsic_deref_atomic_fcomp_swap:
1174          if (debug) dump_instr(instr);
1175 
1176          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1177          unsigned num_components = glsl_get_vector_elements(dst.instr->type);
1178          unsigned full_mask = (1 << num_components) - 1;
1179          kill_aliases(state, copies, &dst, full_mask);
1180          break;
1181 
1182       case nir_intrinsic_store_deref_block_intel: {
1183          if (debug) dump_instr(instr);
1184 
1185          /* Invalidate the whole variable (or cast) and anything that alias
1186           * with it.
1187           */
1188          nir_deref_and_path dst = {nir_src_as_deref(intrin->src[0]), NULL};
1189          while (nir_deref_instr_parent(dst.instr))
1190             dst.instr = nir_deref_instr_parent(dst.instr);
1191          assert(dst.instr->deref_type == nir_deref_type_var ||
1192                 dst.instr->deref_type == nir_deref_type_cast);
1193 
1194          unsigned num_components = glsl_get_vector_elements(dst.instr->type);
1195          unsigned full_mask = (1 << num_components) - 1;
1196          kill_aliases(state, copies, &dst, full_mask);
1197          break;
1198       }
1199 
1200       default:
1201          continue; /* To skip the debug below. */
1202       }
1203 
1204       if (debug) dump_copy_entries(copies);
1205    }
1206 }
1207 
1208 static void
copy_prop_vars_cf_node(struct copy_prop_var_state * state,struct util_dynarray * copies,nir_cf_node * cf_node)1209 copy_prop_vars_cf_node(struct copy_prop_var_state *state,
1210                        struct util_dynarray *copies,
1211                        nir_cf_node *cf_node)
1212 {
1213    switch (cf_node->type) {
1214    case nir_cf_node_function: {
1215       nir_function_impl *impl = nir_cf_node_as_function(cf_node);
1216 
1217       struct util_dynarray impl_copies;
1218       util_dynarray_init(&impl_copies, state->mem_ctx);
1219 
1220       foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
1221          copy_prop_vars_cf_node(state, &impl_copies, cf_node);
1222 
1223       break;
1224    }
1225 
1226    case nir_cf_node_block: {
1227       nir_block *block = nir_cf_node_as_block(cf_node);
1228       nir_builder b;
1229       nir_builder_init(&b, state->impl);
1230       copy_prop_vars_block(state, &b, block, copies);
1231       break;
1232    }
1233 
1234    case nir_cf_node_if: {
1235       nir_if *if_stmt = nir_cf_node_as_if(cf_node);
1236 
1237       /* Clone the copies for each branch of the if statement.  The idea is
1238        * that they both see the same state of available copies, but do not
1239        * interfere to each other.
1240        */
1241 
1242       struct util_dynarray then_copies;
1243       util_dynarray_clone(&then_copies, state->mem_ctx, copies);
1244 
1245       struct util_dynarray else_copies;
1246       util_dynarray_clone(&else_copies, state->mem_ctx, copies);
1247 
1248       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
1249          copy_prop_vars_cf_node(state, &then_copies, cf_node);
1250 
1251       foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
1252          copy_prop_vars_cf_node(state, &else_copies, cf_node);
1253 
1254       /* Both branches copies can be ignored, since the effect of running both
1255        * branches was captured in the first pass that collects vars_written.
1256        */
1257 
1258       invalidate_copies_for_cf_node(state, copies, cf_node);
1259 
1260       break;
1261    }
1262 
1263    case nir_cf_node_loop: {
1264       nir_loop *loop = nir_cf_node_as_loop(cf_node);
1265 
1266       /* Invalidate before cloning the copies for the loop, since the loop
1267        * body can be executed more than once.
1268        */
1269 
1270       invalidate_copies_for_cf_node(state, copies, cf_node);
1271 
1272       struct util_dynarray loop_copies;
1273       util_dynarray_clone(&loop_copies, state->mem_ctx, copies);
1274 
1275       foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
1276          copy_prop_vars_cf_node(state, &loop_copies, cf_node);
1277 
1278       break;
1279    }
1280 
1281    default:
1282       unreachable("Invalid CF node type");
1283    }
1284 }
1285 
1286 static bool
nir_copy_prop_vars_impl(nir_function_impl * impl)1287 nir_copy_prop_vars_impl(nir_function_impl *impl)
1288 {
1289    void *mem_ctx = ralloc_context(NULL);
1290 
1291    if (debug) {
1292       nir_metadata_require(impl, nir_metadata_block_index);
1293       printf("## nir_copy_prop_vars_impl for %s\n", impl->function->name);
1294    }
1295 
1296    struct copy_prop_var_state state = {
1297       .impl = impl,
1298       .mem_ctx = mem_ctx,
1299       .lin_ctx = linear_zalloc_parent(mem_ctx, 0),
1300 
1301       .vars_written_map = _mesa_pointer_hash_table_create(mem_ctx),
1302    };
1303 
1304    gather_vars_written(&state, NULL, &impl->cf_node);
1305 
1306    copy_prop_vars_cf_node(&state, NULL, &impl->cf_node);
1307 
1308    if (state.progress) {
1309       nir_metadata_preserve(impl, nir_metadata_block_index |
1310                                   nir_metadata_dominance);
1311    } else {
1312       nir_metadata_preserve(impl, nir_metadata_all);
1313    }
1314 
1315    ralloc_free(mem_ctx);
1316    return state.progress;
1317 }
1318 
1319 bool
nir_opt_copy_prop_vars(nir_shader * shader)1320 nir_opt_copy_prop_vars(nir_shader *shader)
1321 {
1322    bool progress = false;
1323 
1324    nir_foreach_function(function, shader) {
1325       if (!function->impl)
1326          continue;
1327       progress |= nir_copy_prop_vars_impl(function->impl);
1328    }
1329 
1330    return progress;
1331 }
1332