• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  *
5  * Licensed under the OpenSSL license (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10 
11 #include <string.h>
12 #include <openssl/err.h>
13 
14 #include "internal/cryptlib.h"
15 #include "crypto/bn.h"
16 #include "ec_local.h"
17 #include "internal/refcount.h"
18 
19 /*
20  * This file implements the wNAF-based interleaving multi-exponentiation method
21  * Formerly at:
22  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
23  * You might now find it here:
24  *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
25  *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
26  * For multiplication with precomputation, we use wNAF splitting, formerly at:
27  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28  */
29 
30 /* structure for precomputed multiples of the generator */
31 struct ec_pre_comp_st {
32     const EC_GROUP *group;      /* parent EC_GROUP object */
33     size_t blocksize;           /* block size for wNAF splitting */
34     size_t numblocks;           /* max. number of blocks for which we have
35                                  * precomputation */
36     size_t w;                   /* window size */
37     EC_POINT **points;          /* array with pre-calculated multiples of
38                                  * generator: 'num' pointers to EC_POINT
39                                  * objects followed by a NULL */
40     size_t num;                 /* numblocks * 2^(w-1) */
41     CRYPTO_REF_COUNT references;
42     CRYPTO_RWLOCK *lock;
43 };
44 
ec_pre_comp_new(const EC_GROUP * group)45 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46 {
47     EC_PRE_COMP *ret = NULL;
48 
49     if (!group)
50         return NULL;
51 
52     ret = OPENSSL_zalloc(sizeof(*ret));
53     if (ret == NULL) {
54         ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
55         return ret;
56     }
57 
58     ret->group = group;
59     ret->blocksize = 8;         /* default */
60     ret->w = 4;                 /* default */
61     ret->references = 1;
62 
63     ret->lock = CRYPTO_THREAD_lock_new();
64     if (ret->lock == NULL) {
65         ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
66         OPENSSL_free(ret);
67         return NULL;
68     }
69     return ret;
70 }
71 
EC_ec_pre_comp_dup(EC_PRE_COMP * pre)72 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73 {
74     int i;
75     if (pre != NULL)
76         CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77     return pre;
78 }
79 
EC_ec_pre_comp_free(EC_PRE_COMP * pre)80 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81 {
82     int i;
83 
84     if (pre == NULL)
85         return;
86 
87     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88     REF_PRINT_COUNT("EC_ec", pre);
89     if (i > 0)
90         return;
91     REF_ASSERT_ISNT(i < 0);
92 
93     if (pre->points != NULL) {
94         EC_POINT **pts;
95 
96         for (pts = pre->points; *pts != NULL; pts++)
97             EC_POINT_free(*pts);
98         OPENSSL_free(pre->points);
99     }
100     CRYPTO_THREAD_lock_free(pre->lock);
101     OPENSSL_free(pre);
102 }
103 
104 #define EC_POINT_BN_set_flags(P, flags) do { \
105     BN_set_flags((P)->X, (flags)); \
106     BN_set_flags((P)->Y, (flags)); \
107     BN_set_flags((P)->Z, (flags)); \
108 } while(0)
109 
110 /*-
111  * This functions computes a single point multiplication over the EC group,
112  * using, at a high level, a Montgomery ladder with conditional swaps, with
113  * various timing attack defenses.
114  *
115  * It performs either a fixed point multiplication
116  *          (scalar * generator)
117  * when point is NULL, or a variable point multiplication
118  *          (scalar * point)
119  * when point is not NULL.
120  *
121  * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
122  * constant time bets are off (where n is the cardinality of the EC group).
123  *
124  * This function expects `group->order` and `group->cardinality` to be well
125  * defined and non-zero: it fails with an error code otherwise.
126  *
127  * NB: This says nothing about the constant-timeness of the ladder step
128  * implementation (i.e., the default implementation is based on EC_POINT_add and
129  * EC_POINT_dbl, which of course are not constant time themselves) or the
130  * underlying multiprecision arithmetic.
131  *
132  * The product is stored in `r`.
133  *
134  * This is an internal function: callers are in charge of ensuring that the
135  * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
136  *
137  * Returns 1 on success, 0 otherwise.
138  */
ec_scalar_mul_ladder(const EC_GROUP * group,EC_POINT * r,const BIGNUM * scalar,const EC_POINT * point,BN_CTX * ctx)139 int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
140                          const BIGNUM *scalar, const EC_POINT *point,
141                          BN_CTX *ctx)
142 {
143     int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
144     EC_POINT *p = NULL;
145     EC_POINT *s = NULL;
146     BIGNUM *k = NULL;
147     BIGNUM *lambda = NULL;
148     BIGNUM *cardinality = NULL;
149     int ret = 0;
150 
151     /* early exit if the input point is the point at infinity */
152     if (point != NULL && EC_POINT_is_at_infinity(group, point))
153         return EC_POINT_set_to_infinity(group, r);
154 
155     if (BN_is_zero(group->order)) {
156         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
157         return 0;
158     }
159     if (BN_is_zero(group->cofactor)) {
160         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
161         return 0;
162     }
163 
164     BN_CTX_start(ctx);
165 
166     if (((p = EC_POINT_new(group)) == NULL)
167         || ((s = EC_POINT_new(group)) == NULL)) {
168         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
169         goto err;
170     }
171 
172     if (point == NULL) {
173         if (!EC_POINT_copy(p, group->generator)) {
174             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
175             goto err;
176         }
177     } else {
178         if (!EC_POINT_copy(p, point)) {
179             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
180             goto err;
181         }
182     }
183 
184     EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
185     EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
186     EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
187 
188     cardinality = BN_CTX_get(ctx);
189     lambda = BN_CTX_get(ctx);
190     k = BN_CTX_get(ctx);
191     if (k == NULL) {
192         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
193         goto err;
194     }
195 
196     if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
197         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
198         goto err;
199     }
200 
201     /*
202      * Group cardinalities are often on a word boundary.
203      * So when we pad the scalar, some timing diff might
204      * pop if it needs to be expanded due to carries.
205      * So expand ahead of time.
206      */
207     cardinality_bits = BN_num_bits(cardinality);
208     group_top = bn_get_top(cardinality);
209     if ((bn_wexpand(k, group_top + 2) == NULL)
210         || (bn_wexpand(lambda, group_top + 2) == NULL)) {
211         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
212         goto err;
213     }
214 
215     if (!BN_copy(k, scalar)) {
216         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
217         goto err;
218     }
219 
220     BN_set_flags(k, BN_FLG_CONSTTIME);
221 
222     if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
223         /*-
224          * this is an unusual input, and we don't guarantee
225          * constant-timeness
226          */
227         if (!BN_nnmod(k, k, cardinality, ctx)) {
228             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
229             goto err;
230         }
231     }
232 
233     if (!BN_add(lambda, k, cardinality)) {
234         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
235         goto err;
236     }
237     BN_set_flags(lambda, BN_FLG_CONSTTIME);
238     if (!BN_add(k, lambda, cardinality)) {
239         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
240         goto err;
241     }
242     /*
243      * lambda := scalar + cardinality
244      * k := scalar + 2*cardinality
245      */
246     kbit = BN_is_bit_set(lambda, cardinality_bits);
247     BN_consttime_swap(kbit, k, lambda, group_top + 2);
248 
249     group_top = bn_get_top(group->field);
250     if ((bn_wexpand(s->X, group_top) == NULL)
251         || (bn_wexpand(s->Y, group_top) == NULL)
252         || (bn_wexpand(s->Z, group_top) == NULL)
253         || (bn_wexpand(r->X, group_top) == NULL)
254         || (bn_wexpand(r->Y, group_top) == NULL)
255         || (bn_wexpand(r->Z, group_top) == NULL)
256         || (bn_wexpand(p->X, group_top) == NULL)
257         || (bn_wexpand(p->Y, group_top) == NULL)
258         || (bn_wexpand(p->Z, group_top) == NULL)) {
259         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
260         goto err;
261     }
262 
263     /* ensure input point is in affine coords for ladder step efficiency */
264     if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) {
265             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
266             goto err;
267     }
268 
269     /* Initialize the Montgomery ladder */
270     if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
271         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
272         goto err;
273     }
274 
275     /* top bit is a 1, in a fixed pos */
276     pbit = 1;
277 
278 #define EC_POINT_CSWAP(c, a, b, w, t) do {         \
279         BN_consttime_swap(c, (a)->X, (b)->X, w);   \
280         BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
281         BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
282         t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
283         (a)->Z_is_one ^= (t);                      \
284         (b)->Z_is_one ^= (t);                      \
285 } while(0)
286 
287     /*-
288      * The ladder step, with branches, is
289      *
290      * k[i] == 0: S = add(R, S), R = dbl(R)
291      * k[i] == 1: R = add(S, R), S = dbl(S)
292      *
293      * Swapping R, S conditionally on k[i] leaves you with state
294      *
295      * k[i] == 0: T, U = R, S
296      * k[i] == 1: T, U = S, R
297      *
298      * Then perform the ECC ops.
299      *
300      * U = add(T, U)
301      * T = dbl(T)
302      *
303      * Which leaves you with state
304      *
305      * k[i] == 0: U = add(R, S), T = dbl(R)
306      * k[i] == 1: U = add(S, R), T = dbl(S)
307      *
308      * Swapping T, U conditionally on k[i] leaves you with state
309      *
310      * k[i] == 0: R, S = T, U
311      * k[i] == 1: R, S = U, T
312      *
313      * Which leaves you with state
314      *
315      * k[i] == 0: S = add(R, S), R = dbl(R)
316      * k[i] == 1: R = add(S, R), S = dbl(S)
317      *
318      * So we get the same logic, but instead of a branch it's a
319      * conditional swap, followed by ECC ops, then another conditional swap.
320      *
321      * Optimization: The end of iteration i and start of i-1 looks like
322      *
323      * ...
324      * CSWAP(k[i], R, S)
325      * ECC
326      * CSWAP(k[i], R, S)
327      * (next iteration)
328      * CSWAP(k[i-1], R, S)
329      * ECC
330      * CSWAP(k[i-1], R, S)
331      * ...
332      *
333      * So instead of two contiguous swaps, you can merge the condition
334      * bits and do a single swap.
335      *
336      * k[i]   k[i-1]    Outcome
337      * 0      0         No Swap
338      * 0      1         Swap
339      * 1      0         Swap
340      * 1      1         No Swap
341      *
342      * This is XOR. pbit tracks the previous bit of k.
343      */
344 
345     for (i = cardinality_bits - 1; i >= 0; i--) {
346         kbit = BN_is_bit_set(k, i) ^ pbit;
347         EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
348 
349         /* Perform a single step of the Montgomery ladder */
350         if (!ec_point_ladder_step(group, r, s, p, ctx)) {
351             ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
352             goto err;
353         }
354         /*
355          * pbit logic merges this cswap with that of the
356          * next iteration
357          */
358         pbit ^= kbit;
359     }
360     /* one final cswap to move the right value into r */
361     EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
362 #undef EC_POINT_CSWAP
363 
364     /* Finalize ladder (and recover full point coordinates) */
365     if (!ec_point_ladder_post(group, r, s, p, ctx)) {
366         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
367         goto err;
368     }
369 
370     ret = 1;
371 
372  err:
373     EC_POINT_free(p);
374     EC_POINT_clear_free(s);
375     BN_CTX_end(ctx);
376 
377     return ret;
378 }
379 
380 #undef EC_POINT_BN_set_flags
381 
382 /*
383  * TODO: table should be optimised for the wNAF-based implementation,
384  * sometimes smaller windows will give better performance (thus the
385  * boundaries should be increased)
386  */
387 #define EC_window_bits_for_scalar_size(b) \
388                 ((size_t) \
389                  ((b) >= 2000 ? 6 : \
390                   (b) >=  800 ? 5 : \
391                   (b) >=  300 ? 4 : \
392                   (b) >=   70 ? 3 : \
393                   (b) >=   20 ? 2 : \
394                   1))
395 
396 /*-
397  * Compute
398  *      \sum scalars[i]*points[i],
399  * also including
400  *      scalar*generator
401  * in the addition if scalar != NULL
402  */
ec_wNAF_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * scalar,size_t num,const EC_POINT * points[],const BIGNUM * scalars[],BN_CTX * ctx)403 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
404                 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
405                 BN_CTX *ctx)
406 {
407     const EC_POINT *generator = NULL;
408     EC_POINT *tmp = NULL;
409     size_t totalnum;
410     size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
411     size_t pre_points_per_block = 0;
412     size_t i, j;
413     int k;
414     int r_is_inverted = 0;
415     int r_is_at_infinity = 1;
416     size_t *wsize = NULL;       /* individual window sizes */
417     signed char **wNAF = NULL;  /* individual wNAFs */
418     size_t *wNAF_len = NULL;
419     size_t max_len = 0;
420     size_t num_val;
421     EC_POINT **val = NULL;      /* precomputation */
422     EC_POINT **v;
423     EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
424                                  * 'pre_comp->points' */
425     const EC_PRE_COMP *pre_comp = NULL;
426     int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
427                                  * treated like other scalars, i.e.
428                                  * precomputation is not available */
429     int ret = 0;
430 
431     if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
432         /*-
433          * Handle the common cases where the scalar is secret, enforcing a
434          * scalar multiplication implementation based on a Montgomery ladder,
435          * with various timing attack defenses.
436          */
437         if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
438             /*-
439              * In this case we want to compute scalar * GeneratorPoint: this
440              * codepath is reached most prominently by (ephemeral) key
441              * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
442              * ECDH keygen/first half), where the scalar is always secret. This
443              * is why we ignore if BN_FLG_CONSTTIME is actually set and we
444              * always call the ladder version.
445              */
446             return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
447         }
448         if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
449             /*-
450              * In this case we want to compute scalar * VariablePoint: this
451              * codepath is reached most prominently by the second half of ECDH,
452              * where the secret scalar is multiplied by the peer's public point.
453              * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
454              * actually set and we always call the ladder version.
455              */
456             return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
457         }
458     }
459 
460     if (scalar != NULL) {
461         generator = EC_GROUP_get0_generator(group);
462         if (generator == NULL) {
463             ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
464             goto err;
465         }
466 
467         /* look if we can use precomputed multiples of generator */
468 
469         pre_comp = group->pre_comp.ec;
470         if (pre_comp && pre_comp->numblocks
471             && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
472                 0)) {
473             blocksize = pre_comp->blocksize;
474 
475             /*
476              * determine maximum number of blocks that wNAF splitting may
477              * yield (NB: maximum wNAF length is bit length plus one)
478              */
479             numblocks = (BN_num_bits(scalar) / blocksize) + 1;
480 
481             /*
482              * we cannot use more blocks than we have precomputation for
483              */
484             if (numblocks > pre_comp->numblocks)
485                 numblocks = pre_comp->numblocks;
486 
487             pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
488 
489             /* check that pre_comp looks sane */
490             if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
491                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
492                 goto err;
493             }
494         } else {
495             /* can't use precomputation */
496             pre_comp = NULL;
497             numblocks = 1;
498             num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
499                                  * 'scalars' */
500         }
501     }
502 
503     totalnum = num + numblocks;
504 
505     wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
506     wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
507     /* include space for pivot */
508     wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
509     val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
510 
511     /* Ensure wNAF is initialised in case we end up going to err */
512     if (wNAF != NULL)
513         wNAF[0] = NULL;         /* preliminary pivot */
514 
515     if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
516         ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
517         goto err;
518     }
519 
520     /*
521      * num_val will be the total number of temporarily precomputed points
522      */
523     num_val = 0;
524 
525     for (i = 0; i < num + num_scalar; i++) {
526         size_t bits;
527 
528         bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
529         wsize[i] = EC_window_bits_for_scalar_size(bits);
530         num_val += (size_t)1 << (wsize[i] - 1);
531         wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
532         wNAF[i] =
533             bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
534                             &wNAF_len[i]);
535         if (wNAF[i] == NULL)
536             goto err;
537         if (wNAF_len[i] > max_len)
538             max_len = wNAF_len[i];
539     }
540 
541     if (numblocks) {
542         /* we go here iff scalar != NULL */
543 
544         if (pre_comp == NULL) {
545             if (num_scalar != 1) {
546                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
547                 goto err;
548             }
549             /* we have already generated a wNAF for 'scalar' */
550         } else {
551             signed char *tmp_wNAF = NULL;
552             size_t tmp_len = 0;
553 
554             if (num_scalar != 0) {
555                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
556                 goto err;
557             }
558 
559             /*
560              * use the window size for which we have precomputation
561              */
562             wsize[num] = pre_comp->w;
563             tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
564             if (!tmp_wNAF)
565                 goto err;
566 
567             if (tmp_len <= max_len) {
568                 /*
569                  * One of the other wNAFs is at least as long as the wNAF
570                  * belonging to the generator, so wNAF splitting will not buy
571                  * us anything.
572                  */
573 
574                 numblocks = 1;
575                 totalnum = num + 1; /* don't use wNAF splitting */
576                 wNAF[num] = tmp_wNAF;
577                 wNAF[num + 1] = NULL;
578                 wNAF_len[num] = tmp_len;
579                 /*
580                  * pre_comp->points starts with the points that we need here:
581                  */
582                 val_sub[num] = pre_comp->points;
583             } else {
584                 /*
585                  * don't include tmp_wNAF directly into wNAF array - use wNAF
586                  * splitting and include the blocks
587                  */
588 
589                 signed char *pp;
590                 EC_POINT **tmp_points;
591 
592                 if (tmp_len < numblocks * blocksize) {
593                     /*
594                      * possibly we can do with fewer blocks than estimated
595                      */
596                     numblocks = (tmp_len + blocksize - 1) / blocksize;
597                     if (numblocks > pre_comp->numblocks) {
598                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
599                         OPENSSL_free(tmp_wNAF);
600                         goto err;
601                     }
602                     totalnum = num + numblocks;
603                 }
604 
605                 /* split wNAF in 'numblocks' parts */
606                 pp = tmp_wNAF;
607                 tmp_points = pre_comp->points;
608 
609                 for (i = num; i < totalnum; i++) {
610                     if (i < totalnum - 1) {
611                         wNAF_len[i] = blocksize;
612                         if (tmp_len < blocksize) {
613                             ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
614                             OPENSSL_free(tmp_wNAF);
615                             goto err;
616                         }
617                         tmp_len -= blocksize;
618                     } else
619                         /*
620                          * last block gets whatever is left (this could be
621                          * more or less than 'blocksize'!)
622                          */
623                         wNAF_len[i] = tmp_len;
624 
625                     wNAF[i + 1] = NULL;
626                     wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
627                     if (wNAF[i] == NULL) {
628                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
629                         OPENSSL_free(tmp_wNAF);
630                         goto err;
631                     }
632                     memcpy(wNAF[i], pp, wNAF_len[i]);
633                     if (wNAF_len[i] > max_len)
634                         max_len = wNAF_len[i];
635 
636                     if (*tmp_points == NULL) {
637                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
638                         OPENSSL_free(tmp_wNAF);
639                         goto err;
640                     }
641                     val_sub[i] = tmp_points;
642                     tmp_points += pre_points_per_block;
643                     pp += blocksize;
644                 }
645                 OPENSSL_free(tmp_wNAF);
646             }
647         }
648     }
649 
650     /*
651      * All points we precompute now go into a single array 'val'.
652      * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
653      * subarray of 'pre_comp->points' if we already have precomputation.
654      */
655     val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
656     if (val == NULL) {
657         ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
658         goto err;
659     }
660     val[num_val] = NULL;        /* pivot element */
661 
662     /* allocate points for precomputation */
663     v = val;
664     for (i = 0; i < num + num_scalar; i++) {
665         val_sub[i] = v;
666         for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
667             *v = EC_POINT_new(group);
668             if (*v == NULL)
669                 goto err;
670             v++;
671         }
672     }
673     if (!(v == val + num_val)) {
674         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
675         goto err;
676     }
677 
678     if ((tmp = EC_POINT_new(group)) == NULL)
679         goto err;
680 
681     /*-
682      * prepare precomputed values:
683      *    val_sub[i][0] :=     points[i]
684      *    val_sub[i][1] := 3 * points[i]
685      *    val_sub[i][2] := 5 * points[i]
686      *    ...
687      */
688     for (i = 0; i < num + num_scalar; i++) {
689         if (i < num) {
690             if (!EC_POINT_copy(val_sub[i][0], points[i]))
691                 goto err;
692         } else {
693             if (!EC_POINT_copy(val_sub[i][0], generator))
694                 goto err;
695         }
696 
697         if (wsize[i] > 1) {
698             if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
699                 goto err;
700             for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
701                 if (!EC_POINT_add
702                     (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
703                     goto err;
704             }
705         }
706     }
707 
708     if (!EC_POINTs_make_affine(group, num_val, val, ctx))
709         goto err;
710 
711     r_is_at_infinity = 1;
712 
713     for (k = max_len - 1; k >= 0; k--) {
714         if (!r_is_at_infinity) {
715             if (!EC_POINT_dbl(group, r, r, ctx))
716                 goto err;
717         }
718 
719         for (i = 0; i < totalnum; i++) {
720             if (wNAF_len[i] > (size_t)k) {
721                 int digit = wNAF[i][k];
722                 int is_neg;
723 
724                 if (digit) {
725                     is_neg = digit < 0;
726 
727                     if (is_neg)
728                         digit = -digit;
729 
730                     if (is_neg != r_is_inverted) {
731                         if (!r_is_at_infinity) {
732                             if (!EC_POINT_invert(group, r, ctx))
733                                 goto err;
734                         }
735                         r_is_inverted = !r_is_inverted;
736                     }
737 
738                     /* digit > 0 */
739 
740                     if (r_is_at_infinity) {
741                         if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
742                             goto err;
743 
744                         /*-
745                          * Apply coordinate blinding for EC_POINT.
746                          *
747                          * The underlying EC_METHOD can optionally implement this function:
748                          * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
749                          * success or if coordinate blinding is not implemented for this
750                          * group.
751                          */
752                         if (!ec_point_blind_coordinates(group, r, ctx)) {
753                             ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE);
754                             goto err;
755                         }
756 
757                         r_is_at_infinity = 0;
758                     } else {
759                         if (!EC_POINT_add
760                             (group, r, r, val_sub[i][digit >> 1], ctx))
761                             goto err;
762                     }
763                 }
764             }
765         }
766     }
767 
768     if (r_is_at_infinity) {
769         if (!EC_POINT_set_to_infinity(group, r))
770             goto err;
771     } else {
772         if (r_is_inverted)
773             if (!EC_POINT_invert(group, r, ctx))
774                 goto err;
775     }
776 
777     ret = 1;
778 
779  err:
780     EC_POINT_free(tmp);
781     OPENSSL_free(wsize);
782     OPENSSL_free(wNAF_len);
783     if (wNAF != NULL) {
784         signed char **w;
785 
786         for (w = wNAF; *w != NULL; w++)
787             OPENSSL_free(*w);
788 
789         OPENSSL_free(wNAF);
790     }
791     if (val != NULL) {
792         for (v = val; *v != NULL; v++)
793             EC_POINT_clear_free(*v);
794 
795         OPENSSL_free(val);
796     }
797     OPENSSL_free(val_sub);
798     return ret;
799 }
800 
801 /*-
802  * ec_wNAF_precompute_mult()
803  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
804  * for use with wNAF splitting as implemented in ec_wNAF_mul().
805  *
806  * 'pre_comp->points' is an array of multiples of the generator
807  * of the following form:
808  * points[0] =     generator;
809  * points[1] = 3 * generator;
810  * ...
811  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
812  * points[2^(w-1)]   =     2^blocksize * generator;
813  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
814  * ...
815  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
816  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
817  * ...
818  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
819  * points[2^(w-1)*numblocks]       = NULL
820  */
ec_wNAF_precompute_mult(EC_GROUP * group,BN_CTX * ctx)821 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
822 {
823     const EC_POINT *generator;
824     EC_POINT *tmp_point = NULL, *base = NULL, **var;
825     BN_CTX *new_ctx = NULL;
826     const BIGNUM *order;
827     size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
828     EC_POINT **points = NULL;
829     EC_PRE_COMP *pre_comp;
830     int ret = 0;
831 
832     /* if there is an old EC_PRE_COMP object, throw it away */
833     EC_pre_comp_free(group);
834     if ((pre_comp = ec_pre_comp_new(group)) == NULL)
835         return 0;
836 
837     generator = EC_GROUP_get0_generator(group);
838     if (generator == NULL) {
839         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
840         goto err;
841     }
842 
843     if (ctx == NULL) {
844         ctx = new_ctx = BN_CTX_new();
845         if (ctx == NULL)
846             goto err;
847     }
848 
849     BN_CTX_start(ctx);
850 
851     order = EC_GROUP_get0_order(group);
852     if (order == NULL)
853         goto err;
854     if (BN_is_zero(order)) {
855         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
856         goto err;
857     }
858 
859     bits = BN_num_bits(order);
860     /*
861      * The following parameters mean we precompute (approximately) one point
862      * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
863      * bit lengths, other parameter combinations might provide better
864      * efficiency.
865      */
866     blocksize = 8;
867     w = 4;
868     if (EC_window_bits_for_scalar_size(bits) > w) {
869         /* let's not make the window too small ... */
870         w = EC_window_bits_for_scalar_size(bits);
871     }
872 
873     numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
874                                                      * to use for wNAF
875                                                      * splitting */
876 
877     pre_points_per_block = (size_t)1 << (w - 1);
878     num = pre_points_per_block * numblocks; /* number of points to compute
879                                              * and store */
880 
881     points = OPENSSL_malloc(sizeof(*points) * (num + 1));
882     if (points == NULL) {
883         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
884         goto err;
885     }
886 
887     var = points;
888     var[num] = NULL;            /* pivot */
889     for (i = 0; i < num; i++) {
890         if ((var[i] = EC_POINT_new(group)) == NULL) {
891             ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
892             goto err;
893         }
894     }
895 
896     if ((tmp_point = EC_POINT_new(group)) == NULL
897         || (base = EC_POINT_new(group)) == NULL) {
898         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
899         goto err;
900     }
901 
902     if (!EC_POINT_copy(base, generator))
903         goto err;
904 
905     /* do the precomputation */
906     for (i = 0; i < numblocks; i++) {
907         size_t j;
908 
909         if (!EC_POINT_dbl(group, tmp_point, base, ctx))
910             goto err;
911 
912         if (!EC_POINT_copy(*var++, base))
913             goto err;
914 
915         for (j = 1; j < pre_points_per_block; j++, var++) {
916             /*
917              * calculate odd multiples of the current base point
918              */
919             if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
920                 goto err;
921         }
922 
923         if (i < numblocks - 1) {
924             /*
925              * get the next base (multiply current one by 2^blocksize)
926              */
927             size_t k;
928 
929             if (blocksize <= 2) {
930                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
931                 goto err;
932             }
933 
934             if (!EC_POINT_dbl(group, base, tmp_point, ctx))
935                 goto err;
936             for (k = 2; k < blocksize; k++) {
937                 if (!EC_POINT_dbl(group, base, base, ctx))
938                     goto err;
939             }
940         }
941     }
942 
943     if (!EC_POINTs_make_affine(group, num, points, ctx))
944         goto err;
945 
946     pre_comp->group = group;
947     pre_comp->blocksize = blocksize;
948     pre_comp->numblocks = numblocks;
949     pre_comp->w = w;
950     pre_comp->points = points;
951     points = NULL;
952     pre_comp->num = num;
953     SETPRECOMP(group, ec, pre_comp);
954     pre_comp = NULL;
955     ret = 1;
956 
957  err:
958     BN_CTX_end(ctx);
959     BN_CTX_free(new_ctx);
960     EC_ec_pre_comp_free(pre_comp);
961     if (points) {
962         EC_POINT **p;
963 
964         for (p = points; *p != NULL; p++)
965             EC_POINT_free(*p);
966         OPENSSL_free(points);
967     }
968     EC_POINT_free(tmp_point);
969     EC_POINT_free(base);
970     return ret;
971 }
972 
ec_wNAF_have_precompute_mult(const EC_GROUP * group)973 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
974 {
975     return HAVEPRECOMP(group, ec);
976 }
977