1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/register_allocate.h"
25 #include "brw_vec4.h"
26 #include "brw_cfg.h"
27
28 using namespace brw;
29
30 namespace brw {
31
32 static void
assign(unsigned int * reg_hw_locations,backend_reg * reg)33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
34 {
35 if (reg->file == VGRF) {
36 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
37 reg->offset %= REG_SIZE;
38 }
39 }
40
41 bool
reg_allocate_trivial()42 vec4_visitor::reg_allocate_trivial()
43 {
44 unsigned int hw_reg_mapping[this->alloc.count];
45 bool virtual_grf_used[this->alloc.count];
46 int next;
47
48 /* Calculate which virtual GRFs are actually in use after whatever
49 * optimization passes have occurred.
50 */
51 for (unsigned i = 0; i < this->alloc.count; i++) {
52 virtual_grf_used[i] = false;
53 }
54
55 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56 if (inst->dst.file == VGRF)
57 virtual_grf_used[inst->dst.nr] = true;
58
59 for (unsigned i = 0; i < 3; i++) {
60 if (inst->src[i].file == VGRF)
61 virtual_grf_used[inst->src[i].nr] = true;
62 }
63 }
64
65 hw_reg_mapping[0] = this->first_non_payload_grf;
66 next = hw_reg_mapping[0] + this->alloc.sizes[0];
67 for (unsigned i = 1; i < this->alloc.count; i++) {
68 if (virtual_grf_used[i]) {
69 hw_reg_mapping[i] = next;
70 next += this->alloc.sizes[i];
71 }
72 }
73 prog_data->total_grf = next;
74
75 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76 assign(hw_reg_mapping, &inst->dst);
77 assign(hw_reg_mapping, &inst->src[0]);
78 assign(hw_reg_mapping, &inst->src[1]);
79 assign(hw_reg_mapping, &inst->src[2]);
80 }
81
82 if (prog_data->total_grf > max_grf) {
83 fail("Ran out of regs on trivial allocator (%d/%d)\n",
84 prog_data->total_grf, max_grf);
85 return false;
86 }
87
88 return true;
89 }
90
91 extern "C" void
brw_vec4_alloc_reg_set(struct brw_compiler * compiler)92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93 {
94 int base_reg_count =
95 compiler->devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
96
97 /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
98 * SEND-from-GRF sources cannot be split, so we also need classes for each
99 * potential message length.
100 */
101 const int class_count = MAX_VGRF_SIZE;
102 int class_sizes[MAX_VGRF_SIZE];
103
104 for (int i = 0; i < class_count; i++)
105 class_sizes[i] = i + 1;
106
107
108 ralloc_free(compiler->vec4_reg_set.regs);
109 compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, base_reg_count, false);
110 if (compiler->devinfo->ver >= 6)
111 ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
112 ralloc_free(compiler->vec4_reg_set.classes);
113 compiler->vec4_reg_set.classes = ralloc_array(compiler, struct ra_class *, class_count);
114
115 /* Now, add the registers to their classes, and add the conflicts
116 * between them and the base GRF registers (and also each other).
117 */
118 for (int i = 0; i < class_count; i++) {
119 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
120 compiler->vec4_reg_set.classes[i] =
121 ra_alloc_contig_reg_class(compiler->vec4_reg_set.regs, class_sizes[i]);
122
123 for (int j = 0; j < class_reg_count; j++)
124 ra_class_add_reg(compiler->vec4_reg_set.classes[i], j);
125 }
126
127 ra_set_finalize(compiler->vec4_reg_set.regs, NULL);
128 }
129
130 void
setup_payload_interference(struct ra_graph * g,int first_payload_node,int reg_node_count)131 vec4_visitor::setup_payload_interference(struct ra_graph *g,
132 int first_payload_node,
133 int reg_node_count)
134 {
135 int payload_node_count = this->first_non_payload_grf;
136
137 for (int i = 0; i < payload_node_count; i++) {
138 /* Mark each payload reg node as being allocated to its physical register.
139 *
140 * The alternative would be to have per-physical register classes, which
141 * would just be silly.
142 */
143 ra_set_node_reg(g, first_payload_node + i, i);
144
145 /* For now, just mark each payload node as interfering with every other
146 * node to be allocated.
147 */
148 for (int j = 0; j < reg_node_count; j++) {
149 ra_add_node_interference(g, first_payload_node + i, j);
150 }
151 }
152 }
153
154 bool
reg_allocate()155 vec4_visitor::reg_allocate()
156 {
157 unsigned int hw_reg_mapping[alloc.count];
158 int payload_reg_count = this->first_non_payload_grf;
159
160 /* Using the trivial allocator can be useful in debugging undefined
161 * register access as a result of broken optimization passes.
162 */
163 if (0)
164 return reg_allocate_trivial();
165
166 const vec4_live_variables &live = live_analysis.require();
167 int node_count = alloc.count;
168 int first_payload_node = node_count;
169 node_count += payload_reg_count;
170 struct ra_graph *g =
171 ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
172
173 for (unsigned i = 0; i < alloc.count; i++) {
174 int size = this->alloc.sizes[i];
175 assert(size >= 1 && size <= MAX_VGRF_SIZE);
176 ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
177
178 for (unsigned j = 0; j < i; j++) {
179 if (live.vgrfs_interfere(i, j)) {
180 ra_add_node_interference(g, i, j);
181 }
182 }
183 }
184
185 /* Certain instructions can't safely use the same register for their
186 * sources and destination. Add interference.
187 */
188 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
189 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
190 for (unsigned i = 0; i < 3; i++) {
191 if (inst->src[i].file == VGRF) {
192 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
193 }
194 }
195 }
196 }
197
198 setup_payload_interference(g, first_payload_node, node_count);
199
200 if (!ra_allocate(g)) {
201 /* Failed to allocate registers. Spill a reg, and the caller will
202 * loop back into here to try again.
203 */
204 int reg = choose_spill_reg(g);
205 if (this->no_spills) {
206 fail("Failure to register allocate. Reduce number of live "
207 "values to avoid this.");
208 } else if (reg == -1) {
209 fail("no register to spill\n");
210 } else {
211 spill_reg(reg);
212 }
213 ralloc_free(g);
214 return false;
215 }
216
217 /* Get the chosen virtual registers for each node, and map virtual
218 * regs in the register classes back down to real hardware reg
219 * numbers.
220 */
221 prog_data->total_grf = payload_reg_count;
222 for (unsigned i = 0; i < alloc.count; i++) {
223 hw_reg_mapping[i] = ra_get_node_reg(g, i);
224 prog_data->total_grf = MAX2(prog_data->total_grf,
225 hw_reg_mapping[i] + alloc.sizes[i]);
226 }
227
228 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
229 assign(hw_reg_mapping, &inst->dst);
230 assign(hw_reg_mapping, &inst->src[0]);
231 assign(hw_reg_mapping, &inst->src[1]);
232 assign(hw_reg_mapping, &inst->src[2]);
233 }
234
235 ralloc_free(g);
236
237 return true;
238 }
239
240 /**
241 * When we decide to spill a register, instead of blindly spilling every use,
242 * save unspills when the spill register is used (read) in consecutive
243 * instructions. This can potentially save a bunch of unspills that would
244 * have very little impact in register allocation anyway.
245 *
246 * Notice that we need to account for this behavior when spilling a register
247 * and when evaluating spilling costs. This function is designed so it can
248 * be called from both places and avoid repeating the logic.
249 *
250 * - When we call this function from spill_reg(), we pass in scratch_reg the
251 * actual unspill/spill register that we want to reuse in the current
252 * instruction.
253 *
254 * - When we call this from evaluate_spill_costs(), we pass the register for
255 * which we are evaluating spilling costs.
256 *
257 * In either case, we check if the previous instructions read scratch_reg until
258 * we find one that writes to it with a compatible mask or does not read/write
259 * scratch_reg at all.
260 */
261 static bool
can_use_scratch_for_source(const vec4_instruction * inst,unsigned i,unsigned scratch_reg)262 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
263 unsigned scratch_reg)
264 {
265 assert(inst->src[i].file == VGRF);
266 bool prev_inst_read_scratch_reg = false;
267
268 /* See if any previous source in the same instructions reads scratch_reg */
269 for (unsigned n = 0; n < i; n++) {
270 if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
271 prev_inst_read_scratch_reg = true;
272 }
273
274 /* Now check if previous instructions read/write scratch_reg */
275 for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
276 !prev_inst->is_head_sentinel();
277 prev_inst = (vec4_instruction *) prev_inst->prev) {
278
279 /* If the previous instruction writes to scratch_reg then we can reuse
280 * it if the write is not conditional and the channels we write are
281 * compatible with our read mask
282 */
283 if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
284 return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
285 (brw_mask_for_swizzle(inst->src[i].swizzle) &
286 ~prev_inst->dst.writemask) == 0;
287 }
288
289 /* Skip scratch read/writes so that instructions generated by spilling
290 * other registers (that won't read/write scratch_reg) do not stop us from
291 * reusing scratch_reg for this instruction.
292 */
293 if (prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE ||
294 prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ)
295 continue;
296
297 /* If the previous instruction does not write to scratch_reg, then check
298 * if it reads it
299 */
300 int n;
301 for (n = 0; n < 3; n++) {
302 if (prev_inst->src[n].file == VGRF &&
303 prev_inst->src[n].nr == scratch_reg) {
304 prev_inst_read_scratch_reg = true;
305 break;
306 }
307 }
308 if (n == 3) {
309 /* The previous instruction does not read scratch_reg. At this point,
310 * if no previous instruction has read scratch_reg it means that we
311 * will need to unspill it here and we can't reuse it (so we return
312 * false). Otherwise, if we found at least one consecutive instruction
313 * that read scratch_reg, then we know that we got here from
314 * evaluate_spill_costs (since for the spill_reg path any block of
315 * consecutive instructions using scratch_reg must start with a write
316 * to that register, so we would've exited the loop in the check for
317 * the write that we have at the start of this loop), and in that case
318 * it means that we found the point at which the scratch_reg would be
319 * unspilled. Since we always unspill a full vec4, it means that we
320 * have all the channels available and we can just return true to
321 * signal that we can reuse the register in the current instruction
322 * too.
323 */
324 return prev_inst_read_scratch_reg;
325 }
326 }
327
328 return prev_inst_read_scratch_reg;
329 }
330
331 static inline float
spill_cost_for_type(enum brw_reg_type type)332 spill_cost_for_type(enum brw_reg_type type)
333 {
334 /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
335 * messages plus the 64b/32b shuffling code.
336 */
337 return type_sz(type) == 8 ? 2.25f : 1.0f;
338 }
339
340 void
evaluate_spill_costs(float * spill_costs,bool * no_spill)341 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
342 {
343 float loop_scale = 1.0;
344
345 unsigned *reg_type_size = (unsigned *)
346 ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
347
348 for (unsigned i = 0; i < this->alloc.count; i++) {
349 spill_costs[i] = 0.0;
350 no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
351 reg_type_size[i] = 0;
352 }
353
354 /* Calculate costs for spilling nodes. Call it a cost of 1 per
355 * spill/unspill we'll have to do, and guess that the insides of
356 * loops run 10 times.
357 */
358 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
359 for (unsigned int i = 0; i < 3; i++) {
360 if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
361 /* We will only unspill src[i] it it wasn't unspilled for the
362 * previous instruction, in which case we'll just reuse the scratch
363 * reg for this instruction.
364 */
365 if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
366 spill_costs[inst->src[i].nr] +=
367 loop_scale * spill_cost_for_type(inst->src[i].type);
368 if (inst->src[i].reladdr ||
369 inst->src[i].offset >= REG_SIZE)
370 no_spill[inst->src[i].nr] = true;
371
372 /* We don't support unspills of partial DF reads.
373 *
374 * Our 64-bit unspills are implemented with two 32-bit scratch
375 * messages, each one reading that for both SIMD4x2 threads that
376 * we need to shuffle into correct 64-bit data. Ensure that we
377 * are reading data for both threads.
378 */
379 if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
380 no_spill[inst->src[i].nr] = true;
381 }
382
383 /* We can't spill registers that mix 32-bit and 64-bit access (that
384 * contain 64-bit data that is operated on via 32-bit instructions)
385 */
386 unsigned type_size = type_sz(inst->src[i].type);
387 if (reg_type_size[inst->src[i].nr] == 0)
388 reg_type_size[inst->src[i].nr] = type_size;
389 else if (reg_type_size[inst->src[i].nr] != type_size)
390 no_spill[inst->src[i].nr] = true;
391 }
392 }
393
394 if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
395 spill_costs[inst->dst.nr] +=
396 loop_scale * spill_cost_for_type(inst->dst.type);
397 if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
398 no_spill[inst->dst.nr] = true;
399
400 /* We don't support spills of partial DF writes.
401 *
402 * Our 64-bit spills are implemented with two 32-bit scratch messages,
403 * each one writing that for both SIMD4x2 threads. Ensure that we
404 * are writing data for both threads.
405 */
406 if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
407 no_spill[inst->dst.nr] = true;
408
409 /* We can't spill registers that mix 32-bit and 64-bit access (that
410 * contain 64-bit data that is operated on via 32-bit instructions)
411 */
412 unsigned type_size = type_sz(inst->dst.type);
413 if (reg_type_size[inst->dst.nr] == 0)
414 reg_type_size[inst->dst.nr] = type_size;
415 else if (reg_type_size[inst->dst.nr] != type_size)
416 no_spill[inst->dst.nr] = true;
417 }
418
419 switch (inst->opcode) {
420
421 case BRW_OPCODE_DO:
422 loop_scale *= 10;
423 break;
424
425 case BRW_OPCODE_WHILE:
426 loop_scale /= 10;
427 break;
428
429 case SHADER_OPCODE_GFX4_SCRATCH_READ:
430 case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
431 case VEC4_OPCODE_MOV_FOR_SCRATCH:
432 for (int i = 0; i < 3; i++) {
433 if (inst->src[i].file == VGRF)
434 no_spill[inst->src[i].nr] = true;
435 }
436 if (inst->dst.file == VGRF)
437 no_spill[inst->dst.nr] = true;
438 break;
439
440 default:
441 break;
442 }
443 }
444
445 ralloc_free(reg_type_size);
446 }
447
448 int
choose_spill_reg(struct ra_graph * g)449 vec4_visitor::choose_spill_reg(struct ra_graph *g)
450 {
451 float spill_costs[this->alloc.count];
452 bool no_spill[this->alloc.count];
453
454 evaluate_spill_costs(spill_costs, no_spill);
455
456 for (unsigned i = 0; i < this->alloc.count; i++) {
457 if (!no_spill[i])
458 ra_set_node_spill_cost(g, i, spill_costs[i]);
459 }
460
461 return ra_get_best_spill_node(g);
462 }
463
464 void
spill_reg(unsigned spill_reg_nr)465 vec4_visitor::spill_reg(unsigned spill_reg_nr)
466 {
467 assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
468 unsigned spill_offset = last_scratch;
469 last_scratch += alloc.sizes[spill_reg_nr];
470
471 /* Generate spill/unspill instructions for the objects being spilled. */
472 unsigned scratch_reg = ~0u;
473 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
474 for (unsigned i = 0; i < 3; i++) {
475 if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
476 if (scratch_reg == ~0u ||
477 !can_use_scratch_for_source(inst, i, scratch_reg)) {
478 /* We need to unspill anyway so make sure we read the full vec4
479 * in any case. This way, the cached register can be reused
480 * for consecutive instructions that read different channels of
481 * the same vec4.
482 */
483 scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
484 src_reg temp = inst->src[i];
485 temp.nr = scratch_reg;
486 temp.offset = 0;
487 temp.swizzle = BRW_SWIZZLE_XYZW;
488 emit_scratch_read(block, inst,
489 dst_reg(temp), inst->src[i], spill_offset);
490 temp.offset = inst->src[i].offset;
491 }
492 assert(scratch_reg != ~0u);
493 inst->src[i].nr = scratch_reg;
494 }
495 }
496
497 if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
498 emit_scratch_write(block, inst, spill_offset);
499 scratch_reg = inst->dst.nr;
500 }
501 }
502
503 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
504 }
505
506 } /* namespace brw */
507