• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2010-2012 Solarflare Communications Inc.
5  */
6 #include <linux/pci.h>
7 #include <linux/module.h>
8 #include "net_driver.h"
9 #include "efx.h"
10 #include "efx_channels.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "filter.h"
15 #include "mcdi_pcol.h"
16 #include "farch_regs.h"
17 #include "siena_sriov.h"
18 #include "vfdi.h"
19 
20 /* Number of longs required to track all the VIs in a VF */
21 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
22 
23 /* Maximum number of RX queues supported */
24 #define VF_MAX_RX_QUEUES 63
25 
26 /**
27  * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
28  * @VF_TX_FILTER_OFF: Disabled
29  * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
30  *	2 TX queues allowed per VF.
31  * @VF_TX_FILTER_ON: Enabled
32  */
33 enum efx_vf_tx_filter_mode {
34 	VF_TX_FILTER_OFF,
35 	VF_TX_FILTER_AUTO,
36 	VF_TX_FILTER_ON,
37 };
38 
39 /**
40  * struct siena_vf - Back-end resource and protocol state for a PCI VF
41  * @efx: The Efx NIC owning this VF
42  * @pci_rid: The PCI requester ID for this VF
43  * @pci_name: The PCI name (formatted address) of this VF
44  * @index: Index of VF within its port and PF.
45  * @req: VFDI incoming request work item. Incoming USR_EV events are received
46  *	by the NAPI handler, but must be handled by executing MCDI requests
47  *	inside a work item.
48  * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
49  * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
50  * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
51  * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
52  *	@status_lock
53  * @busy: VFDI request queued to be processed or being processed. Receiving
54  *	a VFDI request when @busy is set is an error condition.
55  * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
56  * @buftbl_base: Buffer table entries for this VF start at this index.
57  * @rx_filtering: Receive filtering has been requested by the VF driver.
58  * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
59  * @rx_filter_qid: VF relative qid for RX filter requested by VF.
60  * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
61  * @tx_filter_mode: Transmit MAC filtering mode.
62  * @tx_filter_id: Transmit MAC filter ID.
63  * @addr: The MAC address and outer vlan tag of the VF.
64  * @status_addr: VF DMA address of page for &struct vfdi_status updates.
65  * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
66  *	@peer_page_addrs and @peer_page_count from simultaneous
67  *	updates by the VM and consumption by
68  *	efx_siena_sriov_update_vf_addr()
69  * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
70  * @peer_page_count: Number of entries in @peer_page_count.
71  * @evq0_addrs: Array of guest pages backing evq0.
72  * @evq0_count: Number of entries in @evq0_addrs.
73  * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
74  *	to wait for flush completions.
75  * @txq_lock: Mutex for TX queue allocation.
76  * @txq_mask: Mask of initialized transmit queues.
77  * @txq_count: Number of initialized transmit queues.
78  * @rxq_mask: Mask of initialized receive queues.
79  * @rxq_count: Number of initialized receive queues.
80  * @rxq_retry_mask: Mask or receive queues that need to be flushed again
81  *	due to flush failure.
82  * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
83  * @reset_work: Work item to schedule a VF reset.
84  */
85 struct siena_vf {
86 	struct efx_nic *efx;
87 	unsigned int pci_rid;
88 	char pci_name[13]; /* dddd:bb:dd.f */
89 	unsigned int index;
90 	struct work_struct req;
91 	u64 req_addr;
92 	int req_type;
93 	unsigned req_seqno;
94 	unsigned msg_seqno;
95 	bool busy;
96 	struct efx_buffer buf;
97 	unsigned buftbl_base;
98 	bool rx_filtering;
99 	enum efx_filter_flags rx_filter_flags;
100 	unsigned rx_filter_qid;
101 	int rx_filter_id;
102 	enum efx_vf_tx_filter_mode tx_filter_mode;
103 	int tx_filter_id;
104 	struct vfdi_endpoint addr;
105 	u64 status_addr;
106 	struct mutex status_lock;
107 	u64 *peer_page_addrs;
108 	unsigned peer_page_count;
109 	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
110 		       EFX_BUF_SIZE];
111 	unsigned evq0_count;
112 	wait_queue_head_t flush_waitq;
113 	struct mutex txq_lock;
114 	unsigned long txq_mask[VI_MASK_LENGTH];
115 	unsigned txq_count;
116 	unsigned long rxq_mask[VI_MASK_LENGTH];
117 	unsigned rxq_count;
118 	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
119 	atomic_t rxq_retry_count;
120 	struct work_struct reset_work;
121 };
122 
123 struct efx_memcpy_req {
124 	unsigned int from_rid;
125 	void *from_buf;
126 	u64 from_addr;
127 	unsigned int to_rid;
128 	u64 to_addr;
129 	unsigned length;
130 };
131 
132 /**
133  * struct efx_local_addr - A MAC address on the vswitch without a VF.
134  *
135  * Siena does not have a switch, so VFs can't transmit data to each
136  * other. Instead the VFs must be made aware of the local addresses
137  * on the vswitch, so that they can arrange for an alternative
138  * software datapath to be used.
139  *
140  * @link: List head for insertion into efx->local_addr_list.
141  * @addr: Ethernet address
142  */
143 struct efx_local_addr {
144 	struct list_head link;
145 	u8 addr[ETH_ALEN];
146 };
147 
148 /**
149  * struct efx_endpoint_page - Page of vfdi_endpoint structures
150  *
151  * @link: List head for insertion into efx->local_page_list.
152  * @ptr: Pointer to page.
153  * @addr: DMA address of page.
154  */
155 struct efx_endpoint_page {
156 	struct list_head link;
157 	void *ptr;
158 	dma_addr_t addr;
159 };
160 
161 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
162 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
163 	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
164 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
165 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
166 	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
167 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
168 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
169 	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
170 
171 #define EFX_FIELD_MASK(_field)			\
172 	((1 << _field ## _WIDTH) - 1)
173 
174 /* VFs can only use this many transmit channels */
175 static unsigned int vf_max_tx_channels = 2;
176 module_param(vf_max_tx_channels, uint, 0444);
177 MODULE_PARM_DESC(vf_max_tx_channels,
178 		 "Limit the number of TX channels VFs can use");
179 
180 static int max_vfs = -1;
181 module_param(max_vfs, int, 0444);
182 MODULE_PARM_DESC(max_vfs,
183 		 "Reduce the number of VFs initialized by the driver");
184 
185 /* Workqueue used by VFDI communication.  We can't use the global
186  * workqueue because it may be running the VF driver's probe()
187  * routine, which will be blocked there waiting for a VFDI response.
188  */
189 static struct workqueue_struct *vfdi_workqueue;
190 
abs_index(struct siena_vf * vf,unsigned index)191 static unsigned abs_index(struct siena_vf *vf, unsigned index)
192 {
193 	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
194 }
195 
efx_siena_sriov_cmd(struct efx_nic * efx,bool enable,unsigned * vi_scale_out,unsigned * vf_total_out)196 static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
197 			       unsigned *vi_scale_out, unsigned *vf_total_out)
198 {
199 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
200 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
201 	unsigned vi_scale, vf_total;
202 	size_t outlen;
203 	int rc;
204 
205 	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
206 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
207 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
208 
209 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
210 				outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
211 	if (rc)
212 		return rc;
213 	if (outlen < MC_CMD_SRIOV_OUT_LEN)
214 		return -EIO;
215 
216 	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
217 	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
218 	if (vi_scale > EFX_VI_SCALE_MAX)
219 		return -EOPNOTSUPP;
220 
221 	if (vi_scale_out)
222 		*vi_scale_out = vi_scale;
223 	if (vf_total_out)
224 		*vf_total_out = vf_total;
225 
226 	return 0;
227 }
228 
efx_siena_sriov_usrev(struct efx_nic * efx,bool enabled)229 static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
230 {
231 	struct siena_nic_data *nic_data = efx->nic_data;
232 	efx_oword_t reg;
233 
234 	EFX_POPULATE_OWORD_2(reg,
235 			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
236 			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
237 	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
238 }
239 
efx_siena_sriov_memcpy(struct efx_nic * efx,struct efx_memcpy_req * req,unsigned int count)240 static int efx_siena_sriov_memcpy(struct efx_nic *efx,
241 				  struct efx_memcpy_req *req,
242 				  unsigned int count)
243 {
244 	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
245 	MCDI_DECLARE_STRUCT_PTR(record);
246 	unsigned int index, used;
247 	u64 from_addr;
248 	u32 from_rid;
249 	int rc;
250 
251 	mb();	/* Finish writing source/reading dest before DMA starts */
252 
253 	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
254 		return -ENOBUFS;
255 	used = MC_CMD_MEMCPY_IN_LEN(count);
256 
257 	for (index = 0; index < count; index++) {
258 		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
259 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
260 			       count);
261 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
262 			       req->to_rid);
263 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
264 			       req->to_addr);
265 		if (req->from_buf == NULL) {
266 			from_rid = req->from_rid;
267 			from_addr = req->from_addr;
268 		} else {
269 			if (WARN_ON(used + req->length >
270 				    MCDI_CTL_SDU_LEN_MAX_V1)) {
271 				rc = -ENOBUFS;
272 				goto out;
273 			}
274 
275 			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
276 			from_addr = used;
277 			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
278 			       req->length);
279 			used += req->length;
280 		}
281 
282 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
283 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
284 			       from_addr);
285 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
286 			       req->length);
287 
288 		++req;
289 	}
290 
291 	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
292 out:
293 	mb();	/* Don't write source/read dest before DMA is complete */
294 
295 	return rc;
296 }
297 
298 /* The TX filter is entirely controlled by this driver, and is modified
299  * underneath the feet of the VF
300  */
efx_siena_sriov_reset_tx_filter(struct siena_vf * vf)301 static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
302 {
303 	struct efx_nic *efx = vf->efx;
304 	struct efx_filter_spec filter;
305 	u16 vlan;
306 	int rc;
307 
308 	if (vf->tx_filter_id != -1) {
309 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
310 					  vf->tx_filter_id);
311 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
312 			  vf->pci_name, vf->tx_filter_id);
313 		vf->tx_filter_id = -1;
314 	}
315 
316 	if (is_zero_ether_addr(vf->addr.mac_addr))
317 		return;
318 
319 	/* Turn on TX filtering automatically if not explicitly
320 	 * enabled or disabled.
321 	 */
322 	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
323 		vf->tx_filter_mode = VF_TX_FILTER_ON;
324 
325 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
326 	efx_filter_init_tx(&filter, abs_index(vf, 0));
327 	rc = efx_filter_set_eth_local(&filter,
328 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
329 				      vf->addr.mac_addr);
330 	BUG_ON(rc);
331 
332 	rc = efx_filter_insert_filter(efx, &filter, true);
333 	if (rc < 0) {
334 		netif_warn(efx, hw, efx->net_dev,
335 			   "Unable to migrate tx filter for vf %s\n",
336 			   vf->pci_name);
337 	} else {
338 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
339 			  vf->pci_name, rc);
340 		vf->tx_filter_id = rc;
341 	}
342 }
343 
344 /* The RX filter is managed here on behalf of the VF driver */
efx_siena_sriov_reset_rx_filter(struct siena_vf * vf)345 static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
346 {
347 	struct efx_nic *efx = vf->efx;
348 	struct efx_filter_spec filter;
349 	u16 vlan;
350 	int rc;
351 
352 	if (vf->rx_filter_id != -1) {
353 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
354 					  vf->rx_filter_id);
355 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
356 			  vf->pci_name, vf->rx_filter_id);
357 		vf->rx_filter_id = -1;
358 	}
359 
360 	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
361 		return;
362 
363 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
364 	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
365 			   vf->rx_filter_flags,
366 			   abs_index(vf, vf->rx_filter_qid));
367 	rc = efx_filter_set_eth_local(&filter,
368 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
369 				      vf->addr.mac_addr);
370 	BUG_ON(rc);
371 
372 	rc = efx_filter_insert_filter(efx, &filter, true);
373 	if (rc < 0) {
374 		netif_warn(efx, hw, efx->net_dev,
375 			   "Unable to insert rx filter for vf %s\n",
376 			   vf->pci_name);
377 	} else {
378 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
379 			  vf->pci_name, rc);
380 		vf->rx_filter_id = rc;
381 	}
382 }
383 
__efx_siena_sriov_update_vf_addr(struct siena_vf * vf)384 static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
385 {
386 	struct efx_nic *efx = vf->efx;
387 	struct siena_nic_data *nic_data = efx->nic_data;
388 
389 	efx_siena_sriov_reset_tx_filter(vf);
390 	efx_siena_sriov_reset_rx_filter(vf);
391 	queue_work(vfdi_workqueue, &nic_data->peer_work);
392 }
393 
394 /* Push the peer list to this VF. The caller must hold status_lock to interlock
395  * with VFDI requests, and they must be serialised against manipulation of
396  * local_page_list, either by acquiring local_lock or by running from
397  * efx_siena_sriov_peer_work()
398  */
__efx_siena_sriov_push_vf_status(struct siena_vf * vf)399 static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
400 {
401 	struct efx_nic *efx = vf->efx;
402 	struct siena_nic_data *nic_data = efx->nic_data;
403 	struct vfdi_status *status = nic_data->vfdi_status.addr;
404 	struct efx_memcpy_req copy[4];
405 	struct efx_endpoint_page *epp;
406 	unsigned int pos, count;
407 	unsigned data_offset;
408 	efx_qword_t event;
409 
410 	WARN_ON(!mutex_is_locked(&vf->status_lock));
411 	WARN_ON(!vf->status_addr);
412 
413 	status->local = vf->addr;
414 	status->generation_end = ++status->generation_start;
415 
416 	memset(copy, '\0', sizeof(copy));
417 	/* Write generation_start */
418 	copy[0].from_buf = &status->generation_start;
419 	copy[0].to_rid = vf->pci_rid;
420 	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
421 						     generation_start);
422 	copy[0].length = sizeof(status->generation_start);
423 	/* DMA the rest of the structure (excluding the generations). This
424 	 * assumes that the non-generation portion of vfdi_status is in
425 	 * one chunk starting at the version member.
426 	 */
427 	data_offset = offsetof(struct vfdi_status, version);
428 	copy[1].from_rid = efx->pci_dev->devfn;
429 	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
430 	copy[1].to_rid = vf->pci_rid;
431 	copy[1].to_addr = vf->status_addr + data_offset;
432 	copy[1].length =  status->length - data_offset;
433 
434 	/* Copy the peer pages */
435 	pos = 2;
436 	count = 0;
437 	list_for_each_entry(epp, &nic_data->local_page_list, link) {
438 		if (count == vf->peer_page_count) {
439 			/* The VF driver will know they need to provide more
440 			 * pages because peer_addr_count is too large.
441 			 */
442 			break;
443 		}
444 		copy[pos].from_buf = NULL;
445 		copy[pos].from_rid = efx->pci_dev->devfn;
446 		copy[pos].from_addr = epp->addr;
447 		copy[pos].to_rid = vf->pci_rid;
448 		copy[pos].to_addr = vf->peer_page_addrs[count];
449 		copy[pos].length = EFX_PAGE_SIZE;
450 
451 		if (++pos == ARRAY_SIZE(copy)) {
452 			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
453 			pos = 0;
454 		}
455 		++count;
456 	}
457 
458 	/* Write generation_end */
459 	copy[pos].from_buf = &status->generation_end;
460 	copy[pos].to_rid = vf->pci_rid;
461 	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
462 						       generation_end);
463 	copy[pos].length = sizeof(status->generation_end);
464 	efx_siena_sriov_memcpy(efx, copy, pos + 1);
465 
466 	/* Notify the guest */
467 	EFX_POPULATE_QWORD_3(event,
468 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
469 			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
470 			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
471 	++vf->msg_seqno;
472 	efx_farch_generate_event(efx,
473 				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
474 				 &event);
475 }
476 
efx_siena_sriov_bufs(struct efx_nic * efx,unsigned offset,u64 * addr,unsigned count)477 static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
478 				 u64 *addr, unsigned count)
479 {
480 	efx_qword_t buf;
481 	unsigned pos;
482 
483 	for (pos = 0; pos < count; ++pos) {
484 		EFX_POPULATE_QWORD_3(buf,
485 				     FRF_AZ_BUF_ADR_REGION, 0,
486 				     FRF_AZ_BUF_ADR_FBUF,
487 				     addr ? addr[pos] >> 12 : 0,
488 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
489 		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
490 				&buf, offset + pos);
491 	}
492 }
493 
bad_vf_index(struct efx_nic * efx,unsigned index)494 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
495 {
496 	return index >= efx_vf_size(efx);
497 }
498 
bad_buf_count(unsigned buf_count,unsigned max_entry_count)499 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
500 {
501 	unsigned max_buf_count = max_entry_count *
502 		sizeof(efx_qword_t) / EFX_BUF_SIZE;
503 
504 	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
505 }
506 
507 /* Check that VI specified by per-port index belongs to a VF.
508  * Optionally set VF index and VI index within the VF.
509  */
map_vi_index(struct efx_nic * efx,unsigned abs_index,struct siena_vf ** vf_out,unsigned * rel_index_out)510 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
511 			 struct siena_vf **vf_out, unsigned *rel_index_out)
512 {
513 	struct siena_nic_data *nic_data = efx->nic_data;
514 	unsigned vf_i;
515 
516 	if (abs_index < EFX_VI_BASE)
517 		return true;
518 	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
519 	if (vf_i >= efx->vf_init_count)
520 		return true;
521 
522 	if (vf_out)
523 		*vf_out = nic_data->vf + vf_i;
524 	if (rel_index_out)
525 		*rel_index_out = abs_index % efx_vf_size(efx);
526 	return false;
527 }
528 
efx_vfdi_init_evq(struct siena_vf * vf)529 static int efx_vfdi_init_evq(struct siena_vf *vf)
530 {
531 	struct efx_nic *efx = vf->efx;
532 	struct vfdi_req *req = vf->buf.addr;
533 	unsigned vf_evq = req->u.init_evq.index;
534 	unsigned buf_count = req->u.init_evq.buf_count;
535 	unsigned abs_evq = abs_index(vf, vf_evq);
536 	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
537 	efx_oword_t reg;
538 
539 	if (bad_vf_index(efx, vf_evq) ||
540 	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
541 		if (net_ratelimit())
542 			netif_err(efx, hw, efx->net_dev,
543 				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
544 				  vf->pci_name, vf_evq, buf_count);
545 		return VFDI_RC_EINVAL;
546 	}
547 
548 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
549 
550 	EFX_POPULATE_OWORD_3(reg,
551 			     FRF_CZ_TIMER_Q_EN, 1,
552 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
553 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
554 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
555 	EFX_POPULATE_OWORD_3(reg,
556 			     FRF_AZ_EVQ_EN, 1,
557 			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
558 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
559 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
560 
561 	if (vf_evq == 0) {
562 		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
563 		       buf_count * sizeof(u64));
564 		vf->evq0_count = buf_count;
565 	}
566 
567 	return VFDI_RC_SUCCESS;
568 }
569 
efx_vfdi_init_rxq(struct siena_vf * vf)570 static int efx_vfdi_init_rxq(struct siena_vf *vf)
571 {
572 	struct efx_nic *efx = vf->efx;
573 	struct vfdi_req *req = vf->buf.addr;
574 	unsigned vf_rxq = req->u.init_rxq.index;
575 	unsigned vf_evq = req->u.init_rxq.evq;
576 	unsigned buf_count = req->u.init_rxq.buf_count;
577 	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
578 	unsigned label;
579 	efx_oword_t reg;
580 
581 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
582 	    vf_rxq >= VF_MAX_RX_QUEUES ||
583 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
584 		if (net_ratelimit())
585 			netif_err(efx, hw, efx->net_dev,
586 				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
587 				  "buf_count %d\n", vf->pci_name, vf_rxq,
588 				  vf_evq, buf_count);
589 		return VFDI_RC_EINVAL;
590 	}
591 	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
592 		++vf->rxq_count;
593 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
594 
595 	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
596 	EFX_POPULATE_OWORD_6(reg,
597 			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
598 			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
599 			     FRF_AZ_RX_DESCQ_LABEL, label,
600 			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
601 			     FRF_AZ_RX_DESCQ_JUMBO,
602 			     !!(req->u.init_rxq.flags &
603 				VFDI_RXQ_FLAG_SCATTER_EN),
604 			     FRF_AZ_RX_DESCQ_EN, 1);
605 	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
606 			 abs_index(vf, vf_rxq));
607 
608 	return VFDI_RC_SUCCESS;
609 }
610 
efx_vfdi_init_txq(struct siena_vf * vf)611 static int efx_vfdi_init_txq(struct siena_vf *vf)
612 {
613 	struct efx_nic *efx = vf->efx;
614 	struct vfdi_req *req = vf->buf.addr;
615 	unsigned vf_txq = req->u.init_txq.index;
616 	unsigned vf_evq = req->u.init_txq.evq;
617 	unsigned buf_count = req->u.init_txq.buf_count;
618 	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
619 	unsigned label, eth_filt_en;
620 	efx_oword_t reg;
621 
622 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
623 	    vf_txq >= vf_max_tx_channels ||
624 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
625 		if (net_ratelimit())
626 			netif_err(efx, hw, efx->net_dev,
627 				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
628 				  "buf_count %d\n", vf->pci_name, vf_txq,
629 				  vf_evq, buf_count);
630 		return VFDI_RC_EINVAL;
631 	}
632 
633 	mutex_lock(&vf->txq_lock);
634 	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
635 		++vf->txq_count;
636 	mutex_unlock(&vf->txq_lock);
637 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
638 
639 	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
640 
641 	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
642 	EFX_POPULATE_OWORD_8(reg,
643 			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
644 			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
645 			     FRF_AZ_TX_DESCQ_EN, 1,
646 			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
647 			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
648 			     FRF_AZ_TX_DESCQ_LABEL, label,
649 			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
650 			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
651 	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
652 			 abs_index(vf, vf_txq));
653 
654 	return VFDI_RC_SUCCESS;
655 }
656 
657 /* Returns true when efx_vfdi_fini_all_queues should wake */
efx_vfdi_flush_wake(struct siena_vf * vf)658 static bool efx_vfdi_flush_wake(struct siena_vf *vf)
659 {
660 	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
661 	smp_mb();
662 
663 	return (!vf->txq_count && !vf->rxq_count) ||
664 		atomic_read(&vf->rxq_retry_count);
665 }
666 
efx_vfdi_flush_clear(struct siena_vf * vf)667 static void efx_vfdi_flush_clear(struct siena_vf *vf)
668 {
669 	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
670 	vf->txq_count = 0;
671 	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
672 	vf->rxq_count = 0;
673 	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
674 	atomic_set(&vf->rxq_retry_count, 0);
675 }
676 
efx_vfdi_fini_all_queues(struct siena_vf * vf)677 static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
678 {
679 	struct efx_nic *efx = vf->efx;
680 	efx_oword_t reg;
681 	unsigned count = efx_vf_size(efx);
682 	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
683 	unsigned timeout = HZ;
684 	unsigned index, rxqs_count;
685 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
686 	int rc;
687 
688 	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
689 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
690 
691 	rtnl_lock();
692 	siena_prepare_flush(efx);
693 	rtnl_unlock();
694 
695 	/* Flush all the initialized queues */
696 	rxqs_count = 0;
697 	for (index = 0; index < count; ++index) {
698 		if (test_bit(index, vf->txq_mask)) {
699 			EFX_POPULATE_OWORD_2(reg,
700 					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
701 					     FRF_AZ_TX_FLUSH_DESCQ,
702 					     vf_offset + index);
703 			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
704 		}
705 		if (test_bit(index, vf->rxq_mask)) {
706 			MCDI_SET_ARRAY_DWORD(
707 				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
708 				rxqs_count, vf_offset + index);
709 			rxqs_count++;
710 		}
711 	}
712 
713 	atomic_set(&vf->rxq_retry_count, 0);
714 	while (timeout && (vf->rxq_count || vf->txq_count)) {
715 		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
716 				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
717 				  NULL, 0, NULL);
718 		WARN_ON(rc < 0);
719 
720 		timeout = wait_event_timeout(vf->flush_waitq,
721 					     efx_vfdi_flush_wake(vf),
722 					     timeout);
723 		rxqs_count = 0;
724 		for (index = 0; index < count; ++index) {
725 			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
726 				atomic_dec(&vf->rxq_retry_count);
727 				MCDI_SET_ARRAY_DWORD(
728 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
729 					rxqs_count, vf_offset + index);
730 				rxqs_count++;
731 			}
732 		}
733 	}
734 
735 	rtnl_lock();
736 	siena_finish_flush(efx);
737 	rtnl_unlock();
738 
739 	/* Irrespective of success/failure, fini the queues */
740 	EFX_ZERO_OWORD(reg);
741 	for (index = 0; index < count; ++index) {
742 		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
743 				 vf_offset + index);
744 		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
745 				 vf_offset + index);
746 		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
747 				 vf_offset + index);
748 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
749 				 vf_offset + index);
750 	}
751 	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
752 			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
753 	efx_vfdi_flush_clear(vf);
754 
755 	vf->evq0_count = 0;
756 
757 	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
758 }
759 
efx_vfdi_insert_filter(struct siena_vf * vf)760 static int efx_vfdi_insert_filter(struct siena_vf *vf)
761 {
762 	struct efx_nic *efx = vf->efx;
763 	struct siena_nic_data *nic_data = efx->nic_data;
764 	struct vfdi_req *req = vf->buf.addr;
765 	unsigned vf_rxq = req->u.mac_filter.rxq;
766 	unsigned flags;
767 
768 	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
769 		if (net_ratelimit())
770 			netif_err(efx, hw, efx->net_dev,
771 				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
772 				  "flags 0x%x\n", vf->pci_name, vf_rxq,
773 				  req->u.mac_filter.flags);
774 		return VFDI_RC_EINVAL;
775 	}
776 
777 	flags = 0;
778 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
779 		flags |= EFX_FILTER_FLAG_RX_RSS;
780 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
781 		flags |= EFX_FILTER_FLAG_RX_SCATTER;
782 	vf->rx_filter_flags = flags;
783 	vf->rx_filter_qid = vf_rxq;
784 	vf->rx_filtering = true;
785 
786 	efx_siena_sriov_reset_rx_filter(vf);
787 	queue_work(vfdi_workqueue, &nic_data->peer_work);
788 
789 	return VFDI_RC_SUCCESS;
790 }
791 
efx_vfdi_remove_all_filters(struct siena_vf * vf)792 static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
793 {
794 	struct efx_nic *efx = vf->efx;
795 	struct siena_nic_data *nic_data = efx->nic_data;
796 
797 	vf->rx_filtering = false;
798 	efx_siena_sriov_reset_rx_filter(vf);
799 	queue_work(vfdi_workqueue, &nic_data->peer_work);
800 
801 	return VFDI_RC_SUCCESS;
802 }
803 
efx_vfdi_set_status_page(struct siena_vf * vf)804 static int efx_vfdi_set_status_page(struct siena_vf *vf)
805 {
806 	struct efx_nic *efx = vf->efx;
807 	struct siena_nic_data *nic_data = efx->nic_data;
808 	struct vfdi_req *req = vf->buf.addr;
809 	u64 page_count = req->u.set_status_page.peer_page_count;
810 	u64 max_page_count =
811 		(EFX_PAGE_SIZE -
812 		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
813 		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
814 
815 	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
816 		if (net_ratelimit())
817 			netif_err(efx, hw, efx->net_dev,
818 				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
819 				  vf->pci_name);
820 		return VFDI_RC_EINVAL;
821 	}
822 
823 	mutex_lock(&nic_data->local_lock);
824 	mutex_lock(&vf->status_lock);
825 	vf->status_addr = req->u.set_status_page.dma_addr;
826 
827 	kfree(vf->peer_page_addrs);
828 	vf->peer_page_addrs = NULL;
829 	vf->peer_page_count = 0;
830 
831 	if (page_count) {
832 		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
833 					      GFP_KERNEL);
834 		if (vf->peer_page_addrs) {
835 			memcpy(vf->peer_page_addrs,
836 			       req->u.set_status_page.peer_page_addr,
837 			       page_count * sizeof(u64));
838 			vf->peer_page_count = page_count;
839 		}
840 	}
841 
842 	__efx_siena_sriov_push_vf_status(vf);
843 	mutex_unlock(&vf->status_lock);
844 	mutex_unlock(&nic_data->local_lock);
845 
846 	return VFDI_RC_SUCCESS;
847 }
848 
efx_vfdi_clear_status_page(struct siena_vf * vf)849 static int efx_vfdi_clear_status_page(struct siena_vf *vf)
850 {
851 	mutex_lock(&vf->status_lock);
852 	vf->status_addr = 0;
853 	mutex_unlock(&vf->status_lock);
854 
855 	return VFDI_RC_SUCCESS;
856 }
857 
858 typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
859 
860 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
861 	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
862 	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
863 	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
864 	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
865 	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
866 	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
867 	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
868 	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
869 };
870 
efx_siena_sriov_vfdi(struct work_struct * work)871 static void efx_siena_sriov_vfdi(struct work_struct *work)
872 {
873 	struct siena_vf *vf = container_of(work, struct siena_vf, req);
874 	struct efx_nic *efx = vf->efx;
875 	struct vfdi_req *req = vf->buf.addr;
876 	struct efx_memcpy_req copy[2];
877 	int rc;
878 
879 	/* Copy this page into the local address space */
880 	memset(copy, '\0', sizeof(copy));
881 	copy[0].from_rid = vf->pci_rid;
882 	copy[0].from_addr = vf->req_addr;
883 	copy[0].to_rid = efx->pci_dev->devfn;
884 	copy[0].to_addr = vf->buf.dma_addr;
885 	copy[0].length = EFX_PAGE_SIZE;
886 	rc = efx_siena_sriov_memcpy(efx, copy, 1);
887 	if (rc) {
888 		/* If we can't get the request, we can't reply to the caller */
889 		if (net_ratelimit())
890 			netif_err(efx, hw, efx->net_dev,
891 				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
892 				  vf->pci_name, -rc);
893 		vf->busy = false;
894 		return;
895 	}
896 
897 	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
898 		rc = vfdi_ops[req->op](vf);
899 		if (rc == 0) {
900 			netif_dbg(efx, hw, efx->net_dev,
901 				  "vfdi request %d from %s ok\n",
902 				  req->op, vf->pci_name);
903 		}
904 	} else {
905 		netif_dbg(efx, hw, efx->net_dev,
906 			  "ERROR: Unrecognised request %d from VF %s addr "
907 			  "%llx\n", req->op, vf->pci_name,
908 			  (unsigned long long)vf->req_addr);
909 		rc = VFDI_RC_EOPNOTSUPP;
910 	}
911 
912 	/* Allow subsequent VF requests */
913 	vf->busy = false;
914 	smp_wmb();
915 
916 	/* Respond to the request */
917 	req->rc = rc;
918 	req->op = VFDI_OP_RESPONSE;
919 
920 	memset(copy, '\0', sizeof(copy));
921 	copy[0].from_buf = &req->rc;
922 	copy[0].to_rid = vf->pci_rid;
923 	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
924 	copy[0].length = sizeof(req->rc);
925 	copy[1].from_buf = &req->op;
926 	copy[1].to_rid = vf->pci_rid;
927 	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
928 	copy[1].length = sizeof(req->op);
929 
930 	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
931 }
932 
933 
934 
935 /* After a reset the event queues inside the guests no longer exist. Fill the
936  * event ring in guest memory with VFDI reset events, then (re-initialise) the
937  * event queue to raise an interrupt. The guest driver will then recover.
938  */
939 
efx_siena_sriov_reset_vf(struct siena_vf * vf,struct efx_buffer * buffer)940 static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
941 				     struct efx_buffer *buffer)
942 {
943 	struct efx_nic *efx = vf->efx;
944 	struct efx_memcpy_req copy_req[4];
945 	efx_qword_t event;
946 	unsigned int pos, count, k, buftbl, abs_evq;
947 	efx_oword_t reg;
948 	efx_dword_t ptr;
949 	int rc;
950 
951 	BUG_ON(buffer->len != EFX_PAGE_SIZE);
952 
953 	if (!vf->evq0_count)
954 		return;
955 	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
956 
957 	mutex_lock(&vf->status_lock);
958 	EFX_POPULATE_QWORD_3(event,
959 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
960 			     VFDI_EV_SEQ, vf->msg_seqno,
961 			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
962 	vf->msg_seqno++;
963 	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
964 		memcpy(buffer->addr + pos, &event, sizeof(event));
965 
966 	for (pos = 0; pos < vf->evq0_count; pos += count) {
967 		count = min_t(unsigned, vf->evq0_count - pos,
968 			      ARRAY_SIZE(copy_req));
969 		for (k = 0; k < count; k++) {
970 			copy_req[k].from_buf = NULL;
971 			copy_req[k].from_rid = efx->pci_dev->devfn;
972 			copy_req[k].from_addr = buffer->dma_addr;
973 			copy_req[k].to_rid = vf->pci_rid;
974 			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
975 			copy_req[k].length = EFX_PAGE_SIZE;
976 		}
977 		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
978 		if (rc) {
979 			if (net_ratelimit())
980 				netif_err(efx, hw, efx->net_dev,
981 					  "ERROR: Unable to notify %s of reset"
982 					  ": %d\n", vf->pci_name, -rc);
983 			break;
984 		}
985 	}
986 
987 	/* Reinitialise, arm and trigger evq0 */
988 	abs_evq = abs_index(vf, 0);
989 	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
990 	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
991 
992 	EFX_POPULATE_OWORD_3(reg,
993 			     FRF_CZ_TIMER_Q_EN, 1,
994 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
995 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
996 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
997 	EFX_POPULATE_OWORD_3(reg,
998 			     FRF_AZ_EVQ_EN, 1,
999 			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1000 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1001 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1002 	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1003 	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1004 
1005 	mutex_unlock(&vf->status_lock);
1006 }
1007 
efx_siena_sriov_reset_vf_work(struct work_struct * work)1008 static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1009 {
1010 	struct siena_vf *vf = container_of(work, struct siena_vf, req);
1011 	struct efx_nic *efx = vf->efx;
1012 	struct efx_buffer buf;
1013 
1014 	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1015 		efx_siena_sriov_reset_vf(vf, &buf);
1016 		efx_nic_free_buffer(efx, &buf);
1017 	}
1018 }
1019 
efx_siena_sriov_handle_no_channel(struct efx_nic * efx)1020 static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1021 {
1022 	netif_err(efx, drv, efx->net_dev,
1023 		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1024 		  "vector. IOV disabled\n");
1025 	efx->vf_count = 0;
1026 }
1027 
efx_siena_sriov_probe_channel(struct efx_channel * channel)1028 static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1029 {
1030 	struct siena_nic_data *nic_data = channel->efx->nic_data;
1031 	nic_data->vfdi_channel = channel;
1032 
1033 	return 0;
1034 }
1035 
1036 static void
efx_siena_sriov_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1037 efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1038 				 char *buf, size_t len)
1039 {
1040 	snprintf(buf, len, "%s-iov", channel->efx->name);
1041 }
1042 
1043 static const struct efx_channel_type efx_siena_sriov_channel_type = {
1044 	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
1045 	.pre_probe		= efx_siena_sriov_probe_channel,
1046 	.post_remove		= efx_channel_dummy_op_void,
1047 	.get_name		= efx_siena_sriov_get_channel_name,
1048 	/* no copy operation; channel must not be reallocated */
1049 	.keep_eventq		= true,
1050 };
1051 
efx_siena_sriov_probe(struct efx_nic * efx)1052 void efx_siena_sriov_probe(struct efx_nic *efx)
1053 {
1054 	unsigned count;
1055 
1056 	if (!max_vfs)
1057 		return;
1058 
1059 	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1060 		pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
1061 		return;
1062 	}
1063 	if (count > 0 && count > max_vfs)
1064 		count = max_vfs;
1065 
1066 	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1067 	efx->vf_count = count;
1068 
1069 	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1070 }
1071 
1072 /* Copy the list of individual addresses into the vfdi_status.peers
1073  * array and auxiliary pages, protected by %local_lock. Drop that lock
1074  * and then broadcast the address list to every VF.
1075  */
efx_siena_sriov_peer_work(struct work_struct * data)1076 static void efx_siena_sriov_peer_work(struct work_struct *data)
1077 {
1078 	struct siena_nic_data *nic_data = container_of(data,
1079 						       struct siena_nic_data,
1080 						       peer_work);
1081 	struct efx_nic *efx = nic_data->efx;
1082 	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1083 	struct siena_vf *vf;
1084 	struct efx_local_addr *local_addr;
1085 	struct vfdi_endpoint *peer;
1086 	struct efx_endpoint_page *epp;
1087 	struct list_head pages;
1088 	unsigned int peer_space;
1089 	unsigned int peer_count;
1090 	unsigned int pos;
1091 
1092 	mutex_lock(&nic_data->local_lock);
1093 
1094 	/* Move the existing peer pages off %local_page_list */
1095 	INIT_LIST_HEAD(&pages);
1096 	list_splice_tail_init(&nic_data->local_page_list, &pages);
1097 
1098 	/* Populate the VF addresses starting from entry 1 (entry 0 is
1099 	 * the PF address)
1100 	 */
1101 	peer = vfdi_status->peers + 1;
1102 	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1103 	peer_count = 1;
1104 	for (pos = 0; pos < efx->vf_count; ++pos) {
1105 		vf = nic_data->vf + pos;
1106 
1107 		mutex_lock(&vf->status_lock);
1108 		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1109 			*peer++ = vf->addr;
1110 			++peer_count;
1111 			--peer_space;
1112 			BUG_ON(peer_space == 0);
1113 		}
1114 		mutex_unlock(&vf->status_lock);
1115 	}
1116 
1117 	/* Fill the remaining addresses */
1118 	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1119 		ether_addr_copy(peer->mac_addr, local_addr->addr);
1120 		peer->tci = 0;
1121 		++peer;
1122 		++peer_count;
1123 		if (--peer_space == 0) {
1124 			if (list_empty(&pages)) {
1125 				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1126 				if (!epp)
1127 					break;
1128 				epp->ptr = dma_alloc_coherent(
1129 					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1130 					&epp->addr, GFP_KERNEL);
1131 				if (!epp->ptr) {
1132 					kfree(epp);
1133 					break;
1134 				}
1135 			} else {
1136 				epp = list_first_entry(
1137 					&pages, struct efx_endpoint_page, link);
1138 				list_del(&epp->link);
1139 			}
1140 
1141 			list_add_tail(&epp->link, &nic_data->local_page_list);
1142 			peer = (struct vfdi_endpoint *)epp->ptr;
1143 			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1144 		}
1145 	}
1146 	vfdi_status->peer_count = peer_count;
1147 	mutex_unlock(&nic_data->local_lock);
1148 
1149 	/* Free any now unused endpoint pages */
1150 	while (!list_empty(&pages)) {
1151 		epp = list_first_entry(
1152 			&pages, struct efx_endpoint_page, link);
1153 		list_del(&epp->link);
1154 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1155 				  epp->ptr, epp->addr);
1156 		kfree(epp);
1157 	}
1158 
1159 	/* Finally, push the pages */
1160 	for (pos = 0; pos < efx->vf_count; ++pos) {
1161 		vf = nic_data->vf + pos;
1162 
1163 		mutex_lock(&vf->status_lock);
1164 		if (vf->status_addr)
1165 			__efx_siena_sriov_push_vf_status(vf);
1166 		mutex_unlock(&vf->status_lock);
1167 	}
1168 }
1169 
efx_siena_sriov_free_local(struct efx_nic * efx)1170 static void efx_siena_sriov_free_local(struct efx_nic *efx)
1171 {
1172 	struct siena_nic_data *nic_data = efx->nic_data;
1173 	struct efx_local_addr *local_addr;
1174 	struct efx_endpoint_page *epp;
1175 
1176 	while (!list_empty(&nic_data->local_addr_list)) {
1177 		local_addr = list_first_entry(&nic_data->local_addr_list,
1178 					      struct efx_local_addr, link);
1179 		list_del(&local_addr->link);
1180 		kfree(local_addr);
1181 	}
1182 
1183 	while (!list_empty(&nic_data->local_page_list)) {
1184 		epp = list_first_entry(&nic_data->local_page_list,
1185 				       struct efx_endpoint_page, link);
1186 		list_del(&epp->link);
1187 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1188 				  epp->ptr, epp->addr);
1189 		kfree(epp);
1190 	}
1191 }
1192 
efx_siena_sriov_vf_alloc(struct efx_nic * efx)1193 static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1194 {
1195 	unsigned index;
1196 	struct siena_vf *vf;
1197 	struct siena_nic_data *nic_data = efx->nic_data;
1198 
1199 	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1200 			       GFP_KERNEL);
1201 	if (!nic_data->vf)
1202 		return -ENOMEM;
1203 
1204 	for (index = 0; index < efx->vf_count; ++index) {
1205 		vf = nic_data->vf + index;
1206 
1207 		vf->efx = efx;
1208 		vf->index = index;
1209 		vf->rx_filter_id = -1;
1210 		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1211 		vf->tx_filter_id = -1;
1212 		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1213 		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1214 		init_waitqueue_head(&vf->flush_waitq);
1215 		mutex_init(&vf->status_lock);
1216 		mutex_init(&vf->txq_lock);
1217 	}
1218 
1219 	return 0;
1220 }
1221 
efx_siena_sriov_vfs_fini(struct efx_nic * efx)1222 static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1223 {
1224 	struct siena_nic_data *nic_data = efx->nic_data;
1225 	struct siena_vf *vf;
1226 	unsigned int pos;
1227 
1228 	for (pos = 0; pos < efx->vf_count; ++pos) {
1229 		vf = nic_data->vf + pos;
1230 
1231 		efx_nic_free_buffer(efx, &vf->buf);
1232 		kfree(vf->peer_page_addrs);
1233 		vf->peer_page_addrs = NULL;
1234 		vf->peer_page_count = 0;
1235 
1236 		vf->evq0_count = 0;
1237 	}
1238 }
1239 
efx_siena_sriov_vfs_init(struct efx_nic * efx)1240 static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1241 {
1242 	struct pci_dev *pci_dev = efx->pci_dev;
1243 	struct siena_nic_data *nic_data = efx->nic_data;
1244 	unsigned index, devfn, sriov, buftbl_base;
1245 	u16 offset, stride;
1246 	struct siena_vf *vf;
1247 	int rc;
1248 
1249 	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1250 	if (!sriov)
1251 		return -ENOENT;
1252 
1253 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1254 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1255 
1256 	buftbl_base = nic_data->vf_buftbl_base;
1257 	devfn = pci_dev->devfn + offset;
1258 	for (index = 0; index < efx->vf_count; ++index) {
1259 		vf = nic_data->vf + index;
1260 
1261 		/* Reserve buffer entries */
1262 		vf->buftbl_base = buftbl_base;
1263 		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1264 
1265 		vf->pci_rid = devfn;
1266 		snprintf(vf->pci_name, sizeof(vf->pci_name),
1267 			 "%04x:%02x:%02x.%d",
1268 			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1269 			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1270 
1271 		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1272 					  GFP_KERNEL);
1273 		if (rc)
1274 			goto fail;
1275 
1276 		devfn += stride;
1277 	}
1278 
1279 	return 0;
1280 
1281 fail:
1282 	efx_siena_sriov_vfs_fini(efx);
1283 	return rc;
1284 }
1285 
efx_siena_sriov_init(struct efx_nic * efx)1286 int efx_siena_sriov_init(struct efx_nic *efx)
1287 {
1288 	struct net_device *net_dev = efx->net_dev;
1289 	struct siena_nic_data *nic_data = efx->nic_data;
1290 	struct vfdi_status *vfdi_status;
1291 	int rc;
1292 
1293 	/* Ensure there's room for vf_channel */
1294 	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1295 	/* Ensure that VI_BASE is aligned on VI_SCALE */
1296 	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1297 
1298 	if (efx->vf_count == 0)
1299 		return 0;
1300 
1301 	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1302 	if (rc)
1303 		goto fail_cmd;
1304 
1305 	rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
1306 				  sizeof(*vfdi_status), GFP_KERNEL);
1307 	if (rc)
1308 		goto fail_status;
1309 	vfdi_status = nic_data->vfdi_status.addr;
1310 	memset(vfdi_status, 0, sizeof(*vfdi_status));
1311 	vfdi_status->version = 1;
1312 	vfdi_status->length = sizeof(*vfdi_status);
1313 	vfdi_status->max_tx_channels = vf_max_tx_channels;
1314 	vfdi_status->vi_scale = efx->vi_scale;
1315 	vfdi_status->rss_rxq_count = efx->rss_spread;
1316 	vfdi_status->peer_count = 1 + efx->vf_count;
1317 	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1318 
1319 	rc = efx_siena_sriov_vf_alloc(efx);
1320 	if (rc)
1321 		goto fail_alloc;
1322 
1323 	mutex_init(&nic_data->local_lock);
1324 	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1325 	INIT_LIST_HEAD(&nic_data->local_addr_list);
1326 	INIT_LIST_HEAD(&nic_data->local_page_list);
1327 
1328 	rc = efx_siena_sriov_vfs_init(efx);
1329 	if (rc)
1330 		goto fail_vfs;
1331 
1332 	rtnl_lock();
1333 	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1334 	efx->vf_init_count = efx->vf_count;
1335 	rtnl_unlock();
1336 
1337 	efx_siena_sriov_usrev(efx, true);
1338 
1339 	/* At this point we must be ready to accept VFDI requests */
1340 
1341 	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1342 	if (rc)
1343 		goto fail_pci;
1344 
1345 	netif_info(efx, probe, net_dev,
1346 		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1347 		   efx->vf_count, efx_vf_size(efx));
1348 	return 0;
1349 
1350 fail_pci:
1351 	efx_siena_sriov_usrev(efx, false);
1352 	rtnl_lock();
1353 	efx->vf_init_count = 0;
1354 	rtnl_unlock();
1355 	efx_siena_sriov_vfs_fini(efx);
1356 fail_vfs:
1357 	cancel_work_sync(&nic_data->peer_work);
1358 	efx_siena_sriov_free_local(efx);
1359 	kfree(nic_data->vf);
1360 fail_alloc:
1361 	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1362 fail_status:
1363 	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1364 fail_cmd:
1365 	return rc;
1366 }
1367 
efx_siena_sriov_fini(struct efx_nic * efx)1368 void efx_siena_sriov_fini(struct efx_nic *efx)
1369 {
1370 	struct siena_vf *vf;
1371 	unsigned int pos;
1372 	struct siena_nic_data *nic_data = efx->nic_data;
1373 
1374 	if (efx->vf_init_count == 0)
1375 		return;
1376 
1377 	/* Disable all interfaces to reconfiguration */
1378 	BUG_ON(nic_data->vfdi_channel->enabled);
1379 	efx_siena_sriov_usrev(efx, false);
1380 	rtnl_lock();
1381 	efx->vf_init_count = 0;
1382 	rtnl_unlock();
1383 
1384 	/* Flush all reconfiguration work */
1385 	for (pos = 0; pos < efx->vf_count; ++pos) {
1386 		vf = nic_data->vf + pos;
1387 		cancel_work_sync(&vf->req);
1388 		cancel_work_sync(&vf->reset_work);
1389 	}
1390 	cancel_work_sync(&nic_data->peer_work);
1391 
1392 	pci_disable_sriov(efx->pci_dev);
1393 
1394 	/* Tear down back-end state */
1395 	efx_siena_sriov_vfs_fini(efx);
1396 	efx_siena_sriov_free_local(efx);
1397 	kfree(nic_data->vf);
1398 	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1399 	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1400 }
1401 
efx_siena_sriov_event(struct efx_channel * channel,efx_qword_t * event)1402 void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1403 {
1404 	struct efx_nic *efx = channel->efx;
1405 	struct siena_vf *vf;
1406 	unsigned qid, seq, type, data;
1407 
1408 	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1409 
1410 	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1411 	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1412 	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1413 	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1414 	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1415 
1416 	netif_vdbg(efx, hw, efx->net_dev,
1417 		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1418 		   qid, seq, type, data);
1419 
1420 	if (map_vi_index(efx, qid, &vf, NULL))
1421 		return;
1422 	if (vf->busy)
1423 		goto error;
1424 
1425 	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1426 		/* Resynchronise */
1427 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1428 		vf->req_seqno = seq + 1;
1429 		vf->req_addr = 0;
1430 	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1431 		goto error;
1432 
1433 	switch (vf->req_type) {
1434 	case VFDI_EV_TYPE_REQ_WORD0:
1435 	case VFDI_EV_TYPE_REQ_WORD1:
1436 	case VFDI_EV_TYPE_REQ_WORD2:
1437 		vf->req_addr |= (u64)data << (vf->req_type << 4);
1438 		++vf->req_type;
1439 		return;
1440 
1441 	case VFDI_EV_TYPE_REQ_WORD3:
1442 		vf->req_addr |= (u64)data << 48;
1443 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1444 		vf->busy = true;
1445 		queue_work(vfdi_workqueue, &vf->req);
1446 		return;
1447 	}
1448 
1449 error:
1450 	if (net_ratelimit())
1451 		netif_err(efx, hw, efx->net_dev,
1452 			  "ERROR: Screaming VFDI request from %s\n",
1453 			  vf->pci_name);
1454 	/* Reset the request and sequence number */
1455 	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1456 	vf->req_seqno = seq + 1;
1457 }
1458 
efx_siena_sriov_flr(struct efx_nic * efx,unsigned vf_i)1459 void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1460 {
1461 	struct siena_nic_data *nic_data = efx->nic_data;
1462 	struct siena_vf *vf;
1463 
1464 	if (vf_i > efx->vf_init_count)
1465 		return;
1466 	vf = nic_data->vf + vf_i;
1467 	netif_info(efx, hw, efx->net_dev,
1468 		   "FLR on VF %s\n", vf->pci_name);
1469 
1470 	vf->status_addr = 0;
1471 	efx_vfdi_remove_all_filters(vf);
1472 	efx_vfdi_flush_clear(vf);
1473 
1474 	vf->evq0_count = 0;
1475 }
1476 
efx_siena_sriov_mac_address_changed(struct efx_nic * efx)1477 int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1478 {
1479 	struct siena_nic_data *nic_data = efx->nic_data;
1480 	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1481 
1482 	if (!efx->vf_init_count)
1483 		return 0;
1484 	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1485 			efx->net_dev->dev_addr);
1486 	queue_work(vfdi_workqueue, &nic_data->peer_work);
1487 
1488 	return 0;
1489 }
1490 
efx_siena_sriov_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1491 void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1492 {
1493 	struct siena_vf *vf;
1494 	unsigned queue, qid;
1495 
1496 	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1497 	if (map_vi_index(efx, queue, &vf, &qid))
1498 		return;
1499 	/* Ignore flush completions triggered by an FLR */
1500 	if (!test_bit(qid, vf->txq_mask))
1501 		return;
1502 
1503 	__clear_bit(qid, vf->txq_mask);
1504 	--vf->txq_count;
1505 
1506 	if (efx_vfdi_flush_wake(vf))
1507 		wake_up(&vf->flush_waitq);
1508 }
1509 
efx_siena_sriov_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1510 void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1511 {
1512 	struct siena_vf *vf;
1513 	unsigned ev_failed, queue, qid;
1514 
1515 	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1516 	ev_failed = EFX_QWORD_FIELD(*event,
1517 				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1518 	if (map_vi_index(efx, queue, &vf, &qid))
1519 		return;
1520 	if (!test_bit(qid, vf->rxq_mask))
1521 		return;
1522 
1523 	if (ev_failed) {
1524 		set_bit(qid, vf->rxq_retry_mask);
1525 		atomic_inc(&vf->rxq_retry_count);
1526 	} else {
1527 		__clear_bit(qid, vf->rxq_mask);
1528 		--vf->rxq_count;
1529 	}
1530 	if (efx_vfdi_flush_wake(vf))
1531 		wake_up(&vf->flush_waitq);
1532 }
1533 
1534 /* Called from napi. Schedule the reset work item */
efx_siena_sriov_desc_fetch_err(struct efx_nic * efx,unsigned dmaq)1535 void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1536 {
1537 	struct siena_vf *vf;
1538 	unsigned int rel;
1539 
1540 	if (map_vi_index(efx, dmaq, &vf, &rel))
1541 		return;
1542 
1543 	if (net_ratelimit())
1544 		netif_err(efx, hw, efx->net_dev,
1545 			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1546 			  vf->index, rel);
1547 	queue_work(vfdi_workqueue, &vf->reset_work);
1548 }
1549 
1550 /* Reset all VFs */
efx_siena_sriov_reset(struct efx_nic * efx)1551 void efx_siena_sriov_reset(struct efx_nic *efx)
1552 {
1553 	struct siena_nic_data *nic_data = efx->nic_data;
1554 	unsigned int vf_i;
1555 	struct efx_buffer buf;
1556 	struct siena_vf *vf;
1557 
1558 	ASSERT_RTNL();
1559 
1560 	if (efx->vf_init_count == 0)
1561 		return;
1562 
1563 	efx_siena_sriov_usrev(efx, true);
1564 	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1565 
1566 	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1567 		return;
1568 
1569 	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1570 		vf = nic_data->vf + vf_i;
1571 		efx_siena_sriov_reset_vf(vf, &buf);
1572 	}
1573 
1574 	efx_nic_free_buffer(efx, &buf);
1575 }
1576 
efx_init_sriov(void)1577 int efx_init_sriov(void)
1578 {
1579 	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1580 	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1581 	 * MCDI to complete anyway
1582 	 */
1583 	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1584 	if (!vfdi_workqueue)
1585 		return -ENOMEM;
1586 	return 0;
1587 }
1588 
efx_fini_sriov(void)1589 void efx_fini_sriov(void)
1590 {
1591 	destroy_workqueue(vfdi_workqueue);
1592 }
1593 
efx_siena_sriov_set_vf_mac(struct efx_nic * efx,int vf_i,u8 * mac)1594 int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, u8 *mac)
1595 {
1596 	struct siena_nic_data *nic_data = efx->nic_data;
1597 	struct siena_vf *vf;
1598 
1599 	if (vf_i >= efx->vf_init_count)
1600 		return -EINVAL;
1601 	vf = nic_data->vf + vf_i;
1602 
1603 	mutex_lock(&vf->status_lock);
1604 	ether_addr_copy(vf->addr.mac_addr, mac);
1605 	__efx_siena_sriov_update_vf_addr(vf);
1606 	mutex_unlock(&vf->status_lock);
1607 
1608 	return 0;
1609 }
1610 
efx_siena_sriov_set_vf_vlan(struct efx_nic * efx,int vf_i,u16 vlan,u8 qos)1611 int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1612 				u16 vlan, u8 qos)
1613 {
1614 	struct siena_nic_data *nic_data = efx->nic_data;
1615 	struct siena_vf *vf;
1616 	u16 tci;
1617 
1618 	if (vf_i >= efx->vf_init_count)
1619 		return -EINVAL;
1620 	vf = nic_data->vf + vf_i;
1621 
1622 	mutex_lock(&vf->status_lock);
1623 	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1624 	vf->addr.tci = htons(tci);
1625 	__efx_siena_sriov_update_vf_addr(vf);
1626 	mutex_unlock(&vf->status_lock);
1627 
1628 	return 0;
1629 }
1630 
efx_siena_sriov_set_vf_spoofchk(struct efx_nic * efx,int vf_i,bool spoofchk)1631 int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1632 				    bool spoofchk)
1633 {
1634 	struct siena_nic_data *nic_data = efx->nic_data;
1635 	struct siena_vf *vf;
1636 	int rc;
1637 
1638 	if (vf_i >= efx->vf_init_count)
1639 		return -EINVAL;
1640 	vf = nic_data->vf + vf_i;
1641 
1642 	mutex_lock(&vf->txq_lock);
1643 	if (vf->txq_count == 0) {
1644 		vf->tx_filter_mode =
1645 			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1646 		rc = 0;
1647 	} else {
1648 		/* This cannot be changed while TX queues are running */
1649 		rc = -EBUSY;
1650 	}
1651 	mutex_unlock(&vf->txq_lock);
1652 	return rc;
1653 }
1654 
efx_siena_sriov_get_vf_config(struct efx_nic * efx,int vf_i,struct ifla_vf_info * ivi)1655 int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1656 				  struct ifla_vf_info *ivi)
1657 {
1658 	struct siena_nic_data *nic_data = efx->nic_data;
1659 	struct siena_vf *vf;
1660 	u16 tci;
1661 
1662 	if (vf_i >= efx->vf_init_count)
1663 		return -EINVAL;
1664 	vf = nic_data->vf + vf_i;
1665 
1666 	ivi->vf = vf_i;
1667 	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1668 	ivi->max_tx_rate = 0;
1669 	ivi->min_tx_rate = 0;
1670 	tci = ntohs(vf->addr.tci);
1671 	ivi->vlan = tci & VLAN_VID_MASK;
1672 	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1673 	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1674 
1675 	return 0;
1676 }
1677 
efx_siena_sriov_wanted(struct efx_nic * efx)1678 bool efx_siena_sriov_wanted(struct efx_nic *efx)
1679 {
1680 	return efx->vf_count != 0;
1681 }
1682 
efx_siena_sriov_configure(struct efx_nic * efx,int num_vfs)1683 int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1684 {
1685 	return 0;
1686 }
1687