• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  * Copyright 2019-2020 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_netdev.h"
26 
27 #define EF100_MAX_VIS 4096
28 #define EF100_NUM_MCDI_BUFFERS	1
29 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
30 
31 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
32 
33 /*	MCDI
34  */
ef100_mcdi_buf(struct efx_nic * efx,u8 bufid,dma_addr_t * dma_addr)35 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
36 {
37 	struct ef100_nic_data *nic_data = efx->nic_data;
38 
39 	if (dma_addr)
40 		*dma_addr = nic_data->mcdi_buf.dma_addr +
41 			    bufid * ALIGN(MCDI_BUF_LEN, 256);
42 	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
43 }
44 
ef100_get_warm_boot_count(struct efx_nic * efx)45 static int ef100_get_warm_boot_count(struct efx_nic *efx)
46 {
47 	efx_dword_t reg;
48 
49 	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
50 
51 	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
52 		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
53 		efx->state = STATE_DISABLED;
54 		return -ENETDOWN;
55 	} else {
56 		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
57 			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
58 	}
59 }
60 
ef100_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)61 static void ef100_mcdi_request(struct efx_nic *efx,
62 			       const efx_dword_t *hdr, size_t hdr_len,
63 			       const efx_dword_t *sdu, size_t sdu_len)
64 {
65 	dma_addr_t dma_addr;
66 	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
67 
68 	memcpy(pdu, hdr, hdr_len);
69 	memcpy(pdu + hdr_len, sdu, sdu_len);
70 	wmb();
71 
72 	/* The hardware provides 'low' and 'high' (doorbell) registers
73 	 * for passing the 64-bit address of an MCDI request to
74 	 * firmware.  However the dwords are swapped by firmware.  The
75 	 * least significant bits of the doorbell are then 0 for all
76 	 * MCDI requests due to alignment.
77 	 */
78 	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
79 	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
80 }
81 
ef100_mcdi_poll_response(struct efx_nic * efx)82 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
83 {
84 	const efx_dword_t hdr =
85 		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
86 
87 	rmb();
88 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
89 }
90 
ef100_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)91 static void ef100_mcdi_read_response(struct efx_nic *efx,
92 				     efx_dword_t *outbuf, size_t offset,
93 				     size_t outlen)
94 {
95 	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
96 
97 	memcpy(outbuf, pdu + offset, outlen);
98 }
99 
ef100_mcdi_poll_reboot(struct efx_nic * efx)100 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
101 {
102 	struct ef100_nic_data *nic_data = efx->nic_data;
103 	int rc;
104 
105 	rc = ef100_get_warm_boot_count(efx);
106 	if (rc < 0) {
107 		/* The firmware is presumably in the process of
108 		 * rebooting.  However, we are supposed to report each
109 		 * reboot just once, so we must only do that once we
110 		 * can read and store the updated warm boot count.
111 		 */
112 		return 0;
113 	}
114 
115 	if (rc == nic_data->warm_boot_count)
116 		return 0;
117 
118 	nic_data->warm_boot_count = rc;
119 
120 	return -EIO;
121 }
122 
ef100_mcdi_reboot_detected(struct efx_nic * efx)123 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
124 {
125 }
126 
127 /*	MCDI calls
128  */
ef100_get_mac_address(struct efx_nic * efx,u8 * mac_address)129 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
130 {
131 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
132 	size_t outlen;
133 	int rc;
134 
135 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
136 
137 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
138 			  outbuf, sizeof(outbuf), &outlen);
139 	if (rc)
140 		return rc;
141 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
142 		return -EIO;
143 
144 	ether_addr_copy(mac_address,
145 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
146 	return 0;
147 }
148 
efx_ef100_init_datapath_caps(struct efx_nic * efx)149 static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
150 {
151 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
152 	struct ef100_nic_data *nic_data = efx->nic_data;
153 	u8 vi_window_mode;
154 	size_t outlen;
155 	int rc;
156 
157 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
158 
159 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
160 			  outbuf, sizeof(outbuf), &outlen);
161 	if (rc)
162 		return rc;
163 	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
164 		netif_err(efx, drv, efx->net_dev,
165 			  "unable to read datapath firmware capabilities\n");
166 		return -EIO;
167 	}
168 
169 	nic_data->datapath_caps = MCDI_DWORD(outbuf,
170 					     GET_CAPABILITIES_OUT_FLAGS1);
171 	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
172 					      GET_CAPABILITIES_V2_OUT_FLAGS2);
173 	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
174 		nic_data->datapath_caps3 = 0;
175 	else
176 		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
177 						      GET_CAPABILITIES_V7_OUT_FLAGS3);
178 
179 	vi_window_mode = MCDI_BYTE(outbuf,
180 				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
181 	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
182 	if (rc)
183 		return rc;
184 
185 	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3))
186 		efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
187 	efx->num_mac_stats = MCDI_WORD(outbuf,
188 				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
189 	netif_dbg(efx, probe, efx->net_dev,
190 		  "firmware reports num_mac_stats = %u\n",
191 		  efx->num_mac_stats);
192 	return 0;
193 }
194 
195 /*	Event handling
196  */
ef100_ev_probe(struct efx_channel * channel)197 static int ef100_ev_probe(struct efx_channel *channel)
198 {
199 	/* Allocate an extra descriptor for the QMDA status completion entry */
200 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
201 				    (channel->eventq_mask + 2) *
202 				    sizeof(efx_qword_t),
203 				    GFP_KERNEL);
204 }
205 
ef100_ev_init(struct efx_channel * channel)206 static int ef100_ev_init(struct efx_channel *channel)
207 {
208 	struct ef100_nic_data *nic_data = channel->efx->nic_data;
209 
210 	/* initial phase is 0 */
211 	clear_bit(channel->channel, nic_data->evq_phases);
212 
213 	return efx_mcdi_ev_init(channel, false, false);
214 }
215 
ef100_ev_read_ack(struct efx_channel * channel)216 static void ef100_ev_read_ack(struct efx_channel *channel)
217 {
218 	efx_dword_t evq_prime;
219 
220 	EFX_POPULATE_DWORD_2(evq_prime,
221 			     ERF_GZ_EVQ_ID, channel->channel,
222 			     ERF_GZ_IDX, channel->eventq_read_ptr &
223 					 channel->eventq_mask);
224 
225 	efx_writed(channel->efx, &evq_prime,
226 		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
227 }
228 
ef100_ev_process(struct efx_channel * channel,int quota)229 static int ef100_ev_process(struct efx_channel *channel, int quota)
230 {
231 	struct efx_nic *efx = channel->efx;
232 	struct ef100_nic_data *nic_data;
233 	bool evq_phase, old_evq_phase;
234 	unsigned int read_ptr;
235 	efx_qword_t *p_event;
236 	int spent = 0;
237 	bool ev_phase;
238 	int ev_type;
239 
240 	if (unlikely(!channel->enabled))
241 		return 0;
242 
243 	nic_data = efx->nic_data;
244 	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
245 	old_evq_phase = evq_phase;
246 	read_ptr = channel->eventq_read_ptr;
247 	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
248 
249 	while (spent < quota) {
250 		p_event = efx_event(channel, read_ptr);
251 
252 		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
253 		if (ev_phase != evq_phase)
254 			break;
255 
256 		netif_vdbg(efx, drv, efx->net_dev,
257 			   "processing event on %d " EFX_QWORD_FMT "\n",
258 			   channel->channel, EFX_QWORD_VAL(*p_event));
259 
260 		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
261 
262 		switch (ev_type) {
263 		case ESE_GZ_EF100_EV_RX_PKTS:
264 			efx_ef100_ev_rx(channel, p_event);
265 			++spent;
266 			break;
267 		case ESE_GZ_EF100_EV_MCDI:
268 			efx_mcdi_process_event(channel, p_event);
269 			break;
270 		case ESE_GZ_EF100_EV_TX_COMPLETION:
271 			ef100_ev_tx(channel, p_event);
272 			break;
273 		case ESE_GZ_EF100_EV_DRIVER:
274 			netif_info(efx, drv, efx->net_dev,
275 				   "Driver initiated event " EFX_QWORD_FMT "\n",
276 				   EFX_QWORD_VAL(*p_event));
277 			break;
278 		default:
279 			netif_info(efx, drv, efx->net_dev,
280 				   "Unhandled event " EFX_QWORD_FMT "\n",
281 				   EFX_QWORD_VAL(*p_event));
282 		}
283 
284 		++read_ptr;
285 		if ((read_ptr & channel->eventq_mask) == 0)
286 			evq_phase = !evq_phase;
287 	}
288 
289 	channel->eventq_read_ptr = read_ptr;
290 	if (evq_phase != old_evq_phase)
291 		change_bit(channel->channel, nic_data->evq_phases);
292 
293 	return spent;
294 }
295 
ef100_msi_interrupt(int irq,void * dev_id)296 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
297 {
298 	struct efx_msi_context *context = dev_id;
299 	struct efx_nic *efx = context->efx;
300 
301 	netif_vdbg(efx, intr, efx->net_dev,
302 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
303 
304 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
305 		/* Note test interrupts */
306 		if (context->index == efx->irq_level)
307 			efx->last_irq_cpu = raw_smp_processor_id();
308 
309 		/* Schedule processing of the channel */
310 		efx_schedule_channel_irq(efx->channel[context->index]);
311 	}
312 
313 	return IRQ_HANDLED;
314 }
315 
ef100_phy_probe(struct efx_nic * efx)316 static int ef100_phy_probe(struct efx_nic *efx)
317 {
318 	struct efx_mcdi_phy_data *phy_data;
319 	int rc;
320 
321 	/* Probe for the PHY */
322 	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
323 	if (!efx->phy_data)
324 		return -ENOMEM;
325 
326 	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
327 	if (rc)
328 		return rc;
329 
330 	/* Populate driver and ethtool settings */
331 	phy_data = efx->phy_data;
332 	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
333 				efx->link_advertising);
334 	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
335 						   false);
336 
337 	/* Default to Autonegotiated flow control if the PHY supports it */
338 	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
339 	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
340 		efx->wanted_fc |= EFX_FC_AUTO;
341 	efx_link_set_wanted_fc(efx, efx->wanted_fc);
342 
343 	/* Push settings to the PHY. Failure is not fatal, the user can try to
344 	 * fix it using ethtool.
345 	 */
346 	rc = efx_mcdi_port_reconfigure(efx);
347 	if (rc && rc != -EPERM)
348 		netif_warn(efx, drv, efx->net_dev,
349 			   "could not initialise PHY settings\n");
350 
351 	return 0;
352 }
353 
ef100_filter_table_probe(struct efx_nic * efx)354 static int ef100_filter_table_probe(struct efx_nic *efx)
355 {
356 	return efx_mcdi_filter_table_probe(efx, true);
357 }
358 
ef100_filter_table_up(struct efx_nic * efx)359 static int ef100_filter_table_up(struct efx_nic *efx)
360 {
361 	int rc;
362 
363 	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
364 	if (rc) {
365 		efx_mcdi_filter_table_down(efx);
366 		return rc;
367 	}
368 
369 	rc = efx_mcdi_filter_add_vlan(efx, 0);
370 	if (rc) {
371 		efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
372 		efx_mcdi_filter_table_down(efx);
373 	}
374 
375 	return rc;
376 }
377 
ef100_filter_table_down(struct efx_nic * efx)378 static void ef100_filter_table_down(struct efx_nic *efx)
379 {
380 	efx_mcdi_filter_del_vlan(efx, 0);
381 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
382 	efx_mcdi_filter_table_down(efx);
383 }
384 
385 /*	Other
386  */
ef100_reconfigure_mac(struct efx_nic * efx,bool mtu_only)387 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
388 {
389 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
390 
391 	efx_mcdi_filter_sync_rx_mode(efx);
392 
393 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
394 		return efx_mcdi_set_mtu(efx);
395 	return efx_mcdi_set_mac(efx);
396 }
397 
ef100_map_reset_reason(enum reset_type reason)398 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
399 {
400 	if (reason == RESET_TYPE_TX_WATCHDOG)
401 		return reason;
402 	return RESET_TYPE_DISABLE;
403 }
404 
ef100_map_reset_flags(u32 * flags)405 static int ef100_map_reset_flags(u32 *flags)
406 {
407 	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
408 	if ((*flags & EF100_RESET_PORT)) {
409 		*flags &= ~EF100_RESET_PORT;
410 		return RESET_TYPE_ALL;
411 	}
412 	if (*flags & ETH_RESET_MGMT) {
413 		*flags &= ~ETH_RESET_MGMT;
414 		return RESET_TYPE_DISABLE;
415 	}
416 
417 	return -EINVAL;
418 }
419 
ef100_reset(struct efx_nic * efx,enum reset_type reset_type)420 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
421 {
422 	int rc;
423 
424 	dev_close(efx->net_dev);
425 
426 	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
427 		netif_device_attach(efx->net_dev);
428 		__clear_bit(reset_type, &efx->reset_pending);
429 		rc = dev_open(efx->net_dev, NULL);
430 	} else if (reset_type == RESET_TYPE_ALL) {
431 		rc = efx_mcdi_reset(efx, reset_type);
432 		if (rc)
433 			return rc;
434 
435 		netif_device_attach(efx->net_dev);
436 
437 		rc = dev_open(efx->net_dev, NULL);
438 	} else {
439 		rc = 1;	/* Leave the device closed */
440 	}
441 	return rc;
442 }
443 
ef100_common_stat_mask(unsigned long * mask)444 static void ef100_common_stat_mask(unsigned long *mask)
445 {
446 	__set_bit(EF100_STAT_port_rx_packets, mask);
447 	__set_bit(EF100_STAT_port_tx_packets, mask);
448 	__set_bit(EF100_STAT_port_rx_bytes, mask);
449 	__set_bit(EF100_STAT_port_tx_bytes, mask);
450 	__set_bit(EF100_STAT_port_rx_multicast, mask);
451 	__set_bit(EF100_STAT_port_rx_bad, mask);
452 	__set_bit(EF100_STAT_port_rx_align_error, mask);
453 	__set_bit(EF100_STAT_port_rx_overflow, mask);
454 }
455 
ef100_ethtool_stat_mask(unsigned long * mask)456 static void ef100_ethtool_stat_mask(unsigned long *mask)
457 {
458 	__set_bit(EF100_STAT_port_tx_pause, mask);
459 	__set_bit(EF100_STAT_port_tx_unicast, mask);
460 	__set_bit(EF100_STAT_port_tx_multicast, mask);
461 	__set_bit(EF100_STAT_port_tx_broadcast, mask);
462 	__set_bit(EF100_STAT_port_tx_lt64, mask);
463 	__set_bit(EF100_STAT_port_tx_64, mask);
464 	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
465 	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
466 	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
467 	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
468 	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
469 	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
470 	__set_bit(EF100_STAT_port_rx_good, mask);
471 	__set_bit(EF100_STAT_port_rx_pause, mask);
472 	__set_bit(EF100_STAT_port_rx_unicast, mask);
473 	__set_bit(EF100_STAT_port_rx_broadcast, mask);
474 	__set_bit(EF100_STAT_port_rx_lt64, mask);
475 	__set_bit(EF100_STAT_port_rx_64, mask);
476 	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
477 	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
478 	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
479 	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
480 	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
481 	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
482 	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
483 	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
484 	__set_bit(EF100_STAT_port_rx_length_error, mask);
485 	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
486 	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
487 	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
488 }
489 
490 #define EF100_DMA_STAT(ext_name, mcdi_name)			\
491 	[EF100_STAT_ ## ext_name] =				\
492 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
493 
494 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
495 	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
496 	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
497 	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
498 	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
499 	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
500 	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
501 	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
502 	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
503 	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
504 	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
505 	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
506 	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
507 	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
508 	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
509 	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
510 	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
511 	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
512 	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
513 	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
514 	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
515 	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
516 	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
517 	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
518 	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
519 	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
520 	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
521 	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
522 	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
523 	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
524 	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
525 	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
526 	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
527 	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
528 	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
529 	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
530 	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
531 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
532 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
533 };
534 
ef100_describe_stats(struct efx_nic * efx,u8 * names)535 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
536 {
537 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
538 
539 	ef100_ethtool_stat_mask(mask);
540 	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
541 				      mask, names);
542 }
543 
ef100_update_stats_common(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)544 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
545 					struct rtnl_link_stats64 *core_stats)
546 {
547 	struct ef100_nic_data *nic_data = efx->nic_data;
548 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
549 	size_t stats_count = 0, index;
550 	u64 *stats = nic_data->stats;
551 
552 	ef100_ethtool_stat_mask(mask);
553 
554 	if (full_stats) {
555 		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
556 			if (ef100_stat_desc[index].name) {
557 				*full_stats++ = stats[index];
558 				++stats_count;
559 			}
560 		}
561 	}
562 
563 	if (!core_stats)
564 		return stats_count;
565 
566 	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
567 	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
568 	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
569 	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
570 	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
571 				 stats[GENERIC_STAT_rx_nodesc_trunc] +
572 				 stats[GENERIC_STAT_rx_noskb_drops];
573 	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
574 	core_stats->rx_length_errors =
575 			stats[EF100_STAT_port_rx_gtjumbo] +
576 			stats[EF100_STAT_port_rx_length_error];
577 	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
578 	core_stats->rx_frame_errors =
579 			stats[EF100_STAT_port_rx_align_error];
580 	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
581 	core_stats->rx_errors = (core_stats->rx_length_errors +
582 				 core_stats->rx_crc_errors +
583 				 core_stats->rx_frame_errors);
584 
585 	return stats_count;
586 }
587 
ef100_update_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)588 static size_t ef100_update_stats(struct efx_nic *efx,
589 				 u64 *full_stats,
590 				 struct rtnl_link_stats64 *core_stats)
591 {
592 	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
593 	struct ef100_nic_data *nic_data = efx->nic_data;
594 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
595 	u64 *stats = nic_data->stats;
596 
597 	ef100_common_stat_mask(mask);
598 	ef100_ethtool_stat_mask(mask);
599 
600 	if (!mc_stats)
601 		return 0;
602 
603 	efx_nic_copy_stats(efx, mc_stats);
604 	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
605 			     stats, mc_stats, false);
606 
607 	kfree(mc_stats);
608 
609 	return ef100_update_stats_common(efx, full_stats, core_stats);
610 }
611 
efx_ef100_get_phys_port_id(struct efx_nic * efx,struct netdev_phys_item_id * ppid)612 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
613 				      struct netdev_phys_item_id *ppid)
614 {
615 	struct ef100_nic_data *nic_data = efx->nic_data;
616 
617 	if (!is_valid_ether_addr(nic_data->port_id))
618 		return -EOPNOTSUPP;
619 
620 	ppid->id_len = ETH_ALEN;
621 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
622 
623 	return 0;
624 }
625 
efx_ef100_irq_test_generate(struct efx_nic * efx)626 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
627 {
628 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
629 
630 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
631 
632 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
633 	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
634 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
635 }
636 
637 #define EFX_EF100_TEST 1
638 
efx_ef100_ev_test_generate(struct efx_channel * channel)639 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
640 {
641 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
642 	struct efx_nic *efx = channel->efx;
643 	efx_qword_t event;
644 	int rc;
645 
646 	EFX_POPULATE_QWORD_2(event,
647 			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
648 			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
649 
650 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
651 
652 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
653 	 * already swapped the data to little-endian order.
654 	 */
655 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
656 	       sizeof(efx_qword_t));
657 
658 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
659 			  NULL, 0, NULL);
660 	if (rc && (rc != -ENETDOWN))
661 		goto fail;
662 
663 	return;
664 
665 fail:
666 	WARN_ON(true);
667 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
668 }
669 
ef100_check_caps(const struct efx_nic * efx,u8 flag,u32 offset)670 static unsigned int ef100_check_caps(const struct efx_nic *efx,
671 				     u8 flag, u32 offset)
672 {
673 	const struct ef100_nic_data *nic_data = efx->nic_data;
674 
675 	switch (offset) {
676 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
677 		return nic_data->datapath_caps & BIT_ULL(flag);
678 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
679 		return nic_data->datapath_caps2 & BIT_ULL(flag);
680 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
681 		return nic_data->datapath_caps3 & BIT_ULL(flag);
682 	default:
683 		return 0;
684 	}
685 }
686 
687 /*	NIC level access functions
688  */
689 #define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
690 	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
691 	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
692 	NETIF_F_TSO_MANGLEID | NETIF_F_HW_VLAN_CTAG_TX)
693 
694 const struct efx_nic_type ef100_pf_nic_type = {
695 	.revision = EFX_REV_EF100,
696 	.is_vf = false,
697 	.probe = ef100_probe_pf,
698 	.offload_features = EF100_OFFLOAD_FEATURES,
699 	.mcdi_max_ver = 2,
700 	.mcdi_request = ef100_mcdi_request,
701 	.mcdi_poll_response = ef100_mcdi_poll_response,
702 	.mcdi_read_response = ef100_mcdi_read_response,
703 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
704 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
705 	.irq_enable_master = efx_port_dummy_op_void,
706 	.irq_test_generate = efx_ef100_irq_test_generate,
707 	.irq_disable_non_ev = efx_port_dummy_op_void,
708 	.push_irq_moderation = efx_channel_dummy_op_void,
709 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
710 	.map_reset_reason = ef100_map_reset_reason,
711 	.map_reset_flags = ef100_map_reset_flags,
712 	.reset = ef100_reset,
713 
714 	.check_caps = ef100_check_caps,
715 
716 	.ev_probe = ef100_ev_probe,
717 	.ev_init = ef100_ev_init,
718 	.ev_fini = efx_mcdi_ev_fini,
719 	.ev_remove = efx_mcdi_ev_remove,
720 	.irq_handle_msi = ef100_msi_interrupt,
721 	.ev_process = ef100_ev_process,
722 	.ev_read_ack = ef100_ev_read_ack,
723 	.ev_test_generate = efx_ef100_ev_test_generate,
724 	.tx_probe = ef100_tx_probe,
725 	.tx_init = ef100_tx_init,
726 	.tx_write = ef100_tx_write,
727 	.tx_enqueue = ef100_enqueue_skb,
728 	.rx_probe = efx_mcdi_rx_probe,
729 	.rx_init = efx_mcdi_rx_init,
730 	.rx_remove = efx_mcdi_rx_remove,
731 	.rx_write = ef100_rx_write,
732 	.rx_packet = __ef100_rx_packet,
733 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
734 	.fini_dmaq = efx_fini_dmaq,
735 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
736 	.filter_table_probe = ef100_filter_table_up,
737 	.filter_table_restore = efx_mcdi_filter_table_restore,
738 	.filter_table_remove = ef100_filter_table_down,
739 	.filter_insert = efx_mcdi_filter_insert,
740 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
741 	.filter_get_safe = efx_mcdi_filter_get_safe,
742 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
743 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
744 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
745 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
746 #ifdef CONFIG_RFS_ACCEL
747 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
748 #endif
749 
750 	.get_phys_port_id = efx_ef100_get_phys_port_id,
751 
752 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
753 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
754 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
755 	.rx_hash_key_size = 40,
756 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
757 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
758 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
759 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
760 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
761 
762 	.reconfigure_mac = ef100_reconfigure_mac,
763 	.reconfigure_port = efx_mcdi_port_reconfigure,
764 	.test_nvram = efx_new_mcdi_nvram_test_all,
765 	.describe_stats = ef100_describe_stats,
766 	.start_stats = efx_mcdi_mac_start_stats,
767 	.update_stats = ef100_update_stats,
768 	.pull_stats = efx_mcdi_mac_pull_stats,
769 	.stop_stats = efx_mcdi_mac_stop_stats,
770 
771 	/* Per-type bar/size configuration not used on ef100. Location of
772 	 * registers is defined by extended capabilities.
773 	 */
774 	.mem_bar = NULL,
775 	.mem_map_size = NULL,
776 
777 };
778 
779 const struct efx_nic_type ef100_vf_nic_type = {
780 	.revision = EFX_REV_EF100,
781 	.is_vf = true,
782 	.probe = ef100_probe_vf,
783 	.offload_features = EF100_OFFLOAD_FEATURES,
784 	.mcdi_max_ver = 2,
785 	.mcdi_request = ef100_mcdi_request,
786 	.mcdi_poll_response = ef100_mcdi_poll_response,
787 	.mcdi_read_response = ef100_mcdi_read_response,
788 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
789 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
790 	.irq_enable_master = efx_port_dummy_op_void,
791 	.irq_test_generate = efx_ef100_irq_test_generate,
792 	.irq_disable_non_ev = efx_port_dummy_op_void,
793 	.push_irq_moderation = efx_channel_dummy_op_void,
794 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
795 	.map_reset_reason = ef100_map_reset_reason,
796 	.map_reset_flags = ef100_map_reset_flags,
797 	.reset = ef100_reset,
798 	.check_caps = ef100_check_caps,
799 	.ev_probe = ef100_ev_probe,
800 	.ev_init = ef100_ev_init,
801 	.ev_fini = efx_mcdi_ev_fini,
802 	.ev_remove = efx_mcdi_ev_remove,
803 	.irq_handle_msi = ef100_msi_interrupt,
804 	.ev_process = ef100_ev_process,
805 	.ev_read_ack = ef100_ev_read_ack,
806 	.ev_test_generate = efx_ef100_ev_test_generate,
807 	.tx_probe = ef100_tx_probe,
808 	.tx_init = ef100_tx_init,
809 	.tx_write = ef100_tx_write,
810 	.tx_enqueue = ef100_enqueue_skb,
811 	.rx_probe = efx_mcdi_rx_probe,
812 	.rx_init = efx_mcdi_rx_init,
813 	.rx_remove = efx_mcdi_rx_remove,
814 	.rx_write = ef100_rx_write,
815 	.rx_packet = __ef100_rx_packet,
816 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
817 	.fini_dmaq = efx_fini_dmaq,
818 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
819 	.filter_table_probe = ef100_filter_table_up,
820 	.filter_table_restore = efx_mcdi_filter_table_restore,
821 	.filter_table_remove = ef100_filter_table_down,
822 	.filter_insert = efx_mcdi_filter_insert,
823 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
824 	.filter_get_safe = efx_mcdi_filter_get_safe,
825 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
826 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
827 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
828 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
829 #ifdef CONFIG_RFS_ACCEL
830 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
831 #endif
832 
833 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
834 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
835 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
836 	.rx_hash_key_size = 40,
837 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
838 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
839 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
840 
841 	.reconfigure_mac = ef100_reconfigure_mac,
842 	.test_nvram = efx_new_mcdi_nvram_test_all,
843 	.describe_stats = ef100_describe_stats,
844 	.start_stats = efx_mcdi_mac_start_stats,
845 	.update_stats = ef100_update_stats,
846 	.pull_stats = efx_mcdi_mac_pull_stats,
847 	.stop_stats = efx_mcdi_mac_stop_stats,
848 
849 	.mem_bar = NULL,
850 	.mem_map_size = NULL,
851 
852 };
853 
compare_versions(const char * a,const char * b)854 static int compare_versions(const char *a, const char *b)
855 {
856 	int a_major, a_minor, a_point, a_patch;
857 	int b_major, b_minor, b_point, b_patch;
858 	int a_matched, b_matched;
859 
860 	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
861 	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
862 
863 	if (a_matched == 4 && b_matched != 4)
864 		return +1;
865 
866 	if (a_matched != 4 && b_matched == 4)
867 		return -1;
868 
869 	if (a_matched != 4 && b_matched != 4)
870 		return 0;
871 
872 	if (a_major != b_major)
873 		return a_major - b_major;
874 
875 	if (a_minor != b_minor)
876 		return a_minor - b_minor;
877 
878 	if (a_point != b_point)
879 		return a_point - b_point;
880 
881 	return a_patch - b_patch;
882 }
883 
884 enum ef100_tlv_state_machine {
885 	EF100_TLV_TYPE,
886 	EF100_TLV_TYPE_CONT,
887 	EF100_TLV_LENGTH,
888 	EF100_TLV_VALUE
889 };
890 
891 struct ef100_tlv_state {
892 	enum ef100_tlv_state_machine state;
893 	u64 value;
894 	u32 value_offset;
895 	u16 type;
896 	u8 len;
897 };
898 
ef100_tlv_feed(struct ef100_tlv_state * state,u8 byte)899 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
900 {
901 	switch (state->state) {
902 	case EF100_TLV_TYPE:
903 		state->type = byte & 0x7f;
904 		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
905 					     : EF100_TLV_LENGTH;
906 		/* Clear ready to read in a new entry */
907 		state->value = 0;
908 		state->value_offset = 0;
909 		return 0;
910 	case EF100_TLV_TYPE_CONT:
911 		state->type |= byte << 7;
912 		state->state = EF100_TLV_LENGTH;
913 		return 0;
914 	case EF100_TLV_LENGTH:
915 		state->len = byte;
916 		/* We only handle TLVs that fit in a u64 */
917 		if (state->len > sizeof(state->value))
918 			return -EOPNOTSUPP;
919 		/* len may be zero, implying a value of zero */
920 		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
921 		return 0;
922 	case EF100_TLV_VALUE:
923 		state->value |= ((u64)byte) << (state->value_offset * 8);
924 		state->value_offset++;
925 		if (state->value_offset >= state->len)
926 			state->state = EF100_TLV_TYPE;
927 		return 0;
928 	default: /* state machine error, can't happen */
929 		WARN_ON_ONCE(1);
930 		return -EIO;
931 	}
932 }
933 
ef100_process_design_param(struct efx_nic * efx,const struct ef100_tlv_state * reader)934 static int ef100_process_design_param(struct efx_nic *efx,
935 				      const struct ef100_tlv_state *reader)
936 {
937 	struct ef100_nic_data *nic_data = efx->nic_data;
938 
939 	switch (reader->type) {
940 	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
941 		return 0;
942 	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
943 		/* Driver doesn't support timestamping yet, so we don't care */
944 		return 0;
945 	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
946 		/* Driver doesn't support unsolicited-event credits yet, so
947 		 * we don't care
948 		 */
949 		return 0;
950 	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
951 		/* Driver doesn't manage the NMMU (so we don't care) */
952 		return 0;
953 	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
954 		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
955 		 * protocol checksum validation
956 		 */
957 		return 0;
958 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
959 		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
960 		return 0;
961 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
962 		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
963 		if (!reader->value) {
964 			netif_err(efx, probe, efx->net_dev,
965 				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
966 			return -EOPNOTSUPP;
967 		}
968 		return 0;
969 	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
970 	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
971 		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
972 		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
973 		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
974 		 * This is very unlikely to fail.
975 		 */
976 		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
977 		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
978 			netif_err(efx, probe, efx->net_dev,
979 				  "%s size granularity is %llu, can't guarantee safety\n",
980 				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
981 				  reader->value);
982 			return -EOPNOTSUPP;
983 		}
984 		return 0;
985 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
986 		nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE);
987 		efx->net_dev->gso_max_size = nic_data->tso_max_payload_len;
988 		return 0;
989 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
990 		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
991 		efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs;
992 		return 0;
993 	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
994 		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
995 		return 0;
996 	case ESE_EF100_DP_GZ_COMPAT:
997 		if (reader->value) {
998 			netif_err(efx, probe, efx->net_dev,
999 				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
1000 				  reader->value);
1001 			return -EOPNOTSUPP;
1002 		}
1003 		return 0;
1004 	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
1005 		/* Driver doesn't use mem2mem transfers */
1006 		return 0;
1007 	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
1008 		/* Driver doesn't currently use EVQ_TIMER */
1009 		return 0;
1010 	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
1011 		/* Driver doesn't manage the NMMU (so we don't care) */
1012 		return 0;
1013 	case ESE_EF100_DP_GZ_VI_STRIDES:
1014 		/* We never try to set the VI stride, and we don't rely on
1015 		 * being able to find VIs past VI 0 until after we've learned
1016 		 * the current stride from MC_CMD_GET_CAPABILITIES.
1017 		 * So the value of this shouldn't matter.
1018 		 */
1019 		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
1020 			netif_dbg(efx, probe, efx->net_dev,
1021 				  "NIC has other than default VI_STRIDES (mask "
1022 				  "%#llx), early probing might use wrong one\n",
1023 				  reader->value);
1024 		return 0;
1025 	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
1026 		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
1027 		 * care whether it indicates runt or overlength for any given
1028 		 * packet, so we don't care about this parameter.
1029 		 */
1030 		return 0;
1031 	default:
1032 		/* Host interface says "Drivers should ignore design parameters
1033 		 * that they do not recognise."
1034 		 */
1035 		netif_dbg(efx, probe, efx->net_dev,
1036 			  "Ignoring unrecognised design parameter %u\n",
1037 			  reader->type);
1038 		return 0;
1039 	}
1040 }
1041 
ef100_check_design_params(struct efx_nic * efx)1042 static int ef100_check_design_params(struct efx_nic *efx)
1043 {
1044 	struct ef100_tlv_state reader = {};
1045 	u32 total_len, offset = 0;
1046 	efx_dword_t reg;
1047 	int rc = 0, i;
1048 	u32 data;
1049 
1050 	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
1051 	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
1052 	netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n",
1053 		  total_len);
1054 	while (offset < total_len) {
1055 		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
1056 		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
1057 		for (i = 0; i < sizeof(data); i++) {
1058 			rc = ef100_tlv_feed(&reader, data);
1059 			/* Got a complete value? */
1060 			if (!rc && reader.state == EF100_TLV_TYPE)
1061 				rc = ef100_process_design_param(efx, &reader);
1062 			if (rc)
1063 				goto out;
1064 			data >>= 8;
1065 			offset++;
1066 		}
1067 	}
1068 	/* Check we didn't end halfway through a TLV entry, which could either
1069 	 * mean that the TLV stream is truncated or just that it's corrupted
1070 	 * and our state machine is out of sync.
1071 	 */
1072 	if (reader.state != EF100_TLV_TYPE) {
1073 		if (reader.state == EF100_TLV_TYPE_CONT)
1074 			netif_err(efx, probe, efx->net_dev,
1075 				  "truncated design parameter (incomplete type %u)\n",
1076 				  reader.type);
1077 		else
1078 			netif_err(efx, probe, efx->net_dev,
1079 				  "truncated design parameter %u\n",
1080 				  reader.type);
1081 		rc = -EIO;
1082 	}
1083 out:
1084 	return rc;
1085 }
1086 
1087 /*	NIC probe and remove
1088  */
ef100_probe_main(struct efx_nic * efx)1089 static int ef100_probe_main(struct efx_nic *efx)
1090 {
1091 	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
1092 	struct net_device *net_dev = efx->net_dev;
1093 	struct ef100_nic_data *nic_data;
1094 	char fw_version[32];
1095 	int i, rc;
1096 
1097 	if (WARN_ON(bar_size == 0))
1098 		return -EIO;
1099 
1100 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1101 	if (!nic_data)
1102 		return -ENOMEM;
1103 	efx->nic_data = nic_data;
1104 	nic_data->efx = efx;
1105 	net_dev->features |= efx->type->offload_features;
1106 	net_dev->hw_features |= efx->type->offload_features;
1107 
1108 	/* Populate design-parameter defaults */
1109 	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1110 	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1111 	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1112 	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1113 	net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT;
1114 	/* Read design parameters */
1115 	rc = ef100_check_design_params(efx);
1116 	if (rc) {
1117 		netif_err(efx, probe, efx->net_dev,
1118 			  "Unsupported design parameters\n");
1119 		goto fail;
1120 	}
1121 
1122 	/* we assume later that we can copy from this buffer in dwords */
1123 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1124 
1125 	/* MCDI buffers must be 256 byte aligned. */
1126 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1127 				  GFP_KERNEL);
1128 	if (rc)
1129 		goto fail;
1130 
1131 	/* Get the MC's warm boot count.  In case it's rebooting right
1132 	 * now, be prepared to retry.
1133 	 */
1134 	i = 0;
1135 	for (;;) {
1136 		rc = ef100_get_warm_boot_count(efx);
1137 		if (rc >= 0)
1138 			break;
1139 		if (++i == 5)
1140 			goto fail;
1141 		ssleep(1);
1142 	}
1143 	nic_data->warm_boot_count = rc;
1144 
1145 	/* In case we're recovering from a crash (kexec), we want to
1146 	 * cancel any outstanding request by the previous user of this
1147 	 * function.  We send a special message using the least
1148 	 * significant bits of the 'high' (doorbell) register.
1149 	 */
1150 	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1151 
1152 	/* Post-IO section. */
1153 
1154 	rc = efx_mcdi_init(efx);
1155 	if (!rc && efx->mcdi->fn_flags &
1156 		   (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
1157 		netif_info(efx, probe, efx->net_dev,
1158 			   "No network port on this PCI function");
1159 		rc = -ENODEV;
1160 	}
1161 	if (rc)
1162 		goto fail;
1163 	/* Reset (most) configuration for this function */
1164 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1165 	if (rc)
1166 		goto fail;
1167 	/* Enable event logging */
1168 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1169 	if (rc)
1170 		goto fail;
1171 
1172 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1173 	if (rc)
1174 		goto fail;
1175 
1176 	rc = efx_ef100_init_datapath_caps(efx);
1177 	if (rc < 0)
1178 		goto fail;
1179 
1180 	efx->max_vis = EF100_MAX_VIS;
1181 
1182 	rc = efx_mcdi_port_get_number(efx);
1183 	if (rc < 0)
1184 		goto fail;
1185 	efx->port_num = rc;
1186 
1187 	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1188 	netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version);
1189 
1190 	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1191 		netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n");
1192 		rc = -EINVAL;
1193 		goto fail;
1194 	}
1195 
1196 	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1197 		netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n");
1198 		rc = -EINVAL;
1199 		goto fail;
1200 	}
1201 
1202 	rc = ef100_phy_probe(efx);
1203 	if (rc)
1204 		goto fail;
1205 
1206 	down_write(&efx->filter_sem);
1207 	rc = ef100_filter_table_probe(efx);
1208 	up_write(&efx->filter_sem);
1209 	if (rc)
1210 		goto fail;
1211 
1212 	netdev_rss_key_fill(efx->rss_context.rx_hash_key,
1213 			    sizeof(efx->rss_context.rx_hash_key));
1214 
1215 	/* Don't fail init if RSS setup doesn't work. */
1216 	efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels);
1217 
1218 	rc = ef100_register_netdev(efx);
1219 	if (rc)
1220 		goto fail;
1221 
1222 	return 0;
1223 fail:
1224 	return rc;
1225 }
1226 
ef100_probe_pf(struct efx_nic * efx)1227 int ef100_probe_pf(struct efx_nic *efx)
1228 {
1229 	struct net_device *net_dev = efx->net_dev;
1230 	struct ef100_nic_data *nic_data;
1231 	int rc = ef100_probe_main(efx);
1232 
1233 	if (rc)
1234 		goto fail;
1235 
1236 	nic_data = efx->nic_data;
1237 	rc = ef100_get_mac_address(efx, net_dev->perm_addr);
1238 	if (rc)
1239 		goto fail;
1240 	/* Assign MAC address */
1241 	memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN);
1242 	memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
1243 
1244 	return 0;
1245 
1246 fail:
1247 	return rc;
1248 }
1249 
ef100_probe_vf(struct efx_nic * efx)1250 int ef100_probe_vf(struct efx_nic *efx)
1251 {
1252 	return ef100_probe_main(efx);
1253 }
1254 
ef100_remove(struct efx_nic * efx)1255 void ef100_remove(struct efx_nic *efx)
1256 {
1257 	struct ef100_nic_data *nic_data = efx->nic_data;
1258 
1259 	ef100_unregister_netdev(efx);
1260 
1261 	down_write(&efx->filter_sem);
1262 	efx_mcdi_filter_table_remove(efx);
1263 	up_write(&efx->filter_sem);
1264 	efx_fini_channels(efx);
1265 	kfree(efx->phy_data);
1266 	efx->phy_data = NULL;
1267 	efx_mcdi_detach(efx);
1268 	efx_mcdi_fini(efx);
1269 	if (nic_data)
1270 		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1271 	kfree(nic_data);
1272 	efx->nic_data = NULL;
1273 }
1274