1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Extensible Firmware Interface
4 *
5 * Based on Extensible Firmware Interface Specification version 0.9
6 * April 30, 1999
7 *
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Stephane Eranian <eranian@hpl.hp.com>
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 * Bjorn Helgaas <bjorn.helgaas@hp.com>
15 *
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version. --drummond 1999-07-20
19 *
20 * Implemented EFI runtime services and virtual mode calls. --davidm
21 *
22 * Goutham Rao: <goutham.rao@intel.com>
23 * Skip non-WB memory and ignore empty memory ranges.
24 */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36
37 #include <asm/io.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG 0
46
47 #define ESI_TABLE_GUID \
48 EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3, \
49 0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
50
51 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
52 static __initdata unsigned long palo_phys;
53
54 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
55 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
56 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
57
58 static const efi_config_table_type_t arch_tables[] __initconst = {
59 {ESI_TABLE_GUID, &esi_phys, "ESI" },
60 {HCDP_TABLE_GUID, &hcdp_phys, "HCDP" },
61 {MPS_TABLE_GUID, &mps_phys, "MPS" },
62 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, &palo_phys, "PALO" },
63 {SAL_SYSTEM_TABLE_GUID, &sal_systab_phys, "SALsystab" },
64 {},
65 };
66
67 extern efi_status_t efi_call_phys (void *, ...);
68
69 static efi_runtime_services_t *runtime;
70 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
71
72 #define efi_call_virt(f, args...) (*(f))(args)
73
74 #define STUB_GET_TIME(prefix, adjust_arg) \
75 static efi_status_t \
76 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
77 { \
78 struct ia64_fpreg fr[6]; \
79 efi_time_cap_t *atc = NULL; \
80 efi_status_t ret; \
81 \
82 if (tc) \
83 atc = adjust_arg(tc); \
84 ia64_save_scratch_fpregs(fr); \
85 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
86 adjust_arg(tm), atc); \
87 ia64_load_scratch_fpregs(fr); \
88 return ret; \
89 }
90
91 #define STUB_SET_TIME(prefix, adjust_arg) \
92 static efi_status_t \
93 prefix##_set_time (efi_time_t *tm) \
94 { \
95 struct ia64_fpreg fr[6]; \
96 efi_status_t ret; \
97 \
98 ia64_save_scratch_fpregs(fr); \
99 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
100 adjust_arg(tm)); \
101 ia64_load_scratch_fpregs(fr); \
102 return ret; \
103 }
104
105 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
106 static efi_status_t \
107 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
108 efi_time_t *tm) \
109 { \
110 struct ia64_fpreg fr[6]; \
111 efi_status_t ret; \
112 \
113 ia64_save_scratch_fpregs(fr); \
114 ret = efi_call_##prefix( \
115 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
116 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
117 ia64_load_scratch_fpregs(fr); \
118 return ret; \
119 }
120
121 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
122 static efi_status_t \
123 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
124 { \
125 struct ia64_fpreg fr[6]; \
126 efi_time_t *atm = NULL; \
127 efi_status_t ret; \
128 \
129 if (tm) \
130 atm = adjust_arg(tm); \
131 ia64_save_scratch_fpregs(fr); \
132 ret = efi_call_##prefix( \
133 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
134 enabled, atm); \
135 ia64_load_scratch_fpregs(fr); \
136 return ret; \
137 }
138
139 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
140 static efi_status_t \
141 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
142 unsigned long *data_size, void *data) \
143 { \
144 struct ia64_fpreg fr[6]; \
145 u32 *aattr = NULL; \
146 efi_status_t ret; \
147 \
148 if (attr) \
149 aattr = adjust_arg(attr); \
150 ia64_save_scratch_fpregs(fr); \
151 ret = efi_call_##prefix( \
152 (efi_get_variable_t *) __va(runtime->get_variable), \
153 adjust_arg(name), adjust_arg(vendor), aattr, \
154 adjust_arg(data_size), adjust_arg(data)); \
155 ia64_load_scratch_fpregs(fr); \
156 return ret; \
157 }
158
159 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
160 static efi_status_t \
161 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
162 efi_guid_t *vendor) \
163 { \
164 struct ia64_fpreg fr[6]; \
165 efi_status_t ret; \
166 \
167 ia64_save_scratch_fpregs(fr); \
168 ret = efi_call_##prefix( \
169 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
170 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
171 ia64_load_scratch_fpregs(fr); \
172 return ret; \
173 }
174
175 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
176 static efi_status_t \
177 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
178 u32 attr, unsigned long data_size, \
179 void *data) \
180 { \
181 struct ia64_fpreg fr[6]; \
182 efi_status_t ret; \
183 \
184 ia64_save_scratch_fpregs(fr); \
185 ret = efi_call_##prefix( \
186 (efi_set_variable_t *) __va(runtime->set_variable), \
187 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
188 adjust_arg(data)); \
189 ia64_load_scratch_fpregs(fr); \
190 return ret; \
191 }
192
193 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
194 static efi_status_t \
195 prefix##_get_next_high_mono_count (u32 *count) \
196 { \
197 struct ia64_fpreg fr[6]; \
198 efi_status_t ret; \
199 \
200 ia64_save_scratch_fpregs(fr); \
201 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
202 __va(runtime->get_next_high_mono_count), \
203 adjust_arg(count)); \
204 ia64_load_scratch_fpregs(fr); \
205 return ret; \
206 }
207
208 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
209 static void \
210 prefix##_reset_system (int reset_type, efi_status_t status, \
211 unsigned long data_size, efi_char16_t *data) \
212 { \
213 struct ia64_fpreg fr[6]; \
214 efi_char16_t *adata = NULL; \
215 \
216 if (data) \
217 adata = adjust_arg(data); \
218 \
219 ia64_save_scratch_fpregs(fr); \
220 efi_call_##prefix( \
221 (efi_reset_system_t *) __va(runtime->reset_system), \
222 reset_type, status, data_size, adata); \
223 /* should not return, but just in case... */ \
224 ia64_load_scratch_fpregs(fr); \
225 }
226
227 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
228
STUB_GET_TIME(phys,phys_ptr)229 STUB_GET_TIME(phys, phys_ptr)
230 STUB_SET_TIME(phys, phys_ptr)
231 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
232 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
233 STUB_GET_VARIABLE(phys, phys_ptr)
234 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
235 STUB_SET_VARIABLE(phys, phys_ptr)
236 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
237 STUB_RESET_SYSTEM(phys, phys_ptr)
238
239 #define id(arg) arg
240
241 STUB_GET_TIME(virt, id)
242 STUB_SET_TIME(virt, id)
243 STUB_GET_WAKEUP_TIME(virt, id)
244 STUB_SET_WAKEUP_TIME(virt, id)
245 STUB_GET_VARIABLE(virt, id)
246 STUB_GET_NEXT_VARIABLE(virt, id)
247 STUB_SET_VARIABLE(virt, id)
248 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
249 STUB_RESET_SYSTEM(virt, id)
250
251 void
252 efi_gettimeofday (struct timespec64 *ts)
253 {
254 efi_time_t tm;
255
256 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
257 memset(ts, 0, sizeof(*ts));
258 return;
259 }
260
261 ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
262 tm.hour, tm.minute, tm.second);
263 ts->tv_nsec = tm.nanosecond;
264 }
265
266 static int
is_memory_available(efi_memory_desc_t * md)267 is_memory_available (efi_memory_desc_t *md)
268 {
269 if (!(md->attribute & EFI_MEMORY_WB))
270 return 0;
271
272 switch (md->type) {
273 case EFI_LOADER_CODE:
274 case EFI_LOADER_DATA:
275 case EFI_BOOT_SERVICES_CODE:
276 case EFI_BOOT_SERVICES_DATA:
277 case EFI_CONVENTIONAL_MEMORY:
278 return 1;
279 }
280 return 0;
281 }
282
283 typedef struct kern_memdesc {
284 u64 attribute;
285 u64 start;
286 u64 num_pages;
287 } kern_memdesc_t;
288
289 static kern_memdesc_t *kern_memmap;
290
291 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
292
293 static inline u64
kmd_end(kern_memdesc_t * kmd)294 kmd_end(kern_memdesc_t *kmd)
295 {
296 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
297 }
298
299 static inline u64
efi_md_end(efi_memory_desc_t * md)300 efi_md_end(efi_memory_desc_t *md)
301 {
302 return (md->phys_addr + efi_md_size(md));
303 }
304
305 static inline int
efi_wb(efi_memory_desc_t * md)306 efi_wb(efi_memory_desc_t *md)
307 {
308 return (md->attribute & EFI_MEMORY_WB);
309 }
310
311 static inline int
efi_uc(efi_memory_desc_t * md)312 efi_uc(efi_memory_desc_t *md)
313 {
314 return (md->attribute & EFI_MEMORY_UC);
315 }
316
317 static void
walk(efi_freemem_callback_t callback,void * arg,u64 attr)318 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
319 {
320 kern_memdesc_t *k;
321 u64 start, end, voff;
322
323 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
324 for (k = kern_memmap; k->start != ~0UL; k++) {
325 if (k->attribute != attr)
326 continue;
327 start = PAGE_ALIGN(k->start);
328 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
329 if (start < end)
330 if ((*callback)(start + voff, end + voff, arg) < 0)
331 return;
332 }
333 }
334
335 /*
336 * Walk the EFI memory map and call CALLBACK once for each EFI memory
337 * descriptor that has memory that is available for OS use.
338 */
339 void
efi_memmap_walk(efi_freemem_callback_t callback,void * arg)340 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
341 {
342 walk(callback, arg, EFI_MEMORY_WB);
343 }
344
345 /*
346 * Walk the EFI memory map and call CALLBACK once for each EFI memory
347 * descriptor that has memory that is available for uncached allocator.
348 */
349 void
efi_memmap_walk_uc(efi_freemem_callback_t callback,void * arg)350 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
351 {
352 walk(callback, arg, EFI_MEMORY_UC);
353 }
354
355 /*
356 * Look for the PAL_CODE region reported by EFI and map it using an
357 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
358 * Abstraction Layer chapter 11 in ADAG
359 */
360 void *
efi_get_pal_addr(void)361 efi_get_pal_addr (void)
362 {
363 void *efi_map_start, *efi_map_end, *p;
364 efi_memory_desc_t *md;
365 u64 efi_desc_size;
366 int pal_code_count = 0;
367 u64 vaddr, mask;
368
369 efi_map_start = __va(ia64_boot_param->efi_memmap);
370 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
371 efi_desc_size = ia64_boot_param->efi_memdesc_size;
372
373 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
374 md = p;
375 if (md->type != EFI_PAL_CODE)
376 continue;
377
378 if (++pal_code_count > 1) {
379 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
380 "dropped @ %llx\n", md->phys_addr);
381 continue;
382 }
383 /*
384 * The only ITLB entry in region 7 that is used is the one
385 * installed by __start(). That entry covers a 64MB range.
386 */
387 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
388 vaddr = PAGE_OFFSET + md->phys_addr;
389
390 /*
391 * We must check that the PAL mapping won't overlap with the
392 * kernel mapping.
393 *
394 * PAL code is guaranteed to be aligned on a power of 2 between
395 * 4k and 256KB and that only one ITR is needed to map it. This
396 * implies that the PAL code is always aligned on its size,
397 * i.e., the closest matching page size supported by the TLB.
398 * Therefore PAL code is guaranteed never to cross a 64MB unless
399 * it is bigger than 64MB (very unlikely!). So for now the
400 * following test is enough to determine whether or not we need
401 * a dedicated ITR for the PAL code.
402 */
403 if ((vaddr & mask) == (KERNEL_START & mask)) {
404 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
405 __func__);
406 continue;
407 }
408
409 if (efi_md_size(md) > IA64_GRANULE_SIZE)
410 panic("Whoa! PAL code size bigger than a granule!");
411
412 #if EFI_DEBUG
413 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
414
415 printk(KERN_INFO "CPU %d: mapping PAL code "
416 "[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
417 smp_processor_id(), md->phys_addr,
418 md->phys_addr + efi_md_size(md),
419 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
420 #endif
421 return __va(md->phys_addr);
422 }
423 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
424 __func__);
425 return NULL;
426 }
427
428
palo_checksum(u8 * buffer,u32 length)429 static u8 __init palo_checksum(u8 *buffer, u32 length)
430 {
431 u8 sum = 0;
432 u8 *end = buffer + length;
433
434 while (buffer < end)
435 sum = (u8) (sum + *(buffer++));
436
437 return sum;
438 }
439
440 /*
441 * Parse and handle PALO table which is published at:
442 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
443 */
handle_palo(unsigned long phys_addr)444 static void __init handle_palo(unsigned long phys_addr)
445 {
446 struct palo_table *palo = __va(phys_addr);
447 u8 checksum;
448
449 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
450 printk(KERN_INFO "PALO signature incorrect.\n");
451 return;
452 }
453
454 checksum = palo_checksum((u8 *)palo, palo->length);
455 if (checksum) {
456 printk(KERN_INFO "PALO checksum incorrect.\n");
457 return;
458 }
459
460 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
461 }
462
463 void
efi_map_pal_code(void)464 efi_map_pal_code (void)
465 {
466 void *pal_vaddr = efi_get_pal_addr ();
467 u64 psr;
468
469 if (!pal_vaddr)
470 return;
471
472 /*
473 * Cannot write to CRx with PSR.ic=1
474 */
475 psr = ia64_clear_ic();
476 ia64_itr(0x1, IA64_TR_PALCODE,
477 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
478 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
479 IA64_GRANULE_SHIFT);
480 ia64_set_psr(psr); /* restore psr */
481 }
482
483 void __init
efi_init(void)484 efi_init (void)
485 {
486 const efi_system_table_t *efi_systab;
487 void *efi_map_start, *efi_map_end;
488 u64 efi_desc_size;
489 char *cp;
490
491 set_bit(EFI_BOOT, &efi.flags);
492 set_bit(EFI_64BIT, &efi.flags);
493
494 /*
495 * It's too early to be able to use the standard kernel command line
496 * support...
497 */
498 for (cp = boot_command_line; *cp; ) {
499 if (memcmp(cp, "mem=", 4) == 0) {
500 mem_limit = memparse(cp + 4, &cp);
501 } else if (memcmp(cp, "max_addr=", 9) == 0) {
502 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
503 } else if (memcmp(cp, "min_addr=", 9) == 0) {
504 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505 } else {
506 while (*cp != ' ' && *cp)
507 ++cp;
508 while (*cp == ' ')
509 ++cp;
510 }
511 }
512 if (min_addr != 0UL)
513 printk(KERN_INFO "Ignoring memory below %lluMB\n",
514 min_addr >> 20);
515 if (max_addr != ~0UL)
516 printk(KERN_INFO "Ignoring memory above %lluMB\n",
517 max_addr >> 20);
518
519 efi_systab = __va(ia64_boot_param->efi_systab);
520
521 /*
522 * Verify the EFI Table
523 */
524 if (efi_systab == NULL)
525 panic("Whoa! Can't find EFI system table.\n");
526 if (efi_systab_check_header(&efi_systab->hdr, 1))
527 panic("Whoa! EFI system table signature incorrect\n");
528
529 efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
530
531 palo_phys = EFI_INVALID_TABLE_ADDR;
532
533 if (efi_config_parse_tables(__va(efi_systab->tables),
534 efi_systab->nr_tables,
535 arch_tables) != 0)
536 return;
537
538 if (palo_phys != EFI_INVALID_TABLE_ADDR)
539 handle_palo(palo_phys);
540
541 runtime = __va(efi_systab->runtime);
542 efi.get_time = phys_get_time;
543 efi.set_time = phys_set_time;
544 efi.get_wakeup_time = phys_get_wakeup_time;
545 efi.set_wakeup_time = phys_set_wakeup_time;
546 efi.get_variable = phys_get_variable;
547 efi.get_next_variable = phys_get_next_variable;
548 efi.set_variable = phys_set_variable;
549 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
550 efi.reset_system = phys_reset_system;
551
552 efi_map_start = __va(ia64_boot_param->efi_memmap);
553 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
554 efi_desc_size = ia64_boot_param->efi_memdesc_size;
555
556 #if EFI_DEBUG
557 /* print EFI memory map: */
558 {
559 efi_memory_desc_t *md;
560 void *p;
561 unsigned int i;
562
563 for (i = 0, p = efi_map_start; p < efi_map_end;
564 ++i, p += efi_desc_size)
565 {
566 const char *unit;
567 unsigned long size;
568 char buf[64];
569
570 md = p;
571 size = md->num_pages << EFI_PAGE_SHIFT;
572
573 if ((size >> 40) > 0) {
574 size >>= 40;
575 unit = "TB";
576 } else if ((size >> 30) > 0) {
577 size >>= 30;
578 unit = "GB";
579 } else if ((size >> 20) > 0) {
580 size >>= 20;
581 unit = "MB";
582 } else {
583 size >>= 10;
584 unit = "KB";
585 }
586
587 printk("mem%02d: %s "
588 "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
589 i, efi_md_typeattr_format(buf, sizeof(buf), md),
590 md->phys_addr,
591 md->phys_addr + efi_md_size(md), size, unit);
592 }
593 }
594 #endif
595
596 efi_map_pal_code();
597 efi_enter_virtual_mode();
598 }
599
600 void
efi_enter_virtual_mode(void)601 efi_enter_virtual_mode (void)
602 {
603 void *efi_map_start, *efi_map_end, *p;
604 efi_memory_desc_t *md;
605 efi_status_t status;
606 u64 efi_desc_size;
607
608 efi_map_start = __va(ia64_boot_param->efi_memmap);
609 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
610 efi_desc_size = ia64_boot_param->efi_memdesc_size;
611
612 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
613 md = p;
614 if (md->attribute & EFI_MEMORY_RUNTIME) {
615 /*
616 * Some descriptors have multiple bits set, so the
617 * order of the tests is relevant.
618 */
619 if (md->attribute & EFI_MEMORY_WB) {
620 md->virt_addr = (u64) __va(md->phys_addr);
621 } else if (md->attribute & EFI_MEMORY_UC) {
622 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
623 } else if (md->attribute & EFI_MEMORY_WC) {
624 #if 0
625 md->virt_addr = ia64_remap(md->phys_addr,
626 (_PAGE_A |
627 _PAGE_P |
628 _PAGE_D |
629 _PAGE_MA_WC |
630 _PAGE_PL_0 |
631 _PAGE_AR_RW));
632 #else
633 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
634 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
635 #endif
636 } else if (md->attribute & EFI_MEMORY_WT) {
637 #if 0
638 md->virt_addr = ia64_remap(md->phys_addr,
639 (_PAGE_A |
640 _PAGE_P |
641 _PAGE_D |
642 _PAGE_MA_WT |
643 _PAGE_PL_0 |
644 _PAGE_AR_RW));
645 #else
646 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
647 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648 #endif
649 }
650 }
651 }
652
653 status = efi_call_phys(__va(runtime->set_virtual_address_map),
654 ia64_boot_param->efi_memmap_size,
655 efi_desc_size,
656 ia64_boot_param->efi_memdesc_version,
657 ia64_boot_param->efi_memmap);
658 if (status != EFI_SUCCESS) {
659 printk(KERN_WARNING "warning: unable to switch EFI into "
660 "virtual mode (status=%lu)\n", status);
661 return;
662 }
663
664 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
665
666 /*
667 * Now that EFI is in virtual mode, we call the EFI functions more
668 * efficiently:
669 */
670 efi.get_time = virt_get_time;
671 efi.set_time = virt_set_time;
672 efi.get_wakeup_time = virt_get_wakeup_time;
673 efi.set_wakeup_time = virt_set_wakeup_time;
674 efi.get_variable = virt_get_variable;
675 efi.get_next_variable = virt_get_next_variable;
676 efi.set_variable = virt_set_variable;
677 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
678 efi.reset_system = virt_reset_system;
679 }
680
681 /*
682 * Walk the EFI memory map looking for the I/O port range. There can only be
683 * one entry of this type, other I/O port ranges should be described via ACPI.
684 */
685 u64
efi_get_iobase(void)686 efi_get_iobase (void)
687 {
688 void *efi_map_start, *efi_map_end, *p;
689 efi_memory_desc_t *md;
690 u64 efi_desc_size;
691
692 efi_map_start = __va(ia64_boot_param->efi_memmap);
693 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
694 efi_desc_size = ia64_boot_param->efi_memdesc_size;
695
696 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
697 md = p;
698 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
699 if (md->attribute & EFI_MEMORY_UC)
700 return md->phys_addr;
701 }
702 }
703 return 0;
704 }
705
706 static struct kern_memdesc *
kern_memory_descriptor(unsigned long phys_addr)707 kern_memory_descriptor (unsigned long phys_addr)
708 {
709 struct kern_memdesc *md;
710
711 for (md = kern_memmap; md->start != ~0UL; md++) {
712 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
713 return md;
714 }
715 return NULL;
716 }
717
718 static efi_memory_desc_t *
efi_memory_descriptor(unsigned long phys_addr)719 efi_memory_descriptor (unsigned long phys_addr)
720 {
721 void *efi_map_start, *efi_map_end, *p;
722 efi_memory_desc_t *md;
723 u64 efi_desc_size;
724
725 efi_map_start = __va(ia64_boot_param->efi_memmap);
726 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
727 efi_desc_size = ia64_boot_param->efi_memdesc_size;
728
729 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
730 md = p;
731
732 if (phys_addr - md->phys_addr < efi_md_size(md))
733 return md;
734 }
735 return NULL;
736 }
737
738 static int
efi_memmap_intersects(unsigned long phys_addr,unsigned long size)739 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
740 {
741 void *efi_map_start, *efi_map_end, *p;
742 efi_memory_desc_t *md;
743 u64 efi_desc_size;
744 unsigned long end;
745
746 efi_map_start = __va(ia64_boot_param->efi_memmap);
747 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
748 efi_desc_size = ia64_boot_param->efi_memdesc_size;
749
750 end = phys_addr + size;
751
752 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
753 md = p;
754 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
755 return 1;
756 }
757 return 0;
758 }
759
760 int
efi_mem_type(unsigned long phys_addr)761 efi_mem_type (unsigned long phys_addr)
762 {
763 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
764
765 if (md)
766 return md->type;
767 return -EINVAL;
768 }
769
770 u64
efi_mem_attributes(unsigned long phys_addr)771 efi_mem_attributes (unsigned long phys_addr)
772 {
773 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
774
775 if (md)
776 return md->attribute;
777 return 0;
778 }
779 EXPORT_SYMBOL(efi_mem_attributes);
780
781 u64
efi_mem_attribute(unsigned long phys_addr,unsigned long size)782 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
783 {
784 unsigned long end = phys_addr + size;
785 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
786 u64 attr;
787
788 if (!md)
789 return 0;
790
791 /*
792 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
793 * the kernel that firmware needs this region mapped.
794 */
795 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
796 do {
797 unsigned long md_end = efi_md_end(md);
798
799 if (end <= md_end)
800 return attr;
801
802 md = efi_memory_descriptor(md_end);
803 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
804 return 0;
805 } while (md);
806 return 0; /* never reached */
807 }
808
809 u64
kern_mem_attribute(unsigned long phys_addr,unsigned long size)810 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
811 {
812 unsigned long end = phys_addr + size;
813 struct kern_memdesc *md;
814 u64 attr;
815
816 /*
817 * This is a hack for ioremap calls before we set up kern_memmap.
818 * Maybe we should do efi_memmap_init() earlier instead.
819 */
820 if (!kern_memmap) {
821 attr = efi_mem_attribute(phys_addr, size);
822 if (attr & EFI_MEMORY_WB)
823 return EFI_MEMORY_WB;
824 return 0;
825 }
826
827 md = kern_memory_descriptor(phys_addr);
828 if (!md)
829 return 0;
830
831 attr = md->attribute;
832 do {
833 unsigned long md_end = kmd_end(md);
834
835 if (end <= md_end)
836 return attr;
837
838 md = kern_memory_descriptor(md_end);
839 if (!md || md->attribute != attr)
840 return 0;
841 } while (md);
842 return 0; /* never reached */
843 }
844
845 int
valid_phys_addr_range(phys_addr_t phys_addr,unsigned long size)846 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
847 {
848 u64 attr;
849
850 /*
851 * /dev/mem reads and writes use copy_to_user(), which implicitly
852 * uses a granule-sized kernel identity mapping. It's really
853 * only safe to do this for regions in kern_memmap. For more
854 * details, see Documentation/ia64/aliasing.rst.
855 */
856 attr = kern_mem_attribute(phys_addr, size);
857 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
858 return 1;
859 return 0;
860 }
861
862 int
valid_mmap_phys_addr_range(unsigned long pfn,unsigned long size)863 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
864 {
865 unsigned long phys_addr = pfn << PAGE_SHIFT;
866 u64 attr;
867
868 attr = efi_mem_attribute(phys_addr, size);
869
870 /*
871 * /dev/mem mmap uses normal user pages, so we don't need the entire
872 * granule, but the entire region we're mapping must support the same
873 * attribute.
874 */
875 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
876 return 1;
877
878 /*
879 * Intel firmware doesn't tell us about all the MMIO regions, so
880 * in general we have to allow mmap requests. But if EFI *does*
881 * tell us about anything inside this region, we should deny it.
882 * The user can always map a smaller region to avoid the overlap.
883 */
884 if (efi_memmap_intersects(phys_addr, size))
885 return 0;
886
887 return 1;
888 }
889
890 pgprot_t
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)891 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
892 pgprot_t vma_prot)
893 {
894 unsigned long phys_addr = pfn << PAGE_SHIFT;
895 u64 attr;
896
897 /*
898 * For /dev/mem mmap, we use user mappings, but if the region is
899 * in kern_memmap (and hence may be covered by a kernel mapping),
900 * we must use the same attribute as the kernel mapping.
901 */
902 attr = kern_mem_attribute(phys_addr, size);
903 if (attr & EFI_MEMORY_WB)
904 return pgprot_cacheable(vma_prot);
905 else if (attr & EFI_MEMORY_UC)
906 return pgprot_noncached(vma_prot);
907
908 /*
909 * Some chipsets don't support UC access to memory. If
910 * WB is supported, we prefer that.
911 */
912 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
913 return pgprot_cacheable(vma_prot);
914
915 return pgprot_noncached(vma_prot);
916 }
917
918 int __init
efi_uart_console_only(void)919 efi_uart_console_only(void)
920 {
921 efi_status_t status;
922 char *s, name[] = "ConOut";
923 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
924 efi_char16_t *utf16, name_utf16[32];
925 unsigned char data[1024];
926 unsigned long size = sizeof(data);
927 struct efi_generic_dev_path *hdr, *end_addr;
928 int uart = 0;
929
930 /* Convert to UTF-16 */
931 utf16 = name_utf16;
932 s = name;
933 while (*s)
934 *utf16++ = *s++ & 0x7f;
935 *utf16 = 0;
936
937 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
938 if (status != EFI_SUCCESS) {
939 printk(KERN_ERR "No EFI %s variable?\n", name);
940 return 0;
941 }
942
943 hdr = (struct efi_generic_dev_path *) data;
944 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
945 while (hdr < end_addr) {
946 if (hdr->type == EFI_DEV_MSG &&
947 hdr->sub_type == EFI_DEV_MSG_UART)
948 uart = 1;
949 else if (hdr->type == EFI_DEV_END_PATH ||
950 hdr->type == EFI_DEV_END_PATH2) {
951 if (!uart)
952 return 0;
953 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
954 return 1;
955 uart = 0;
956 }
957 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
958 }
959 printk(KERN_ERR "Malformed %s value\n", name);
960 return 0;
961 }
962
963 /*
964 * Look for the first granule aligned memory descriptor memory
965 * that is big enough to hold EFI memory map. Make sure this
966 * descriptor is at least granule sized so it does not get trimmed
967 */
968 struct kern_memdesc *
find_memmap_space(void)969 find_memmap_space (void)
970 {
971 u64 contig_low=0, contig_high=0;
972 u64 as = 0, ae;
973 void *efi_map_start, *efi_map_end, *p, *q;
974 efi_memory_desc_t *md, *pmd = NULL, *check_md;
975 u64 space_needed, efi_desc_size;
976 unsigned long total_mem = 0;
977
978 efi_map_start = __va(ia64_boot_param->efi_memmap);
979 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
980 efi_desc_size = ia64_boot_param->efi_memdesc_size;
981
982 /*
983 * Worst case: we need 3 kernel descriptors for each efi descriptor
984 * (if every entry has a WB part in the middle, and UC head and tail),
985 * plus one for the end marker.
986 */
987 space_needed = sizeof(kern_memdesc_t) *
988 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
989
990 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
991 md = p;
992 if (!efi_wb(md)) {
993 continue;
994 }
995 if (pmd == NULL || !efi_wb(pmd) ||
996 efi_md_end(pmd) != md->phys_addr) {
997 contig_low = GRANULEROUNDUP(md->phys_addr);
998 contig_high = efi_md_end(md);
999 for (q = p + efi_desc_size; q < efi_map_end;
1000 q += efi_desc_size) {
1001 check_md = q;
1002 if (!efi_wb(check_md))
1003 break;
1004 if (contig_high != check_md->phys_addr)
1005 break;
1006 contig_high = efi_md_end(check_md);
1007 }
1008 contig_high = GRANULEROUNDDOWN(contig_high);
1009 }
1010 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1011 continue;
1012
1013 /* Round ends inward to granule boundaries */
1014 as = max(contig_low, md->phys_addr);
1015 ae = min(contig_high, efi_md_end(md));
1016
1017 /* keep within max_addr= and min_addr= command line arg */
1018 as = max(as, min_addr);
1019 ae = min(ae, max_addr);
1020 if (ae <= as)
1021 continue;
1022
1023 /* avoid going over mem= command line arg */
1024 if (total_mem + (ae - as) > mem_limit)
1025 ae -= total_mem + (ae - as) - mem_limit;
1026
1027 if (ae <= as)
1028 continue;
1029
1030 if (ae - as > space_needed)
1031 break;
1032 }
1033 if (p >= efi_map_end)
1034 panic("Can't allocate space for kernel memory descriptors");
1035
1036 return __va(as);
1037 }
1038
1039 /*
1040 * Walk the EFI memory map and gather all memory available for kernel
1041 * to use. We can allocate partial granules only if the unavailable
1042 * parts exist, and are WB.
1043 */
1044 unsigned long
efi_memmap_init(u64 * s,u64 * e)1045 efi_memmap_init(u64 *s, u64 *e)
1046 {
1047 struct kern_memdesc *k, *prev = NULL;
1048 u64 contig_low=0, contig_high=0;
1049 u64 as, ae, lim;
1050 void *efi_map_start, *efi_map_end, *p, *q;
1051 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1052 u64 efi_desc_size;
1053 unsigned long total_mem = 0;
1054
1055 k = kern_memmap = find_memmap_space();
1056
1057 efi_map_start = __va(ia64_boot_param->efi_memmap);
1058 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1059 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1060
1061 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1062 md = p;
1063 if (!efi_wb(md)) {
1064 if (efi_uc(md) &&
1065 (md->type == EFI_CONVENTIONAL_MEMORY ||
1066 md->type == EFI_BOOT_SERVICES_DATA)) {
1067 k->attribute = EFI_MEMORY_UC;
1068 k->start = md->phys_addr;
1069 k->num_pages = md->num_pages;
1070 k++;
1071 }
1072 continue;
1073 }
1074 if (pmd == NULL || !efi_wb(pmd) ||
1075 efi_md_end(pmd) != md->phys_addr) {
1076 contig_low = GRANULEROUNDUP(md->phys_addr);
1077 contig_high = efi_md_end(md);
1078 for (q = p + efi_desc_size; q < efi_map_end;
1079 q += efi_desc_size) {
1080 check_md = q;
1081 if (!efi_wb(check_md))
1082 break;
1083 if (contig_high != check_md->phys_addr)
1084 break;
1085 contig_high = efi_md_end(check_md);
1086 }
1087 contig_high = GRANULEROUNDDOWN(contig_high);
1088 }
1089 if (!is_memory_available(md))
1090 continue;
1091
1092 /*
1093 * Round ends inward to granule boundaries
1094 * Give trimmings to uncached allocator
1095 */
1096 if (md->phys_addr < contig_low) {
1097 lim = min(efi_md_end(md), contig_low);
1098 if (efi_uc(md)) {
1099 if (k > kern_memmap &&
1100 (k-1)->attribute == EFI_MEMORY_UC &&
1101 kmd_end(k-1) == md->phys_addr) {
1102 (k-1)->num_pages +=
1103 (lim - md->phys_addr)
1104 >> EFI_PAGE_SHIFT;
1105 } else {
1106 k->attribute = EFI_MEMORY_UC;
1107 k->start = md->phys_addr;
1108 k->num_pages = (lim - md->phys_addr)
1109 >> EFI_PAGE_SHIFT;
1110 k++;
1111 }
1112 }
1113 as = contig_low;
1114 } else
1115 as = md->phys_addr;
1116
1117 if (efi_md_end(md) > contig_high) {
1118 lim = max(md->phys_addr, contig_high);
1119 if (efi_uc(md)) {
1120 if (lim == md->phys_addr && k > kern_memmap &&
1121 (k-1)->attribute == EFI_MEMORY_UC &&
1122 kmd_end(k-1) == md->phys_addr) {
1123 (k-1)->num_pages += md->num_pages;
1124 } else {
1125 k->attribute = EFI_MEMORY_UC;
1126 k->start = lim;
1127 k->num_pages = (efi_md_end(md) - lim)
1128 >> EFI_PAGE_SHIFT;
1129 k++;
1130 }
1131 }
1132 ae = contig_high;
1133 } else
1134 ae = efi_md_end(md);
1135
1136 /* keep within max_addr= and min_addr= command line arg */
1137 as = max(as, min_addr);
1138 ae = min(ae, max_addr);
1139 if (ae <= as)
1140 continue;
1141
1142 /* avoid going over mem= command line arg */
1143 if (total_mem + (ae - as) > mem_limit)
1144 ae -= total_mem + (ae - as) - mem_limit;
1145
1146 if (ae <= as)
1147 continue;
1148 if (prev && kmd_end(prev) == md->phys_addr) {
1149 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1150 total_mem += ae - as;
1151 continue;
1152 }
1153 k->attribute = EFI_MEMORY_WB;
1154 k->start = as;
1155 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1156 total_mem += ae - as;
1157 prev = k++;
1158 }
1159 k->start = ~0L; /* end-marker */
1160
1161 /* reserve the memory we are using for kern_memmap */
1162 *s = (u64)kern_memmap;
1163 *e = (u64)++k;
1164
1165 return total_mem;
1166 }
1167
1168 void
efi_initialize_iomem_resources(struct resource * code_resource,struct resource * data_resource,struct resource * bss_resource)1169 efi_initialize_iomem_resources(struct resource *code_resource,
1170 struct resource *data_resource,
1171 struct resource *bss_resource)
1172 {
1173 struct resource *res;
1174 void *efi_map_start, *efi_map_end, *p;
1175 efi_memory_desc_t *md;
1176 u64 efi_desc_size;
1177 char *name;
1178 unsigned long flags, desc;
1179
1180 efi_map_start = __va(ia64_boot_param->efi_memmap);
1181 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1182 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1183
1184 res = NULL;
1185
1186 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1187 md = p;
1188
1189 if (md->num_pages == 0) /* should not happen */
1190 continue;
1191
1192 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1193 desc = IORES_DESC_NONE;
1194
1195 switch (md->type) {
1196
1197 case EFI_MEMORY_MAPPED_IO:
1198 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1199 continue;
1200
1201 case EFI_LOADER_CODE:
1202 case EFI_LOADER_DATA:
1203 case EFI_BOOT_SERVICES_DATA:
1204 case EFI_BOOT_SERVICES_CODE:
1205 case EFI_CONVENTIONAL_MEMORY:
1206 if (md->attribute & EFI_MEMORY_WP) {
1207 name = "System ROM";
1208 flags |= IORESOURCE_READONLY;
1209 } else if (md->attribute == EFI_MEMORY_UC) {
1210 name = "Uncached RAM";
1211 } else {
1212 name = "System RAM";
1213 flags |= IORESOURCE_SYSRAM;
1214 }
1215 break;
1216
1217 case EFI_ACPI_MEMORY_NVS:
1218 name = "ACPI Non-volatile Storage";
1219 desc = IORES_DESC_ACPI_NV_STORAGE;
1220 break;
1221
1222 case EFI_UNUSABLE_MEMORY:
1223 name = "reserved";
1224 flags |= IORESOURCE_DISABLED;
1225 break;
1226
1227 case EFI_PERSISTENT_MEMORY:
1228 name = "Persistent Memory";
1229 desc = IORES_DESC_PERSISTENT_MEMORY;
1230 break;
1231
1232 case EFI_RESERVED_TYPE:
1233 case EFI_RUNTIME_SERVICES_CODE:
1234 case EFI_RUNTIME_SERVICES_DATA:
1235 case EFI_ACPI_RECLAIM_MEMORY:
1236 default:
1237 name = "reserved";
1238 break;
1239 }
1240
1241 if ((res = kzalloc(sizeof(struct resource),
1242 GFP_KERNEL)) == NULL) {
1243 printk(KERN_ERR
1244 "failed to allocate resource for iomem\n");
1245 return;
1246 }
1247
1248 res->name = name;
1249 res->start = md->phys_addr;
1250 res->end = md->phys_addr + efi_md_size(md) - 1;
1251 res->flags = flags;
1252 res->desc = desc;
1253
1254 if (insert_resource(&iomem_resource, res) < 0)
1255 kfree(res);
1256 else {
1257 /*
1258 * We don't know which region contains
1259 * kernel data so we try it repeatedly and
1260 * let the resource manager test it.
1261 */
1262 insert_resource(res, code_resource);
1263 insert_resource(res, data_resource);
1264 insert_resource(res, bss_resource);
1265 #ifdef CONFIG_KEXEC
1266 insert_resource(res, &efi_memmap_res);
1267 insert_resource(res, &boot_param_res);
1268 if (crashk_res.end > crashk_res.start)
1269 insert_resource(res, &crashk_res);
1270 #endif
1271 }
1272 }
1273 }
1274
1275 #ifdef CONFIG_KEXEC
1276 /* find a block of memory aligned to 64M exclude reserved regions
1277 rsvd_regions are sorted
1278 */
1279 unsigned long __init
kdump_find_rsvd_region(unsigned long size,struct rsvd_region * r,int n)1280 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1281 {
1282 int i;
1283 u64 start, end;
1284 u64 alignment = 1UL << _PAGE_SIZE_64M;
1285 void *efi_map_start, *efi_map_end, *p;
1286 efi_memory_desc_t *md;
1287 u64 efi_desc_size;
1288
1289 efi_map_start = __va(ia64_boot_param->efi_memmap);
1290 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1291 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1292
1293 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1294 md = p;
1295 if (!efi_wb(md))
1296 continue;
1297 start = ALIGN(md->phys_addr, alignment);
1298 end = efi_md_end(md);
1299 for (i = 0; i < n; i++) {
1300 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1301 if (__pa(r[i].start) > start + size)
1302 return start;
1303 start = ALIGN(__pa(r[i].end), alignment);
1304 if (i < n-1 &&
1305 __pa(r[i+1].start) < start + size)
1306 continue;
1307 else
1308 break;
1309 }
1310 }
1311 if (end > start + size)
1312 return start;
1313 }
1314
1315 printk(KERN_WARNING
1316 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1317 return ~0UL;
1318 }
1319 #endif
1320
1321 #ifdef CONFIG_CRASH_DUMP
1322 /* locate the size find a the descriptor at a certain address */
1323 unsigned long __init
vmcore_find_descriptor_size(unsigned long address)1324 vmcore_find_descriptor_size (unsigned long address)
1325 {
1326 void *efi_map_start, *efi_map_end, *p;
1327 efi_memory_desc_t *md;
1328 u64 efi_desc_size;
1329 unsigned long ret = 0;
1330
1331 efi_map_start = __va(ia64_boot_param->efi_memmap);
1332 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1333 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1334
1335 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1336 md = p;
1337 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1338 && md->phys_addr == address) {
1339 ret = efi_md_size(md);
1340 break;
1341 }
1342 }
1343
1344 if (ret == 0)
1345 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1346
1347 return ret;
1348 }
1349 #endif
1350
efi_systab_show_arch(char * str)1351 char *efi_systab_show_arch(char *str)
1352 {
1353 if (mps_phys != EFI_INVALID_TABLE_ADDR)
1354 str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1355 if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1356 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1357 return str;
1358 }
1359