• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006, Stephan Diederich
2 //
3 //  This code may be used under either of the following two licences:
4 //
5 //    Permission is hereby granted, free of charge, to any person
6 //    obtaining a copy of this software and associated documentation
7 //    files (the "Software"), to deal in the Software without
8 //    restriction, including without limitation the rights to use,
9 //    copy, modify, merge, publish, distribute, sublicense, and/or
10 //    sell copies of the Software, and to permit persons to whom the
11 //    Software is furnished to do so, subject to the following
12 //    conditions:
13 //
14 //    The above copyright notice and this permission notice shall be
15 //    included in all copies or substantial portions of the Software.
16 //
17 //    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18 //    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
19 //    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
20 //    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
21 //    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
22 //    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 //    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 //    OTHER DEALINGS IN THE SOFTWARE. OF SUCH DAMAGE.
25 //
26 //  Or:
27 //
28 //    Distributed under the Boost Software License, Version 1.0.
29 //    (See accompanying file LICENSE_1_0.txt or copy at
30 //    http://www.boost.org/LICENSE_1_0.txt)
31 
32 #include <vector>
33 #include <iterator>
34 #include <iostream>
35 #include <algorithm>
36 #include <fstream>
37 
38 #include <boost/core/lightweight_test.hpp>
39 #include <boost/graph/boykov_kolmogorov_max_flow.hpp>
40 
41 #include <boost/graph/adjacency_list.hpp>
42 #include <boost/graph/adjacency_matrix.hpp>
43 #include <boost/graph/random.hpp>
44 #include <boost/property_map/property_map.hpp>
45 #include <boost/random/linear_congruential.hpp>
46 #include <boost/lexical_cast.hpp>
47 
48 using namespace boost;
49 
50 template < typename Graph, typename CapacityMap, typename ReverseEdgeMap >
51 std::pair< typename graph_traits< Graph >::vertex_descriptor,
52     typename graph_traits< Graph >::vertex_descriptor >
fill_random_max_flow_graph(Graph & g,CapacityMap cap,ReverseEdgeMap rev,typename graph_traits<Graph>::vertices_size_type n_verts,typename graph_traits<Graph>::edges_size_type n_edges,std::size_t seed)53 fill_random_max_flow_graph(Graph& g, CapacityMap cap, ReverseEdgeMap rev,
54     typename graph_traits< Graph >::vertices_size_type n_verts,
55     typename graph_traits< Graph >::edges_size_type n_edges, std::size_t seed)
56 {
57     typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor;
58     typedef typename graph_traits< Graph >::vertex_descriptor vertex_descriptor;
59     const int cap_low = 1;
60     const int cap_high = 1000;
61 
62     // init random numer generator
63     minstd_rand gen(seed);
64     // generate graph
65     generate_random_graph(g, n_verts, n_edges, gen);
66 
67     // init an uniform distribution int generator
68     typedef variate_generator< minstd_rand, uniform_int< int > > tIntGen;
69     tIntGen int_gen(gen, uniform_int< int >(cap_low, cap_high));
70     // randomize edge-capacities
71     // randomize_property<edge_capacity, Graph, tIntGen> (g,int_gen); //we
72     // cannot use this, as we have no idea how properties are stored, right?
73     typename graph_traits< Graph >::edge_iterator ei, e_end;
74     for (boost::tie(ei, e_end) = edges(g); ei != e_end; ++ei)
75         cap[*ei] = int_gen();
76 
77     // get source and sink node
78     vertex_descriptor s = random_vertex(g, gen);
79     vertex_descriptor t = graph_traits< Graph >::null_vertex();
80     while (t == graph_traits< Graph >::null_vertex() || t == s)
81         t = random_vertex(g, gen);
82 
83     // add reverse edges (ugly... how to do better?!)
84     std::list< edge_descriptor > edges_copy;
85     boost::tie(ei, e_end) = edges(g);
86     std::copy(ei, e_end,
87         std::back_insert_iterator< std::list< edge_descriptor > >(edges_copy));
88     while (!edges_copy.empty())
89     {
90         edge_descriptor old_edge = edges_copy.front();
91         edges_copy.pop_front();
92         vertex_descriptor source_vertex = target(old_edge, g);
93         vertex_descriptor target_vertex = source(old_edge, g);
94         bool inserted;
95         edge_descriptor new_edge;
96         boost::tie(new_edge, inserted)
97             = add_edge(source_vertex, target_vertex, g);
98         assert(inserted);
99         rev[old_edge] = new_edge;
100         rev[new_edge] = old_edge;
101         cap[new_edge] = 0;
102     }
103     return std::make_pair(s, t);
104 }
105 
test_adjacency_list_vecS(int n_verts,int n_edges,std::size_t seed)106 long test_adjacency_list_vecS(int n_verts, int n_edges, std::size_t seed)
107 {
108     typedef adjacency_list_traits< vecS, vecS, directedS > tVectorTraits;
109     typedef adjacency_list< vecS, vecS, directedS,
110         property< vertex_index_t, long,
111             property< vertex_predecessor_t, tVectorTraits::edge_descriptor,
112                 property< vertex_color_t, boost::default_color_type,
113                     property< vertex_distance_t, long > > > >,
114         property< edge_capacity_t, long,
115             property< edge_residual_capacity_t, long,
116                 property< edge_reverse_t, tVectorTraits::edge_descriptor > > > >
117         tVectorGraph;
118 
119     tVectorGraph g;
120 
121     graph_traits< tVectorGraph >::vertex_descriptor src, sink;
122     boost::tie(src, sink) = fill_random_max_flow_graph(
123         g, get(edge_capacity, g), get(edge_reverse, g), n_verts, n_edges, seed);
124 
125     return boykov_kolmogorov_max_flow(g, get(edge_capacity, g),
126         get(edge_residual_capacity, g), get(edge_reverse, g),
127         get(vertex_predecessor, g), get(vertex_color, g),
128         get(vertex_distance, g), get(vertex_index, g), src, sink);
129 }
130 
test_adjacency_list_listS(int n_verts,int n_edges,std::size_t seed)131 long test_adjacency_list_listS(int n_verts, int n_edges, std::size_t seed)
132 {
133     typedef adjacency_list_traits< listS, listS, directedS > tListTraits;
134     typedef adjacency_list< listS, listS, directedS,
135         property< vertex_index_t, long,
136             property< vertex_predecessor_t, tListTraits::edge_descriptor,
137                 property< vertex_color_t, boost::default_color_type,
138                     property< vertex_distance_t, long > > > >,
139         property< edge_capacity_t, long,
140             property< edge_residual_capacity_t, long,
141                 property< edge_reverse_t, tListTraits::edge_descriptor > > > >
142         tListGraph;
143 
144     tListGraph g;
145 
146     graph_traits< tListGraph >::vertex_descriptor src, sink;
147     boost::tie(src, sink) = fill_random_max_flow_graph(
148         g, get(edge_capacity, g), get(edge_reverse, g), n_verts, n_edges, seed);
149 
150     // initialize vertex indices
151     graph_traits< tListGraph >::vertex_iterator vi, v_end;
152     graph_traits< tListGraph >::vertices_size_type index = 0;
153     for (boost::tie(vi, v_end) = vertices(g); vi != v_end; ++vi)
154     {
155         put(vertex_index, g, *vi, index++);
156     }
157     return boykov_kolmogorov_max_flow(g, get(edge_capacity, g),
158         get(edge_residual_capacity, g), get(edge_reverse, g),
159         get(vertex_predecessor, g), get(vertex_color, g),
160         get(vertex_distance, g), get(vertex_index, g), src, sink);
161 }
162 
163 template < typename EdgeDescriptor > struct Node
164 {
165     boost::default_color_type vertex_color;
166     long vertex_distance;
167     EdgeDescriptor vertex_predecessor;
168 };
169 
170 template < typename EdgeDescriptor > struct Link
171 {
172     long edge_capacity;
173     long edge_residual_capacity;
174     EdgeDescriptor edge_reverse;
175 };
176 
test_bundled_properties(int n_verts,int n_edges,std::size_t seed)177 long test_bundled_properties(int n_verts, int n_edges, std::size_t seed)
178 {
179     typedef adjacency_list_traits< vecS, vecS, directedS > tTraits;
180     typedef Node< tTraits::edge_descriptor > tVertex;
181     typedef Link< tTraits::edge_descriptor > tEdge;
182     typedef adjacency_list< vecS, vecS, directedS, tVertex, tEdge >
183         tBundleGraph;
184 
185     tBundleGraph g;
186 
187     graph_traits< tBundleGraph >::vertex_descriptor src, sink;
188     boost::tie(src, sink)
189         = fill_random_max_flow_graph(g, get(&tEdge::edge_capacity, g),
190             get(&tEdge::edge_reverse, g), n_verts, n_edges, seed);
191     return boykov_kolmogorov_max_flow(g, get(&tEdge::edge_capacity, g),
192         get(&tEdge::edge_residual_capacity, g), get(&tEdge::edge_reverse, g),
193         get(&tVertex::vertex_predecessor, g), get(&tVertex::vertex_color, g),
194         get(&tVertex::vertex_distance, g), get(vertex_index, g), src, sink);
195 }
196 
test_overloads(int n_verts,int n_edges,std::size_t seed)197 long test_overloads(int n_verts, int n_edges, std::size_t seed)
198 {
199     typedef adjacency_list_traits< vecS, vecS, directedS > tTraits;
200     typedef property< edge_capacity_t, long,
201         property< edge_residual_capacity_t, long,
202             property< edge_reverse_t, tTraits::edge_descriptor > > >
203         tEdgeProperty;
204     typedef adjacency_list< vecS, vecS, directedS, no_property, tEdgeProperty >
205         tGraph;
206 
207     tGraph g;
208 
209     graph_traits< tGraph >::vertex_descriptor src, sink;
210     boost::tie(src, sink) = fill_random_max_flow_graph(
211         g, get(edge_capacity, g), get(edge_reverse, g), n_verts, n_edges, seed);
212 
213     std::vector< graph_traits< tGraph >::edge_descriptor > predecessor_vec(
214         n_verts);
215     std::vector< default_color_type > color_vec(n_verts);
216     std::vector< graph_traits< tGraph >::vertices_size_type > distance_vec(
217         n_verts);
218 
219     long flow_overload_1 = boykov_kolmogorov_max_flow(g, get(edge_capacity, g),
220         get(edge_residual_capacity, g), get(edge_reverse, g),
221         get(vertex_index, g), src, sink);
222 
223     long flow_overload_2 = boykov_kolmogorov_max_flow(g, get(edge_capacity, g),
224         get(edge_residual_capacity, g), get(edge_reverse, g),
225         boost::make_iterator_property_map(
226             color_vec.begin(), get(vertex_index, g)),
227         get(vertex_index, g), src, sink);
228 
229     BOOST_TEST(flow_overload_1 == flow_overload_2);
230     return flow_overload_1;
231 }
232 
233 template < class Graph, class EdgeCapacityMap, class ResidualCapacityEdgeMap,
234     class ReverseEdgeMap, class PredecessorMap, class ColorMap,
235     class DistanceMap, class IndexMap >
236 class boykov_kolmogorov_test
237 : public detail::bk_max_flow< Graph, EdgeCapacityMap, ResidualCapacityEdgeMap,
238       ReverseEdgeMap, PredecessorMap, ColorMap, DistanceMap, IndexMap >
239 {
240 
241     typedef typename graph_traits< Graph >::edge_descriptor tEdge;
242     typedef typename graph_traits< Graph >::vertex_descriptor tVertex;
243     typedef typename property_traits< typename property_map< Graph,
244         edge_capacity_t >::const_type >::value_type tEdgeVal;
245     typedef typename graph_traits< Graph >::vertex_iterator tVertexIterator;
246     typedef typename graph_traits< Graph >::out_edge_iterator tOutEdgeIterator;
247     typedef typename property_traits< ColorMap >::value_type tColorValue;
248     typedef color_traits< tColorValue > tColorTraits;
249     typedef typename property_traits< DistanceMap >::value_type tDistanceVal;
250     typedef typename detail::bk_max_flow< Graph, EdgeCapacityMap,
251         ResidualCapacityEdgeMap, ReverseEdgeMap, PredecessorMap, ColorMap,
252         DistanceMap, IndexMap >
253         tSuper;
254 
255 public:
boykov_kolmogorov_test(Graph & g,typename graph_traits<Graph>::vertex_descriptor src,typename graph_traits<Graph>::vertex_descriptor sink)256     boykov_kolmogorov_test(Graph& g,
257         typename graph_traits< Graph >::vertex_descriptor src,
258         typename graph_traits< Graph >::vertex_descriptor sink)
259     : tSuper(g, get(edge_capacity, g), get(edge_residual_capacity, g),
260         get(edge_reverse, g), get(vertex_predecessor, g), get(vertex_color, g),
261         get(vertex_distance, g), get(vertex_index, g), src, sink)
262     {
263     }
264 
invariant_four(tVertex v) const265     void invariant_four(tVertex v) const
266     {
267         // passive nodes in S or T
268         if (v == tSuper::m_source || v == tSuper::m_sink)
269             return;
270         typename std::list< tVertex >::const_iterator it
271             = find(tSuper::m_orphans.begin(), tSuper::m_orphans.end(), v);
272         // a node is active, if its in the active_list AND (is has_a_parent, or
273         // its already in the orphans_list or its the sink, or its the source)
274         bool is_active = (tSuper::m_in_active_list_map[v]
275             && (tSuper::has_parent(v) || it != tSuper::m_orphans.end()));
276         if (this->get_tree(v) != tColorTraits::gray() && !is_active)
277         {
278             typename graph_traits< Graph >::out_edge_iterator ei, e_end;
279             for (boost::tie(ei, e_end) = out_edges(v, tSuper::m_g); ei != e_end;
280                  ++ei)
281             {
282                 const tVertex& other_node = target(*ei, tSuper::m_g);
283                 if (this->get_tree(other_node) != this->get_tree(v))
284                 {
285                     if (this->get_tree(v) == tColorTraits::black())
286                         BOOST_TEST(tSuper::m_res_cap_map[*ei] == 0);
287                     else
288                         BOOST_TEST(
289                             tSuper::m_res_cap_map[tSuper::m_rev_edge_map[*ei]]
290                             == 0);
291                 }
292             }
293         }
294     }
295 
invariant_five(const tVertex & v) const296     void invariant_five(const tVertex& v) const
297     {
298         BOOST_TEST(this->get_tree(v) != tColorTraits::gray()
299             || tSuper::m_time_map[v] <= tSuper::m_time);
300     }
301 
invariant_six(const tVertex & v) const302     void invariant_six(const tVertex& v) const
303     {
304         if (this->get_tree(v) == tColorTraits::gray()
305             || tSuper::m_time_map[v] != tSuper::m_time)
306             return;
307         else
308         {
309             tVertex current_node = v;
310             tDistanceVal distance = 0;
311             tColorValue color = this->get_tree(v);
312             tVertex terminal = (color == tColorTraits::black())
313                 ? tSuper::m_source
314                 : tSuper::m_sink;
315             while (current_node != terminal)
316             {
317                 BOOST_TEST(tSuper::has_parent(current_node));
318                 tEdge e = this->get_edge_to_parent(current_node);
319                 ++distance;
320                 current_node = (color == tColorTraits::black())
321                     ? source(e, tSuper::m_g)
322                     : target(e, tSuper::m_g);
323                 if (distance > tSuper::m_dist_map[v])
324                     break;
325             }
326             BOOST_TEST(distance == tSuper::m_dist_map[v]);
327         }
328     }
329 
invariant_seven(const tVertex & v) const330     void invariant_seven(const tVertex& v) const
331     {
332         if (this->get_tree(v) == tColorTraits::gray())
333             return;
334         else
335         {
336             tColorValue color = this->get_tree(v);
337             long time = tSuper::m_time_map[v];
338             tVertex current_node = v;
339             while (tSuper::has_parent(current_node))
340             {
341                 tEdge e = this->get_edge_to_parent(current_node);
342                 current_node = (color == tColorTraits::black())
343                     ? source(e, tSuper::m_g)
344                     : target(e, tSuper::m_g);
345                 BOOST_TEST(tSuper::m_time_map[current_node] >= time);
346             }
347         }
348     } // invariant_seven
349 
invariant_eight(const tVertex & v) const350     void invariant_eight(const tVertex& v) const
351     {
352         if (this->get_tree(v) == tColorTraits::gray())
353             return;
354         else
355         {
356             tColorValue color = this->get_tree(v);
357             long time = tSuper::m_time_map[v];
358             tDistanceVal distance = tSuper::m_dist_map[v];
359             tVertex current_node = v;
360             while (tSuper::has_parent(current_node))
361             {
362                 tEdge e = this->get_edge_to_parent(current_node);
363                 current_node = (color == tColorTraits::black())
364                     ? source(e, tSuper::m_g)
365                     : target(e, tSuper::m_g);
366                 if (tSuper::m_time_map[current_node] == time)
367                     BOOST_TEST(tSuper::m_dist_map[current_node] < distance);
368             }
369         }
370     } // invariant_eight
371 
check_invariants()372     void check_invariants()
373     {
374         tVertexIterator vi, v_end;
375         for (boost::tie(vi, v_end) = vertices(tSuper::m_g); vi != v_end; ++vi)
376         {
377             invariant_four(*vi);
378             invariant_five(*vi);
379             invariant_six(*vi);
380             invariant_seven(*vi);
381             invariant_eight(*vi);
382         }
383     }
384 
test()385     tEdgeVal test()
386     {
387         this->add_active_node(this->m_sink);
388         this->augment_direct_paths();
389         check_invariants();
390         // start the main-loop
391         while (true)
392         {
393             bool path_found;
394             tEdge connecting_edge;
395             boost::tie(connecting_edge, path_found)
396                 = this->grow(); // find a path from source to sink
397             if (!path_found)
398             {
399                 // we're finished, no more paths were found
400                 break;
401             }
402             check_invariants();
403             this->m_time++;
404             this->augment(connecting_edge); // augment that path
405             check_invariants();
406             this->adopt(); // rebuild search tree structure
407             check_invariants();
408         }
409 
410         // check if flow is the sum of outgoing edges of src
411         tOutEdgeIterator ei, e_end;
412         tEdgeVal src_sum = 0;
413         for (boost::tie(ei, e_end) = out_edges(this->m_source, this->m_g);
414              ei != e_end; ++ei)
415         {
416             src_sum += this->m_cap_map[*ei] - this->m_res_cap_map[*ei];
417         }
418         BOOST_TEST(this->m_flow == src_sum);
419         // check if flow is the sum of ingoing edges of sink
420         tEdgeVal sink_sum = 0;
421         for (boost::tie(ei, e_end) = out_edges(this->m_sink, this->m_g);
422              ei != e_end; ++ei)
423         {
424             tEdge in_edge = this->m_rev_edge_map[*ei];
425             sink_sum += this->m_cap_map[in_edge] - this->m_res_cap_map[in_edge];
426         }
427         BOOST_TEST(this->m_flow == sink_sum);
428         return this->m_flow;
429     }
430 };
431 
test_algorithms_invariant(int n_verts,int n_edges,std::size_t seed)432 long test_algorithms_invariant(int n_verts, int n_edges, std::size_t seed)
433 {
434     typedef adjacency_list_traits< vecS, vecS, directedS > tVectorTraits;
435     typedef adjacency_list< vecS, vecS, directedS,
436         property< vertex_index_t, long,
437             property< vertex_predecessor_t, tVectorTraits::edge_descriptor,
438                 property< vertex_color_t, default_color_type,
439                     property< vertex_distance_t, long > > > >,
440         property< edge_capacity_t, long,
441             property< edge_residual_capacity_t, long,
442                 property< edge_reverse_t, tVectorTraits::edge_descriptor > > > >
443         tVectorGraph;
444 
445     tVectorGraph g;
446 
447     graph_traits< tVectorGraph >::vertex_descriptor src, sink;
448     boost::tie(src, sink) = fill_random_max_flow_graph(
449         g, get(edge_capacity, g), get(edge_reverse, g), n_verts, n_edges, seed);
450 
451     typedef property_map< tVectorGraph, edge_capacity_t >::type tEdgeCapMap;
452     typedef property_map< tVectorGraph, edge_residual_capacity_t >::type
453         tEdgeResCapMap;
454     typedef property_map< tVectorGraph, edge_reverse_t >::type tRevEdgeMap;
455     typedef property_map< tVectorGraph, vertex_predecessor_t >::type
456         tVertexPredMap;
457     typedef property_map< tVectorGraph, vertex_color_t >::type tVertexColorMap;
458     typedef property_map< tVectorGraph, vertex_distance_t >::type tDistanceMap;
459     typedef property_map< tVectorGraph, vertex_index_t >::type tIndexMap;
460     typedef boykov_kolmogorov_test< tVectorGraph, tEdgeCapMap, tEdgeResCapMap,
461         tRevEdgeMap, tVertexPredMap, tVertexColorMap, tDistanceMap, tIndexMap >
462         tKolmo;
463     tKolmo instance(g, src, sink);
464     return instance.test();
465 }
466 
main(int argc,char * argv[])467 int main(int argc, char* argv[])
468 {
469     int n_verts = 10;
470     int n_edges = 500;
471     std::size_t seed = 1;
472 
473     if (argc > 1)
474         n_verts = lexical_cast< int >(argv[1]);
475     if (argc > 2)
476         n_edges = lexical_cast< int >(argv[2]);
477     if (argc > 3)
478         seed = lexical_cast< std::size_t >(argv[3]);
479 
480     // we need at least 2 vertices to create src and sink in random graphs
481     // this case is also caught in boykov_kolmogorov_max_flow
482     if (n_verts < 2)
483         n_verts = 2;
484 
485     // below are checks for different calls to boykov_kolmogorov_max_flow and
486     // different graph-types
487 
488     // checks support of vecS storage
489     long flow_vecS = test_adjacency_list_vecS(n_verts, n_edges, seed);
490     std::cout << "vecS flow: " << flow_vecS << std::endl;
491     // checks support of listS storage (especially problems with vertex indices)
492     long flow_listS = test_adjacency_list_listS(n_verts, n_edges, seed);
493     std::cout << "listS flow: " << flow_listS << std::endl;
494     BOOST_TEST(flow_vecS == flow_listS);
495     // checks bundled properties
496     long flow_bundles = test_bundled_properties(n_verts, n_edges, seed);
497     std::cout << "bundles flow: " << flow_bundles << std::endl;
498     BOOST_TEST(flow_listS == flow_bundles);
499     // checks overloads
500     long flow_overloads = test_overloads(n_verts, n_edges, seed);
501     std::cout << "overloads flow: " << flow_overloads << std::endl;
502     BOOST_TEST(flow_bundles == flow_overloads);
503 
504     // excessive test version where Boykov-Kolmogorov's algorithm invariants are
505     // checked
506     long flow_invariants = test_algorithms_invariant(n_verts, n_edges, seed);
507     std::cout << "invariants flow: " << flow_invariants << std::endl;
508     BOOST_TEST(flow_overloads == flow_invariants);
509     return boost::report_errors();
510 }
511