• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2006, 2015
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_RELATIVE_ERROR
7 #define BOOST_MATH_RELATIVE_ERROR
8 
9 #include <boost/math/special_functions/fpclassify.hpp>
10 #include <boost/math/tools/promotion.hpp>
11 #include <boost/math/tools/precision.hpp>
12 
13 namespace boost{
14    namespace math{
15 
16       template <class T, class U>
relative_difference(const T & arg_a,const U & arg_b)17       typename boost::math::tools::promote_args<T,U>::type relative_difference(const T& arg_a, const U& arg_b)
18       {
19          typedef typename boost::math::tools::promote_args<T, U>::type result_type;
20          result_type a = arg_a;
21          result_type b = arg_b;
22          BOOST_MATH_STD_USING
23 #ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
24          //
25          // If math.h has no long double support we can't rely
26          // on the math functions generating exponents outside
27          // the range of a double:
28          //
29          result_type min_val = (std::max)(
30          tools::min_value<result_type>(),
31          static_cast<result_type>((std::numeric_limits<double>::min)()));
32          result_type max_val = (std::min)(
33             tools::max_value<result_type>(),
34             static_cast<result_type>((std::numeric_limits<double>::max)()));
35 #else
36          result_type min_val = tools::min_value<result_type>();
37          result_type max_val = tools::max_value<result_type>();
38 #endif
39          // Screen out NaN's first, if either value is a NaN then the distance is "infinite":
40          if((boost::math::isnan)(a) || (boost::math::isnan)(b))
41             return max_val;
42          // Screen out infinities:
43          if(fabs(b) > max_val)
44          {
45             if(fabs(a) > max_val)
46                return (a < 0) == (b < 0) ? 0 : max_val;  // one infinity is as good as another!
47             else
48                return max_val;  // one infinity and one finite value implies infinite difference
49          }
50          else if(fabs(a) > max_val)
51             return max_val;    // one infinity and one finite value implies infinite difference
52 
53          //
54          // If the values have different signs, treat as infinite difference:
55          //
56          if(((a < 0) != (b < 0)) && (a != 0) && (b != 0))
57             return max_val;
58          a = fabs(a);
59          b = fabs(b);
60          //
61          // Now deal with zero's, if one value is zero (or denorm) then treat it the same as
62          // min_val for the purposes of the calculation that follows:
63          //
64          if(a < min_val)
65             a = min_val;
66          if(b < min_val)
67             b = min_val;
68 
69          return (std::max)(fabs((a - b) / a), fabs((a - b) / b));
70       }
71 
72 #if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && (LDBL_MAX_EXP <= DBL_MAX_EXP)
73       template <>
relative_difference(const double & arg_a,const double & arg_b)74       inline boost::math::tools::promote_args<double, double>::type relative_difference(const double& arg_a, const double& arg_b)
75       {
76          BOOST_MATH_STD_USING
77          double a = arg_a;
78          double b = arg_b;
79          //
80          // On Mac OS X we evaluate "double" functions at "long double" precision,
81          // but "long double" actually has a very slightly narrower range than "double"!
82          // Therefore use the range of "long double" as our limits since results outside
83          // that range may have been truncated to 0 or INF:
84          //
85          double min_val = (std::max)((double)tools::min_value<long double>(), tools::min_value<double>());
86          double max_val = (std::min)((double)tools::max_value<long double>(), tools::max_value<double>());
87 
88          // Screen out NaN's first, if either value is a NaN then the distance is "infinite":
89          if((boost::math::isnan)(a) || (boost::math::isnan)(b))
90             return max_val;
91          // Screen out infinities:
92          if(fabs(b) > max_val)
93          {
94             if(fabs(a) > max_val)
95                return 0;  // one infinity is as good as another!
96             else
97                return max_val;  // one infinity and one finite value implies infinite difference
98          }
99          else if(fabs(a) > max_val)
100             return max_val;    // one infinity and one finite value implies infinite difference
101 
102          //
103          // If the values have different signs, treat as infinite difference:
104          //
105          if(((a < 0) != (b < 0)) && (a != 0) && (b != 0))
106             return max_val;
107          a = fabs(a);
108          b = fabs(b);
109          //
110          // Now deal with zero's, if one value is zero (or denorm) then treat it the same as
111          // min_val for the purposes of the calculation that follows:
112          //
113          if(a < min_val)
114             a = min_val;
115          if(b < min_val)
116             b = min_val;
117 
118          return (std::max)(fabs((a - b) / a), fabs((a - b) / b));
119       }
120 #endif
121 
122       template <class T, class U>
epsilon_difference(const T & arg_a,const U & arg_b)123       inline typename boost::math::tools::promote_args<T, U>::type epsilon_difference(const T& arg_a, const U& arg_b)
124       {
125          typedef typename boost::math::tools::promote_args<T, U>::type result_type;
126          result_type r = relative_difference(arg_a, arg_b);
127          if(tools::max_value<result_type>() * boost::math::tools::epsilon<result_type>() < r)
128             return tools::max_value<result_type>();
129          return r / boost::math::tools::epsilon<result_type>();
130       }
131 } // namespace math
132 } // namespace boost
133 
134 #endif
135