1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* MD: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 char *lock_name;
265 struct lock_class_key key;
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[WQ_NAME_LEN]; /* I: workqueue name */
269
270 /*
271 * Destruction of workqueue_struct is RCU protected to allow walking
272 * the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282
283 static struct kmem_cache *pwq_cache;
284
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
295 static bool wq_online; /* can kworkers be created yet? */
296
297 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
302 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307
308 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
309 static bool workqueue_freezing; /* PL: have wqs started freezing? */
310
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316
317 /*
318 * Local execution of unbound work items is no longer guaranteed. The
319 * following always forces round-robin CPU selection on unbound work items
320 * to uncover usages which depend on it.
321 */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331
332 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
333
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364
365 #define assert_rcu_or_pool_mutex() \
366 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
367 !lockdep_is_held(&wq_pool_mutex), \
368 "RCU or wq_pool_mutex should be held")
369
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
371 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
372 !lockdep_is_held(&wq->mutex) && \
373 !lockdep_is_held(&wq_pool_mutex), \
374 "RCU, wq->mutex or wq_pool_mutex should be held")
375
376 #define for_each_cpu_worker_pool(pool, cpu) \
377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 (pool)++)
380
381 /**
382 * for_each_pool - iterate through all worker_pools in the system
383 * @pool: iteration cursor
384 * @pi: integer used for iteration
385 *
386 * This must be called either with wq_pool_mutex held or RCU read
387 * locked. If the pool needs to be used beyond the locking in effect, the
388 * caller is responsible for guaranteeing that the pool stays online.
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
392 */
393 #define for_each_pool(pool, pi) \
394 idr_for_each_entry(&worker_pool_idr, pool, pi) \
395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
396 else
397
398 /**
399 * for_each_pool_worker - iterate through all workers of a worker_pool
400 * @worker: iteration cursor
401 * @pool: worker_pool to iterate workers of
402 *
403 * This must be called with wq_pool_attach_mutex.
404 *
405 * The if/else clause exists only for the lockdep assertion and can be
406 * ignored.
407 */
408 #define for_each_pool_worker(worker, pool) \
409 list_for_each_entry((worker), &(pool)->workers, node) \
410 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 else
412
413 /**
414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415 * @pwq: iteration cursor
416 * @wq: the target workqueue
417 *
418 * This must be called either with wq->mutex held or RCU read locked.
419 * If the pwq needs to be used beyond the locking in effect, the caller is
420 * responsible for guaranteeing that the pwq stays online.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pwq(pwq, wq) \
426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
427 lockdep_is_held(&(wq->mutex)))
428
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431 static const struct debug_obj_descr work_debug_descr;
432
work_debug_hint(void * addr)433 static void *work_debug_hint(void *addr)
434 {
435 return ((struct work_struct *) addr)->func;
436 }
437
work_is_static_object(void * addr)438 static bool work_is_static_object(void *addr)
439 {
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444
445 /*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
work_fixup_init(void * addr,enum debug_obj_state state)449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
460 }
461 }
462
463 /*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
work_fixup_free(void * addr,enum debug_obj_state state)467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 static const struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
487 };
488
debug_work_activate(struct work_struct * work)489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 debug_object_activate(work, &work_debug_descr);
492 }
493
debug_work_deactivate(struct work_struct * work)494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 debug_object_deactivate(work, &work_debug_descr);
497 }
498
__init_work(struct work_struct * work,int onstack)499 void __init_work(struct work_struct *work, int onstack)
500 {
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507
destroy_work_on_stack(struct work_struct * work)508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
destroy_delayed_work_on_stack(struct delayed_work * work)514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
521 #else
debug_work_activate(struct work_struct * work)522 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525
526 /**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
worker_pool_assign_id(struct worker_pool * pool)533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 int ret;
536
537 lockdep_assert_held(&wq_pool_mutex);
538
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
544 }
545 return ret;
546 }
547
548 /**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
557 *
558 * Return: The unbound pool_workqueue for @node.
559 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562 {
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576
work_color_to_flags(int color)577 static unsigned int work_color_to_flags(int color)
578 {
579 return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581
get_work_color(struct work_struct * work)582 static int get_work_color(struct work_struct *work)
583 {
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587
work_next_color(int color)588 static int work_next_color(int color)
589 {
590 return (color + 1) % WORK_NR_COLORS;
591 }
592
593 /*
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
597 *
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
602 *
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
607 *
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
612 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
615 {
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
622 {
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629 {
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632 }
633
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
636 {
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to queue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
674 }
675
clear_work_data(struct work_struct * work)676 static void clear_work_data(struct work_struct *work)
677 {
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681
get_work_pwq(struct work_struct * work)682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 unsigned long data = atomic_long_read(&work->data);
685
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
690 }
691
692 /**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
706 */
get_work_pool(struct work_struct * work)707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
711
712 assert_rcu_or_pool_mutex();
713
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
721
722 return idr_find(&worker_pool_idr, pool_id);
723 }
724
725 /**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
get_work_pool_id(struct work_struct * work)732 static int get_work_pool_id(struct work_struct *work)
733 {
734 unsigned long data = atomic_long_read(&work->data);
735
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739
740 return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742
mark_work_canceling(struct work_struct * work)743 static void mark_work_canceling(struct work_struct *work)
744 {
745 unsigned long pool_id = get_work_pool_id(work);
746
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750
work_is_canceling(struct work_struct * work)751 static bool work_is_canceling(struct work_struct *work)
752 {
753 unsigned long data = atomic_long_read(&work->data);
754
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757
758 /*
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
762 */
763
__need_more_worker(struct worker_pool * pool)764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 return !atomic_read(&pool->nr_running);
767 }
768
769 /*
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
776 */
need_more_worker(struct worker_pool * pool)777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781
782 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)783 static bool may_start_working(struct worker_pool *pool)
784 {
785 return pool->nr_idle;
786 }
787
788 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)789 static bool keep_working(struct worker_pool *pool)
790 {
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
793 }
794
795 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 return need_more_worker(pool) && !may_start_working(pool);
799 }
800
801 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810
811 /*
812 * Wake up functions.
813 */
814
815 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
820
821 return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823
824 /**
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
827 *
828 * Wake up the first idle worker of @pool.
829 *
830 * CONTEXT:
831 * raw_spin_lock_irq(pool->lock).
832 */
wake_up_worker(struct worker_pool * pool)833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 struct worker *worker = first_idle_worker(pool);
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839 }
840
841 /**
842 * wq_worker_running - a worker is running again
843 * @task: task waking up
844 *
845 * This function is called when a worker returns from schedule()
846 */
wq_worker_running(struct task_struct * task)847 void wq_worker_running(struct task_struct *task)
848 {
849 struct worker *worker = kthread_data(task);
850
851 if (!worker->sleeping)
852 return;
853
854 /*
855 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
856 * and the nr_running increment below, we may ruin the nr_running reset
857 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
858 * pool. Protect against such race.
859 */
860 preempt_disable();
861 if (!(worker->flags & WORKER_NOT_RUNNING))
862 atomic_inc(&worker->pool->nr_running);
863 preempt_enable();
864 worker->sleeping = 0;
865 }
866
867 /**
868 * wq_worker_sleeping - a worker is going to sleep
869 * @task: task going to sleep
870 *
871 * This function is called from schedule() when a busy worker is
872 * going to sleep. Preemption needs to be disabled to protect ->sleeping
873 * assignment.
874 */
wq_worker_sleeping(struct task_struct * task)875 void wq_worker_sleeping(struct task_struct *task)
876 {
877 struct worker *next, *worker = kthread_data(task);
878 struct worker_pool *pool;
879
880 /*
881 * Rescuers, which may not have all the fields set up like normal
882 * workers, also reach here, let's not access anything before
883 * checking NOT_RUNNING.
884 */
885 if (worker->flags & WORKER_NOT_RUNNING)
886 return;
887
888 pool = worker->pool;
889
890 /* Return if preempted before wq_worker_running() was reached */
891 if (worker->sleeping)
892 return;
893
894 worker->sleeping = 1;
895 raw_spin_lock_irq(&pool->lock);
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
905 * manipulating idle_list, so dereferencing idle_list without pool
906 * lock is safe.
907 */
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist)) {
910 next = first_idle_worker(pool);
911 if (next)
912 wake_up_process(next->task);
913 }
914 raw_spin_unlock_irq(&pool->lock);
915 }
916
917 /**
918 * wq_worker_last_func - retrieve worker's last work function
919 * @task: Task to retrieve last work function of.
920 *
921 * Determine the last function a worker executed. This is called from
922 * the scheduler to get a worker's last known identity.
923 *
924 * CONTEXT:
925 * raw_spin_lock_irq(rq->lock)
926 *
927 * This function is called during schedule() when a kworker is going
928 * to sleep. It's used by psi to identify aggregation workers during
929 * dequeuing, to allow periodic aggregation to shut-off when that
930 * worker is the last task in the system or cgroup to go to sleep.
931 *
932 * As this function doesn't involve any workqueue-related locking, it
933 * only returns stable values when called from inside the scheduler's
934 * queuing and dequeuing paths, when @task, which must be a kworker,
935 * is guaranteed to not be processing any works.
936 *
937 * Return:
938 * The last work function %current executed as a worker, NULL if it
939 * hasn't executed any work yet.
940 */
wq_worker_last_func(struct task_struct * task)941 work_func_t wq_worker_last_func(struct task_struct *task)
942 {
943 struct worker *worker = kthread_data(task);
944
945 return worker->last_func;
946 }
947
948 /**
949 * worker_set_flags - set worker flags and adjust nr_running accordingly
950 * @worker: self
951 * @flags: flags to set
952 *
953 * Set @flags in @worker->flags and adjust nr_running accordingly.
954 *
955 * CONTEXT:
956 * raw_spin_lock_irq(pool->lock)
957 */
worker_set_flags(struct worker * worker,unsigned int flags)958 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
959 {
960 struct worker_pool *pool = worker->pool;
961
962 WARN_ON_ONCE(worker->task != current);
963
964 /* If transitioning into NOT_RUNNING, adjust nr_running. */
965 if ((flags & WORKER_NOT_RUNNING) &&
966 !(worker->flags & WORKER_NOT_RUNNING)) {
967 atomic_dec(&pool->nr_running);
968 }
969
970 worker->flags |= flags;
971 }
972
973 /**
974 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
975 * @worker: self
976 * @flags: flags to clear
977 *
978 * Clear @flags in @worker->flags and adjust nr_running accordingly.
979 *
980 * CONTEXT:
981 * raw_spin_lock_irq(pool->lock)
982 */
worker_clr_flags(struct worker * worker,unsigned int flags)983 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
984 {
985 struct worker_pool *pool = worker->pool;
986 unsigned int oflags = worker->flags;
987
988 WARN_ON_ONCE(worker->task != current);
989
990 worker->flags &= ~flags;
991
992 /*
993 * If transitioning out of NOT_RUNNING, increment nr_running. Note
994 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
995 * of multiple flags, not a single flag.
996 */
997 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
998 if (!(worker->flags & WORKER_NOT_RUNNING))
999 atomic_inc(&pool->nr_running);
1000 }
1001
1002 /**
1003 * find_worker_executing_work - find worker which is executing a work
1004 * @pool: pool of interest
1005 * @work: work to find worker for
1006 *
1007 * Find a worker which is executing @work on @pool by searching
1008 * @pool->busy_hash which is keyed by the address of @work. For a worker
1009 * to match, its current execution should match the address of @work and
1010 * its work function. This is to avoid unwanted dependency between
1011 * unrelated work executions through a work item being recycled while still
1012 * being executed.
1013 *
1014 * This is a bit tricky. A work item may be freed once its execution
1015 * starts and nothing prevents the freed area from being recycled for
1016 * another work item. If the same work item address ends up being reused
1017 * before the original execution finishes, workqueue will identify the
1018 * recycled work item as currently executing and make it wait until the
1019 * current execution finishes, introducing an unwanted dependency.
1020 *
1021 * This function checks the work item address and work function to avoid
1022 * false positives. Note that this isn't complete as one may construct a
1023 * work function which can introduce dependency onto itself through a
1024 * recycled work item. Well, if somebody wants to shoot oneself in the
1025 * foot that badly, there's only so much we can do, and if such deadlock
1026 * actually occurs, it should be easy to locate the culprit work function.
1027 *
1028 * CONTEXT:
1029 * raw_spin_lock_irq(pool->lock).
1030 *
1031 * Return:
1032 * Pointer to worker which is executing @work if found, %NULL
1033 * otherwise.
1034 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1035 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1036 struct work_struct *work)
1037 {
1038 struct worker *worker;
1039
1040 hash_for_each_possible(pool->busy_hash, worker, hentry,
1041 (unsigned long)work)
1042 if (worker->current_work == work &&
1043 worker->current_func == work->func)
1044 return worker;
1045
1046 return NULL;
1047 }
1048
1049 /**
1050 * move_linked_works - move linked works to a list
1051 * @work: start of series of works to be scheduled
1052 * @head: target list to append @work to
1053 * @nextp: out parameter for nested worklist walking
1054 *
1055 * Schedule linked works starting from @work to @head. Work series to
1056 * be scheduled starts at @work and includes any consecutive work with
1057 * WORK_STRUCT_LINKED set in its predecessor.
1058 *
1059 * If @nextp is not NULL, it's updated to point to the next work of
1060 * the last scheduled work. This allows move_linked_works() to be
1061 * nested inside outer list_for_each_entry_safe().
1062 *
1063 * CONTEXT:
1064 * raw_spin_lock_irq(pool->lock).
1065 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1066 static void move_linked_works(struct work_struct *work, struct list_head *head,
1067 struct work_struct **nextp)
1068 {
1069 struct work_struct *n;
1070
1071 /*
1072 * Linked worklist will always end before the end of the list,
1073 * use NULL for list head.
1074 */
1075 list_for_each_entry_safe_from(work, n, NULL, entry) {
1076 list_move_tail(&work->entry, head);
1077 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1078 break;
1079 }
1080
1081 /*
1082 * If we're already inside safe list traversal and have moved
1083 * multiple works to the scheduled queue, the next position
1084 * needs to be updated.
1085 */
1086 if (nextp)
1087 *nextp = n;
1088 }
1089
1090 /**
1091 * get_pwq - get an extra reference on the specified pool_workqueue
1092 * @pwq: pool_workqueue to get
1093 *
1094 * Obtain an extra reference on @pwq. The caller should guarantee that
1095 * @pwq has positive refcnt and be holding the matching pool->lock.
1096 */
get_pwq(struct pool_workqueue * pwq)1097 static void get_pwq(struct pool_workqueue *pwq)
1098 {
1099 lockdep_assert_held(&pwq->pool->lock);
1100 WARN_ON_ONCE(pwq->refcnt <= 0);
1101 pwq->refcnt++;
1102 }
1103
1104 /**
1105 * put_pwq - put a pool_workqueue reference
1106 * @pwq: pool_workqueue to put
1107 *
1108 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1109 * destruction. The caller should be holding the matching pool->lock.
1110 */
put_pwq(struct pool_workqueue * pwq)1111 static void put_pwq(struct pool_workqueue *pwq)
1112 {
1113 lockdep_assert_held(&pwq->pool->lock);
1114 if (likely(--pwq->refcnt))
1115 return;
1116 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1117 return;
1118 /*
1119 * @pwq can't be released under pool->lock, bounce to
1120 * pwq_unbound_release_workfn(). This never recurses on the same
1121 * pool->lock as this path is taken only for unbound workqueues and
1122 * the release work item is scheduled on a per-cpu workqueue. To
1123 * avoid lockdep warning, unbound pool->locks are given lockdep
1124 * subclass of 1 in get_unbound_pool().
1125 */
1126 schedule_work(&pwq->unbound_release_work);
1127 }
1128
1129 /**
1130 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1131 * @pwq: pool_workqueue to put (can be %NULL)
1132 *
1133 * put_pwq() with locking. This function also allows %NULL @pwq.
1134 */
put_pwq_unlocked(struct pool_workqueue * pwq)1135 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1136 {
1137 if (pwq) {
1138 /*
1139 * As both pwqs and pools are RCU protected, the
1140 * following lock operations are safe.
1141 */
1142 raw_spin_lock_irq(&pwq->pool->lock);
1143 put_pwq(pwq);
1144 raw_spin_unlock_irq(&pwq->pool->lock);
1145 }
1146 }
1147
pwq_activate_delayed_work(struct work_struct * work)1148 static void pwq_activate_delayed_work(struct work_struct *work)
1149 {
1150 struct pool_workqueue *pwq = get_work_pwq(work);
1151
1152 trace_workqueue_activate_work(work);
1153 if (list_empty(&pwq->pool->worklist))
1154 pwq->pool->watchdog_ts = jiffies;
1155 move_linked_works(work, &pwq->pool->worklist, NULL);
1156 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1157 pwq->nr_active++;
1158 }
1159
pwq_activate_first_delayed(struct pool_workqueue * pwq)1160 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1161 {
1162 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1163 struct work_struct, entry);
1164
1165 pwq_activate_delayed_work(work);
1166 }
1167
1168 /**
1169 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1170 * @pwq: pwq of interest
1171 * @color: color of work which left the queue
1172 *
1173 * A work either has completed or is removed from pending queue,
1174 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1175 *
1176 * CONTEXT:
1177 * raw_spin_lock_irq(pool->lock).
1178 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1179 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1180 {
1181 /* uncolored work items don't participate in flushing or nr_active */
1182 if (color == WORK_NO_COLOR)
1183 goto out_put;
1184
1185 pwq->nr_in_flight[color]--;
1186
1187 pwq->nr_active--;
1188 if (!list_empty(&pwq->delayed_works)) {
1189 /* one down, submit a delayed one */
1190 if (pwq->nr_active < pwq->max_active)
1191 pwq_activate_first_delayed(pwq);
1192 }
1193
1194 /* is flush in progress and are we at the flushing tip? */
1195 if (likely(pwq->flush_color != color))
1196 goto out_put;
1197
1198 /* are there still in-flight works? */
1199 if (pwq->nr_in_flight[color])
1200 goto out_put;
1201
1202 /* this pwq is done, clear flush_color */
1203 pwq->flush_color = -1;
1204
1205 /*
1206 * If this was the last pwq, wake up the first flusher. It
1207 * will handle the rest.
1208 */
1209 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1210 complete(&pwq->wq->first_flusher->done);
1211 out_put:
1212 put_pwq(pwq);
1213 }
1214
1215 /**
1216 * try_to_grab_pending - steal work item from worklist and disable irq
1217 * @work: work item to steal
1218 * @is_dwork: @work is a delayed_work
1219 * @flags: place to store irq state
1220 *
1221 * Try to grab PENDING bit of @work. This function can handle @work in any
1222 * stable state - idle, on timer or on worklist.
1223 *
1224 * Return:
1225 *
1226 * ======== ================================================================
1227 * 1 if @work was pending and we successfully stole PENDING
1228 * 0 if @work was idle and we claimed PENDING
1229 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1230 * -ENOENT if someone else is canceling @work, this state may persist
1231 * for arbitrarily long
1232 * ======== ================================================================
1233 *
1234 * Note:
1235 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1236 * interrupted while holding PENDING and @work off queue, irq must be
1237 * disabled on entry. This, combined with delayed_work->timer being
1238 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1239 *
1240 * On successful return, >= 0, irq is disabled and the caller is
1241 * responsible for releasing it using local_irq_restore(*@flags).
1242 *
1243 * This function is safe to call from any context including IRQ handler.
1244 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1245 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1246 unsigned long *flags)
1247 {
1248 struct worker_pool *pool;
1249 struct pool_workqueue *pwq;
1250
1251 local_irq_save(*flags);
1252
1253 /* try to steal the timer if it exists */
1254 if (is_dwork) {
1255 struct delayed_work *dwork = to_delayed_work(work);
1256
1257 /*
1258 * dwork->timer is irqsafe. If del_timer() fails, it's
1259 * guaranteed that the timer is not queued anywhere and not
1260 * running on the local CPU.
1261 */
1262 if (likely(del_timer(&dwork->timer)))
1263 return 1;
1264 }
1265
1266 /* try to claim PENDING the normal way */
1267 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1268 return 0;
1269
1270 rcu_read_lock();
1271 /*
1272 * The queueing is in progress, or it is already queued. Try to
1273 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1274 */
1275 pool = get_work_pool(work);
1276 if (!pool)
1277 goto fail;
1278
1279 raw_spin_lock(&pool->lock);
1280 /*
1281 * work->data is guaranteed to point to pwq only while the work
1282 * item is queued on pwq->wq, and both updating work->data to point
1283 * to pwq on queueing and to pool on dequeueing are done under
1284 * pwq->pool->lock. This in turn guarantees that, if work->data
1285 * points to pwq which is associated with a locked pool, the work
1286 * item is currently queued on that pool.
1287 */
1288 pwq = get_work_pwq(work);
1289 if (pwq && pwq->pool == pool) {
1290 debug_work_deactivate(work);
1291
1292 /*
1293 * A delayed work item cannot be grabbed directly because
1294 * it might have linked NO_COLOR work items which, if left
1295 * on the delayed_list, will confuse pwq->nr_active
1296 * management later on and cause stall. Make sure the work
1297 * item is activated before grabbing.
1298 */
1299 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1300 pwq_activate_delayed_work(work);
1301
1302 list_del_init(&work->entry);
1303 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1304
1305 /* work->data points to pwq iff queued, point to pool */
1306 set_work_pool_and_keep_pending(work, pool->id);
1307
1308 raw_spin_unlock(&pool->lock);
1309 rcu_read_unlock();
1310 return 1;
1311 }
1312 raw_spin_unlock(&pool->lock);
1313 fail:
1314 rcu_read_unlock();
1315 local_irq_restore(*flags);
1316 if (work_is_canceling(work))
1317 return -ENOENT;
1318 cpu_relax();
1319 return -EAGAIN;
1320 }
1321
1322 /**
1323 * insert_work - insert a work into a pool
1324 * @pwq: pwq @work belongs to
1325 * @work: work to insert
1326 * @head: insertion point
1327 * @extra_flags: extra WORK_STRUCT_* flags to set
1328 *
1329 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1330 * work_struct flags.
1331 *
1332 * CONTEXT:
1333 * raw_spin_lock_irq(pool->lock).
1334 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1335 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1336 struct list_head *head, unsigned int extra_flags)
1337 {
1338 struct worker_pool *pool = pwq->pool;
1339
1340 /* we own @work, set data and link */
1341 set_work_pwq(work, pwq, extra_flags);
1342 list_add_tail(&work->entry, head);
1343 get_pwq(pwq);
1344
1345 /*
1346 * Ensure either wq_worker_sleeping() sees the above
1347 * list_add_tail() or we see zero nr_running to avoid workers lying
1348 * around lazily while there are works to be processed.
1349 */
1350 smp_mb();
1351
1352 if (__need_more_worker(pool))
1353 wake_up_worker(pool);
1354 }
1355
1356 /*
1357 * Test whether @work is being queued from another work executing on the
1358 * same workqueue.
1359 */
is_chained_work(struct workqueue_struct * wq)1360 static bool is_chained_work(struct workqueue_struct *wq)
1361 {
1362 struct worker *worker;
1363
1364 worker = current_wq_worker();
1365 /*
1366 * Return %true iff I'm a worker executing a work item on @wq. If
1367 * I'm @worker, it's safe to dereference it without locking.
1368 */
1369 return worker && worker->current_pwq->wq == wq;
1370 }
1371
1372 /*
1373 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1374 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1375 * avoid perturbing sensitive tasks.
1376 */
wq_select_unbound_cpu(int cpu)1377 static int wq_select_unbound_cpu(int cpu)
1378 {
1379 static bool printed_dbg_warning;
1380 int new_cpu;
1381
1382 if (likely(!wq_debug_force_rr_cpu)) {
1383 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1384 return cpu;
1385 } else if (!printed_dbg_warning) {
1386 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1387 printed_dbg_warning = true;
1388 }
1389
1390 if (cpumask_empty(wq_unbound_cpumask))
1391 return cpu;
1392
1393 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1394 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1395 if (unlikely(new_cpu >= nr_cpu_ids)) {
1396 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1397 if (unlikely(new_cpu >= nr_cpu_ids))
1398 return cpu;
1399 }
1400 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1401
1402 return new_cpu;
1403 }
1404
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1405 static void __queue_work(int cpu, struct workqueue_struct *wq,
1406 struct work_struct *work)
1407 {
1408 struct pool_workqueue *pwq;
1409 struct worker_pool *last_pool;
1410 struct list_head *worklist;
1411 unsigned int work_flags;
1412 unsigned int req_cpu = cpu;
1413
1414 /*
1415 * While a work item is PENDING && off queue, a task trying to
1416 * steal the PENDING will busy-loop waiting for it to either get
1417 * queued or lose PENDING. Grabbing PENDING and queueing should
1418 * happen with IRQ disabled.
1419 */
1420 lockdep_assert_irqs_disabled();
1421
1422
1423 /* if draining, only works from the same workqueue are allowed */
1424 if (unlikely(wq->flags & __WQ_DRAINING) &&
1425 WARN_ON_ONCE(!is_chained_work(wq)))
1426 return;
1427 rcu_read_lock();
1428 retry:
1429 /* pwq which will be used unless @work is executing elsewhere */
1430 if (wq->flags & WQ_UNBOUND) {
1431 if (req_cpu == WORK_CPU_UNBOUND)
1432 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1433 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1434 } else {
1435 if (req_cpu == WORK_CPU_UNBOUND)
1436 cpu = raw_smp_processor_id();
1437 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1438 }
1439
1440 /*
1441 * If @work was previously on a different pool, it might still be
1442 * running there, in which case the work needs to be queued on that
1443 * pool to guarantee non-reentrancy.
1444 */
1445 last_pool = get_work_pool(work);
1446 if (last_pool && last_pool != pwq->pool) {
1447 struct worker *worker;
1448
1449 raw_spin_lock(&last_pool->lock);
1450
1451 worker = find_worker_executing_work(last_pool, work);
1452
1453 if (worker && worker->current_pwq->wq == wq) {
1454 pwq = worker->current_pwq;
1455 } else {
1456 /* meh... not running there, queue here */
1457 raw_spin_unlock(&last_pool->lock);
1458 raw_spin_lock(&pwq->pool->lock);
1459 }
1460 } else {
1461 raw_spin_lock(&pwq->pool->lock);
1462 }
1463
1464 /*
1465 * pwq is determined and locked. For unbound pools, we could have
1466 * raced with pwq release and it could already be dead. If its
1467 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1468 * without another pwq replacing it in the numa_pwq_tbl or while
1469 * work items are executing on it, so the retrying is guaranteed to
1470 * make forward-progress.
1471 */
1472 if (unlikely(!pwq->refcnt)) {
1473 if (wq->flags & WQ_UNBOUND) {
1474 raw_spin_unlock(&pwq->pool->lock);
1475 cpu_relax();
1476 goto retry;
1477 }
1478 /* oops */
1479 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1480 wq->name, cpu);
1481 }
1482
1483 /* pwq determined, queue */
1484 trace_workqueue_queue_work(req_cpu, pwq, work);
1485
1486 if (WARN_ON(!list_empty(&work->entry)))
1487 goto out;
1488
1489 pwq->nr_in_flight[pwq->work_color]++;
1490 work_flags = work_color_to_flags(pwq->work_color);
1491
1492 if (likely(pwq->nr_active < pwq->max_active)) {
1493 trace_workqueue_activate_work(work);
1494 pwq->nr_active++;
1495 worklist = &pwq->pool->worklist;
1496 if (list_empty(worklist))
1497 pwq->pool->watchdog_ts = jiffies;
1498 } else {
1499 work_flags |= WORK_STRUCT_DELAYED;
1500 worklist = &pwq->delayed_works;
1501 }
1502
1503 debug_work_activate(work);
1504 insert_work(pwq, work, worklist, work_flags);
1505
1506 out:
1507 raw_spin_unlock(&pwq->pool->lock);
1508 rcu_read_unlock();
1509 }
1510
1511 /**
1512 * queue_work_on - queue work on specific cpu
1513 * @cpu: CPU number to execute work on
1514 * @wq: workqueue to use
1515 * @work: work to queue
1516 *
1517 * We queue the work to a specific CPU, the caller must ensure it
1518 * can't go away.
1519 *
1520 * Return: %false if @work was already on a queue, %true otherwise.
1521 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1522 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1523 struct work_struct *work)
1524 {
1525 bool ret = false;
1526 unsigned long flags;
1527
1528 local_irq_save(flags);
1529
1530 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1531 __queue_work(cpu, wq, work);
1532 ret = true;
1533 }
1534
1535 local_irq_restore(flags);
1536 return ret;
1537 }
1538 EXPORT_SYMBOL(queue_work_on);
1539
1540 /**
1541 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1542 * @node: NUMA node ID that we want to select a CPU from
1543 *
1544 * This function will attempt to find a "random" cpu available on a given
1545 * node. If there are no CPUs available on the given node it will return
1546 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1547 * available CPU if we need to schedule this work.
1548 */
workqueue_select_cpu_near(int node)1549 static int workqueue_select_cpu_near(int node)
1550 {
1551 int cpu;
1552
1553 /* No point in doing this if NUMA isn't enabled for workqueues */
1554 if (!wq_numa_enabled)
1555 return WORK_CPU_UNBOUND;
1556
1557 /* Delay binding to CPU if node is not valid or online */
1558 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1559 return WORK_CPU_UNBOUND;
1560
1561 /* Use local node/cpu if we are already there */
1562 cpu = raw_smp_processor_id();
1563 if (node == cpu_to_node(cpu))
1564 return cpu;
1565
1566 /* Use "random" otherwise know as "first" online CPU of node */
1567 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1568
1569 /* If CPU is valid return that, otherwise just defer */
1570 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1571 }
1572
1573 /**
1574 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1575 * @node: NUMA node that we are targeting the work for
1576 * @wq: workqueue to use
1577 * @work: work to queue
1578 *
1579 * We queue the work to a "random" CPU within a given NUMA node. The basic
1580 * idea here is to provide a way to somehow associate work with a given
1581 * NUMA node.
1582 *
1583 * This function will only make a best effort attempt at getting this onto
1584 * the right NUMA node. If no node is requested or the requested node is
1585 * offline then we just fall back to standard queue_work behavior.
1586 *
1587 * Currently the "random" CPU ends up being the first available CPU in the
1588 * intersection of cpu_online_mask and the cpumask of the node, unless we
1589 * are running on the node. In that case we just use the current CPU.
1590 *
1591 * Return: %false if @work was already on a queue, %true otherwise.
1592 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1593 bool queue_work_node(int node, struct workqueue_struct *wq,
1594 struct work_struct *work)
1595 {
1596 unsigned long flags;
1597 bool ret = false;
1598
1599 /*
1600 * This current implementation is specific to unbound workqueues.
1601 * Specifically we only return the first available CPU for a given
1602 * node instead of cycling through individual CPUs within the node.
1603 *
1604 * If this is used with a per-cpu workqueue then the logic in
1605 * workqueue_select_cpu_near would need to be updated to allow for
1606 * some round robin type logic.
1607 */
1608 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1609
1610 local_irq_save(flags);
1611
1612 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1613 int cpu = workqueue_select_cpu_near(node);
1614
1615 __queue_work(cpu, wq, work);
1616 ret = true;
1617 }
1618
1619 local_irq_restore(flags);
1620 return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(queue_work_node);
1623
delayed_work_timer_fn(struct timer_list * t)1624 void delayed_work_timer_fn(struct timer_list *t)
1625 {
1626 struct delayed_work *dwork = from_timer(dwork, t, timer);
1627
1628 /* should have been called from irqsafe timer with irq already off */
1629 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1630 }
1631 EXPORT_SYMBOL(delayed_work_timer_fn);
1632
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1633 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1634 struct delayed_work *dwork, unsigned long delay)
1635 {
1636 struct timer_list *timer = &dwork->timer;
1637 struct work_struct *work = &dwork->work;
1638
1639 WARN_ON_ONCE(!wq);
1640 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1641 WARN_ON_ONCE(timer_pending(timer));
1642 WARN_ON_ONCE(!list_empty(&work->entry));
1643
1644 /*
1645 * If @delay is 0, queue @dwork->work immediately. This is for
1646 * both optimization and correctness. The earliest @timer can
1647 * expire is on the closest next tick and delayed_work users depend
1648 * on that there's no such delay when @delay is 0.
1649 */
1650 if (!delay) {
1651 __queue_work(cpu, wq, &dwork->work);
1652 return;
1653 }
1654
1655 dwork->wq = wq;
1656 dwork->cpu = cpu;
1657 timer->expires = jiffies + delay;
1658
1659 if (unlikely(cpu != WORK_CPU_UNBOUND))
1660 add_timer_on(timer, cpu);
1661 else
1662 add_timer(timer);
1663 }
1664
1665 /**
1666 * queue_delayed_work_on - queue work on specific CPU after delay
1667 * @cpu: CPU number to execute work on
1668 * @wq: workqueue to use
1669 * @dwork: work to queue
1670 * @delay: number of jiffies to wait before queueing
1671 *
1672 * Return: %false if @work was already on a queue, %true otherwise. If
1673 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1674 * execution.
1675 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1676 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1677 struct delayed_work *dwork, unsigned long delay)
1678 {
1679 struct work_struct *work = &dwork->work;
1680 bool ret = false;
1681 unsigned long flags;
1682
1683 /* read the comment in __queue_work() */
1684 local_irq_save(flags);
1685
1686 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1687 __queue_delayed_work(cpu, wq, dwork, delay);
1688 ret = true;
1689 }
1690
1691 local_irq_restore(flags);
1692 return ret;
1693 }
1694 EXPORT_SYMBOL(queue_delayed_work_on);
1695
1696 /**
1697 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1698 * @cpu: CPU number to execute work on
1699 * @wq: workqueue to use
1700 * @dwork: work to queue
1701 * @delay: number of jiffies to wait before queueing
1702 *
1703 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1704 * modify @dwork's timer so that it expires after @delay. If @delay is
1705 * zero, @work is guaranteed to be scheduled immediately regardless of its
1706 * current state.
1707 *
1708 * Return: %false if @dwork was idle and queued, %true if @dwork was
1709 * pending and its timer was modified.
1710 *
1711 * This function is safe to call from any context including IRQ handler.
1712 * See try_to_grab_pending() for details.
1713 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1714 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1715 struct delayed_work *dwork, unsigned long delay)
1716 {
1717 unsigned long flags;
1718 int ret;
1719
1720 do {
1721 ret = try_to_grab_pending(&dwork->work, true, &flags);
1722 } while (unlikely(ret == -EAGAIN));
1723
1724 if (likely(ret >= 0)) {
1725 __queue_delayed_work(cpu, wq, dwork, delay);
1726 local_irq_restore(flags);
1727 }
1728
1729 /* -ENOENT from try_to_grab_pending() becomes %true */
1730 return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1733
rcu_work_rcufn(struct rcu_head * rcu)1734 static void rcu_work_rcufn(struct rcu_head *rcu)
1735 {
1736 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1737
1738 /* read the comment in __queue_work() */
1739 local_irq_disable();
1740 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1741 local_irq_enable();
1742 }
1743
1744 /**
1745 * queue_rcu_work - queue work after a RCU grace period
1746 * @wq: workqueue to use
1747 * @rwork: work to queue
1748 *
1749 * Return: %false if @rwork was already pending, %true otherwise. Note
1750 * that a full RCU grace period is guaranteed only after a %true return.
1751 * While @rwork is guaranteed to be executed after a %false return, the
1752 * execution may happen before a full RCU grace period has passed.
1753 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1754 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1755 {
1756 struct work_struct *work = &rwork->work;
1757
1758 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1759 rwork->wq = wq;
1760 call_rcu(&rwork->rcu, rcu_work_rcufn);
1761 return true;
1762 }
1763
1764 return false;
1765 }
1766 EXPORT_SYMBOL(queue_rcu_work);
1767
1768 /**
1769 * worker_enter_idle - enter idle state
1770 * @worker: worker which is entering idle state
1771 *
1772 * @worker is entering idle state. Update stats and idle timer if
1773 * necessary.
1774 *
1775 * LOCKING:
1776 * raw_spin_lock_irq(pool->lock).
1777 */
worker_enter_idle(struct worker * worker)1778 static void worker_enter_idle(struct worker *worker)
1779 {
1780 struct worker_pool *pool = worker->pool;
1781
1782 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1783 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1784 (worker->hentry.next || worker->hentry.pprev)))
1785 return;
1786
1787 /* can't use worker_set_flags(), also called from create_worker() */
1788 worker->flags |= WORKER_IDLE;
1789 pool->nr_idle++;
1790 worker->last_active = jiffies;
1791
1792 /* idle_list is LIFO */
1793 list_add(&worker->entry, &pool->idle_list);
1794
1795 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1796 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1797
1798 /*
1799 * Sanity check nr_running. Because unbind_workers() releases
1800 * pool->lock between setting %WORKER_UNBOUND and zapping
1801 * nr_running, the warning may trigger spuriously. Check iff
1802 * unbind is not in progress.
1803 */
1804 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1805 pool->nr_workers == pool->nr_idle &&
1806 atomic_read(&pool->nr_running));
1807 }
1808
1809 /**
1810 * worker_leave_idle - leave idle state
1811 * @worker: worker which is leaving idle state
1812 *
1813 * @worker is leaving idle state. Update stats.
1814 *
1815 * LOCKING:
1816 * raw_spin_lock_irq(pool->lock).
1817 */
worker_leave_idle(struct worker * worker)1818 static void worker_leave_idle(struct worker *worker)
1819 {
1820 struct worker_pool *pool = worker->pool;
1821
1822 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1823 return;
1824 worker_clr_flags(worker, WORKER_IDLE);
1825 pool->nr_idle--;
1826 list_del_init(&worker->entry);
1827 }
1828
alloc_worker(int node)1829 static struct worker *alloc_worker(int node)
1830 {
1831 struct worker *worker;
1832
1833 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1834 if (worker) {
1835 INIT_LIST_HEAD(&worker->entry);
1836 INIT_LIST_HEAD(&worker->scheduled);
1837 INIT_LIST_HEAD(&worker->node);
1838 /* on creation a worker is in !idle && prep state */
1839 worker->flags = WORKER_PREP;
1840 }
1841 return worker;
1842 }
1843
1844 /**
1845 * worker_attach_to_pool() - attach a worker to a pool
1846 * @worker: worker to be attached
1847 * @pool: the target pool
1848 *
1849 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1850 * cpu-binding of @worker are kept coordinated with the pool across
1851 * cpu-[un]hotplugs.
1852 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1853 static void worker_attach_to_pool(struct worker *worker,
1854 struct worker_pool *pool)
1855 {
1856 mutex_lock(&wq_pool_attach_mutex);
1857
1858 /*
1859 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1860 * stable across this function. See the comments above the flag
1861 * definition for details.
1862 */
1863 if (pool->flags & POOL_DISASSOCIATED)
1864 worker->flags |= WORKER_UNBOUND;
1865
1866 if (worker->rescue_wq)
1867 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1868
1869 list_add_tail(&worker->node, &pool->workers);
1870 worker->pool = pool;
1871
1872 mutex_unlock(&wq_pool_attach_mutex);
1873 }
1874
1875 /**
1876 * worker_detach_from_pool() - detach a worker from its pool
1877 * @worker: worker which is attached to its pool
1878 *
1879 * Undo the attaching which had been done in worker_attach_to_pool(). The
1880 * caller worker shouldn't access to the pool after detached except it has
1881 * other reference to the pool.
1882 */
worker_detach_from_pool(struct worker * worker)1883 static void worker_detach_from_pool(struct worker *worker)
1884 {
1885 struct worker_pool *pool = worker->pool;
1886 struct completion *detach_completion = NULL;
1887
1888 mutex_lock(&wq_pool_attach_mutex);
1889
1890 list_del(&worker->node);
1891 worker->pool = NULL;
1892
1893 if (list_empty(&pool->workers))
1894 detach_completion = pool->detach_completion;
1895 mutex_unlock(&wq_pool_attach_mutex);
1896
1897 /* clear leftover flags without pool->lock after it is detached */
1898 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1899
1900 if (detach_completion)
1901 complete(detach_completion);
1902 }
1903
1904 /**
1905 * create_worker - create a new workqueue worker
1906 * @pool: pool the new worker will belong to
1907 *
1908 * Create and start a new worker which is attached to @pool.
1909 *
1910 * CONTEXT:
1911 * Might sleep. Does GFP_KERNEL allocations.
1912 *
1913 * Return:
1914 * Pointer to the newly created worker.
1915 */
create_worker(struct worker_pool * pool)1916 static struct worker *create_worker(struct worker_pool *pool)
1917 {
1918 struct worker *worker = NULL;
1919 int id = -1;
1920 char id_buf[16];
1921
1922 /* ID is needed to determine kthread name */
1923 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1924 if (id < 0)
1925 goto fail;
1926
1927 worker = alloc_worker(pool->node);
1928 if (!worker)
1929 goto fail;
1930
1931 worker->id = id;
1932
1933 if (pool->cpu >= 0)
1934 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1935 pool->attrs->nice < 0 ? "H" : "");
1936 else
1937 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1938
1939 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1940 "kworker/%s", id_buf);
1941 if (IS_ERR(worker->task))
1942 goto fail;
1943
1944 set_user_nice(worker->task, pool->attrs->nice);
1945 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1946
1947 /* successful, attach the worker to the pool */
1948 worker_attach_to_pool(worker, pool);
1949
1950 /* start the newly created worker */
1951 raw_spin_lock_irq(&pool->lock);
1952 worker->pool->nr_workers++;
1953 worker_enter_idle(worker);
1954 wake_up_process(worker->task);
1955 raw_spin_unlock_irq(&pool->lock);
1956
1957 return worker;
1958
1959 fail:
1960 if (id >= 0)
1961 ida_simple_remove(&pool->worker_ida, id);
1962 kfree(worker);
1963 return NULL;
1964 }
1965
1966 /**
1967 * destroy_worker - destroy a workqueue worker
1968 * @worker: worker to be destroyed
1969 *
1970 * Destroy @worker and adjust @pool stats accordingly. The worker should
1971 * be idle.
1972 *
1973 * CONTEXT:
1974 * raw_spin_lock_irq(pool->lock).
1975 */
destroy_worker(struct worker * worker)1976 static void destroy_worker(struct worker *worker)
1977 {
1978 struct worker_pool *pool = worker->pool;
1979
1980 lockdep_assert_held(&pool->lock);
1981
1982 /* sanity check frenzy */
1983 if (WARN_ON(worker->current_work) ||
1984 WARN_ON(!list_empty(&worker->scheduled)) ||
1985 WARN_ON(!(worker->flags & WORKER_IDLE)))
1986 return;
1987
1988 pool->nr_workers--;
1989 pool->nr_idle--;
1990
1991 list_del_init(&worker->entry);
1992 worker->flags |= WORKER_DIE;
1993 wake_up_process(worker->task);
1994 }
1995
idle_worker_timeout(struct timer_list * t)1996 static void idle_worker_timeout(struct timer_list *t)
1997 {
1998 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1999
2000 raw_spin_lock_irq(&pool->lock);
2001
2002 while (too_many_workers(pool)) {
2003 struct worker *worker;
2004 unsigned long expires;
2005
2006 /* idle_list is kept in LIFO order, check the last one */
2007 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2008 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2009
2010 if (time_before(jiffies, expires)) {
2011 mod_timer(&pool->idle_timer, expires);
2012 break;
2013 }
2014
2015 destroy_worker(worker);
2016 }
2017
2018 raw_spin_unlock_irq(&pool->lock);
2019 }
2020
send_mayday(struct work_struct * work)2021 static void send_mayday(struct work_struct *work)
2022 {
2023 struct pool_workqueue *pwq = get_work_pwq(work);
2024 struct workqueue_struct *wq = pwq->wq;
2025
2026 lockdep_assert_held(&wq_mayday_lock);
2027
2028 if (!wq->rescuer)
2029 return;
2030
2031 /* mayday mayday mayday */
2032 if (list_empty(&pwq->mayday_node)) {
2033 /*
2034 * If @pwq is for an unbound wq, its base ref may be put at
2035 * any time due to an attribute change. Pin @pwq until the
2036 * rescuer is done with it.
2037 */
2038 get_pwq(pwq);
2039 list_add_tail(&pwq->mayday_node, &wq->maydays);
2040 wake_up_process(wq->rescuer->task);
2041 }
2042 }
2043
pool_mayday_timeout(struct timer_list * t)2044 static void pool_mayday_timeout(struct timer_list *t)
2045 {
2046 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2047 struct work_struct *work;
2048
2049 raw_spin_lock_irq(&pool->lock);
2050 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2051
2052 if (need_to_create_worker(pool)) {
2053 /*
2054 * We've been trying to create a new worker but
2055 * haven't been successful. We might be hitting an
2056 * allocation deadlock. Send distress signals to
2057 * rescuers.
2058 */
2059 list_for_each_entry(work, &pool->worklist, entry)
2060 send_mayday(work);
2061 }
2062
2063 raw_spin_unlock(&wq_mayday_lock);
2064 raw_spin_unlock_irq(&pool->lock);
2065
2066 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2067 }
2068
2069 /**
2070 * maybe_create_worker - create a new worker if necessary
2071 * @pool: pool to create a new worker for
2072 *
2073 * Create a new worker for @pool if necessary. @pool is guaranteed to
2074 * have at least one idle worker on return from this function. If
2075 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2076 * sent to all rescuers with works scheduled on @pool to resolve
2077 * possible allocation deadlock.
2078 *
2079 * On return, need_to_create_worker() is guaranteed to be %false and
2080 * may_start_working() %true.
2081 *
2082 * LOCKING:
2083 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2084 * multiple times. Does GFP_KERNEL allocations. Called only from
2085 * manager.
2086 */
maybe_create_worker(struct worker_pool * pool)2087 static void maybe_create_worker(struct worker_pool *pool)
2088 __releases(&pool->lock)
2089 __acquires(&pool->lock)
2090 {
2091 restart:
2092 raw_spin_unlock_irq(&pool->lock);
2093
2094 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2095 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2096
2097 while (true) {
2098 if (create_worker(pool) || !need_to_create_worker(pool))
2099 break;
2100
2101 schedule_timeout_interruptible(CREATE_COOLDOWN);
2102
2103 if (!need_to_create_worker(pool))
2104 break;
2105 }
2106
2107 del_timer_sync(&pool->mayday_timer);
2108 raw_spin_lock_irq(&pool->lock);
2109 /*
2110 * This is necessary even after a new worker was just successfully
2111 * created as @pool->lock was dropped and the new worker might have
2112 * already become busy.
2113 */
2114 if (need_to_create_worker(pool))
2115 goto restart;
2116 }
2117
2118 /**
2119 * manage_workers - manage worker pool
2120 * @worker: self
2121 *
2122 * Assume the manager role and manage the worker pool @worker belongs
2123 * to. At any given time, there can be only zero or one manager per
2124 * pool. The exclusion is handled automatically by this function.
2125 *
2126 * The caller can safely start processing works on false return. On
2127 * true return, it's guaranteed that need_to_create_worker() is false
2128 * and may_start_working() is true.
2129 *
2130 * CONTEXT:
2131 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2132 * multiple times. Does GFP_KERNEL allocations.
2133 *
2134 * Return:
2135 * %false if the pool doesn't need management and the caller can safely
2136 * start processing works, %true if management function was performed and
2137 * the conditions that the caller verified before calling the function may
2138 * no longer be true.
2139 */
manage_workers(struct worker * worker)2140 static bool manage_workers(struct worker *worker)
2141 {
2142 struct worker_pool *pool = worker->pool;
2143
2144 if (pool->flags & POOL_MANAGER_ACTIVE)
2145 return false;
2146
2147 pool->flags |= POOL_MANAGER_ACTIVE;
2148 pool->manager = worker;
2149
2150 maybe_create_worker(pool);
2151
2152 pool->manager = NULL;
2153 pool->flags &= ~POOL_MANAGER_ACTIVE;
2154 rcuwait_wake_up(&manager_wait);
2155 return true;
2156 }
2157
2158 /**
2159 * process_one_work - process single work
2160 * @worker: self
2161 * @work: work to process
2162 *
2163 * Process @work. This function contains all the logics necessary to
2164 * process a single work including synchronization against and
2165 * interaction with other workers on the same cpu, queueing and
2166 * flushing. As long as context requirement is met, any worker can
2167 * call this function to process a work.
2168 *
2169 * CONTEXT:
2170 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2171 */
process_one_work(struct worker * worker,struct work_struct * work)2172 static void process_one_work(struct worker *worker, struct work_struct *work)
2173 __releases(&pool->lock)
2174 __acquires(&pool->lock)
2175 {
2176 struct pool_workqueue *pwq = get_work_pwq(work);
2177 struct worker_pool *pool = worker->pool;
2178 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2179 int work_color;
2180 struct worker *collision;
2181 #ifdef CONFIG_LOCKDEP
2182 /*
2183 * It is permissible to free the struct work_struct from
2184 * inside the function that is called from it, this we need to
2185 * take into account for lockdep too. To avoid bogus "held
2186 * lock freed" warnings as well as problems when looking into
2187 * work->lockdep_map, make a copy and use that here.
2188 */
2189 struct lockdep_map lockdep_map;
2190
2191 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2192 #endif
2193 /* ensure we're on the correct CPU */
2194 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2195 raw_smp_processor_id() != pool->cpu);
2196
2197 /*
2198 * A single work shouldn't be executed concurrently by
2199 * multiple workers on a single cpu. Check whether anyone is
2200 * already processing the work. If so, defer the work to the
2201 * currently executing one.
2202 */
2203 collision = find_worker_executing_work(pool, work);
2204 if (unlikely(collision)) {
2205 move_linked_works(work, &collision->scheduled, NULL);
2206 return;
2207 }
2208
2209 /* claim and dequeue */
2210 debug_work_deactivate(work);
2211 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2212 worker->current_work = work;
2213 worker->current_func = work->func;
2214 worker->current_pwq = pwq;
2215 work_color = get_work_color(work);
2216
2217 /*
2218 * Record wq name for cmdline and debug reporting, may get
2219 * overridden through set_worker_desc().
2220 */
2221 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2222
2223 list_del_init(&work->entry);
2224
2225 /*
2226 * CPU intensive works don't participate in concurrency management.
2227 * They're the scheduler's responsibility. This takes @worker out
2228 * of concurrency management and the next code block will chain
2229 * execution of the pending work items.
2230 */
2231 if (unlikely(cpu_intensive))
2232 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2233
2234 /*
2235 * Wake up another worker if necessary. The condition is always
2236 * false for normal per-cpu workers since nr_running would always
2237 * be >= 1 at this point. This is used to chain execution of the
2238 * pending work items for WORKER_NOT_RUNNING workers such as the
2239 * UNBOUND and CPU_INTENSIVE ones.
2240 */
2241 if (need_more_worker(pool))
2242 wake_up_worker(pool);
2243
2244 /*
2245 * Record the last pool and clear PENDING which should be the last
2246 * update to @work. Also, do this inside @pool->lock so that
2247 * PENDING and queued state changes happen together while IRQ is
2248 * disabled.
2249 */
2250 set_work_pool_and_clear_pending(work, pool->id);
2251
2252 raw_spin_unlock_irq(&pool->lock);
2253
2254 lock_map_acquire(&pwq->wq->lockdep_map);
2255 lock_map_acquire(&lockdep_map);
2256 /*
2257 * Strictly speaking we should mark the invariant state without holding
2258 * any locks, that is, before these two lock_map_acquire()'s.
2259 *
2260 * However, that would result in:
2261 *
2262 * A(W1)
2263 * WFC(C)
2264 * A(W1)
2265 * C(C)
2266 *
2267 * Which would create W1->C->W1 dependencies, even though there is no
2268 * actual deadlock possible. There are two solutions, using a
2269 * read-recursive acquire on the work(queue) 'locks', but this will then
2270 * hit the lockdep limitation on recursive locks, or simply discard
2271 * these locks.
2272 *
2273 * AFAICT there is no possible deadlock scenario between the
2274 * flush_work() and complete() primitives (except for single-threaded
2275 * workqueues), so hiding them isn't a problem.
2276 */
2277 lockdep_invariant_state(true);
2278 trace_workqueue_execute_start(work);
2279 worker->current_func(work);
2280 /*
2281 * While we must be careful to not use "work" after this, the trace
2282 * point will only record its address.
2283 */
2284 trace_workqueue_execute_end(work, worker->current_func);
2285 lock_map_release(&lockdep_map);
2286 lock_map_release(&pwq->wq->lockdep_map);
2287
2288 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2289 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2290 " last function: %ps\n",
2291 current->comm, preempt_count(), task_pid_nr(current),
2292 worker->current_func);
2293 debug_show_held_locks(current);
2294 dump_stack();
2295 }
2296
2297 /*
2298 * The following prevents a kworker from hogging CPU on !PREEMPTION
2299 * kernels, where a requeueing work item waiting for something to
2300 * happen could deadlock with stop_machine as such work item could
2301 * indefinitely requeue itself while all other CPUs are trapped in
2302 * stop_machine. At the same time, report a quiescent RCU state so
2303 * the same condition doesn't freeze RCU.
2304 */
2305 cond_resched();
2306
2307 raw_spin_lock_irq(&pool->lock);
2308
2309 /* clear cpu intensive status */
2310 if (unlikely(cpu_intensive))
2311 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2312
2313 /* tag the worker for identification in schedule() */
2314 worker->last_func = worker->current_func;
2315
2316 /* we're done with it, release */
2317 hash_del(&worker->hentry);
2318 worker->current_work = NULL;
2319 worker->current_func = NULL;
2320 worker->current_pwq = NULL;
2321 pwq_dec_nr_in_flight(pwq, work_color);
2322 }
2323
2324 /**
2325 * process_scheduled_works - process scheduled works
2326 * @worker: self
2327 *
2328 * Process all scheduled works. Please note that the scheduled list
2329 * may change while processing a work, so this function repeatedly
2330 * fetches a work from the top and executes it.
2331 *
2332 * CONTEXT:
2333 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2334 * multiple times.
2335 */
process_scheduled_works(struct worker * worker)2336 static void process_scheduled_works(struct worker *worker)
2337 {
2338 while (!list_empty(&worker->scheduled)) {
2339 struct work_struct *work = list_first_entry(&worker->scheduled,
2340 struct work_struct, entry);
2341 process_one_work(worker, work);
2342 }
2343 }
2344
set_pf_worker(bool val)2345 static void set_pf_worker(bool val)
2346 {
2347 mutex_lock(&wq_pool_attach_mutex);
2348 if (val)
2349 current->flags |= PF_WQ_WORKER;
2350 else
2351 current->flags &= ~PF_WQ_WORKER;
2352 mutex_unlock(&wq_pool_attach_mutex);
2353 }
2354
2355 /**
2356 * worker_thread - the worker thread function
2357 * @__worker: self
2358 *
2359 * The worker thread function. All workers belong to a worker_pool -
2360 * either a per-cpu one or dynamic unbound one. These workers process all
2361 * work items regardless of their specific target workqueue. The only
2362 * exception is work items which belong to workqueues with a rescuer which
2363 * will be explained in rescuer_thread().
2364 *
2365 * Return: 0
2366 */
worker_thread(void * __worker)2367 static int worker_thread(void *__worker)
2368 {
2369 struct worker *worker = __worker;
2370 struct worker_pool *pool = worker->pool;
2371
2372 /* tell the scheduler that this is a workqueue worker */
2373 set_pf_worker(true);
2374 woke_up:
2375 raw_spin_lock_irq(&pool->lock);
2376
2377 /* am I supposed to die? */
2378 if (unlikely(worker->flags & WORKER_DIE)) {
2379 raw_spin_unlock_irq(&pool->lock);
2380 WARN_ON_ONCE(!list_empty(&worker->entry));
2381 set_pf_worker(false);
2382
2383 set_task_comm(worker->task, "kworker/dying");
2384 ida_simple_remove(&pool->worker_ida, worker->id);
2385 worker_detach_from_pool(worker);
2386 kfree(worker);
2387 return 0;
2388 }
2389
2390 worker_leave_idle(worker);
2391 recheck:
2392 /* no more worker necessary? */
2393 if (!need_more_worker(pool))
2394 goto sleep;
2395
2396 /* do we need to manage? */
2397 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2398 goto recheck;
2399
2400 /*
2401 * ->scheduled list can only be filled while a worker is
2402 * preparing to process a work or actually processing it.
2403 * Make sure nobody diddled with it while I was sleeping.
2404 */
2405 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2406
2407 /*
2408 * Finish PREP stage. We're guaranteed to have at least one idle
2409 * worker or that someone else has already assumed the manager
2410 * role. This is where @worker starts participating in concurrency
2411 * management if applicable and concurrency management is restored
2412 * after being rebound. See rebind_workers() for details.
2413 */
2414 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2415
2416 do {
2417 struct work_struct *work =
2418 list_first_entry(&pool->worklist,
2419 struct work_struct, entry);
2420
2421 pool->watchdog_ts = jiffies;
2422
2423 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2424 /* optimization path, not strictly necessary */
2425 process_one_work(worker, work);
2426 if (unlikely(!list_empty(&worker->scheduled)))
2427 process_scheduled_works(worker);
2428 } else {
2429 move_linked_works(work, &worker->scheduled, NULL);
2430 process_scheduled_works(worker);
2431 }
2432 } while (keep_working(pool));
2433
2434 worker_set_flags(worker, WORKER_PREP);
2435 sleep:
2436 /*
2437 * pool->lock is held and there's no work to process and no need to
2438 * manage, sleep. Workers are woken up only while holding
2439 * pool->lock or from local cpu, so setting the current state
2440 * before releasing pool->lock is enough to prevent losing any
2441 * event.
2442 */
2443 worker_enter_idle(worker);
2444 __set_current_state(TASK_IDLE);
2445 raw_spin_unlock_irq(&pool->lock);
2446 schedule();
2447 goto woke_up;
2448 }
2449
2450 /**
2451 * rescuer_thread - the rescuer thread function
2452 * @__rescuer: self
2453 *
2454 * Workqueue rescuer thread function. There's one rescuer for each
2455 * workqueue which has WQ_MEM_RECLAIM set.
2456 *
2457 * Regular work processing on a pool may block trying to create a new
2458 * worker which uses GFP_KERNEL allocation which has slight chance of
2459 * developing into deadlock if some works currently on the same queue
2460 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2461 * the problem rescuer solves.
2462 *
2463 * When such condition is possible, the pool summons rescuers of all
2464 * workqueues which have works queued on the pool and let them process
2465 * those works so that forward progress can be guaranteed.
2466 *
2467 * This should happen rarely.
2468 *
2469 * Return: 0
2470 */
rescuer_thread(void * __rescuer)2471 static int rescuer_thread(void *__rescuer)
2472 {
2473 struct worker *rescuer = __rescuer;
2474 struct workqueue_struct *wq = rescuer->rescue_wq;
2475 struct list_head *scheduled = &rescuer->scheduled;
2476 bool should_stop;
2477
2478 set_user_nice(current, RESCUER_NICE_LEVEL);
2479
2480 /*
2481 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2482 * doesn't participate in concurrency management.
2483 */
2484 set_pf_worker(true);
2485 repeat:
2486 set_current_state(TASK_IDLE);
2487
2488 /*
2489 * By the time the rescuer is requested to stop, the workqueue
2490 * shouldn't have any work pending, but @wq->maydays may still have
2491 * pwq(s) queued. This can happen by non-rescuer workers consuming
2492 * all the work items before the rescuer got to them. Go through
2493 * @wq->maydays processing before acting on should_stop so that the
2494 * list is always empty on exit.
2495 */
2496 should_stop = kthread_should_stop();
2497
2498 /* see whether any pwq is asking for help */
2499 raw_spin_lock_irq(&wq_mayday_lock);
2500
2501 while (!list_empty(&wq->maydays)) {
2502 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2503 struct pool_workqueue, mayday_node);
2504 struct worker_pool *pool = pwq->pool;
2505 struct work_struct *work, *n;
2506 bool first = true;
2507
2508 __set_current_state(TASK_RUNNING);
2509 list_del_init(&pwq->mayday_node);
2510
2511 raw_spin_unlock_irq(&wq_mayday_lock);
2512
2513 worker_attach_to_pool(rescuer, pool);
2514
2515 raw_spin_lock_irq(&pool->lock);
2516
2517 /*
2518 * Slurp in all works issued via this workqueue and
2519 * process'em.
2520 */
2521 WARN_ON_ONCE(!list_empty(scheduled));
2522 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2523 if (get_work_pwq(work) == pwq) {
2524 if (first)
2525 pool->watchdog_ts = jiffies;
2526 move_linked_works(work, scheduled, &n);
2527 }
2528 first = false;
2529 }
2530
2531 if (!list_empty(scheduled)) {
2532 process_scheduled_works(rescuer);
2533
2534 /*
2535 * The above execution of rescued work items could
2536 * have created more to rescue through
2537 * pwq_activate_first_delayed() or chained
2538 * queueing. Let's put @pwq back on mayday list so
2539 * that such back-to-back work items, which may be
2540 * being used to relieve memory pressure, don't
2541 * incur MAYDAY_INTERVAL delay inbetween.
2542 */
2543 if (pwq->nr_active && need_to_create_worker(pool)) {
2544 raw_spin_lock(&wq_mayday_lock);
2545 /*
2546 * Queue iff we aren't racing destruction
2547 * and somebody else hasn't queued it already.
2548 */
2549 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2550 get_pwq(pwq);
2551 list_add_tail(&pwq->mayday_node, &wq->maydays);
2552 }
2553 raw_spin_unlock(&wq_mayday_lock);
2554 }
2555 }
2556
2557 /*
2558 * Put the reference grabbed by send_mayday(). @pool won't
2559 * go away while we're still attached to it.
2560 */
2561 put_pwq(pwq);
2562
2563 /*
2564 * Leave this pool. If need_more_worker() is %true, notify a
2565 * regular worker; otherwise, we end up with 0 concurrency
2566 * and stalling the execution.
2567 */
2568 if (need_more_worker(pool))
2569 wake_up_worker(pool);
2570
2571 raw_spin_unlock_irq(&pool->lock);
2572
2573 worker_detach_from_pool(rescuer);
2574
2575 raw_spin_lock_irq(&wq_mayday_lock);
2576 }
2577
2578 raw_spin_unlock_irq(&wq_mayday_lock);
2579
2580 if (should_stop) {
2581 __set_current_state(TASK_RUNNING);
2582 set_pf_worker(false);
2583 return 0;
2584 }
2585
2586 /* rescuers should never participate in concurrency management */
2587 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2588 schedule();
2589 goto repeat;
2590 }
2591
2592 /**
2593 * check_flush_dependency - check for flush dependency sanity
2594 * @target_wq: workqueue being flushed
2595 * @target_work: work item being flushed (NULL for workqueue flushes)
2596 *
2597 * %current is trying to flush the whole @target_wq or @target_work on it.
2598 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2599 * reclaiming memory or running on a workqueue which doesn't have
2600 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2601 * a deadlock.
2602 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2603 static void check_flush_dependency(struct workqueue_struct *target_wq,
2604 struct work_struct *target_work)
2605 {
2606 work_func_t target_func = target_work ? target_work->func : NULL;
2607 struct worker *worker;
2608
2609 if (target_wq->flags & WQ_MEM_RECLAIM)
2610 return;
2611
2612 worker = current_wq_worker();
2613
2614 WARN_ONCE(current->flags & PF_MEMALLOC,
2615 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2616 current->pid, current->comm, target_wq->name, target_func);
2617 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2618 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2619 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2620 worker->current_pwq->wq->name, worker->current_func,
2621 target_wq->name, target_func);
2622 }
2623
2624 struct wq_barrier {
2625 struct work_struct work;
2626 struct completion done;
2627 struct task_struct *task; /* purely informational */
2628 };
2629
wq_barrier_func(struct work_struct * work)2630 static void wq_barrier_func(struct work_struct *work)
2631 {
2632 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2633 complete(&barr->done);
2634 }
2635
2636 /**
2637 * insert_wq_barrier - insert a barrier work
2638 * @pwq: pwq to insert barrier into
2639 * @barr: wq_barrier to insert
2640 * @target: target work to attach @barr to
2641 * @worker: worker currently executing @target, NULL if @target is not executing
2642 *
2643 * @barr is linked to @target such that @barr is completed only after
2644 * @target finishes execution. Please note that the ordering
2645 * guarantee is observed only with respect to @target and on the local
2646 * cpu.
2647 *
2648 * Currently, a queued barrier can't be canceled. This is because
2649 * try_to_grab_pending() can't determine whether the work to be
2650 * grabbed is at the head of the queue and thus can't clear LINKED
2651 * flag of the previous work while there must be a valid next work
2652 * after a work with LINKED flag set.
2653 *
2654 * Note that when @worker is non-NULL, @target may be modified
2655 * underneath us, so we can't reliably determine pwq from @target.
2656 *
2657 * CONTEXT:
2658 * raw_spin_lock_irq(pool->lock).
2659 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2660 static void insert_wq_barrier(struct pool_workqueue *pwq,
2661 struct wq_barrier *barr,
2662 struct work_struct *target, struct worker *worker)
2663 {
2664 struct list_head *head;
2665 unsigned int linked = 0;
2666
2667 /*
2668 * debugobject calls are safe here even with pool->lock locked
2669 * as we know for sure that this will not trigger any of the
2670 * checks and call back into the fixup functions where we
2671 * might deadlock.
2672 */
2673 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2674 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2675
2676 init_completion_map(&barr->done, &target->lockdep_map);
2677
2678 barr->task = current;
2679
2680 /*
2681 * If @target is currently being executed, schedule the
2682 * barrier to the worker; otherwise, put it after @target.
2683 */
2684 if (worker)
2685 head = worker->scheduled.next;
2686 else {
2687 unsigned long *bits = work_data_bits(target);
2688
2689 head = target->entry.next;
2690 /* there can already be other linked works, inherit and set */
2691 linked = *bits & WORK_STRUCT_LINKED;
2692 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2693 }
2694
2695 debug_work_activate(&barr->work);
2696 insert_work(pwq, &barr->work, head,
2697 work_color_to_flags(WORK_NO_COLOR) | linked);
2698 }
2699
2700 /**
2701 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2702 * @wq: workqueue being flushed
2703 * @flush_color: new flush color, < 0 for no-op
2704 * @work_color: new work color, < 0 for no-op
2705 *
2706 * Prepare pwqs for workqueue flushing.
2707 *
2708 * If @flush_color is non-negative, flush_color on all pwqs should be
2709 * -1. If no pwq has in-flight commands at the specified color, all
2710 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2711 * has in flight commands, its pwq->flush_color is set to
2712 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2713 * wakeup logic is armed and %true is returned.
2714 *
2715 * The caller should have initialized @wq->first_flusher prior to
2716 * calling this function with non-negative @flush_color. If
2717 * @flush_color is negative, no flush color update is done and %false
2718 * is returned.
2719 *
2720 * If @work_color is non-negative, all pwqs should have the same
2721 * work_color which is previous to @work_color and all will be
2722 * advanced to @work_color.
2723 *
2724 * CONTEXT:
2725 * mutex_lock(wq->mutex).
2726 *
2727 * Return:
2728 * %true if @flush_color >= 0 and there's something to flush. %false
2729 * otherwise.
2730 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2731 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2732 int flush_color, int work_color)
2733 {
2734 bool wait = false;
2735 struct pool_workqueue *pwq;
2736
2737 if (flush_color >= 0) {
2738 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2739 atomic_set(&wq->nr_pwqs_to_flush, 1);
2740 }
2741
2742 for_each_pwq(pwq, wq) {
2743 struct worker_pool *pool = pwq->pool;
2744
2745 raw_spin_lock_irq(&pool->lock);
2746
2747 if (flush_color >= 0) {
2748 WARN_ON_ONCE(pwq->flush_color != -1);
2749
2750 if (pwq->nr_in_flight[flush_color]) {
2751 pwq->flush_color = flush_color;
2752 atomic_inc(&wq->nr_pwqs_to_flush);
2753 wait = true;
2754 }
2755 }
2756
2757 if (work_color >= 0) {
2758 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2759 pwq->work_color = work_color;
2760 }
2761
2762 raw_spin_unlock_irq(&pool->lock);
2763 }
2764
2765 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2766 complete(&wq->first_flusher->done);
2767
2768 return wait;
2769 }
2770
2771 /**
2772 * flush_workqueue - ensure that any scheduled work has run to completion.
2773 * @wq: workqueue to flush
2774 *
2775 * This function sleeps until all work items which were queued on entry
2776 * have finished execution, but it is not livelocked by new incoming ones.
2777 */
flush_workqueue(struct workqueue_struct * wq)2778 void flush_workqueue(struct workqueue_struct *wq)
2779 {
2780 struct wq_flusher this_flusher = {
2781 .list = LIST_HEAD_INIT(this_flusher.list),
2782 .flush_color = -1,
2783 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2784 };
2785 int next_color;
2786
2787 if (WARN_ON(!wq_online))
2788 return;
2789
2790 lock_map_acquire(&wq->lockdep_map);
2791 lock_map_release(&wq->lockdep_map);
2792
2793 mutex_lock(&wq->mutex);
2794
2795 /*
2796 * Start-to-wait phase
2797 */
2798 next_color = work_next_color(wq->work_color);
2799
2800 if (next_color != wq->flush_color) {
2801 /*
2802 * Color space is not full. The current work_color
2803 * becomes our flush_color and work_color is advanced
2804 * by one.
2805 */
2806 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2807 this_flusher.flush_color = wq->work_color;
2808 wq->work_color = next_color;
2809
2810 if (!wq->first_flusher) {
2811 /* no flush in progress, become the first flusher */
2812 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2813
2814 wq->first_flusher = &this_flusher;
2815
2816 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2817 wq->work_color)) {
2818 /* nothing to flush, done */
2819 wq->flush_color = next_color;
2820 wq->first_flusher = NULL;
2821 goto out_unlock;
2822 }
2823 } else {
2824 /* wait in queue */
2825 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2826 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2827 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2828 }
2829 } else {
2830 /*
2831 * Oops, color space is full, wait on overflow queue.
2832 * The next flush completion will assign us
2833 * flush_color and transfer to flusher_queue.
2834 */
2835 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2836 }
2837
2838 check_flush_dependency(wq, NULL);
2839
2840 mutex_unlock(&wq->mutex);
2841
2842 wait_for_completion(&this_flusher.done);
2843
2844 /*
2845 * Wake-up-and-cascade phase
2846 *
2847 * First flushers are responsible for cascading flushes and
2848 * handling overflow. Non-first flushers can simply return.
2849 */
2850 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2851 return;
2852
2853 mutex_lock(&wq->mutex);
2854
2855 /* we might have raced, check again with mutex held */
2856 if (wq->first_flusher != &this_flusher)
2857 goto out_unlock;
2858
2859 WRITE_ONCE(wq->first_flusher, NULL);
2860
2861 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2862 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2863
2864 while (true) {
2865 struct wq_flusher *next, *tmp;
2866
2867 /* complete all the flushers sharing the current flush color */
2868 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2869 if (next->flush_color != wq->flush_color)
2870 break;
2871 list_del_init(&next->list);
2872 complete(&next->done);
2873 }
2874
2875 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2876 wq->flush_color != work_next_color(wq->work_color));
2877
2878 /* this flush_color is finished, advance by one */
2879 wq->flush_color = work_next_color(wq->flush_color);
2880
2881 /* one color has been freed, handle overflow queue */
2882 if (!list_empty(&wq->flusher_overflow)) {
2883 /*
2884 * Assign the same color to all overflowed
2885 * flushers, advance work_color and append to
2886 * flusher_queue. This is the start-to-wait
2887 * phase for these overflowed flushers.
2888 */
2889 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2890 tmp->flush_color = wq->work_color;
2891
2892 wq->work_color = work_next_color(wq->work_color);
2893
2894 list_splice_tail_init(&wq->flusher_overflow,
2895 &wq->flusher_queue);
2896 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2897 }
2898
2899 if (list_empty(&wq->flusher_queue)) {
2900 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2901 break;
2902 }
2903
2904 /*
2905 * Need to flush more colors. Make the next flusher
2906 * the new first flusher and arm pwqs.
2907 */
2908 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2909 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2910
2911 list_del_init(&next->list);
2912 wq->first_flusher = next;
2913
2914 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2915 break;
2916
2917 /*
2918 * Meh... this color is already done, clear first
2919 * flusher and repeat cascading.
2920 */
2921 wq->first_flusher = NULL;
2922 }
2923
2924 out_unlock:
2925 mutex_unlock(&wq->mutex);
2926 }
2927 EXPORT_SYMBOL(flush_workqueue);
2928
2929 /**
2930 * drain_workqueue - drain a workqueue
2931 * @wq: workqueue to drain
2932 *
2933 * Wait until the workqueue becomes empty. While draining is in progress,
2934 * only chain queueing is allowed. IOW, only currently pending or running
2935 * work items on @wq can queue further work items on it. @wq is flushed
2936 * repeatedly until it becomes empty. The number of flushing is determined
2937 * by the depth of chaining and should be relatively short. Whine if it
2938 * takes too long.
2939 */
drain_workqueue(struct workqueue_struct * wq)2940 void drain_workqueue(struct workqueue_struct *wq)
2941 {
2942 unsigned int flush_cnt = 0;
2943 struct pool_workqueue *pwq;
2944
2945 /*
2946 * __queue_work() needs to test whether there are drainers, is much
2947 * hotter than drain_workqueue() and already looks at @wq->flags.
2948 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2949 */
2950 mutex_lock(&wq->mutex);
2951 if (!wq->nr_drainers++)
2952 wq->flags |= __WQ_DRAINING;
2953 mutex_unlock(&wq->mutex);
2954 reflush:
2955 flush_workqueue(wq);
2956
2957 mutex_lock(&wq->mutex);
2958
2959 for_each_pwq(pwq, wq) {
2960 bool drained;
2961
2962 raw_spin_lock_irq(&pwq->pool->lock);
2963 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2964 raw_spin_unlock_irq(&pwq->pool->lock);
2965
2966 if (drained)
2967 continue;
2968
2969 if (++flush_cnt == 10 ||
2970 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2971 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2972 wq->name, flush_cnt);
2973
2974 mutex_unlock(&wq->mutex);
2975 goto reflush;
2976 }
2977
2978 if (!--wq->nr_drainers)
2979 wq->flags &= ~__WQ_DRAINING;
2980 mutex_unlock(&wq->mutex);
2981 }
2982 EXPORT_SYMBOL_GPL(drain_workqueue);
2983
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2984 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2985 bool from_cancel)
2986 {
2987 struct worker *worker = NULL;
2988 struct worker_pool *pool;
2989 struct pool_workqueue *pwq;
2990
2991 might_sleep();
2992
2993 rcu_read_lock();
2994 pool = get_work_pool(work);
2995 if (!pool) {
2996 rcu_read_unlock();
2997 return false;
2998 }
2999
3000 raw_spin_lock_irq(&pool->lock);
3001 /* see the comment in try_to_grab_pending() with the same code */
3002 pwq = get_work_pwq(work);
3003 if (pwq) {
3004 if (unlikely(pwq->pool != pool))
3005 goto already_gone;
3006 } else {
3007 worker = find_worker_executing_work(pool, work);
3008 if (!worker)
3009 goto already_gone;
3010 pwq = worker->current_pwq;
3011 }
3012
3013 check_flush_dependency(pwq->wq, work);
3014
3015 insert_wq_barrier(pwq, barr, work, worker);
3016 raw_spin_unlock_irq(&pool->lock);
3017
3018 /*
3019 * Force a lock recursion deadlock when using flush_work() inside a
3020 * single-threaded or rescuer equipped workqueue.
3021 *
3022 * For single threaded workqueues the deadlock happens when the work
3023 * is after the work issuing the flush_work(). For rescuer equipped
3024 * workqueues the deadlock happens when the rescuer stalls, blocking
3025 * forward progress.
3026 */
3027 if (!from_cancel &&
3028 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3029 lock_map_acquire(&pwq->wq->lockdep_map);
3030 lock_map_release(&pwq->wq->lockdep_map);
3031 }
3032 rcu_read_unlock();
3033 return true;
3034 already_gone:
3035 raw_spin_unlock_irq(&pool->lock);
3036 rcu_read_unlock();
3037 return false;
3038 }
3039
__flush_work(struct work_struct * work,bool from_cancel)3040 static bool __flush_work(struct work_struct *work, bool from_cancel)
3041 {
3042 struct wq_barrier barr;
3043
3044 if (WARN_ON(!wq_online))
3045 return false;
3046
3047 if (WARN_ON(!work->func))
3048 return false;
3049
3050 if (!from_cancel) {
3051 lock_map_acquire(&work->lockdep_map);
3052 lock_map_release(&work->lockdep_map);
3053 }
3054
3055 if (start_flush_work(work, &barr, from_cancel)) {
3056 wait_for_completion(&barr.done);
3057 destroy_work_on_stack(&barr.work);
3058 return true;
3059 } else {
3060 return false;
3061 }
3062 }
3063
3064 /**
3065 * flush_work - wait for a work to finish executing the last queueing instance
3066 * @work: the work to flush
3067 *
3068 * Wait until @work has finished execution. @work is guaranteed to be idle
3069 * on return if it hasn't been requeued since flush started.
3070 *
3071 * Return:
3072 * %true if flush_work() waited for the work to finish execution,
3073 * %false if it was already idle.
3074 */
flush_work(struct work_struct * work)3075 bool flush_work(struct work_struct *work)
3076 {
3077 return __flush_work(work, false);
3078 }
3079 EXPORT_SYMBOL_GPL(flush_work);
3080
3081 struct cwt_wait {
3082 wait_queue_entry_t wait;
3083 struct work_struct *work;
3084 };
3085
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3086 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3087 {
3088 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3089
3090 if (cwait->work != key)
3091 return 0;
3092 return autoremove_wake_function(wait, mode, sync, key);
3093 }
3094
__cancel_work_timer(struct work_struct * work,bool is_dwork)3095 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3096 {
3097 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3098 unsigned long flags;
3099 int ret;
3100
3101 do {
3102 ret = try_to_grab_pending(work, is_dwork, &flags);
3103 /*
3104 * If someone else is already canceling, wait for it to
3105 * finish. flush_work() doesn't work for PREEMPT_NONE
3106 * because we may get scheduled between @work's completion
3107 * and the other canceling task resuming and clearing
3108 * CANCELING - flush_work() will return false immediately
3109 * as @work is no longer busy, try_to_grab_pending() will
3110 * return -ENOENT as @work is still being canceled and the
3111 * other canceling task won't be able to clear CANCELING as
3112 * we're hogging the CPU.
3113 *
3114 * Let's wait for completion using a waitqueue. As this
3115 * may lead to the thundering herd problem, use a custom
3116 * wake function which matches @work along with exclusive
3117 * wait and wakeup.
3118 */
3119 if (unlikely(ret == -ENOENT)) {
3120 struct cwt_wait cwait;
3121
3122 init_wait(&cwait.wait);
3123 cwait.wait.func = cwt_wakefn;
3124 cwait.work = work;
3125
3126 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3127 TASK_UNINTERRUPTIBLE);
3128 if (work_is_canceling(work))
3129 schedule();
3130 finish_wait(&cancel_waitq, &cwait.wait);
3131 }
3132 } while (unlikely(ret < 0));
3133
3134 /* tell other tasks trying to grab @work to back off */
3135 mark_work_canceling(work);
3136 local_irq_restore(flags);
3137
3138 /*
3139 * This allows canceling during early boot. We know that @work
3140 * isn't executing.
3141 */
3142 if (wq_online)
3143 __flush_work(work, true);
3144
3145 clear_work_data(work);
3146
3147 /*
3148 * Paired with prepare_to_wait() above so that either
3149 * waitqueue_active() is visible here or !work_is_canceling() is
3150 * visible there.
3151 */
3152 smp_mb();
3153 if (waitqueue_active(&cancel_waitq))
3154 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3155
3156 return ret;
3157 }
3158
3159 /**
3160 * cancel_work_sync - cancel a work and wait for it to finish
3161 * @work: the work to cancel
3162 *
3163 * Cancel @work and wait for its execution to finish. This function
3164 * can be used even if the work re-queues itself or migrates to
3165 * another workqueue. On return from this function, @work is
3166 * guaranteed to be not pending or executing on any CPU.
3167 *
3168 * cancel_work_sync(&delayed_work->work) must not be used for
3169 * delayed_work's. Use cancel_delayed_work_sync() instead.
3170 *
3171 * The caller must ensure that the workqueue on which @work was last
3172 * queued can't be destroyed before this function returns.
3173 *
3174 * Return:
3175 * %true if @work was pending, %false otherwise.
3176 */
cancel_work_sync(struct work_struct * work)3177 bool cancel_work_sync(struct work_struct *work)
3178 {
3179 return __cancel_work_timer(work, false);
3180 }
3181 EXPORT_SYMBOL_GPL(cancel_work_sync);
3182
3183 /**
3184 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3185 * @dwork: the delayed work to flush
3186 *
3187 * Delayed timer is cancelled and the pending work is queued for
3188 * immediate execution. Like flush_work(), this function only
3189 * considers the last queueing instance of @dwork.
3190 *
3191 * Return:
3192 * %true if flush_work() waited for the work to finish execution,
3193 * %false if it was already idle.
3194 */
flush_delayed_work(struct delayed_work * dwork)3195 bool flush_delayed_work(struct delayed_work *dwork)
3196 {
3197 local_irq_disable();
3198 if (del_timer_sync(&dwork->timer))
3199 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3200 local_irq_enable();
3201 return flush_work(&dwork->work);
3202 }
3203 EXPORT_SYMBOL(flush_delayed_work);
3204
3205 /**
3206 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3207 * @rwork: the rcu work to flush
3208 *
3209 * Return:
3210 * %true if flush_rcu_work() waited for the work to finish execution,
3211 * %false if it was already idle.
3212 */
flush_rcu_work(struct rcu_work * rwork)3213 bool flush_rcu_work(struct rcu_work *rwork)
3214 {
3215 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3216 rcu_barrier();
3217 flush_work(&rwork->work);
3218 return true;
3219 } else {
3220 return flush_work(&rwork->work);
3221 }
3222 }
3223 EXPORT_SYMBOL(flush_rcu_work);
3224
__cancel_work(struct work_struct * work,bool is_dwork)3225 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3226 {
3227 unsigned long flags;
3228 int ret;
3229
3230 do {
3231 ret = try_to_grab_pending(work, is_dwork, &flags);
3232 } while (unlikely(ret == -EAGAIN));
3233
3234 if (unlikely(ret < 0))
3235 return false;
3236
3237 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3238 local_irq_restore(flags);
3239 return ret;
3240 }
3241
3242 /**
3243 * cancel_delayed_work - cancel a delayed work
3244 * @dwork: delayed_work to cancel
3245 *
3246 * Kill off a pending delayed_work.
3247 *
3248 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3249 * pending.
3250 *
3251 * Note:
3252 * The work callback function may still be running on return, unless
3253 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3254 * use cancel_delayed_work_sync() to wait on it.
3255 *
3256 * This function is safe to call from any context including IRQ handler.
3257 */
cancel_delayed_work(struct delayed_work * dwork)3258 bool cancel_delayed_work(struct delayed_work *dwork)
3259 {
3260 return __cancel_work(&dwork->work, true);
3261 }
3262 EXPORT_SYMBOL(cancel_delayed_work);
3263
3264 /**
3265 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3266 * @dwork: the delayed work cancel
3267 *
3268 * This is cancel_work_sync() for delayed works.
3269 *
3270 * Return:
3271 * %true if @dwork was pending, %false otherwise.
3272 */
cancel_delayed_work_sync(struct delayed_work * dwork)3273 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3274 {
3275 return __cancel_work_timer(&dwork->work, true);
3276 }
3277 EXPORT_SYMBOL(cancel_delayed_work_sync);
3278
3279 /**
3280 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3281 * @func: the function to call
3282 *
3283 * schedule_on_each_cpu() executes @func on each online CPU using the
3284 * system workqueue and blocks until all CPUs have completed.
3285 * schedule_on_each_cpu() is very slow.
3286 *
3287 * Return:
3288 * 0 on success, -errno on failure.
3289 */
schedule_on_each_cpu(work_func_t func)3290 int schedule_on_each_cpu(work_func_t func)
3291 {
3292 int cpu;
3293 struct work_struct __percpu *works;
3294
3295 works = alloc_percpu(struct work_struct);
3296 if (!works)
3297 return -ENOMEM;
3298
3299 get_online_cpus();
3300
3301 for_each_online_cpu(cpu) {
3302 struct work_struct *work = per_cpu_ptr(works, cpu);
3303
3304 INIT_WORK(work, func);
3305 schedule_work_on(cpu, work);
3306 }
3307
3308 for_each_online_cpu(cpu)
3309 flush_work(per_cpu_ptr(works, cpu));
3310
3311 put_online_cpus();
3312 free_percpu(works);
3313 return 0;
3314 }
3315
3316 /**
3317 * execute_in_process_context - reliably execute the routine with user context
3318 * @fn: the function to execute
3319 * @ew: guaranteed storage for the execute work structure (must
3320 * be available when the work executes)
3321 *
3322 * Executes the function immediately if process context is available,
3323 * otherwise schedules the function for delayed execution.
3324 *
3325 * Return: 0 - function was executed
3326 * 1 - function was scheduled for execution
3327 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3328 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3329 {
3330 if (!in_interrupt()) {
3331 fn(&ew->work);
3332 return 0;
3333 }
3334
3335 INIT_WORK(&ew->work, fn);
3336 schedule_work(&ew->work);
3337
3338 return 1;
3339 }
3340 EXPORT_SYMBOL_GPL(execute_in_process_context);
3341
3342 /**
3343 * free_workqueue_attrs - free a workqueue_attrs
3344 * @attrs: workqueue_attrs to free
3345 *
3346 * Undo alloc_workqueue_attrs().
3347 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3348 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3349 {
3350 if (attrs) {
3351 free_cpumask_var(attrs->cpumask);
3352 kfree(attrs);
3353 }
3354 }
3355
3356 /**
3357 * alloc_workqueue_attrs - allocate a workqueue_attrs
3358 *
3359 * Allocate a new workqueue_attrs, initialize with default settings and
3360 * return it.
3361 *
3362 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3363 */
alloc_workqueue_attrs(void)3364 struct workqueue_attrs *alloc_workqueue_attrs(void)
3365 {
3366 struct workqueue_attrs *attrs;
3367
3368 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3369 if (!attrs)
3370 goto fail;
3371 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3372 goto fail;
3373
3374 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3375 return attrs;
3376 fail:
3377 free_workqueue_attrs(attrs);
3378 return NULL;
3379 }
3380
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3381 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3382 const struct workqueue_attrs *from)
3383 {
3384 to->nice = from->nice;
3385 cpumask_copy(to->cpumask, from->cpumask);
3386 /*
3387 * Unlike hash and equality test, this function doesn't ignore
3388 * ->no_numa as it is used for both pool and wq attrs. Instead,
3389 * get_unbound_pool() explicitly clears ->no_numa after copying.
3390 */
3391 to->no_numa = from->no_numa;
3392 }
3393
3394 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3395 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3396 {
3397 u32 hash = 0;
3398
3399 hash = jhash_1word(attrs->nice, hash);
3400 hash = jhash(cpumask_bits(attrs->cpumask),
3401 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3402 return hash;
3403 }
3404
3405 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3406 static bool wqattrs_equal(const struct workqueue_attrs *a,
3407 const struct workqueue_attrs *b)
3408 {
3409 if (a->nice != b->nice)
3410 return false;
3411 if (!cpumask_equal(a->cpumask, b->cpumask))
3412 return false;
3413 return true;
3414 }
3415
3416 /**
3417 * init_worker_pool - initialize a newly zalloc'd worker_pool
3418 * @pool: worker_pool to initialize
3419 *
3420 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3421 *
3422 * Return: 0 on success, -errno on failure. Even on failure, all fields
3423 * inside @pool proper are initialized and put_unbound_pool() can be called
3424 * on @pool safely to release it.
3425 */
init_worker_pool(struct worker_pool * pool)3426 static int init_worker_pool(struct worker_pool *pool)
3427 {
3428 raw_spin_lock_init(&pool->lock);
3429 pool->id = -1;
3430 pool->cpu = -1;
3431 pool->node = NUMA_NO_NODE;
3432 pool->flags |= POOL_DISASSOCIATED;
3433 pool->watchdog_ts = jiffies;
3434 INIT_LIST_HEAD(&pool->worklist);
3435 INIT_LIST_HEAD(&pool->idle_list);
3436 hash_init(pool->busy_hash);
3437
3438 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3439
3440 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3441
3442 INIT_LIST_HEAD(&pool->workers);
3443
3444 ida_init(&pool->worker_ida);
3445 INIT_HLIST_NODE(&pool->hash_node);
3446 pool->refcnt = 1;
3447
3448 /* shouldn't fail above this point */
3449 pool->attrs = alloc_workqueue_attrs();
3450 if (!pool->attrs)
3451 return -ENOMEM;
3452 return 0;
3453 }
3454
3455 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3456 static void wq_init_lockdep(struct workqueue_struct *wq)
3457 {
3458 char *lock_name;
3459
3460 lockdep_register_key(&wq->key);
3461 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3462 if (!lock_name)
3463 lock_name = wq->name;
3464
3465 wq->lock_name = lock_name;
3466 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3467 }
3468
wq_unregister_lockdep(struct workqueue_struct * wq)3469 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470 {
3471 lockdep_unregister_key(&wq->key);
3472 }
3473
wq_free_lockdep(struct workqueue_struct * wq)3474 static void wq_free_lockdep(struct workqueue_struct *wq)
3475 {
3476 if (wq->lock_name != wq->name)
3477 kfree(wq->lock_name);
3478 }
3479 #else
wq_init_lockdep(struct workqueue_struct * wq)3480 static void wq_init_lockdep(struct workqueue_struct *wq)
3481 {
3482 }
3483
wq_unregister_lockdep(struct workqueue_struct * wq)3484 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3485 {
3486 }
3487
wq_free_lockdep(struct workqueue_struct * wq)3488 static void wq_free_lockdep(struct workqueue_struct *wq)
3489 {
3490 }
3491 #endif
3492
rcu_free_wq(struct rcu_head * rcu)3493 static void rcu_free_wq(struct rcu_head *rcu)
3494 {
3495 struct workqueue_struct *wq =
3496 container_of(rcu, struct workqueue_struct, rcu);
3497
3498 wq_free_lockdep(wq);
3499
3500 if (!(wq->flags & WQ_UNBOUND))
3501 free_percpu(wq->cpu_pwqs);
3502 else
3503 free_workqueue_attrs(wq->unbound_attrs);
3504
3505 kfree(wq);
3506 }
3507
rcu_free_pool(struct rcu_head * rcu)3508 static void rcu_free_pool(struct rcu_head *rcu)
3509 {
3510 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3511
3512 ida_destroy(&pool->worker_ida);
3513 free_workqueue_attrs(pool->attrs);
3514 kfree(pool);
3515 }
3516
3517 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3518 static bool wq_manager_inactive(struct worker_pool *pool)
3519 {
3520 raw_spin_lock_irq(&pool->lock);
3521
3522 if (pool->flags & POOL_MANAGER_ACTIVE) {
3523 raw_spin_unlock_irq(&pool->lock);
3524 return false;
3525 }
3526 return true;
3527 }
3528
3529 /**
3530 * put_unbound_pool - put a worker_pool
3531 * @pool: worker_pool to put
3532 *
3533 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3534 * safe manner. get_unbound_pool() calls this function on its failure path
3535 * and this function should be able to release pools which went through,
3536 * successfully or not, init_worker_pool().
3537 *
3538 * Should be called with wq_pool_mutex held.
3539 */
put_unbound_pool(struct worker_pool * pool)3540 static void put_unbound_pool(struct worker_pool *pool)
3541 {
3542 DECLARE_COMPLETION_ONSTACK(detach_completion);
3543 struct worker *worker;
3544
3545 lockdep_assert_held(&wq_pool_mutex);
3546
3547 if (--pool->refcnt)
3548 return;
3549
3550 /* sanity checks */
3551 if (WARN_ON(!(pool->cpu < 0)) ||
3552 WARN_ON(!list_empty(&pool->worklist)))
3553 return;
3554
3555 /* release id and unhash */
3556 if (pool->id >= 0)
3557 idr_remove(&worker_pool_idr, pool->id);
3558 hash_del(&pool->hash_node);
3559
3560 /*
3561 * Become the manager and destroy all workers. This prevents
3562 * @pool's workers from blocking on attach_mutex. We're the last
3563 * manager and @pool gets freed with the flag set.
3564 * Because of how wq_manager_inactive() works, we will hold the
3565 * spinlock after a successful wait.
3566 */
3567 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3568 TASK_UNINTERRUPTIBLE);
3569 pool->flags |= POOL_MANAGER_ACTIVE;
3570
3571 while ((worker = first_idle_worker(pool)))
3572 destroy_worker(worker);
3573 WARN_ON(pool->nr_workers || pool->nr_idle);
3574 raw_spin_unlock_irq(&pool->lock);
3575
3576 mutex_lock(&wq_pool_attach_mutex);
3577 if (!list_empty(&pool->workers))
3578 pool->detach_completion = &detach_completion;
3579 mutex_unlock(&wq_pool_attach_mutex);
3580
3581 if (pool->detach_completion)
3582 wait_for_completion(pool->detach_completion);
3583
3584 /* shut down the timers */
3585 del_timer_sync(&pool->idle_timer);
3586 del_timer_sync(&pool->mayday_timer);
3587
3588 /* RCU protected to allow dereferences from get_work_pool() */
3589 call_rcu(&pool->rcu, rcu_free_pool);
3590 }
3591
3592 /**
3593 * get_unbound_pool - get a worker_pool with the specified attributes
3594 * @attrs: the attributes of the worker_pool to get
3595 *
3596 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3597 * reference count and return it. If there already is a matching
3598 * worker_pool, it will be used; otherwise, this function attempts to
3599 * create a new one.
3600 *
3601 * Should be called with wq_pool_mutex held.
3602 *
3603 * Return: On success, a worker_pool with the same attributes as @attrs.
3604 * On failure, %NULL.
3605 */
get_unbound_pool(const struct workqueue_attrs * attrs)3606 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3607 {
3608 u32 hash = wqattrs_hash(attrs);
3609 struct worker_pool *pool;
3610 int node;
3611 int target_node = NUMA_NO_NODE;
3612
3613 lockdep_assert_held(&wq_pool_mutex);
3614
3615 /* do we already have a matching pool? */
3616 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3617 if (wqattrs_equal(pool->attrs, attrs)) {
3618 pool->refcnt++;
3619 return pool;
3620 }
3621 }
3622
3623 /* if cpumask is contained inside a NUMA node, we belong to that node */
3624 if (wq_numa_enabled) {
3625 for_each_node(node) {
3626 if (cpumask_subset(attrs->cpumask,
3627 wq_numa_possible_cpumask[node])) {
3628 target_node = node;
3629 break;
3630 }
3631 }
3632 }
3633
3634 /* nope, create a new one */
3635 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3636 if (!pool || init_worker_pool(pool) < 0)
3637 goto fail;
3638
3639 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3640 copy_workqueue_attrs(pool->attrs, attrs);
3641 pool->node = target_node;
3642
3643 /*
3644 * no_numa isn't a worker_pool attribute, always clear it. See
3645 * 'struct workqueue_attrs' comments for detail.
3646 */
3647 pool->attrs->no_numa = false;
3648
3649 if (worker_pool_assign_id(pool) < 0)
3650 goto fail;
3651
3652 /* create and start the initial worker */
3653 if (wq_online && !create_worker(pool))
3654 goto fail;
3655
3656 /* install */
3657 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3658
3659 return pool;
3660 fail:
3661 if (pool)
3662 put_unbound_pool(pool);
3663 return NULL;
3664 }
3665
rcu_free_pwq(struct rcu_head * rcu)3666 static void rcu_free_pwq(struct rcu_head *rcu)
3667 {
3668 kmem_cache_free(pwq_cache,
3669 container_of(rcu, struct pool_workqueue, rcu));
3670 }
3671
3672 /*
3673 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3674 * and needs to be destroyed.
3675 */
pwq_unbound_release_workfn(struct work_struct * work)3676 static void pwq_unbound_release_workfn(struct work_struct *work)
3677 {
3678 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3679 unbound_release_work);
3680 struct workqueue_struct *wq = pwq->wq;
3681 struct worker_pool *pool = pwq->pool;
3682 bool is_last = false;
3683
3684 /*
3685 * when @pwq is not linked, it doesn't hold any reference to the
3686 * @wq, and @wq is invalid to access.
3687 */
3688 if (!list_empty(&pwq->pwqs_node)) {
3689 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3690 return;
3691
3692 mutex_lock(&wq->mutex);
3693 list_del_rcu(&pwq->pwqs_node);
3694 is_last = list_empty(&wq->pwqs);
3695 mutex_unlock(&wq->mutex);
3696 }
3697
3698 mutex_lock(&wq_pool_mutex);
3699 put_unbound_pool(pool);
3700 mutex_unlock(&wq_pool_mutex);
3701
3702 call_rcu(&pwq->rcu, rcu_free_pwq);
3703
3704 /*
3705 * If we're the last pwq going away, @wq is already dead and no one
3706 * is gonna access it anymore. Schedule RCU free.
3707 */
3708 if (is_last) {
3709 wq_unregister_lockdep(wq);
3710 call_rcu(&wq->rcu, rcu_free_wq);
3711 }
3712 }
3713
3714 /**
3715 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3716 * @pwq: target pool_workqueue
3717 *
3718 * If @pwq isn't freezing, set @pwq->max_active to the associated
3719 * workqueue's saved_max_active and activate delayed work items
3720 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3721 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3722 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3723 {
3724 struct workqueue_struct *wq = pwq->wq;
3725 bool freezable = wq->flags & WQ_FREEZABLE;
3726 unsigned long flags;
3727
3728 /* for @wq->saved_max_active */
3729 lockdep_assert_held(&wq->mutex);
3730
3731 /* fast exit for non-freezable wqs */
3732 if (!freezable && pwq->max_active == wq->saved_max_active)
3733 return;
3734
3735 /* this function can be called during early boot w/ irq disabled */
3736 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3737
3738 /*
3739 * During [un]freezing, the caller is responsible for ensuring that
3740 * this function is called at least once after @workqueue_freezing
3741 * is updated and visible.
3742 */
3743 if (!freezable || !workqueue_freezing) {
3744 bool kick = false;
3745
3746 pwq->max_active = wq->saved_max_active;
3747
3748 while (!list_empty(&pwq->delayed_works) &&
3749 pwq->nr_active < pwq->max_active) {
3750 pwq_activate_first_delayed(pwq);
3751 kick = true;
3752 }
3753
3754 /*
3755 * Need to kick a worker after thawed or an unbound wq's
3756 * max_active is bumped. In realtime scenarios, always kicking a
3757 * worker will cause interference on the isolated cpu cores, so
3758 * let's kick iff work items were activated.
3759 */
3760 if (kick)
3761 wake_up_worker(pwq->pool);
3762 } else {
3763 pwq->max_active = 0;
3764 }
3765
3766 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3767 }
3768
3769 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3770 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3771 struct worker_pool *pool)
3772 {
3773 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3774
3775 memset(pwq, 0, sizeof(*pwq));
3776
3777 pwq->pool = pool;
3778 pwq->wq = wq;
3779 pwq->flush_color = -1;
3780 pwq->refcnt = 1;
3781 INIT_LIST_HEAD(&pwq->delayed_works);
3782 INIT_LIST_HEAD(&pwq->pwqs_node);
3783 INIT_LIST_HEAD(&pwq->mayday_node);
3784 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3785 }
3786
3787 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3788 static void link_pwq(struct pool_workqueue *pwq)
3789 {
3790 struct workqueue_struct *wq = pwq->wq;
3791
3792 lockdep_assert_held(&wq->mutex);
3793
3794 /* may be called multiple times, ignore if already linked */
3795 if (!list_empty(&pwq->pwqs_node))
3796 return;
3797
3798 /* set the matching work_color */
3799 pwq->work_color = wq->work_color;
3800
3801 /* sync max_active to the current setting */
3802 pwq_adjust_max_active(pwq);
3803
3804 /* link in @pwq */
3805 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3806 }
3807
3808 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3809 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3810 const struct workqueue_attrs *attrs)
3811 {
3812 struct worker_pool *pool;
3813 struct pool_workqueue *pwq;
3814
3815 lockdep_assert_held(&wq_pool_mutex);
3816
3817 pool = get_unbound_pool(attrs);
3818 if (!pool)
3819 return NULL;
3820
3821 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3822 if (!pwq) {
3823 put_unbound_pool(pool);
3824 return NULL;
3825 }
3826
3827 init_pwq(pwq, wq, pool);
3828 return pwq;
3829 }
3830
3831 /**
3832 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3833 * @attrs: the wq_attrs of the default pwq of the target workqueue
3834 * @node: the target NUMA node
3835 * @cpu_going_down: if >= 0, the CPU to consider as offline
3836 * @cpumask: outarg, the resulting cpumask
3837 *
3838 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3839 * @cpu_going_down is >= 0, that cpu is considered offline during
3840 * calculation. The result is stored in @cpumask.
3841 *
3842 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3843 * enabled and @node has online CPUs requested by @attrs, the returned
3844 * cpumask is the intersection of the possible CPUs of @node and
3845 * @attrs->cpumask.
3846 *
3847 * The caller is responsible for ensuring that the cpumask of @node stays
3848 * stable.
3849 *
3850 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3851 * %false if equal.
3852 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3853 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3854 int cpu_going_down, cpumask_t *cpumask)
3855 {
3856 if (!wq_numa_enabled || attrs->no_numa)
3857 goto use_dfl;
3858
3859 /* does @node have any online CPUs @attrs wants? */
3860 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3861 if (cpu_going_down >= 0)
3862 cpumask_clear_cpu(cpu_going_down, cpumask);
3863
3864 if (cpumask_empty(cpumask))
3865 goto use_dfl;
3866
3867 /* yeap, return possible CPUs in @node that @attrs wants */
3868 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3869
3870 if (cpumask_empty(cpumask)) {
3871 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3872 "possible intersect\n");
3873 return false;
3874 }
3875
3876 return !cpumask_equal(cpumask, attrs->cpumask);
3877
3878 use_dfl:
3879 cpumask_copy(cpumask, attrs->cpumask);
3880 return false;
3881 }
3882
3883 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3884 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3885 int node,
3886 struct pool_workqueue *pwq)
3887 {
3888 struct pool_workqueue *old_pwq;
3889
3890 lockdep_assert_held(&wq_pool_mutex);
3891 lockdep_assert_held(&wq->mutex);
3892
3893 /* link_pwq() can handle duplicate calls */
3894 link_pwq(pwq);
3895
3896 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3897 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3898 return old_pwq;
3899 }
3900
3901 /* context to store the prepared attrs & pwqs before applying */
3902 struct apply_wqattrs_ctx {
3903 struct workqueue_struct *wq; /* target workqueue */
3904 struct workqueue_attrs *attrs; /* attrs to apply */
3905 struct list_head list; /* queued for batching commit */
3906 struct pool_workqueue *dfl_pwq;
3907 struct pool_workqueue *pwq_tbl[];
3908 };
3909
3910 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3911 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3912 {
3913 if (ctx) {
3914 int node;
3915
3916 for_each_node(node)
3917 put_pwq_unlocked(ctx->pwq_tbl[node]);
3918 put_pwq_unlocked(ctx->dfl_pwq);
3919
3920 free_workqueue_attrs(ctx->attrs);
3921
3922 kfree(ctx);
3923 }
3924 }
3925
3926 /* allocate the attrs and pwqs for later installation */
3927 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3928 apply_wqattrs_prepare(struct workqueue_struct *wq,
3929 const struct workqueue_attrs *attrs)
3930 {
3931 struct apply_wqattrs_ctx *ctx;
3932 struct workqueue_attrs *new_attrs, *tmp_attrs;
3933 int node;
3934
3935 lockdep_assert_held(&wq_pool_mutex);
3936
3937 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3938
3939 new_attrs = alloc_workqueue_attrs();
3940 tmp_attrs = alloc_workqueue_attrs();
3941 if (!ctx || !new_attrs || !tmp_attrs)
3942 goto out_free;
3943
3944 /*
3945 * Calculate the attrs of the default pwq.
3946 * If the user configured cpumask doesn't overlap with the
3947 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3948 */
3949 copy_workqueue_attrs(new_attrs, attrs);
3950 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3951 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3952 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3953
3954 /*
3955 * We may create multiple pwqs with differing cpumasks. Make a
3956 * copy of @new_attrs which will be modified and used to obtain
3957 * pools.
3958 */
3959 copy_workqueue_attrs(tmp_attrs, new_attrs);
3960
3961 /*
3962 * If something goes wrong during CPU up/down, we'll fall back to
3963 * the default pwq covering whole @attrs->cpumask. Always create
3964 * it even if we don't use it immediately.
3965 */
3966 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3967 if (!ctx->dfl_pwq)
3968 goto out_free;
3969
3970 for_each_node(node) {
3971 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3972 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3973 if (!ctx->pwq_tbl[node])
3974 goto out_free;
3975 } else {
3976 ctx->dfl_pwq->refcnt++;
3977 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3978 }
3979 }
3980
3981 /* save the user configured attrs and sanitize it. */
3982 copy_workqueue_attrs(new_attrs, attrs);
3983 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3984 ctx->attrs = new_attrs;
3985
3986 ctx->wq = wq;
3987 free_workqueue_attrs(tmp_attrs);
3988 return ctx;
3989
3990 out_free:
3991 free_workqueue_attrs(tmp_attrs);
3992 free_workqueue_attrs(new_attrs);
3993 apply_wqattrs_cleanup(ctx);
3994 return NULL;
3995 }
3996
3997 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3998 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3999 {
4000 int node;
4001
4002 /* all pwqs have been created successfully, let's install'em */
4003 mutex_lock(&ctx->wq->mutex);
4004
4005 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4006
4007 /* save the previous pwq and install the new one */
4008 for_each_node(node)
4009 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4010 ctx->pwq_tbl[node]);
4011
4012 /* @dfl_pwq might not have been used, ensure it's linked */
4013 link_pwq(ctx->dfl_pwq);
4014 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4015
4016 mutex_unlock(&ctx->wq->mutex);
4017 }
4018
apply_wqattrs_lock(void)4019 static void apply_wqattrs_lock(void)
4020 {
4021 /* CPUs should stay stable across pwq creations and installations */
4022 get_online_cpus();
4023 mutex_lock(&wq_pool_mutex);
4024 }
4025
apply_wqattrs_unlock(void)4026 static void apply_wqattrs_unlock(void)
4027 {
4028 mutex_unlock(&wq_pool_mutex);
4029 put_online_cpus();
4030 }
4031
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4032 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4033 const struct workqueue_attrs *attrs)
4034 {
4035 struct apply_wqattrs_ctx *ctx;
4036
4037 /* only unbound workqueues can change attributes */
4038 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4039 return -EINVAL;
4040
4041 /* creating multiple pwqs breaks ordering guarantee */
4042 if (!list_empty(&wq->pwqs)) {
4043 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4044 return -EINVAL;
4045
4046 wq->flags &= ~__WQ_ORDERED;
4047 }
4048
4049 ctx = apply_wqattrs_prepare(wq, attrs);
4050 if (!ctx)
4051 return -ENOMEM;
4052
4053 /* the ctx has been prepared successfully, let's commit it */
4054 apply_wqattrs_commit(ctx);
4055 apply_wqattrs_cleanup(ctx);
4056
4057 return 0;
4058 }
4059
4060 /**
4061 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4062 * @wq: the target workqueue
4063 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4064 *
4065 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4066 * machines, this function maps a separate pwq to each NUMA node with
4067 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4068 * NUMA node it was issued on. Older pwqs are released as in-flight work
4069 * items finish. Note that a work item which repeatedly requeues itself
4070 * back-to-back will stay on its current pwq.
4071 *
4072 * Performs GFP_KERNEL allocations.
4073 *
4074 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4075 *
4076 * Return: 0 on success and -errno on failure.
4077 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4078 int apply_workqueue_attrs(struct workqueue_struct *wq,
4079 const struct workqueue_attrs *attrs)
4080 {
4081 int ret;
4082
4083 lockdep_assert_cpus_held();
4084
4085 mutex_lock(&wq_pool_mutex);
4086 ret = apply_workqueue_attrs_locked(wq, attrs);
4087 mutex_unlock(&wq_pool_mutex);
4088
4089 return ret;
4090 }
4091
4092 /**
4093 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4094 * @wq: the target workqueue
4095 * @cpu: the CPU coming up or going down
4096 * @online: whether @cpu is coming up or going down
4097 *
4098 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4099 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4100 * @wq accordingly.
4101 *
4102 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4103 * falls back to @wq->dfl_pwq which may not be optimal but is always
4104 * correct.
4105 *
4106 * Note that when the last allowed CPU of a NUMA node goes offline for a
4107 * workqueue with a cpumask spanning multiple nodes, the workers which were
4108 * already executing the work items for the workqueue will lose their CPU
4109 * affinity and may execute on any CPU. This is similar to how per-cpu
4110 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4111 * affinity, it's the user's responsibility to flush the work item from
4112 * CPU_DOWN_PREPARE.
4113 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4114 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4115 bool online)
4116 {
4117 int node = cpu_to_node(cpu);
4118 int cpu_off = online ? -1 : cpu;
4119 struct pool_workqueue *old_pwq = NULL, *pwq;
4120 struct workqueue_attrs *target_attrs;
4121 cpumask_t *cpumask;
4122
4123 lockdep_assert_held(&wq_pool_mutex);
4124
4125 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4126 wq->unbound_attrs->no_numa)
4127 return;
4128
4129 /*
4130 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4131 * Let's use a preallocated one. The following buf is protected by
4132 * CPU hotplug exclusion.
4133 */
4134 target_attrs = wq_update_unbound_numa_attrs_buf;
4135 cpumask = target_attrs->cpumask;
4136
4137 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4138 pwq = unbound_pwq_by_node(wq, node);
4139
4140 /*
4141 * Let's determine what needs to be done. If the target cpumask is
4142 * different from the default pwq's, we need to compare it to @pwq's
4143 * and create a new one if they don't match. If the target cpumask
4144 * equals the default pwq's, the default pwq should be used.
4145 */
4146 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4147 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4148 return;
4149 } else {
4150 goto use_dfl_pwq;
4151 }
4152
4153 /* create a new pwq */
4154 pwq = alloc_unbound_pwq(wq, target_attrs);
4155 if (!pwq) {
4156 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4157 wq->name);
4158 goto use_dfl_pwq;
4159 }
4160
4161 /* Install the new pwq. */
4162 mutex_lock(&wq->mutex);
4163 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4164 goto out_unlock;
4165
4166 use_dfl_pwq:
4167 mutex_lock(&wq->mutex);
4168 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4169 get_pwq(wq->dfl_pwq);
4170 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4171 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4172 out_unlock:
4173 mutex_unlock(&wq->mutex);
4174 put_pwq_unlocked(old_pwq);
4175 }
4176
alloc_and_link_pwqs(struct workqueue_struct * wq)4177 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4178 {
4179 bool highpri = wq->flags & WQ_HIGHPRI;
4180 int cpu, ret;
4181
4182 if (!(wq->flags & WQ_UNBOUND)) {
4183 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4184 if (!wq->cpu_pwqs)
4185 return -ENOMEM;
4186
4187 for_each_possible_cpu(cpu) {
4188 struct pool_workqueue *pwq =
4189 per_cpu_ptr(wq->cpu_pwqs, cpu);
4190 struct worker_pool *cpu_pools =
4191 per_cpu(cpu_worker_pools, cpu);
4192
4193 init_pwq(pwq, wq, &cpu_pools[highpri]);
4194
4195 mutex_lock(&wq->mutex);
4196 link_pwq(pwq);
4197 mutex_unlock(&wq->mutex);
4198 }
4199 return 0;
4200 }
4201
4202 get_online_cpus();
4203 if (wq->flags & __WQ_ORDERED) {
4204 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4205 /* there should only be single pwq for ordering guarantee */
4206 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4207 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4208 "ordering guarantee broken for workqueue %s\n", wq->name);
4209 } else {
4210 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4211 }
4212 put_online_cpus();
4213
4214 return ret;
4215 }
4216
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4217 static int wq_clamp_max_active(int max_active, unsigned int flags,
4218 const char *name)
4219 {
4220 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4221
4222 if (max_active < 1 || max_active > lim)
4223 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4224 max_active, name, 1, lim);
4225
4226 return clamp_val(max_active, 1, lim);
4227 }
4228
4229 /*
4230 * Workqueues which may be used during memory reclaim should have a rescuer
4231 * to guarantee forward progress.
4232 */
init_rescuer(struct workqueue_struct * wq)4233 static int init_rescuer(struct workqueue_struct *wq)
4234 {
4235 struct worker *rescuer;
4236 int ret;
4237
4238 if (!(wq->flags & WQ_MEM_RECLAIM))
4239 return 0;
4240
4241 rescuer = alloc_worker(NUMA_NO_NODE);
4242 if (!rescuer)
4243 return -ENOMEM;
4244
4245 rescuer->rescue_wq = wq;
4246 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4247 if (IS_ERR(rescuer->task)) {
4248 ret = PTR_ERR(rescuer->task);
4249 kfree(rescuer);
4250 return ret;
4251 }
4252
4253 wq->rescuer = rescuer;
4254 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4255 wake_up_process(rescuer->task);
4256
4257 return 0;
4258 }
4259
4260 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4261 struct workqueue_struct *alloc_workqueue(const char *fmt,
4262 unsigned int flags,
4263 int max_active, ...)
4264 {
4265 size_t tbl_size = 0;
4266 va_list args;
4267 struct workqueue_struct *wq;
4268 struct pool_workqueue *pwq;
4269
4270 /*
4271 * Unbound && max_active == 1 used to imply ordered, which is no
4272 * longer the case on NUMA machines due to per-node pools. While
4273 * alloc_ordered_workqueue() is the right way to create an ordered
4274 * workqueue, keep the previous behavior to avoid subtle breakages
4275 * on NUMA.
4276 */
4277 if ((flags & WQ_UNBOUND) && max_active == 1)
4278 flags |= __WQ_ORDERED;
4279
4280 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4281 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4282 flags |= WQ_UNBOUND;
4283
4284 /* allocate wq and format name */
4285 if (flags & WQ_UNBOUND)
4286 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4287
4288 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4289 if (!wq)
4290 return NULL;
4291
4292 if (flags & WQ_UNBOUND) {
4293 wq->unbound_attrs = alloc_workqueue_attrs();
4294 if (!wq->unbound_attrs)
4295 goto err_free_wq;
4296 }
4297
4298 va_start(args, max_active);
4299 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4300 va_end(args);
4301
4302 max_active = max_active ?: WQ_DFL_ACTIVE;
4303 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4304
4305 /* init wq */
4306 wq->flags = flags;
4307 wq->saved_max_active = max_active;
4308 mutex_init(&wq->mutex);
4309 atomic_set(&wq->nr_pwqs_to_flush, 0);
4310 INIT_LIST_HEAD(&wq->pwqs);
4311 INIT_LIST_HEAD(&wq->flusher_queue);
4312 INIT_LIST_HEAD(&wq->flusher_overflow);
4313 INIT_LIST_HEAD(&wq->maydays);
4314
4315 wq_init_lockdep(wq);
4316 INIT_LIST_HEAD(&wq->list);
4317
4318 if (alloc_and_link_pwqs(wq) < 0)
4319 goto err_unreg_lockdep;
4320
4321 if (wq_online && init_rescuer(wq) < 0)
4322 goto err_destroy;
4323
4324 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4325 goto err_destroy;
4326
4327 /*
4328 * wq_pool_mutex protects global freeze state and workqueues list.
4329 * Grab it, adjust max_active and add the new @wq to workqueues
4330 * list.
4331 */
4332 mutex_lock(&wq_pool_mutex);
4333
4334 mutex_lock(&wq->mutex);
4335 for_each_pwq(pwq, wq)
4336 pwq_adjust_max_active(pwq);
4337 mutex_unlock(&wq->mutex);
4338
4339 list_add_tail_rcu(&wq->list, &workqueues);
4340
4341 mutex_unlock(&wq_pool_mutex);
4342
4343 return wq;
4344
4345 err_unreg_lockdep:
4346 wq_unregister_lockdep(wq);
4347 wq_free_lockdep(wq);
4348 err_free_wq:
4349 free_workqueue_attrs(wq->unbound_attrs);
4350 kfree(wq);
4351 return NULL;
4352 err_destroy:
4353 destroy_workqueue(wq);
4354 return NULL;
4355 }
4356 EXPORT_SYMBOL_GPL(alloc_workqueue);
4357
pwq_busy(struct pool_workqueue * pwq)4358 static bool pwq_busy(struct pool_workqueue *pwq)
4359 {
4360 int i;
4361
4362 for (i = 0; i < WORK_NR_COLORS; i++)
4363 if (pwq->nr_in_flight[i])
4364 return true;
4365
4366 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4367 return true;
4368 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4369 return true;
4370
4371 return false;
4372 }
4373
4374 /**
4375 * destroy_workqueue - safely terminate a workqueue
4376 * @wq: target workqueue
4377 *
4378 * Safely destroy a workqueue. All work currently pending will be done first.
4379 */
destroy_workqueue(struct workqueue_struct * wq)4380 void destroy_workqueue(struct workqueue_struct *wq)
4381 {
4382 struct pool_workqueue *pwq;
4383 int node;
4384
4385 /*
4386 * Remove it from sysfs first so that sanity check failure doesn't
4387 * lead to sysfs name conflicts.
4388 */
4389 workqueue_sysfs_unregister(wq);
4390
4391 /* drain it before proceeding with destruction */
4392 drain_workqueue(wq);
4393
4394 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4395 if (wq->rescuer) {
4396 struct worker *rescuer = wq->rescuer;
4397
4398 /* this prevents new queueing */
4399 raw_spin_lock_irq(&wq_mayday_lock);
4400 wq->rescuer = NULL;
4401 raw_spin_unlock_irq(&wq_mayday_lock);
4402
4403 /* rescuer will empty maydays list before exiting */
4404 kthread_stop(rescuer->task);
4405 kfree(rescuer);
4406 }
4407
4408 /*
4409 * Sanity checks - grab all the locks so that we wait for all
4410 * in-flight operations which may do put_pwq().
4411 */
4412 mutex_lock(&wq_pool_mutex);
4413 mutex_lock(&wq->mutex);
4414 for_each_pwq(pwq, wq) {
4415 raw_spin_lock_irq(&pwq->pool->lock);
4416 if (WARN_ON(pwq_busy(pwq))) {
4417 pr_warn("%s: %s has the following busy pwq\n",
4418 __func__, wq->name);
4419 show_pwq(pwq);
4420 raw_spin_unlock_irq(&pwq->pool->lock);
4421 mutex_unlock(&wq->mutex);
4422 mutex_unlock(&wq_pool_mutex);
4423 show_workqueue_state();
4424 return;
4425 }
4426 raw_spin_unlock_irq(&pwq->pool->lock);
4427 }
4428 mutex_unlock(&wq->mutex);
4429
4430 /*
4431 * wq list is used to freeze wq, remove from list after
4432 * flushing is complete in case freeze races us.
4433 */
4434 list_del_rcu(&wq->list);
4435 mutex_unlock(&wq_pool_mutex);
4436
4437 if (!(wq->flags & WQ_UNBOUND)) {
4438 wq_unregister_lockdep(wq);
4439 /*
4440 * The base ref is never dropped on per-cpu pwqs. Directly
4441 * schedule RCU free.
4442 */
4443 call_rcu(&wq->rcu, rcu_free_wq);
4444 } else {
4445 /*
4446 * We're the sole accessor of @wq at this point. Directly
4447 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4448 * @wq will be freed when the last pwq is released.
4449 */
4450 for_each_node(node) {
4451 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4452 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4453 put_pwq_unlocked(pwq);
4454 }
4455
4456 /*
4457 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4458 * put. Don't access it afterwards.
4459 */
4460 pwq = wq->dfl_pwq;
4461 wq->dfl_pwq = NULL;
4462 put_pwq_unlocked(pwq);
4463 }
4464 }
4465 EXPORT_SYMBOL_GPL(destroy_workqueue);
4466
4467 /**
4468 * workqueue_set_max_active - adjust max_active of a workqueue
4469 * @wq: target workqueue
4470 * @max_active: new max_active value.
4471 *
4472 * Set max_active of @wq to @max_active.
4473 *
4474 * CONTEXT:
4475 * Don't call from IRQ context.
4476 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4477 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4478 {
4479 struct pool_workqueue *pwq;
4480
4481 /* disallow meddling with max_active for ordered workqueues */
4482 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4483 return;
4484
4485 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4486
4487 mutex_lock(&wq->mutex);
4488
4489 wq->flags &= ~__WQ_ORDERED;
4490 wq->saved_max_active = max_active;
4491
4492 for_each_pwq(pwq, wq)
4493 pwq_adjust_max_active(pwq);
4494
4495 mutex_unlock(&wq->mutex);
4496 }
4497 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4498
4499 /**
4500 * current_work - retrieve %current task's work struct
4501 *
4502 * Determine if %current task is a workqueue worker and what it's working on.
4503 * Useful to find out the context that the %current task is running in.
4504 *
4505 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4506 */
current_work(void)4507 struct work_struct *current_work(void)
4508 {
4509 struct worker *worker = current_wq_worker();
4510
4511 return worker ? worker->current_work : NULL;
4512 }
4513 EXPORT_SYMBOL(current_work);
4514
4515 /**
4516 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4517 *
4518 * Determine whether %current is a workqueue rescuer. Can be used from
4519 * work functions to determine whether it's being run off the rescuer task.
4520 *
4521 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4522 */
current_is_workqueue_rescuer(void)4523 bool current_is_workqueue_rescuer(void)
4524 {
4525 struct worker *worker = current_wq_worker();
4526
4527 return worker && worker->rescue_wq;
4528 }
4529
4530 /**
4531 * workqueue_congested - test whether a workqueue is congested
4532 * @cpu: CPU in question
4533 * @wq: target workqueue
4534 *
4535 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4536 * no synchronization around this function and the test result is
4537 * unreliable and only useful as advisory hints or for debugging.
4538 *
4539 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4540 * Note that both per-cpu and unbound workqueues may be associated with
4541 * multiple pool_workqueues which have separate congested states. A
4542 * workqueue being congested on one CPU doesn't mean the workqueue is also
4543 * contested on other CPUs / NUMA nodes.
4544 *
4545 * Return:
4546 * %true if congested, %false otherwise.
4547 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4548 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4549 {
4550 struct pool_workqueue *pwq;
4551 bool ret;
4552
4553 rcu_read_lock();
4554 preempt_disable();
4555
4556 if (cpu == WORK_CPU_UNBOUND)
4557 cpu = smp_processor_id();
4558
4559 if (!(wq->flags & WQ_UNBOUND))
4560 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4561 else
4562 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4563
4564 ret = !list_empty(&pwq->delayed_works);
4565 preempt_enable();
4566 rcu_read_unlock();
4567
4568 return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(workqueue_congested);
4571
4572 /**
4573 * work_busy - test whether a work is currently pending or running
4574 * @work: the work to be tested
4575 *
4576 * Test whether @work is currently pending or running. There is no
4577 * synchronization around this function and the test result is
4578 * unreliable and only useful as advisory hints or for debugging.
4579 *
4580 * Return:
4581 * OR'd bitmask of WORK_BUSY_* bits.
4582 */
work_busy(struct work_struct * work)4583 unsigned int work_busy(struct work_struct *work)
4584 {
4585 struct worker_pool *pool;
4586 unsigned long flags;
4587 unsigned int ret = 0;
4588
4589 if (work_pending(work))
4590 ret |= WORK_BUSY_PENDING;
4591
4592 rcu_read_lock();
4593 pool = get_work_pool(work);
4594 if (pool) {
4595 raw_spin_lock_irqsave(&pool->lock, flags);
4596 if (find_worker_executing_work(pool, work))
4597 ret |= WORK_BUSY_RUNNING;
4598 raw_spin_unlock_irqrestore(&pool->lock, flags);
4599 }
4600 rcu_read_unlock();
4601
4602 return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(work_busy);
4605
4606 /**
4607 * set_worker_desc - set description for the current work item
4608 * @fmt: printf-style format string
4609 * @...: arguments for the format string
4610 *
4611 * This function can be called by a running work function to describe what
4612 * the work item is about. If the worker task gets dumped, this
4613 * information will be printed out together to help debugging. The
4614 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4615 */
set_worker_desc(const char * fmt,...)4616 void set_worker_desc(const char *fmt, ...)
4617 {
4618 struct worker *worker = current_wq_worker();
4619 va_list args;
4620
4621 if (worker) {
4622 va_start(args, fmt);
4623 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4624 va_end(args);
4625 }
4626 }
4627 EXPORT_SYMBOL_GPL(set_worker_desc);
4628
4629 /**
4630 * print_worker_info - print out worker information and description
4631 * @log_lvl: the log level to use when printing
4632 * @task: target task
4633 *
4634 * If @task is a worker and currently executing a work item, print out the
4635 * name of the workqueue being serviced and worker description set with
4636 * set_worker_desc() by the currently executing work item.
4637 *
4638 * This function can be safely called on any task as long as the
4639 * task_struct itself is accessible. While safe, this function isn't
4640 * synchronized and may print out mixups or garbages of limited length.
4641 */
print_worker_info(const char * log_lvl,struct task_struct * task)4642 void print_worker_info(const char *log_lvl, struct task_struct *task)
4643 {
4644 work_func_t *fn = NULL;
4645 char name[WQ_NAME_LEN] = { };
4646 char desc[WORKER_DESC_LEN] = { };
4647 struct pool_workqueue *pwq = NULL;
4648 struct workqueue_struct *wq = NULL;
4649 struct worker *worker;
4650
4651 if (!(task->flags & PF_WQ_WORKER))
4652 return;
4653
4654 /*
4655 * This function is called without any synchronization and @task
4656 * could be in any state. Be careful with dereferences.
4657 */
4658 worker = kthread_probe_data(task);
4659
4660 /*
4661 * Carefully copy the associated workqueue's workfn, name and desc.
4662 * Keep the original last '\0' in case the original is garbage.
4663 */
4664 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4665 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4666 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4667 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4668 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4669
4670 if (fn || name[0] || desc[0]) {
4671 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4672 if (strcmp(name, desc))
4673 pr_cont(" (%s)", desc);
4674 pr_cont("\n");
4675 }
4676 }
4677
pr_cont_pool_info(struct worker_pool * pool)4678 static void pr_cont_pool_info(struct worker_pool *pool)
4679 {
4680 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4681 if (pool->node != NUMA_NO_NODE)
4682 pr_cont(" node=%d", pool->node);
4683 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4684 }
4685
pr_cont_work(bool comma,struct work_struct * work)4686 static void pr_cont_work(bool comma, struct work_struct *work)
4687 {
4688 if (work->func == wq_barrier_func) {
4689 struct wq_barrier *barr;
4690
4691 barr = container_of(work, struct wq_barrier, work);
4692
4693 pr_cont("%s BAR(%d)", comma ? "," : "",
4694 task_pid_nr(barr->task));
4695 } else {
4696 pr_cont("%s %ps", comma ? "," : "", work->func);
4697 }
4698 }
4699
show_pwq(struct pool_workqueue * pwq)4700 static void show_pwq(struct pool_workqueue *pwq)
4701 {
4702 struct worker_pool *pool = pwq->pool;
4703 struct work_struct *work;
4704 struct worker *worker;
4705 bool has_in_flight = false, has_pending = false;
4706 int bkt;
4707
4708 pr_info(" pwq %d:", pool->id);
4709 pr_cont_pool_info(pool);
4710
4711 pr_cont(" active=%d/%d refcnt=%d%s\n",
4712 pwq->nr_active, pwq->max_active, pwq->refcnt,
4713 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4714
4715 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4716 if (worker->current_pwq == pwq) {
4717 has_in_flight = true;
4718 break;
4719 }
4720 }
4721 if (has_in_flight) {
4722 bool comma = false;
4723
4724 pr_info(" in-flight:");
4725 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4726 if (worker->current_pwq != pwq)
4727 continue;
4728
4729 pr_cont("%s %d%s:%ps", comma ? "," : "",
4730 task_pid_nr(worker->task),
4731 worker->rescue_wq ? "(RESCUER)" : "",
4732 worker->current_func);
4733 list_for_each_entry(work, &worker->scheduled, entry)
4734 pr_cont_work(false, work);
4735 comma = true;
4736 }
4737 pr_cont("\n");
4738 }
4739
4740 list_for_each_entry(work, &pool->worklist, entry) {
4741 if (get_work_pwq(work) == pwq) {
4742 has_pending = true;
4743 break;
4744 }
4745 }
4746 if (has_pending) {
4747 bool comma = false;
4748
4749 pr_info(" pending:");
4750 list_for_each_entry(work, &pool->worklist, entry) {
4751 if (get_work_pwq(work) != pwq)
4752 continue;
4753
4754 pr_cont_work(comma, work);
4755 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4756 }
4757 pr_cont("\n");
4758 }
4759
4760 if (!list_empty(&pwq->delayed_works)) {
4761 bool comma = false;
4762
4763 pr_info(" delayed:");
4764 list_for_each_entry(work, &pwq->delayed_works, entry) {
4765 pr_cont_work(comma, work);
4766 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4767 }
4768 pr_cont("\n");
4769 }
4770 }
4771
4772 /**
4773 * show_workqueue_state - dump workqueue state
4774 *
4775 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4776 * all busy workqueues and pools.
4777 */
show_workqueue_state(void)4778 void show_workqueue_state(void)
4779 {
4780 struct workqueue_struct *wq;
4781 struct worker_pool *pool;
4782 unsigned long flags;
4783 int pi;
4784
4785 rcu_read_lock();
4786
4787 pr_info("Showing busy workqueues and worker pools:\n");
4788
4789 list_for_each_entry_rcu(wq, &workqueues, list) {
4790 struct pool_workqueue *pwq;
4791 bool idle = true;
4792
4793 for_each_pwq(pwq, wq) {
4794 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4795 idle = false;
4796 break;
4797 }
4798 }
4799 if (idle)
4800 continue;
4801
4802 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4803
4804 for_each_pwq(pwq, wq) {
4805 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4806 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4807 show_pwq(pwq);
4808 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4809 /*
4810 * We could be printing a lot from atomic context, e.g.
4811 * sysrq-t -> show_workqueue_state(). Avoid triggering
4812 * hard lockup.
4813 */
4814 touch_nmi_watchdog();
4815 }
4816 }
4817
4818 for_each_pool(pool, pi) {
4819 struct worker *worker;
4820 bool first = true;
4821
4822 raw_spin_lock_irqsave(&pool->lock, flags);
4823 if (pool->nr_workers == pool->nr_idle)
4824 goto next_pool;
4825
4826 pr_info("pool %d:", pool->id);
4827 pr_cont_pool_info(pool);
4828 pr_cont(" hung=%us workers=%d",
4829 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4830 pool->nr_workers);
4831 if (pool->manager)
4832 pr_cont(" manager: %d",
4833 task_pid_nr(pool->manager->task));
4834 list_for_each_entry(worker, &pool->idle_list, entry) {
4835 pr_cont(" %s%d", first ? "idle: " : "",
4836 task_pid_nr(worker->task));
4837 first = false;
4838 }
4839 pr_cont("\n");
4840 next_pool:
4841 raw_spin_unlock_irqrestore(&pool->lock, flags);
4842 /*
4843 * We could be printing a lot from atomic context, e.g.
4844 * sysrq-t -> show_workqueue_state(). Avoid triggering
4845 * hard lockup.
4846 */
4847 touch_nmi_watchdog();
4848 }
4849
4850 rcu_read_unlock();
4851 }
4852
4853 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4854 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4855 {
4856 int off;
4857
4858 /* always show the actual comm */
4859 off = strscpy(buf, task->comm, size);
4860 if (off < 0)
4861 return;
4862
4863 /* stabilize PF_WQ_WORKER and worker pool association */
4864 mutex_lock(&wq_pool_attach_mutex);
4865
4866 if (task->flags & PF_WQ_WORKER) {
4867 struct worker *worker = kthread_data(task);
4868 struct worker_pool *pool = worker->pool;
4869
4870 if (pool) {
4871 raw_spin_lock_irq(&pool->lock);
4872 /*
4873 * ->desc tracks information (wq name or
4874 * set_worker_desc()) for the latest execution. If
4875 * current, prepend '+', otherwise '-'.
4876 */
4877 if (worker->desc[0] != '\0') {
4878 if (worker->current_work)
4879 scnprintf(buf + off, size - off, "+%s",
4880 worker->desc);
4881 else
4882 scnprintf(buf + off, size - off, "-%s",
4883 worker->desc);
4884 }
4885 raw_spin_unlock_irq(&pool->lock);
4886 }
4887 }
4888
4889 mutex_unlock(&wq_pool_attach_mutex);
4890 }
4891
4892 #ifdef CONFIG_SMP
4893
4894 /*
4895 * CPU hotplug.
4896 *
4897 * There are two challenges in supporting CPU hotplug. Firstly, there
4898 * are a lot of assumptions on strong associations among work, pwq and
4899 * pool which make migrating pending and scheduled works very
4900 * difficult to implement without impacting hot paths. Secondly,
4901 * worker pools serve mix of short, long and very long running works making
4902 * blocked draining impractical.
4903 *
4904 * This is solved by allowing the pools to be disassociated from the CPU
4905 * running as an unbound one and allowing it to be reattached later if the
4906 * cpu comes back online.
4907 */
4908
unbind_workers(int cpu)4909 static void unbind_workers(int cpu)
4910 {
4911 struct worker_pool *pool;
4912 struct worker *worker;
4913
4914 for_each_cpu_worker_pool(pool, cpu) {
4915 mutex_lock(&wq_pool_attach_mutex);
4916 raw_spin_lock_irq(&pool->lock);
4917
4918 /*
4919 * We've blocked all attach/detach operations. Make all workers
4920 * unbound and set DISASSOCIATED. Before this, all workers
4921 * except for the ones which are still executing works from
4922 * before the last CPU down must be on the cpu. After
4923 * this, they may become diasporas.
4924 */
4925 for_each_pool_worker(worker, pool)
4926 worker->flags |= WORKER_UNBOUND;
4927
4928 pool->flags |= POOL_DISASSOCIATED;
4929
4930 raw_spin_unlock_irq(&pool->lock);
4931 mutex_unlock(&wq_pool_attach_mutex);
4932
4933 /*
4934 * Call schedule() so that we cross rq->lock and thus can
4935 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4936 * This is necessary as scheduler callbacks may be invoked
4937 * from other cpus.
4938 */
4939 schedule();
4940
4941 /*
4942 * Sched callbacks are disabled now. Zap nr_running.
4943 * After this, nr_running stays zero and need_more_worker()
4944 * and keep_working() are always true as long as the
4945 * worklist is not empty. This pool now behaves as an
4946 * unbound (in terms of concurrency management) pool which
4947 * are served by workers tied to the pool.
4948 */
4949 atomic_set(&pool->nr_running, 0);
4950
4951 /*
4952 * With concurrency management just turned off, a busy
4953 * worker blocking could lead to lengthy stalls. Kick off
4954 * unbound chain execution of currently pending work items.
4955 */
4956 raw_spin_lock_irq(&pool->lock);
4957 wake_up_worker(pool);
4958 raw_spin_unlock_irq(&pool->lock);
4959 }
4960 }
4961
4962 /**
4963 * rebind_workers - rebind all workers of a pool to the associated CPU
4964 * @pool: pool of interest
4965 *
4966 * @pool->cpu is coming online. Rebind all workers to the CPU.
4967 */
rebind_workers(struct worker_pool * pool)4968 static void rebind_workers(struct worker_pool *pool)
4969 {
4970 struct worker *worker;
4971
4972 lockdep_assert_held(&wq_pool_attach_mutex);
4973
4974 /*
4975 * Restore CPU affinity of all workers. As all idle workers should
4976 * be on the run-queue of the associated CPU before any local
4977 * wake-ups for concurrency management happen, restore CPU affinity
4978 * of all workers first and then clear UNBOUND. As we're called
4979 * from CPU_ONLINE, the following shouldn't fail.
4980 */
4981 for_each_pool_worker(worker, pool)
4982 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4983 pool->attrs->cpumask) < 0);
4984
4985 raw_spin_lock_irq(&pool->lock);
4986
4987 pool->flags &= ~POOL_DISASSOCIATED;
4988
4989 for_each_pool_worker(worker, pool) {
4990 unsigned int worker_flags = worker->flags;
4991
4992 /*
4993 * A bound idle worker should actually be on the runqueue
4994 * of the associated CPU for local wake-ups targeting it to
4995 * work. Kick all idle workers so that they migrate to the
4996 * associated CPU. Doing this in the same loop as
4997 * replacing UNBOUND with REBOUND is safe as no worker will
4998 * be bound before @pool->lock is released.
4999 */
5000 if (worker_flags & WORKER_IDLE)
5001 wake_up_process(worker->task);
5002
5003 /*
5004 * We want to clear UNBOUND but can't directly call
5005 * worker_clr_flags() or adjust nr_running. Atomically
5006 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5007 * @worker will clear REBOUND using worker_clr_flags() when
5008 * it initiates the next execution cycle thus restoring
5009 * concurrency management. Note that when or whether
5010 * @worker clears REBOUND doesn't affect correctness.
5011 *
5012 * WRITE_ONCE() is necessary because @worker->flags may be
5013 * tested without holding any lock in
5014 * wq_worker_running(). Without it, NOT_RUNNING test may
5015 * fail incorrectly leading to premature concurrency
5016 * management operations.
5017 */
5018 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5019 worker_flags |= WORKER_REBOUND;
5020 worker_flags &= ~WORKER_UNBOUND;
5021 WRITE_ONCE(worker->flags, worker_flags);
5022 }
5023
5024 raw_spin_unlock_irq(&pool->lock);
5025 }
5026
5027 /**
5028 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5029 * @pool: unbound pool of interest
5030 * @cpu: the CPU which is coming up
5031 *
5032 * An unbound pool may end up with a cpumask which doesn't have any online
5033 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5034 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5035 * online CPU before, cpus_allowed of all its workers should be restored.
5036 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5037 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5038 {
5039 static cpumask_t cpumask;
5040 struct worker *worker;
5041
5042 lockdep_assert_held(&wq_pool_attach_mutex);
5043
5044 /* is @cpu allowed for @pool? */
5045 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5046 return;
5047
5048 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5049
5050 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5051 for_each_pool_worker(worker, pool)
5052 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5053 }
5054
workqueue_prepare_cpu(unsigned int cpu)5055 int workqueue_prepare_cpu(unsigned int cpu)
5056 {
5057 struct worker_pool *pool;
5058
5059 for_each_cpu_worker_pool(pool, cpu) {
5060 if (pool->nr_workers)
5061 continue;
5062 if (!create_worker(pool))
5063 return -ENOMEM;
5064 }
5065 return 0;
5066 }
5067
workqueue_online_cpu(unsigned int cpu)5068 int workqueue_online_cpu(unsigned int cpu)
5069 {
5070 struct worker_pool *pool;
5071 struct workqueue_struct *wq;
5072 int pi;
5073
5074 mutex_lock(&wq_pool_mutex);
5075
5076 for_each_pool(pool, pi) {
5077 mutex_lock(&wq_pool_attach_mutex);
5078
5079 if (pool->cpu == cpu)
5080 rebind_workers(pool);
5081 else if (pool->cpu < 0)
5082 restore_unbound_workers_cpumask(pool, cpu);
5083
5084 mutex_unlock(&wq_pool_attach_mutex);
5085 }
5086
5087 /* update NUMA affinity of unbound workqueues */
5088 list_for_each_entry(wq, &workqueues, list)
5089 wq_update_unbound_numa(wq, cpu, true);
5090
5091 mutex_unlock(&wq_pool_mutex);
5092 return 0;
5093 }
5094
workqueue_offline_cpu(unsigned int cpu)5095 int workqueue_offline_cpu(unsigned int cpu)
5096 {
5097 struct workqueue_struct *wq;
5098
5099 /* unbinding per-cpu workers should happen on the local CPU */
5100 if (WARN_ON(cpu != smp_processor_id()))
5101 return -1;
5102
5103 unbind_workers(cpu);
5104
5105 /* update NUMA affinity of unbound workqueues */
5106 mutex_lock(&wq_pool_mutex);
5107 list_for_each_entry(wq, &workqueues, list)
5108 wq_update_unbound_numa(wq, cpu, false);
5109 mutex_unlock(&wq_pool_mutex);
5110
5111 return 0;
5112 }
5113
5114 struct work_for_cpu {
5115 struct work_struct work;
5116 long (*fn)(void *);
5117 void *arg;
5118 long ret;
5119 };
5120
work_for_cpu_fn(struct work_struct * work)5121 static void work_for_cpu_fn(struct work_struct *work)
5122 {
5123 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5124
5125 wfc->ret = wfc->fn(wfc->arg);
5126 }
5127
5128 /**
5129 * work_on_cpu - run a function in thread context on a particular cpu
5130 * @cpu: the cpu to run on
5131 * @fn: the function to run
5132 * @arg: the function arg
5133 *
5134 * It is up to the caller to ensure that the cpu doesn't go offline.
5135 * The caller must not hold any locks which would prevent @fn from completing.
5136 *
5137 * Return: The value @fn returns.
5138 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5139 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5140 {
5141 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5142
5143 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5144 schedule_work_on(cpu, &wfc.work);
5145 flush_work(&wfc.work);
5146 destroy_work_on_stack(&wfc.work);
5147 return wfc.ret;
5148 }
5149 EXPORT_SYMBOL_GPL(work_on_cpu);
5150
5151 /**
5152 * work_on_cpu_safe - run a function in thread context on a particular cpu
5153 * @cpu: the cpu to run on
5154 * @fn: the function to run
5155 * @arg: the function argument
5156 *
5157 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5158 * any locks which would prevent @fn from completing.
5159 *
5160 * Return: The value @fn returns.
5161 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5162 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5163 {
5164 long ret = -ENODEV;
5165
5166 get_online_cpus();
5167 if (cpu_online(cpu))
5168 ret = work_on_cpu(cpu, fn, arg);
5169 put_online_cpus();
5170 return ret;
5171 }
5172 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5173 #endif /* CONFIG_SMP */
5174
5175 #ifdef CONFIG_FREEZER
5176
5177 /**
5178 * freeze_workqueues_begin - begin freezing workqueues
5179 *
5180 * Start freezing workqueues. After this function returns, all freezable
5181 * workqueues will queue new works to their delayed_works list instead of
5182 * pool->worklist.
5183 *
5184 * CONTEXT:
5185 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5186 */
freeze_workqueues_begin(void)5187 void freeze_workqueues_begin(void)
5188 {
5189 struct workqueue_struct *wq;
5190 struct pool_workqueue *pwq;
5191
5192 mutex_lock(&wq_pool_mutex);
5193
5194 WARN_ON_ONCE(workqueue_freezing);
5195 workqueue_freezing = true;
5196
5197 list_for_each_entry(wq, &workqueues, list) {
5198 mutex_lock(&wq->mutex);
5199 for_each_pwq(pwq, wq)
5200 pwq_adjust_max_active(pwq);
5201 mutex_unlock(&wq->mutex);
5202 }
5203
5204 mutex_unlock(&wq_pool_mutex);
5205 }
5206
5207 /**
5208 * freeze_workqueues_busy - are freezable workqueues still busy?
5209 *
5210 * Check whether freezing is complete. This function must be called
5211 * between freeze_workqueues_begin() and thaw_workqueues().
5212 *
5213 * CONTEXT:
5214 * Grabs and releases wq_pool_mutex.
5215 *
5216 * Return:
5217 * %true if some freezable workqueues are still busy. %false if freezing
5218 * is complete.
5219 */
freeze_workqueues_busy(void)5220 bool freeze_workqueues_busy(void)
5221 {
5222 bool busy = false;
5223 struct workqueue_struct *wq;
5224 struct pool_workqueue *pwq;
5225
5226 mutex_lock(&wq_pool_mutex);
5227
5228 WARN_ON_ONCE(!workqueue_freezing);
5229
5230 list_for_each_entry(wq, &workqueues, list) {
5231 if (!(wq->flags & WQ_FREEZABLE))
5232 continue;
5233 /*
5234 * nr_active is monotonically decreasing. It's safe
5235 * to peek without lock.
5236 */
5237 rcu_read_lock();
5238 for_each_pwq(pwq, wq) {
5239 WARN_ON_ONCE(pwq->nr_active < 0);
5240 if (pwq->nr_active) {
5241 busy = true;
5242 rcu_read_unlock();
5243 goto out_unlock;
5244 }
5245 }
5246 rcu_read_unlock();
5247 }
5248 out_unlock:
5249 mutex_unlock(&wq_pool_mutex);
5250 return busy;
5251 }
5252
5253 /**
5254 * thaw_workqueues - thaw workqueues
5255 *
5256 * Thaw workqueues. Normal queueing is restored and all collected
5257 * frozen works are transferred to their respective pool worklists.
5258 *
5259 * CONTEXT:
5260 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5261 */
thaw_workqueues(void)5262 void thaw_workqueues(void)
5263 {
5264 struct workqueue_struct *wq;
5265 struct pool_workqueue *pwq;
5266
5267 mutex_lock(&wq_pool_mutex);
5268
5269 if (!workqueue_freezing)
5270 goto out_unlock;
5271
5272 workqueue_freezing = false;
5273
5274 /* restore max_active and repopulate worklist */
5275 list_for_each_entry(wq, &workqueues, list) {
5276 mutex_lock(&wq->mutex);
5277 for_each_pwq(pwq, wq)
5278 pwq_adjust_max_active(pwq);
5279 mutex_unlock(&wq->mutex);
5280 }
5281
5282 out_unlock:
5283 mutex_unlock(&wq_pool_mutex);
5284 }
5285 #endif /* CONFIG_FREEZER */
5286
workqueue_apply_unbound_cpumask(void)5287 static int workqueue_apply_unbound_cpumask(void)
5288 {
5289 LIST_HEAD(ctxs);
5290 int ret = 0;
5291 struct workqueue_struct *wq;
5292 struct apply_wqattrs_ctx *ctx, *n;
5293
5294 lockdep_assert_held(&wq_pool_mutex);
5295
5296 list_for_each_entry(wq, &workqueues, list) {
5297 if (!(wq->flags & WQ_UNBOUND))
5298 continue;
5299 /* creating multiple pwqs breaks ordering guarantee */
5300 if (wq->flags & __WQ_ORDERED)
5301 continue;
5302
5303 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5304 if (!ctx) {
5305 ret = -ENOMEM;
5306 break;
5307 }
5308
5309 list_add_tail(&ctx->list, &ctxs);
5310 }
5311
5312 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5313 if (!ret)
5314 apply_wqattrs_commit(ctx);
5315 apply_wqattrs_cleanup(ctx);
5316 }
5317
5318 return ret;
5319 }
5320
5321 /**
5322 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5323 * @cpumask: the cpumask to set
5324 *
5325 * The low-level workqueues cpumask is a global cpumask that limits
5326 * the affinity of all unbound workqueues. This function check the @cpumask
5327 * and apply it to all unbound workqueues and updates all pwqs of them.
5328 *
5329 * Retun: 0 - Success
5330 * -EINVAL - Invalid @cpumask
5331 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5332 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5333 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5334 {
5335 int ret = -EINVAL;
5336 cpumask_var_t saved_cpumask;
5337
5338 /*
5339 * Not excluding isolated cpus on purpose.
5340 * If the user wishes to include them, we allow that.
5341 */
5342 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5343 if (!cpumask_empty(cpumask)) {
5344 apply_wqattrs_lock();
5345 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5346 ret = 0;
5347 goto out_unlock;
5348 }
5349
5350 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5351 ret = -ENOMEM;
5352 goto out_unlock;
5353 }
5354
5355 /* save the old wq_unbound_cpumask. */
5356 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5357
5358 /* update wq_unbound_cpumask at first and apply it to wqs. */
5359 cpumask_copy(wq_unbound_cpumask, cpumask);
5360 ret = workqueue_apply_unbound_cpumask();
5361
5362 /* restore the wq_unbound_cpumask when failed. */
5363 if (ret < 0)
5364 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5365
5366 free_cpumask_var(saved_cpumask);
5367 out_unlock:
5368 apply_wqattrs_unlock();
5369 }
5370
5371 return ret;
5372 }
5373
5374 #ifdef CONFIG_SYSFS
5375 /*
5376 * Workqueues with WQ_SYSFS flag set is visible to userland via
5377 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5378 * following attributes.
5379 *
5380 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5381 * max_active RW int : maximum number of in-flight work items
5382 *
5383 * Unbound workqueues have the following extra attributes.
5384 *
5385 * pool_ids RO int : the associated pool IDs for each node
5386 * nice RW int : nice value of the workers
5387 * cpumask RW mask : bitmask of allowed CPUs for the workers
5388 * numa RW bool : whether enable NUMA affinity
5389 */
5390 struct wq_device {
5391 struct workqueue_struct *wq;
5392 struct device dev;
5393 };
5394
dev_to_wq(struct device * dev)5395 static struct workqueue_struct *dev_to_wq(struct device *dev)
5396 {
5397 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5398
5399 return wq_dev->wq;
5400 }
5401
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5402 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5403 char *buf)
5404 {
5405 struct workqueue_struct *wq = dev_to_wq(dev);
5406
5407 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5408 }
5409 static DEVICE_ATTR_RO(per_cpu);
5410
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5411 static ssize_t max_active_show(struct device *dev,
5412 struct device_attribute *attr, char *buf)
5413 {
5414 struct workqueue_struct *wq = dev_to_wq(dev);
5415
5416 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5417 }
5418
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5419 static ssize_t max_active_store(struct device *dev,
5420 struct device_attribute *attr, const char *buf,
5421 size_t count)
5422 {
5423 struct workqueue_struct *wq = dev_to_wq(dev);
5424 int val;
5425
5426 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5427 return -EINVAL;
5428
5429 workqueue_set_max_active(wq, val);
5430 return count;
5431 }
5432 static DEVICE_ATTR_RW(max_active);
5433
5434 static struct attribute *wq_sysfs_attrs[] = {
5435 &dev_attr_per_cpu.attr,
5436 &dev_attr_max_active.attr,
5437 NULL,
5438 };
5439 ATTRIBUTE_GROUPS(wq_sysfs);
5440
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5441 static ssize_t wq_pool_ids_show(struct device *dev,
5442 struct device_attribute *attr, char *buf)
5443 {
5444 struct workqueue_struct *wq = dev_to_wq(dev);
5445 const char *delim = "";
5446 int node, written = 0;
5447
5448 get_online_cpus();
5449 rcu_read_lock();
5450 for_each_node(node) {
5451 written += scnprintf(buf + written, PAGE_SIZE - written,
5452 "%s%d:%d", delim, node,
5453 unbound_pwq_by_node(wq, node)->pool->id);
5454 delim = " ";
5455 }
5456 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5457 rcu_read_unlock();
5458 put_online_cpus();
5459
5460 return written;
5461 }
5462
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5463 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5464 char *buf)
5465 {
5466 struct workqueue_struct *wq = dev_to_wq(dev);
5467 int written;
5468
5469 mutex_lock(&wq->mutex);
5470 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5471 mutex_unlock(&wq->mutex);
5472
5473 return written;
5474 }
5475
5476 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5477 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5478 {
5479 struct workqueue_attrs *attrs;
5480
5481 lockdep_assert_held(&wq_pool_mutex);
5482
5483 attrs = alloc_workqueue_attrs();
5484 if (!attrs)
5485 return NULL;
5486
5487 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5488 return attrs;
5489 }
5490
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5491 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5492 const char *buf, size_t count)
5493 {
5494 struct workqueue_struct *wq = dev_to_wq(dev);
5495 struct workqueue_attrs *attrs;
5496 int ret = -ENOMEM;
5497
5498 apply_wqattrs_lock();
5499
5500 attrs = wq_sysfs_prep_attrs(wq);
5501 if (!attrs)
5502 goto out_unlock;
5503
5504 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5505 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5506 ret = apply_workqueue_attrs_locked(wq, attrs);
5507 else
5508 ret = -EINVAL;
5509
5510 out_unlock:
5511 apply_wqattrs_unlock();
5512 free_workqueue_attrs(attrs);
5513 return ret ?: count;
5514 }
5515
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5516 static ssize_t wq_cpumask_show(struct device *dev,
5517 struct device_attribute *attr, char *buf)
5518 {
5519 struct workqueue_struct *wq = dev_to_wq(dev);
5520 int written;
5521
5522 mutex_lock(&wq->mutex);
5523 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5524 cpumask_pr_args(wq->unbound_attrs->cpumask));
5525 mutex_unlock(&wq->mutex);
5526 return written;
5527 }
5528
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5529 static ssize_t wq_cpumask_store(struct device *dev,
5530 struct device_attribute *attr,
5531 const char *buf, size_t count)
5532 {
5533 struct workqueue_struct *wq = dev_to_wq(dev);
5534 struct workqueue_attrs *attrs;
5535 int ret = -ENOMEM;
5536
5537 apply_wqattrs_lock();
5538
5539 attrs = wq_sysfs_prep_attrs(wq);
5540 if (!attrs)
5541 goto out_unlock;
5542
5543 ret = cpumask_parse(buf, attrs->cpumask);
5544 if (!ret)
5545 ret = apply_workqueue_attrs_locked(wq, attrs);
5546
5547 out_unlock:
5548 apply_wqattrs_unlock();
5549 free_workqueue_attrs(attrs);
5550 return ret ?: count;
5551 }
5552
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5553 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5554 char *buf)
5555 {
5556 struct workqueue_struct *wq = dev_to_wq(dev);
5557 int written;
5558
5559 mutex_lock(&wq->mutex);
5560 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5561 !wq->unbound_attrs->no_numa);
5562 mutex_unlock(&wq->mutex);
5563
5564 return written;
5565 }
5566
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5567 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5568 const char *buf, size_t count)
5569 {
5570 struct workqueue_struct *wq = dev_to_wq(dev);
5571 struct workqueue_attrs *attrs;
5572 int v, ret = -ENOMEM;
5573
5574 apply_wqattrs_lock();
5575
5576 attrs = wq_sysfs_prep_attrs(wq);
5577 if (!attrs)
5578 goto out_unlock;
5579
5580 ret = -EINVAL;
5581 if (sscanf(buf, "%d", &v) == 1) {
5582 attrs->no_numa = !v;
5583 ret = apply_workqueue_attrs_locked(wq, attrs);
5584 }
5585
5586 out_unlock:
5587 apply_wqattrs_unlock();
5588 free_workqueue_attrs(attrs);
5589 return ret ?: count;
5590 }
5591
5592 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5593 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5594 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5595 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5596 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5597 __ATTR_NULL,
5598 };
5599
5600 static struct bus_type wq_subsys = {
5601 .name = "workqueue",
5602 .dev_groups = wq_sysfs_groups,
5603 };
5604
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5605 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5606 struct device_attribute *attr, char *buf)
5607 {
5608 int written;
5609
5610 mutex_lock(&wq_pool_mutex);
5611 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5612 cpumask_pr_args(wq_unbound_cpumask));
5613 mutex_unlock(&wq_pool_mutex);
5614
5615 return written;
5616 }
5617
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5618 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5619 struct device_attribute *attr, const char *buf, size_t count)
5620 {
5621 cpumask_var_t cpumask;
5622 int ret;
5623
5624 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5625 return -ENOMEM;
5626
5627 ret = cpumask_parse(buf, cpumask);
5628 if (!ret)
5629 ret = workqueue_set_unbound_cpumask(cpumask);
5630
5631 free_cpumask_var(cpumask);
5632 return ret ? ret : count;
5633 }
5634
5635 static struct device_attribute wq_sysfs_cpumask_attr =
5636 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5637 wq_unbound_cpumask_store);
5638
wq_sysfs_init(void)5639 static int __init wq_sysfs_init(void)
5640 {
5641 int err;
5642
5643 err = subsys_virtual_register(&wq_subsys, NULL);
5644 if (err)
5645 return err;
5646
5647 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5648 }
5649 core_initcall(wq_sysfs_init);
5650
wq_device_release(struct device * dev)5651 static void wq_device_release(struct device *dev)
5652 {
5653 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5654
5655 kfree(wq_dev);
5656 }
5657
5658 /**
5659 * workqueue_sysfs_register - make a workqueue visible in sysfs
5660 * @wq: the workqueue to register
5661 *
5662 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5663 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5664 * which is the preferred method.
5665 *
5666 * Workqueue user should use this function directly iff it wants to apply
5667 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5668 * apply_workqueue_attrs() may race against userland updating the
5669 * attributes.
5670 *
5671 * Return: 0 on success, -errno on failure.
5672 */
workqueue_sysfs_register(struct workqueue_struct * wq)5673 int workqueue_sysfs_register(struct workqueue_struct *wq)
5674 {
5675 struct wq_device *wq_dev;
5676 int ret;
5677
5678 /*
5679 * Adjusting max_active or creating new pwqs by applying
5680 * attributes breaks ordering guarantee. Disallow exposing ordered
5681 * workqueues.
5682 */
5683 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5684 return -EINVAL;
5685
5686 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5687 if (!wq_dev)
5688 return -ENOMEM;
5689
5690 wq_dev->wq = wq;
5691 wq_dev->dev.bus = &wq_subsys;
5692 wq_dev->dev.release = wq_device_release;
5693 dev_set_name(&wq_dev->dev, "%s", wq->name);
5694
5695 /*
5696 * unbound_attrs are created separately. Suppress uevent until
5697 * everything is ready.
5698 */
5699 dev_set_uevent_suppress(&wq_dev->dev, true);
5700
5701 ret = device_register(&wq_dev->dev);
5702 if (ret) {
5703 put_device(&wq_dev->dev);
5704 wq->wq_dev = NULL;
5705 return ret;
5706 }
5707
5708 if (wq->flags & WQ_UNBOUND) {
5709 struct device_attribute *attr;
5710
5711 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5712 ret = device_create_file(&wq_dev->dev, attr);
5713 if (ret) {
5714 device_unregister(&wq_dev->dev);
5715 wq->wq_dev = NULL;
5716 return ret;
5717 }
5718 }
5719 }
5720
5721 dev_set_uevent_suppress(&wq_dev->dev, false);
5722 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5723 return 0;
5724 }
5725
5726 /**
5727 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5728 * @wq: the workqueue to unregister
5729 *
5730 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5731 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5732 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5733 {
5734 struct wq_device *wq_dev = wq->wq_dev;
5735
5736 if (!wq->wq_dev)
5737 return;
5738
5739 wq->wq_dev = NULL;
5740 device_unregister(&wq_dev->dev);
5741 }
5742 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5743 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5744 #endif /* CONFIG_SYSFS */
5745
5746 /*
5747 * Workqueue watchdog.
5748 *
5749 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5750 * flush dependency, a concurrency managed work item which stays RUNNING
5751 * indefinitely. Workqueue stalls can be very difficult to debug as the
5752 * usual warning mechanisms don't trigger and internal workqueue state is
5753 * largely opaque.
5754 *
5755 * Workqueue watchdog monitors all worker pools periodically and dumps
5756 * state if some pools failed to make forward progress for a while where
5757 * forward progress is defined as the first item on ->worklist changing.
5758 *
5759 * This mechanism is controlled through the kernel parameter
5760 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5761 * corresponding sysfs parameter file.
5762 */
5763 #ifdef CONFIG_WQ_WATCHDOG
5764
5765 static unsigned long wq_watchdog_thresh = 30;
5766 static struct timer_list wq_watchdog_timer;
5767
5768 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5769 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5770
wq_watchdog_reset_touched(void)5771 static void wq_watchdog_reset_touched(void)
5772 {
5773 int cpu;
5774
5775 wq_watchdog_touched = jiffies;
5776 for_each_possible_cpu(cpu)
5777 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5778 }
5779
wq_watchdog_timer_fn(struct timer_list * unused)5780 static void wq_watchdog_timer_fn(struct timer_list *unused)
5781 {
5782 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5783 bool lockup_detected = false;
5784 unsigned long now = jiffies;
5785 struct worker_pool *pool;
5786 int pi;
5787
5788 if (!thresh)
5789 return;
5790
5791 rcu_read_lock();
5792
5793 for_each_pool(pool, pi) {
5794 unsigned long pool_ts, touched, ts;
5795
5796 if (list_empty(&pool->worklist))
5797 continue;
5798
5799 /*
5800 * If a virtual machine is stopped by the host it can look to
5801 * the watchdog like a stall.
5802 */
5803 kvm_check_and_clear_guest_paused();
5804
5805 /* get the latest of pool and touched timestamps */
5806 pool_ts = READ_ONCE(pool->watchdog_ts);
5807 touched = READ_ONCE(wq_watchdog_touched);
5808
5809 if (time_after(pool_ts, touched))
5810 ts = pool_ts;
5811 else
5812 ts = touched;
5813
5814 if (pool->cpu >= 0) {
5815 unsigned long cpu_touched =
5816 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5817 pool->cpu));
5818 if (time_after(cpu_touched, ts))
5819 ts = cpu_touched;
5820 }
5821
5822 /* did we stall? */
5823 if (time_after(now, ts + thresh)) {
5824 lockup_detected = true;
5825 pr_emerg("BUG: workqueue lockup - pool");
5826 pr_cont_pool_info(pool);
5827 pr_cont(" stuck for %us!\n",
5828 jiffies_to_msecs(now - pool_ts) / 1000);
5829 }
5830 }
5831
5832 rcu_read_unlock();
5833
5834 if (lockup_detected)
5835 show_workqueue_state();
5836
5837 wq_watchdog_reset_touched();
5838 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5839 }
5840
wq_watchdog_touch(int cpu)5841 notrace void wq_watchdog_touch(int cpu)
5842 {
5843 if (cpu >= 0)
5844 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5845 else
5846 wq_watchdog_touched = jiffies;
5847 }
5848
wq_watchdog_set_thresh(unsigned long thresh)5849 static void wq_watchdog_set_thresh(unsigned long thresh)
5850 {
5851 wq_watchdog_thresh = 0;
5852 del_timer_sync(&wq_watchdog_timer);
5853
5854 if (thresh) {
5855 wq_watchdog_thresh = thresh;
5856 wq_watchdog_reset_touched();
5857 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5858 }
5859 }
5860
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5861 static int wq_watchdog_param_set_thresh(const char *val,
5862 const struct kernel_param *kp)
5863 {
5864 unsigned long thresh;
5865 int ret;
5866
5867 ret = kstrtoul(val, 0, &thresh);
5868 if (ret)
5869 return ret;
5870
5871 if (system_wq)
5872 wq_watchdog_set_thresh(thresh);
5873 else
5874 wq_watchdog_thresh = thresh;
5875
5876 return 0;
5877 }
5878
5879 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5880 .set = wq_watchdog_param_set_thresh,
5881 .get = param_get_ulong,
5882 };
5883
5884 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5885 0644);
5886
wq_watchdog_init(void)5887 static void wq_watchdog_init(void)
5888 {
5889 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5890 wq_watchdog_set_thresh(wq_watchdog_thresh);
5891 }
5892
5893 #else /* CONFIG_WQ_WATCHDOG */
5894
wq_watchdog_init(void)5895 static inline void wq_watchdog_init(void) { }
5896
5897 #endif /* CONFIG_WQ_WATCHDOG */
5898
wq_numa_init(void)5899 static void __init wq_numa_init(void)
5900 {
5901 cpumask_var_t *tbl;
5902 int node, cpu;
5903
5904 if (num_possible_nodes() <= 1)
5905 return;
5906
5907 if (wq_disable_numa) {
5908 pr_info("workqueue: NUMA affinity support disabled\n");
5909 return;
5910 }
5911
5912 for_each_possible_cpu(cpu) {
5913 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5914 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5915 return;
5916 }
5917 }
5918
5919 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5920 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5921
5922 /*
5923 * We want masks of possible CPUs of each node which isn't readily
5924 * available. Build one from cpu_to_node() which should have been
5925 * fully initialized by now.
5926 */
5927 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5928 BUG_ON(!tbl);
5929
5930 for_each_node(node)
5931 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5932 node_online(node) ? node : NUMA_NO_NODE));
5933
5934 for_each_possible_cpu(cpu) {
5935 node = cpu_to_node(cpu);
5936 cpumask_set_cpu(cpu, tbl[node]);
5937 }
5938
5939 wq_numa_possible_cpumask = tbl;
5940 wq_numa_enabled = true;
5941 }
5942
5943 /**
5944 * workqueue_init_early - early init for workqueue subsystem
5945 *
5946 * This is the first half of two-staged workqueue subsystem initialization
5947 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5948 * idr are up. It sets up all the data structures and system workqueues
5949 * and allows early boot code to create workqueues and queue/cancel work
5950 * items. Actual work item execution starts only after kthreads can be
5951 * created and scheduled right before early initcalls.
5952 */
workqueue_init_early(void)5953 void __init workqueue_init_early(void)
5954 {
5955 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5956 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5957 int i, cpu;
5958
5959 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5960
5961 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5962 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5963
5964 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5965
5966 /* initialize CPU pools */
5967 for_each_possible_cpu(cpu) {
5968 struct worker_pool *pool;
5969
5970 i = 0;
5971 for_each_cpu_worker_pool(pool, cpu) {
5972 BUG_ON(init_worker_pool(pool));
5973 pool->cpu = cpu;
5974 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5975 pool->attrs->nice = std_nice[i++];
5976 pool->node = cpu_to_node(cpu);
5977
5978 /* alloc pool ID */
5979 mutex_lock(&wq_pool_mutex);
5980 BUG_ON(worker_pool_assign_id(pool));
5981 mutex_unlock(&wq_pool_mutex);
5982 }
5983 }
5984
5985 /* create default unbound and ordered wq attrs */
5986 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5987 struct workqueue_attrs *attrs;
5988
5989 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5990 attrs->nice = std_nice[i];
5991 unbound_std_wq_attrs[i] = attrs;
5992
5993 /*
5994 * An ordered wq should have only one pwq as ordering is
5995 * guaranteed by max_active which is enforced by pwqs.
5996 * Turn off NUMA so that dfl_pwq is used for all nodes.
5997 */
5998 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5999 attrs->nice = std_nice[i];
6000 attrs->no_numa = true;
6001 ordered_wq_attrs[i] = attrs;
6002 }
6003
6004 system_wq = alloc_workqueue("events", 0, 0);
6005 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6006 system_long_wq = alloc_workqueue("events_long", 0, 0);
6007 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6008 WQ_UNBOUND_MAX_ACTIVE);
6009 system_freezable_wq = alloc_workqueue("events_freezable",
6010 WQ_FREEZABLE, 0);
6011 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6012 WQ_POWER_EFFICIENT, 0);
6013 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6014 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6015 0);
6016 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6017 !system_unbound_wq || !system_freezable_wq ||
6018 !system_power_efficient_wq ||
6019 !system_freezable_power_efficient_wq);
6020 }
6021
6022 /**
6023 * workqueue_init - bring workqueue subsystem fully online
6024 *
6025 * This is the latter half of two-staged workqueue subsystem initialization
6026 * and invoked as soon as kthreads can be created and scheduled.
6027 * Workqueues have been created and work items queued on them, but there
6028 * are no kworkers executing the work items yet. Populate the worker pools
6029 * with the initial workers and enable future kworker creations.
6030 */
workqueue_init(void)6031 void __init workqueue_init(void)
6032 {
6033 struct workqueue_struct *wq;
6034 struct worker_pool *pool;
6035 int cpu, bkt;
6036
6037 /*
6038 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6039 * CPU to node mapping may not be available that early on some
6040 * archs such as power and arm64. As per-cpu pools created
6041 * previously could be missing node hint and unbound pools NUMA
6042 * affinity, fix them up.
6043 *
6044 * Also, while iterating workqueues, create rescuers if requested.
6045 */
6046 wq_numa_init();
6047
6048 mutex_lock(&wq_pool_mutex);
6049
6050 for_each_possible_cpu(cpu) {
6051 for_each_cpu_worker_pool(pool, cpu) {
6052 pool->node = cpu_to_node(cpu);
6053 }
6054 }
6055
6056 list_for_each_entry(wq, &workqueues, list) {
6057 wq_update_unbound_numa(wq, smp_processor_id(), true);
6058 WARN(init_rescuer(wq),
6059 "workqueue: failed to create early rescuer for %s",
6060 wq->name);
6061 }
6062
6063 mutex_unlock(&wq_pool_mutex);
6064
6065 /* create the initial workers */
6066 for_each_online_cpu(cpu) {
6067 for_each_cpu_worker_pool(pool, cpu) {
6068 pool->flags &= ~POOL_DISASSOCIATED;
6069 BUG_ON(!create_worker(pool));
6070 }
6071 }
6072
6073 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6074 BUG_ON(!create_worker(pool));
6075
6076 wq_online = true;
6077 wq_watchdog_init();
6078 }
6079