• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 enum {
58 	/*
59 	 * worker_pool flags
60 	 *
61 	 * A bound pool is either associated or disassociated with its CPU.
62 	 * While associated (!DISASSOCIATED), all workers are bound to the
63 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 	 * is in effect.
65 	 *
66 	 * While DISASSOCIATED, the cpu may be offline and all workers have
67 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 	 * be executing on any CPU.  The pool behaves as an unbound one.
69 	 *
70 	 * Note that DISASSOCIATED should be flipped only while holding
71 	 * wq_pool_attach_mutex to avoid changing binding state while
72 	 * worker_attach_to_pool() is in progress.
73 	 */
74 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
75 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
76 
77 	/* worker flags */
78 	WORKER_DIE		= 1 << 1,	/* die die die */
79 	WORKER_IDLE		= 1 << 2,	/* is idle */
80 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
81 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
82 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
83 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
84 
85 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
86 				  WORKER_UNBOUND | WORKER_REBOUND,
87 
88 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
89 
90 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
91 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
92 
93 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
94 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
95 
96 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
97 						/* call for help after 10ms
98 						   (min two ticks) */
99 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
100 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
101 
102 	/*
103 	 * Rescue workers are used only on emergencies and shared by
104 	 * all cpus.  Give MIN_NICE.
105 	 */
106 	RESCUER_NICE_LEVEL	= MIN_NICE,
107 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
108 
109 	WQ_NAME_LEN		= 24,
110 };
111 
112 /*
113  * Structure fields follow one of the following exclusion rules.
114  *
115  * I: Modifiable by initialization/destruction paths and read-only for
116  *    everyone else.
117  *
118  * P: Preemption protected.  Disabling preemption is enough and should
119  *    only be modified and accessed from the local cpu.
120  *
121  * L: pool->lock protected.  Access with pool->lock held.
122  *
123  * X: During normal operation, modification requires pool->lock and should
124  *    be done only from local cpu.  Either disabling preemption on local
125  *    cpu or grabbing pool->lock is enough for read access.  If
126  *    POOL_DISASSOCIATED is set, it's identical to L.
127  *
128  * A: wq_pool_attach_mutex protected.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
133  *
134  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
135  *
136  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
137  *      RCU for reads.
138  *
139  * WQ: wq->mutex protected.
140  *
141  * WR: wq->mutex protected for writes.  RCU protected for reads.
142  *
143  * MD: wq_mayday_lock protected.
144  */
145 
146 /* struct worker is defined in workqueue_internal.h */
147 
148 struct worker_pool {
149 	raw_spinlock_t		lock;		/* the pool lock */
150 	int			cpu;		/* I: the associated cpu */
151 	int			node;		/* I: the associated node ID */
152 	int			id;		/* I: pool ID */
153 	unsigned int		flags;		/* X: flags */
154 
155 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
156 
157 	struct list_head	worklist;	/* L: list of pending works */
158 
159 	int			nr_workers;	/* L: total number of workers */
160 	int			nr_idle;	/* L: currently idle workers */
161 
162 	struct list_head	idle_list;	/* X: list of idle workers */
163 	struct timer_list	idle_timer;	/* L: worker idle timeout */
164 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
165 
166 	/* a workers is either on busy_hash or idle_list, or the manager */
167 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 						/* L: hash of busy workers */
169 
170 	struct worker		*manager;	/* L: purely informational */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* MD: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	char			*lock_name;
265 	struct lock_class_key	key;
266 	struct lockdep_map	lockdep_map;
267 #endif
268 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
269 
270 	/*
271 	 * Destruction of workqueue_struct is RCU protected to allow walking
272 	 * the workqueues list without grabbing wq_pool_mutex.
273 	 * This is used to dump all workqueues from sysrq.
274 	 */
275 	struct rcu_head		rcu;
276 
277 	/* hot fields used during command issue, aligned to cacheline */
278 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282 
283 static struct kmem_cache *pwq_cache;
284 
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 					/* possible CPUs of each node */
287 
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290 
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294 
295 static bool wq_online;			/* can kworkers be created yet? */
296 
297 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
298 
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301 
302 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307 
308 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
309 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
310 
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313 
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316 
317 /*
318  * Local execution of unbound work items is no longer guaranteed.  The
319  * following always forces round-robin CPU selection on unbound work items
320  * to uncover usages which depend on it.
321  */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328 
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331 
332 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
333 
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336 
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342 
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357 
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361 
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364 
365 #define assert_rcu_or_pool_mutex()					\
366 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
367 			 !lockdep_is_held(&wq_pool_mutex),		\
368 			 "RCU or wq_pool_mutex should be held")
369 
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
372 			 !lockdep_is_held(&wq->mutex) &&		\
373 			 !lockdep_is_held(&wq_pool_mutex),		\
374 			 "RCU, wq->mutex or wq_pool_mutex should be held")
375 
376 #define for_each_cpu_worker_pool(pool, cpu)				\
377 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
378 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 	     (pool)++)
380 
381 /**
382  * for_each_pool - iterate through all worker_pools in the system
383  * @pool: iteration cursor
384  * @pi: integer used for iteration
385  *
386  * This must be called either with wq_pool_mutex held or RCU read
387  * locked.  If the pool needs to be used beyond the locking in effect, the
388  * caller is responsible for guaranteeing that the pool stays online.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool(pool, pi)						\
394 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396 		else
397 
398 /**
399  * for_each_pool_worker - iterate through all workers of a worker_pool
400  * @worker: iteration cursor
401  * @pool: worker_pool to iterate workers of
402  *
403  * This must be called with wq_pool_attach_mutex.
404  *
405  * The if/else clause exists only for the lockdep assertion and can be
406  * ignored.
407  */
408 #define for_each_pool_worker(worker, pool)				\
409 	list_for_each_entry((worker), &(pool)->workers, node)		\
410 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 		else
412 
413 /**
414  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415  * @pwq: iteration cursor
416  * @wq: the target workqueue
417  *
418  * This must be called either with wq->mutex held or RCU read locked.
419  * If the pwq needs to be used beyond the locking in effect, the caller is
420  * responsible for guaranteeing that the pwq stays online.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pwq(pwq, wq)						\
426 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
427 				 lockdep_is_held(&(wq->mutex)))
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static const struct debug_obj_descr work_debug_descr;
432 
work_debug_hint(void * addr)433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
work_is_static_object(void * addr)438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
work_fixup_init(void * addr,enum debug_obj_state state)449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
work_fixup_free(void * addr,enum debug_obj_state state)467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static const struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
debug_work_activate(struct work_struct * work)489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
debug_work_deactivate(struct work_struct * work)494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
__init_work(struct work_struct * work,int onstack)499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
destroy_work_on_stack(struct work_struct * work)508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
destroy_delayed_work_on_stack(struct delayed_work * work)514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
debug_work_activate(struct work_struct * work)522 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
worker_pool_assign_id(struct worker_pool * pool)533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
work_color_to_flags(int color)577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
get_work_color(struct work_struct * work)582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
work_next_color(int color)588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to queue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
clear_work_data(struct work_struct * work)676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
get_work_pwq(struct work_struct * work)682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
get_work_pool(struct work_struct * work)707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
get_work_pool_id(struct work_struct * work)732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
mark_work_canceling(struct work_struct * work)743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
work_is_canceling(struct work_struct * work)751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
__need_more_worker(struct worker_pool * pool)764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
need_more_worker(struct worker_pool * pool)777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * raw_spin_lock_irq(pool->lock).
832  */
wake_up_worker(struct worker_pool * pool)833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_running - a worker is running again
843  * @task: task waking up
844  *
845  * This function is called when a worker returns from schedule()
846  */
wq_worker_running(struct task_struct * task)847 void wq_worker_running(struct task_struct *task)
848 {
849 	struct worker *worker = kthread_data(task);
850 
851 	if (!worker->sleeping)
852 		return;
853 
854 	/*
855 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
856 	 * and the nr_running increment below, we may ruin the nr_running reset
857 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
858 	 * pool. Protect against such race.
859 	 */
860 	preempt_disable();
861 	if (!(worker->flags & WORKER_NOT_RUNNING))
862 		atomic_inc(&worker->pool->nr_running);
863 	preempt_enable();
864 	worker->sleeping = 0;
865 }
866 
867 /**
868  * wq_worker_sleeping - a worker is going to sleep
869  * @task: task going to sleep
870  *
871  * This function is called from schedule() when a busy worker is
872  * going to sleep. Preemption needs to be disabled to protect ->sleeping
873  * assignment.
874  */
wq_worker_sleeping(struct task_struct * task)875 void wq_worker_sleeping(struct task_struct *task)
876 {
877 	struct worker *next, *worker = kthread_data(task);
878 	struct worker_pool *pool;
879 
880 	/*
881 	 * Rescuers, which may not have all the fields set up like normal
882 	 * workers, also reach here, let's not access anything before
883 	 * checking NOT_RUNNING.
884 	 */
885 	if (worker->flags & WORKER_NOT_RUNNING)
886 		return;
887 
888 	pool = worker->pool;
889 
890 	/* Return if preempted before wq_worker_running() was reached */
891 	if (worker->sleeping)
892 		return;
893 
894 	worker->sleeping = 1;
895 	raw_spin_lock_irq(&pool->lock);
896 
897 	/*
898 	 * The counterpart of the following dec_and_test, implied mb,
899 	 * worklist not empty test sequence is in insert_work().
900 	 * Please read comment there.
901 	 *
902 	 * NOT_RUNNING is clear.  This means that we're bound to and
903 	 * running on the local cpu w/ rq lock held and preemption
904 	 * disabled, which in turn means that none else could be
905 	 * manipulating idle_list, so dereferencing idle_list without pool
906 	 * lock is safe.
907 	 */
908 	if (atomic_dec_and_test(&pool->nr_running) &&
909 	    !list_empty(&pool->worklist)) {
910 		next = first_idle_worker(pool);
911 		if (next)
912 			wake_up_process(next->task);
913 	}
914 	raw_spin_unlock_irq(&pool->lock);
915 }
916 
917 /**
918  * wq_worker_last_func - retrieve worker's last work function
919  * @task: Task to retrieve last work function of.
920  *
921  * Determine the last function a worker executed. This is called from
922  * the scheduler to get a worker's last known identity.
923  *
924  * CONTEXT:
925  * raw_spin_lock_irq(rq->lock)
926  *
927  * This function is called during schedule() when a kworker is going
928  * to sleep. It's used by psi to identify aggregation workers during
929  * dequeuing, to allow periodic aggregation to shut-off when that
930  * worker is the last task in the system or cgroup to go to sleep.
931  *
932  * As this function doesn't involve any workqueue-related locking, it
933  * only returns stable values when called from inside the scheduler's
934  * queuing and dequeuing paths, when @task, which must be a kworker,
935  * is guaranteed to not be processing any works.
936  *
937  * Return:
938  * The last work function %current executed as a worker, NULL if it
939  * hasn't executed any work yet.
940  */
wq_worker_last_func(struct task_struct * task)941 work_func_t wq_worker_last_func(struct task_struct *task)
942 {
943 	struct worker *worker = kthread_data(task);
944 
945 	return worker->last_func;
946 }
947 
948 /**
949  * worker_set_flags - set worker flags and adjust nr_running accordingly
950  * @worker: self
951  * @flags: flags to set
952  *
953  * Set @flags in @worker->flags and adjust nr_running accordingly.
954  *
955  * CONTEXT:
956  * raw_spin_lock_irq(pool->lock)
957  */
worker_set_flags(struct worker * worker,unsigned int flags)958 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
959 {
960 	struct worker_pool *pool = worker->pool;
961 
962 	WARN_ON_ONCE(worker->task != current);
963 
964 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
965 	if ((flags & WORKER_NOT_RUNNING) &&
966 	    !(worker->flags & WORKER_NOT_RUNNING)) {
967 		atomic_dec(&pool->nr_running);
968 	}
969 
970 	worker->flags |= flags;
971 }
972 
973 /**
974  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
975  * @worker: self
976  * @flags: flags to clear
977  *
978  * Clear @flags in @worker->flags and adjust nr_running accordingly.
979  *
980  * CONTEXT:
981  * raw_spin_lock_irq(pool->lock)
982  */
worker_clr_flags(struct worker * worker,unsigned int flags)983 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
984 {
985 	struct worker_pool *pool = worker->pool;
986 	unsigned int oflags = worker->flags;
987 
988 	WARN_ON_ONCE(worker->task != current);
989 
990 	worker->flags &= ~flags;
991 
992 	/*
993 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
994 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
995 	 * of multiple flags, not a single flag.
996 	 */
997 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
998 		if (!(worker->flags & WORKER_NOT_RUNNING))
999 			atomic_inc(&pool->nr_running);
1000 }
1001 
1002 /**
1003  * find_worker_executing_work - find worker which is executing a work
1004  * @pool: pool of interest
1005  * @work: work to find worker for
1006  *
1007  * Find a worker which is executing @work on @pool by searching
1008  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1009  * to match, its current execution should match the address of @work and
1010  * its work function.  This is to avoid unwanted dependency between
1011  * unrelated work executions through a work item being recycled while still
1012  * being executed.
1013  *
1014  * This is a bit tricky.  A work item may be freed once its execution
1015  * starts and nothing prevents the freed area from being recycled for
1016  * another work item.  If the same work item address ends up being reused
1017  * before the original execution finishes, workqueue will identify the
1018  * recycled work item as currently executing and make it wait until the
1019  * current execution finishes, introducing an unwanted dependency.
1020  *
1021  * This function checks the work item address and work function to avoid
1022  * false positives.  Note that this isn't complete as one may construct a
1023  * work function which can introduce dependency onto itself through a
1024  * recycled work item.  Well, if somebody wants to shoot oneself in the
1025  * foot that badly, there's only so much we can do, and if such deadlock
1026  * actually occurs, it should be easy to locate the culprit work function.
1027  *
1028  * CONTEXT:
1029  * raw_spin_lock_irq(pool->lock).
1030  *
1031  * Return:
1032  * Pointer to worker which is executing @work if found, %NULL
1033  * otherwise.
1034  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1035 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1036 						 struct work_struct *work)
1037 {
1038 	struct worker *worker;
1039 
1040 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1041 			       (unsigned long)work)
1042 		if (worker->current_work == work &&
1043 		    worker->current_func == work->func)
1044 			return worker;
1045 
1046 	return NULL;
1047 }
1048 
1049 /**
1050  * move_linked_works - move linked works to a list
1051  * @work: start of series of works to be scheduled
1052  * @head: target list to append @work to
1053  * @nextp: out parameter for nested worklist walking
1054  *
1055  * Schedule linked works starting from @work to @head.  Work series to
1056  * be scheduled starts at @work and includes any consecutive work with
1057  * WORK_STRUCT_LINKED set in its predecessor.
1058  *
1059  * If @nextp is not NULL, it's updated to point to the next work of
1060  * the last scheduled work.  This allows move_linked_works() to be
1061  * nested inside outer list_for_each_entry_safe().
1062  *
1063  * CONTEXT:
1064  * raw_spin_lock_irq(pool->lock).
1065  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1066 static void move_linked_works(struct work_struct *work, struct list_head *head,
1067 			      struct work_struct **nextp)
1068 {
1069 	struct work_struct *n;
1070 
1071 	/*
1072 	 * Linked worklist will always end before the end of the list,
1073 	 * use NULL for list head.
1074 	 */
1075 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1076 		list_move_tail(&work->entry, head);
1077 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1078 			break;
1079 	}
1080 
1081 	/*
1082 	 * If we're already inside safe list traversal and have moved
1083 	 * multiple works to the scheduled queue, the next position
1084 	 * needs to be updated.
1085 	 */
1086 	if (nextp)
1087 		*nextp = n;
1088 }
1089 
1090 /**
1091  * get_pwq - get an extra reference on the specified pool_workqueue
1092  * @pwq: pool_workqueue to get
1093  *
1094  * Obtain an extra reference on @pwq.  The caller should guarantee that
1095  * @pwq has positive refcnt and be holding the matching pool->lock.
1096  */
get_pwq(struct pool_workqueue * pwq)1097 static void get_pwq(struct pool_workqueue *pwq)
1098 {
1099 	lockdep_assert_held(&pwq->pool->lock);
1100 	WARN_ON_ONCE(pwq->refcnt <= 0);
1101 	pwq->refcnt++;
1102 }
1103 
1104 /**
1105  * put_pwq - put a pool_workqueue reference
1106  * @pwq: pool_workqueue to put
1107  *
1108  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1109  * destruction.  The caller should be holding the matching pool->lock.
1110  */
put_pwq(struct pool_workqueue * pwq)1111 static void put_pwq(struct pool_workqueue *pwq)
1112 {
1113 	lockdep_assert_held(&pwq->pool->lock);
1114 	if (likely(--pwq->refcnt))
1115 		return;
1116 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1117 		return;
1118 	/*
1119 	 * @pwq can't be released under pool->lock, bounce to
1120 	 * pwq_unbound_release_workfn().  This never recurses on the same
1121 	 * pool->lock as this path is taken only for unbound workqueues and
1122 	 * the release work item is scheduled on a per-cpu workqueue.  To
1123 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1124 	 * subclass of 1 in get_unbound_pool().
1125 	 */
1126 	schedule_work(&pwq->unbound_release_work);
1127 }
1128 
1129 /**
1130  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1131  * @pwq: pool_workqueue to put (can be %NULL)
1132  *
1133  * put_pwq() with locking.  This function also allows %NULL @pwq.
1134  */
put_pwq_unlocked(struct pool_workqueue * pwq)1135 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1136 {
1137 	if (pwq) {
1138 		/*
1139 		 * As both pwqs and pools are RCU protected, the
1140 		 * following lock operations are safe.
1141 		 */
1142 		raw_spin_lock_irq(&pwq->pool->lock);
1143 		put_pwq(pwq);
1144 		raw_spin_unlock_irq(&pwq->pool->lock);
1145 	}
1146 }
1147 
pwq_activate_delayed_work(struct work_struct * work)1148 static void pwq_activate_delayed_work(struct work_struct *work)
1149 {
1150 	struct pool_workqueue *pwq = get_work_pwq(work);
1151 
1152 	trace_workqueue_activate_work(work);
1153 	if (list_empty(&pwq->pool->worklist))
1154 		pwq->pool->watchdog_ts = jiffies;
1155 	move_linked_works(work, &pwq->pool->worklist, NULL);
1156 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1157 	pwq->nr_active++;
1158 }
1159 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1160 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1161 {
1162 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1163 						    struct work_struct, entry);
1164 
1165 	pwq_activate_delayed_work(work);
1166 }
1167 
1168 /**
1169  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1170  * @pwq: pwq of interest
1171  * @color: color of work which left the queue
1172  *
1173  * A work either has completed or is removed from pending queue,
1174  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1175  *
1176  * CONTEXT:
1177  * raw_spin_lock_irq(pool->lock).
1178  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1179 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1180 {
1181 	/* uncolored work items don't participate in flushing or nr_active */
1182 	if (color == WORK_NO_COLOR)
1183 		goto out_put;
1184 
1185 	pwq->nr_in_flight[color]--;
1186 
1187 	pwq->nr_active--;
1188 	if (!list_empty(&pwq->delayed_works)) {
1189 		/* one down, submit a delayed one */
1190 		if (pwq->nr_active < pwq->max_active)
1191 			pwq_activate_first_delayed(pwq);
1192 	}
1193 
1194 	/* is flush in progress and are we at the flushing tip? */
1195 	if (likely(pwq->flush_color != color))
1196 		goto out_put;
1197 
1198 	/* are there still in-flight works? */
1199 	if (pwq->nr_in_flight[color])
1200 		goto out_put;
1201 
1202 	/* this pwq is done, clear flush_color */
1203 	pwq->flush_color = -1;
1204 
1205 	/*
1206 	 * If this was the last pwq, wake up the first flusher.  It
1207 	 * will handle the rest.
1208 	 */
1209 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1210 		complete(&pwq->wq->first_flusher->done);
1211 out_put:
1212 	put_pwq(pwq);
1213 }
1214 
1215 /**
1216  * try_to_grab_pending - steal work item from worklist and disable irq
1217  * @work: work item to steal
1218  * @is_dwork: @work is a delayed_work
1219  * @flags: place to store irq state
1220  *
1221  * Try to grab PENDING bit of @work.  This function can handle @work in any
1222  * stable state - idle, on timer or on worklist.
1223  *
1224  * Return:
1225  *
1226  *  ========	================================================================
1227  *  1		if @work was pending and we successfully stole PENDING
1228  *  0		if @work was idle and we claimed PENDING
1229  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1230  *  -ENOENT	if someone else is canceling @work, this state may persist
1231  *		for arbitrarily long
1232  *  ========	================================================================
1233  *
1234  * Note:
1235  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1236  * interrupted while holding PENDING and @work off queue, irq must be
1237  * disabled on entry.  This, combined with delayed_work->timer being
1238  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1239  *
1240  * On successful return, >= 0, irq is disabled and the caller is
1241  * responsible for releasing it using local_irq_restore(*@flags).
1242  *
1243  * This function is safe to call from any context including IRQ handler.
1244  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1245 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1246 			       unsigned long *flags)
1247 {
1248 	struct worker_pool *pool;
1249 	struct pool_workqueue *pwq;
1250 
1251 	local_irq_save(*flags);
1252 
1253 	/* try to steal the timer if it exists */
1254 	if (is_dwork) {
1255 		struct delayed_work *dwork = to_delayed_work(work);
1256 
1257 		/*
1258 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1259 		 * guaranteed that the timer is not queued anywhere and not
1260 		 * running on the local CPU.
1261 		 */
1262 		if (likely(del_timer(&dwork->timer)))
1263 			return 1;
1264 	}
1265 
1266 	/* try to claim PENDING the normal way */
1267 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1268 		return 0;
1269 
1270 	rcu_read_lock();
1271 	/*
1272 	 * The queueing is in progress, or it is already queued. Try to
1273 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1274 	 */
1275 	pool = get_work_pool(work);
1276 	if (!pool)
1277 		goto fail;
1278 
1279 	raw_spin_lock(&pool->lock);
1280 	/*
1281 	 * work->data is guaranteed to point to pwq only while the work
1282 	 * item is queued on pwq->wq, and both updating work->data to point
1283 	 * to pwq on queueing and to pool on dequeueing are done under
1284 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1285 	 * points to pwq which is associated with a locked pool, the work
1286 	 * item is currently queued on that pool.
1287 	 */
1288 	pwq = get_work_pwq(work);
1289 	if (pwq && pwq->pool == pool) {
1290 		debug_work_deactivate(work);
1291 
1292 		/*
1293 		 * A delayed work item cannot be grabbed directly because
1294 		 * it might have linked NO_COLOR work items which, if left
1295 		 * on the delayed_list, will confuse pwq->nr_active
1296 		 * management later on and cause stall.  Make sure the work
1297 		 * item is activated before grabbing.
1298 		 */
1299 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1300 			pwq_activate_delayed_work(work);
1301 
1302 		list_del_init(&work->entry);
1303 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1304 
1305 		/* work->data points to pwq iff queued, point to pool */
1306 		set_work_pool_and_keep_pending(work, pool->id);
1307 
1308 		raw_spin_unlock(&pool->lock);
1309 		rcu_read_unlock();
1310 		return 1;
1311 	}
1312 	raw_spin_unlock(&pool->lock);
1313 fail:
1314 	rcu_read_unlock();
1315 	local_irq_restore(*flags);
1316 	if (work_is_canceling(work))
1317 		return -ENOENT;
1318 	cpu_relax();
1319 	return -EAGAIN;
1320 }
1321 
1322 /**
1323  * insert_work - insert a work into a pool
1324  * @pwq: pwq @work belongs to
1325  * @work: work to insert
1326  * @head: insertion point
1327  * @extra_flags: extra WORK_STRUCT_* flags to set
1328  *
1329  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1330  * work_struct flags.
1331  *
1332  * CONTEXT:
1333  * raw_spin_lock_irq(pool->lock).
1334  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1335 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1336 			struct list_head *head, unsigned int extra_flags)
1337 {
1338 	struct worker_pool *pool = pwq->pool;
1339 
1340 	/* we own @work, set data and link */
1341 	set_work_pwq(work, pwq, extra_flags);
1342 	list_add_tail(&work->entry, head);
1343 	get_pwq(pwq);
1344 
1345 	/*
1346 	 * Ensure either wq_worker_sleeping() sees the above
1347 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1348 	 * around lazily while there are works to be processed.
1349 	 */
1350 	smp_mb();
1351 
1352 	if (__need_more_worker(pool))
1353 		wake_up_worker(pool);
1354 }
1355 
1356 /*
1357  * Test whether @work is being queued from another work executing on the
1358  * same workqueue.
1359  */
is_chained_work(struct workqueue_struct * wq)1360 static bool is_chained_work(struct workqueue_struct *wq)
1361 {
1362 	struct worker *worker;
1363 
1364 	worker = current_wq_worker();
1365 	/*
1366 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1367 	 * I'm @worker, it's safe to dereference it without locking.
1368 	 */
1369 	return worker && worker->current_pwq->wq == wq;
1370 }
1371 
1372 /*
1373  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1374  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1375  * avoid perturbing sensitive tasks.
1376  */
wq_select_unbound_cpu(int cpu)1377 static int wq_select_unbound_cpu(int cpu)
1378 {
1379 	static bool printed_dbg_warning;
1380 	int new_cpu;
1381 
1382 	if (likely(!wq_debug_force_rr_cpu)) {
1383 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1384 			return cpu;
1385 	} else if (!printed_dbg_warning) {
1386 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1387 		printed_dbg_warning = true;
1388 	}
1389 
1390 	if (cpumask_empty(wq_unbound_cpumask))
1391 		return cpu;
1392 
1393 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1394 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1395 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1396 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1397 		if (unlikely(new_cpu >= nr_cpu_ids))
1398 			return cpu;
1399 	}
1400 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1401 
1402 	return new_cpu;
1403 }
1404 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1405 static void __queue_work(int cpu, struct workqueue_struct *wq,
1406 			 struct work_struct *work)
1407 {
1408 	struct pool_workqueue *pwq;
1409 	struct worker_pool *last_pool;
1410 	struct list_head *worklist;
1411 	unsigned int work_flags;
1412 	unsigned int req_cpu = cpu;
1413 
1414 	/*
1415 	 * While a work item is PENDING && off queue, a task trying to
1416 	 * steal the PENDING will busy-loop waiting for it to either get
1417 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1418 	 * happen with IRQ disabled.
1419 	 */
1420 	lockdep_assert_irqs_disabled();
1421 
1422 
1423 	/* if draining, only works from the same workqueue are allowed */
1424 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1425 	    WARN_ON_ONCE(!is_chained_work(wq)))
1426 		return;
1427 	rcu_read_lock();
1428 retry:
1429 	/* pwq which will be used unless @work is executing elsewhere */
1430 	if (wq->flags & WQ_UNBOUND) {
1431 		if (req_cpu == WORK_CPU_UNBOUND)
1432 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1433 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1434 	} else {
1435 		if (req_cpu == WORK_CPU_UNBOUND)
1436 			cpu = raw_smp_processor_id();
1437 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1438 	}
1439 
1440 	/*
1441 	 * If @work was previously on a different pool, it might still be
1442 	 * running there, in which case the work needs to be queued on that
1443 	 * pool to guarantee non-reentrancy.
1444 	 */
1445 	last_pool = get_work_pool(work);
1446 	if (last_pool && last_pool != pwq->pool) {
1447 		struct worker *worker;
1448 
1449 		raw_spin_lock(&last_pool->lock);
1450 
1451 		worker = find_worker_executing_work(last_pool, work);
1452 
1453 		if (worker && worker->current_pwq->wq == wq) {
1454 			pwq = worker->current_pwq;
1455 		} else {
1456 			/* meh... not running there, queue here */
1457 			raw_spin_unlock(&last_pool->lock);
1458 			raw_spin_lock(&pwq->pool->lock);
1459 		}
1460 	} else {
1461 		raw_spin_lock(&pwq->pool->lock);
1462 	}
1463 
1464 	/*
1465 	 * pwq is determined and locked.  For unbound pools, we could have
1466 	 * raced with pwq release and it could already be dead.  If its
1467 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1468 	 * without another pwq replacing it in the numa_pwq_tbl or while
1469 	 * work items are executing on it, so the retrying is guaranteed to
1470 	 * make forward-progress.
1471 	 */
1472 	if (unlikely(!pwq->refcnt)) {
1473 		if (wq->flags & WQ_UNBOUND) {
1474 			raw_spin_unlock(&pwq->pool->lock);
1475 			cpu_relax();
1476 			goto retry;
1477 		}
1478 		/* oops */
1479 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1480 			  wq->name, cpu);
1481 	}
1482 
1483 	/* pwq determined, queue */
1484 	trace_workqueue_queue_work(req_cpu, pwq, work);
1485 
1486 	if (WARN_ON(!list_empty(&work->entry)))
1487 		goto out;
1488 
1489 	pwq->nr_in_flight[pwq->work_color]++;
1490 	work_flags = work_color_to_flags(pwq->work_color);
1491 
1492 	if (likely(pwq->nr_active < pwq->max_active)) {
1493 		trace_workqueue_activate_work(work);
1494 		pwq->nr_active++;
1495 		worklist = &pwq->pool->worklist;
1496 		if (list_empty(worklist))
1497 			pwq->pool->watchdog_ts = jiffies;
1498 	} else {
1499 		work_flags |= WORK_STRUCT_DELAYED;
1500 		worklist = &pwq->delayed_works;
1501 	}
1502 
1503 	debug_work_activate(work);
1504 	insert_work(pwq, work, worklist, work_flags);
1505 
1506 out:
1507 	raw_spin_unlock(&pwq->pool->lock);
1508 	rcu_read_unlock();
1509 }
1510 
1511 /**
1512  * queue_work_on - queue work on specific cpu
1513  * @cpu: CPU number to execute work on
1514  * @wq: workqueue to use
1515  * @work: work to queue
1516  *
1517  * We queue the work to a specific CPU, the caller must ensure it
1518  * can't go away.
1519  *
1520  * Return: %false if @work was already on a queue, %true otherwise.
1521  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1522 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1523 		   struct work_struct *work)
1524 {
1525 	bool ret = false;
1526 	unsigned long flags;
1527 
1528 	local_irq_save(flags);
1529 
1530 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1531 		__queue_work(cpu, wq, work);
1532 		ret = true;
1533 	}
1534 
1535 	local_irq_restore(flags);
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL(queue_work_on);
1539 
1540 /**
1541  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1542  * @node: NUMA node ID that we want to select a CPU from
1543  *
1544  * This function will attempt to find a "random" cpu available on a given
1545  * node. If there are no CPUs available on the given node it will return
1546  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1547  * available CPU if we need to schedule this work.
1548  */
workqueue_select_cpu_near(int node)1549 static int workqueue_select_cpu_near(int node)
1550 {
1551 	int cpu;
1552 
1553 	/* No point in doing this if NUMA isn't enabled for workqueues */
1554 	if (!wq_numa_enabled)
1555 		return WORK_CPU_UNBOUND;
1556 
1557 	/* Delay binding to CPU if node is not valid or online */
1558 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1559 		return WORK_CPU_UNBOUND;
1560 
1561 	/* Use local node/cpu if we are already there */
1562 	cpu = raw_smp_processor_id();
1563 	if (node == cpu_to_node(cpu))
1564 		return cpu;
1565 
1566 	/* Use "random" otherwise know as "first" online CPU of node */
1567 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1568 
1569 	/* If CPU is valid return that, otherwise just defer */
1570 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1571 }
1572 
1573 /**
1574  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1575  * @node: NUMA node that we are targeting the work for
1576  * @wq: workqueue to use
1577  * @work: work to queue
1578  *
1579  * We queue the work to a "random" CPU within a given NUMA node. The basic
1580  * idea here is to provide a way to somehow associate work with a given
1581  * NUMA node.
1582  *
1583  * This function will only make a best effort attempt at getting this onto
1584  * the right NUMA node. If no node is requested or the requested node is
1585  * offline then we just fall back to standard queue_work behavior.
1586  *
1587  * Currently the "random" CPU ends up being the first available CPU in the
1588  * intersection of cpu_online_mask and the cpumask of the node, unless we
1589  * are running on the node. In that case we just use the current CPU.
1590  *
1591  * Return: %false if @work was already on a queue, %true otherwise.
1592  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1593 bool queue_work_node(int node, struct workqueue_struct *wq,
1594 		     struct work_struct *work)
1595 {
1596 	unsigned long flags;
1597 	bool ret = false;
1598 
1599 	/*
1600 	 * This current implementation is specific to unbound workqueues.
1601 	 * Specifically we only return the first available CPU for a given
1602 	 * node instead of cycling through individual CPUs within the node.
1603 	 *
1604 	 * If this is used with a per-cpu workqueue then the logic in
1605 	 * workqueue_select_cpu_near would need to be updated to allow for
1606 	 * some round robin type logic.
1607 	 */
1608 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1609 
1610 	local_irq_save(flags);
1611 
1612 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1613 		int cpu = workqueue_select_cpu_near(node);
1614 
1615 		__queue_work(cpu, wq, work);
1616 		ret = true;
1617 	}
1618 
1619 	local_irq_restore(flags);
1620 	return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(queue_work_node);
1623 
delayed_work_timer_fn(struct timer_list * t)1624 void delayed_work_timer_fn(struct timer_list *t)
1625 {
1626 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1627 
1628 	/* should have been called from irqsafe timer with irq already off */
1629 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1630 }
1631 EXPORT_SYMBOL(delayed_work_timer_fn);
1632 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1633 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1634 				struct delayed_work *dwork, unsigned long delay)
1635 {
1636 	struct timer_list *timer = &dwork->timer;
1637 	struct work_struct *work = &dwork->work;
1638 
1639 	WARN_ON_ONCE(!wq);
1640 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1641 	WARN_ON_ONCE(timer_pending(timer));
1642 	WARN_ON_ONCE(!list_empty(&work->entry));
1643 
1644 	/*
1645 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1646 	 * both optimization and correctness.  The earliest @timer can
1647 	 * expire is on the closest next tick and delayed_work users depend
1648 	 * on that there's no such delay when @delay is 0.
1649 	 */
1650 	if (!delay) {
1651 		__queue_work(cpu, wq, &dwork->work);
1652 		return;
1653 	}
1654 
1655 	dwork->wq = wq;
1656 	dwork->cpu = cpu;
1657 	timer->expires = jiffies + delay;
1658 
1659 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1660 		add_timer_on(timer, cpu);
1661 	else
1662 		add_timer(timer);
1663 }
1664 
1665 /**
1666  * queue_delayed_work_on - queue work on specific CPU after delay
1667  * @cpu: CPU number to execute work on
1668  * @wq: workqueue to use
1669  * @dwork: work to queue
1670  * @delay: number of jiffies to wait before queueing
1671  *
1672  * Return: %false if @work was already on a queue, %true otherwise.  If
1673  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1674  * execution.
1675  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1676 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1677 			   struct delayed_work *dwork, unsigned long delay)
1678 {
1679 	struct work_struct *work = &dwork->work;
1680 	bool ret = false;
1681 	unsigned long flags;
1682 
1683 	/* read the comment in __queue_work() */
1684 	local_irq_save(flags);
1685 
1686 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1687 		__queue_delayed_work(cpu, wq, dwork, delay);
1688 		ret = true;
1689 	}
1690 
1691 	local_irq_restore(flags);
1692 	return ret;
1693 }
1694 EXPORT_SYMBOL(queue_delayed_work_on);
1695 
1696 /**
1697  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1698  * @cpu: CPU number to execute work on
1699  * @wq: workqueue to use
1700  * @dwork: work to queue
1701  * @delay: number of jiffies to wait before queueing
1702  *
1703  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1704  * modify @dwork's timer so that it expires after @delay.  If @delay is
1705  * zero, @work is guaranteed to be scheduled immediately regardless of its
1706  * current state.
1707  *
1708  * Return: %false if @dwork was idle and queued, %true if @dwork was
1709  * pending and its timer was modified.
1710  *
1711  * This function is safe to call from any context including IRQ handler.
1712  * See try_to_grab_pending() for details.
1713  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1714 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1715 			 struct delayed_work *dwork, unsigned long delay)
1716 {
1717 	unsigned long flags;
1718 	int ret;
1719 
1720 	do {
1721 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1722 	} while (unlikely(ret == -EAGAIN));
1723 
1724 	if (likely(ret >= 0)) {
1725 		__queue_delayed_work(cpu, wq, dwork, delay);
1726 		local_irq_restore(flags);
1727 	}
1728 
1729 	/* -ENOENT from try_to_grab_pending() becomes %true */
1730 	return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1733 
rcu_work_rcufn(struct rcu_head * rcu)1734 static void rcu_work_rcufn(struct rcu_head *rcu)
1735 {
1736 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1737 
1738 	/* read the comment in __queue_work() */
1739 	local_irq_disable();
1740 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1741 	local_irq_enable();
1742 }
1743 
1744 /**
1745  * queue_rcu_work - queue work after a RCU grace period
1746  * @wq: workqueue to use
1747  * @rwork: work to queue
1748  *
1749  * Return: %false if @rwork was already pending, %true otherwise.  Note
1750  * that a full RCU grace period is guaranteed only after a %true return.
1751  * While @rwork is guaranteed to be executed after a %false return, the
1752  * execution may happen before a full RCU grace period has passed.
1753  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1754 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1755 {
1756 	struct work_struct *work = &rwork->work;
1757 
1758 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1759 		rwork->wq = wq;
1760 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1761 		return true;
1762 	}
1763 
1764 	return false;
1765 }
1766 EXPORT_SYMBOL(queue_rcu_work);
1767 
1768 /**
1769  * worker_enter_idle - enter idle state
1770  * @worker: worker which is entering idle state
1771  *
1772  * @worker is entering idle state.  Update stats and idle timer if
1773  * necessary.
1774  *
1775  * LOCKING:
1776  * raw_spin_lock_irq(pool->lock).
1777  */
worker_enter_idle(struct worker * worker)1778 static void worker_enter_idle(struct worker *worker)
1779 {
1780 	struct worker_pool *pool = worker->pool;
1781 
1782 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1783 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1784 			 (worker->hentry.next || worker->hentry.pprev)))
1785 		return;
1786 
1787 	/* can't use worker_set_flags(), also called from create_worker() */
1788 	worker->flags |= WORKER_IDLE;
1789 	pool->nr_idle++;
1790 	worker->last_active = jiffies;
1791 
1792 	/* idle_list is LIFO */
1793 	list_add(&worker->entry, &pool->idle_list);
1794 
1795 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1796 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1797 
1798 	/*
1799 	 * Sanity check nr_running.  Because unbind_workers() releases
1800 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1801 	 * nr_running, the warning may trigger spuriously.  Check iff
1802 	 * unbind is not in progress.
1803 	 */
1804 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1805 		     pool->nr_workers == pool->nr_idle &&
1806 		     atomic_read(&pool->nr_running));
1807 }
1808 
1809 /**
1810  * worker_leave_idle - leave idle state
1811  * @worker: worker which is leaving idle state
1812  *
1813  * @worker is leaving idle state.  Update stats.
1814  *
1815  * LOCKING:
1816  * raw_spin_lock_irq(pool->lock).
1817  */
worker_leave_idle(struct worker * worker)1818 static void worker_leave_idle(struct worker *worker)
1819 {
1820 	struct worker_pool *pool = worker->pool;
1821 
1822 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1823 		return;
1824 	worker_clr_flags(worker, WORKER_IDLE);
1825 	pool->nr_idle--;
1826 	list_del_init(&worker->entry);
1827 }
1828 
alloc_worker(int node)1829 static struct worker *alloc_worker(int node)
1830 {
1831 	struct worker *worker;
1832 
1833 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1834 	if (worker) {
1835 		INIT_LIST_HEAD(&worker->entry);
1836 		INIT_LIST_HEAD(&worker->scheduled);
1837 		INIT_LIST_HEAD(&worker->node);
1838 		/* on creation a worker is in !idle && prep state */
1839 		worker->flags = WORKER_PREP;
1840 	}
1841 	return worker;
1842 }
1843 
1844 /**
1845  * worker_attach_to_pool() - attach a worker to a pool
1846  * @worker: worker to be attached
1847  * @pool: the target pool
1848  *
1849  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1850  * cpu-binding of @worker are kept coordinated with the pool across
1851  * cpu-[un]hotplugs.
1852  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1853 static void worker_attach_to_pool(struct worker *worker,
1854 				   struct worker_pool *pool)
1855 {
1856 	mutex_lock(&wq_pool_attach_mutex);
1857 
1858 	/*
1859 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1860 	 * stable across this function.  See the comments above the flag
1861 	 * definition for details.
1862 	 */
1863 	if (pool->flags & POOL_DISASSOCIATED)
1864 		worker->flags |= WORKER_UNBOUND;
1865 
1866 	if (worker->rescue_wq)
1867 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1868 
1869 	list_add_tail(&worker->node, &pool->workers);
1870 	worker->pool = pool;
1871 
1872 	mutex_unlock(&wq_pool_attach_mutex);
1873 }
1874 
1875 /**
1876  * worker_detach_from_pool() - detach a worker from its pool
1877  * @worker: worker which is attached to its pool
1878  *
1879  * Undo the attaching which had been done in worker_attach_to_pool().  The
1880  * caller worker shouldn't access to the pool after detached except it has
1881  * other reference to the pool.
1882  */
worker_detach_from_pool(struct worker * worker)1883 static void worker_detach_from_pool(struct worker *worker)
1884 {
1885 	struct worker_pool *pool = worker->pool;
1886 	struct completion *detach_completion = NULL;
1887 
1888 	mutex_lock(&wq_pool_attach_mutex);
1889 
1890 	list_del(&worker->node);
1891 	worker->pool = NULL;
1892 
1893 	if (list_empty(&pool->workers))
1894 		detach_completion = pool->detach_completion;
1895 	mutex_unlock(&wq_pool_attach_mutex);
1896 
1897 	/* clear leftover flags without pool->lock after it is detached */
1898 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1899 
1900 	if (detach_completion)
1901 		complete(detach_completion);
1902 }
1903 
1904 /**
1905  * create_worker - create a new workqueue worker
1906  * @pool: pool the new worker will belong to
1907  *
1908  * Create and start a new worker which is attached to @pool.
1909  *
1910  * CONTEXT:
1911  * Might sleep.  Does GFP_KERNEL allocations.
1912  *
1913  * Return:
1914  * Pointer to the newly created worker.
1915  */
create_worker(struct worker_pool * pool)1916 static struct worker *create_worker(struct worker_pool *pool)
1917 {
1918 	struct worker *worker = NULL;
1919 	int id = -1;
1920 	char id_buf[16];
1921 
1922 	/* ID is needed to determine kthread name */
1923 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1924 	if (id < 0)
1925 		goto fail;
1926 
1927 	worker = alloc_worker(pool->node);
1928 	if (!worker)
1929 		goto fail;
1930 
1931 	worker->id = id;
1932 
1933 	if (pool->cpu >= 0)
1934 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1935 			 pool->attrs->nice < 0  ? "H" : "");
1936 	else
1937 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1938 
1939 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1940 					      "kworker/%s", id_buf);
1941 	if (IS_ERR(worker->task))
1942 		goto fail;
1943 
1944 	set_user_nice(worker->task, pool->attrs->nice);
1945 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1946 
1947 	/* successful, attach the worker to the pool */
1948 	worker_attach_to_pool(worker, pool);
1949 
1950 	/* start the newly created worker */
1951 	raw_spin_lock_irq(&pool->lock);
1952 	worker->pool->nr_workers++;
1953 	worker_enter_idle(worker);
1954 	wake_up_process(worker->task);
1955 	raw_spin_unlock_irq(&pool->lock);
1956 
1957 	return worker;
1958 
1959 fail:
1960 	if (id >= 0)
1961 		ida_simple_remove(&pool->worker_ida, id);
1962 	kfree(worker);
1963 	return NULL;
1964 }
1965 
1966 /**
1967  * destroy_worker - destroy a workqueue worker
1968  * @worker: worker to be destroyed
1969  *
1970  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1971  * be idle.
1972  *
1973  * CONTEXT:
1974  * raw_spin_lock_irq(pool->lock).
1975  */
destroy_worker(struct worker * worker)1976 static void destroy_worker(struct worker *worker)
1977 {
1978 	struct worker_pool *pool = worker->pool;
1979 
1980 	lockdep_assert_held(&pool->lock);
1981 
1982 	/* sanity check frenzy */
1983 	if (WARN_ON(worker->current_work) ||
1984 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1985 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1986 		return;
1987 
1988 	pool->nr_workers--;
1989 	pool->nr_idle--;
1990 
1991 	list_del_init(&worker->entry);
1992 	worker->flags |= WORKER_DIE;
1993 	wake_up_process(worker->task);
1994 }
1995 
idle_worker_timeout(struct timer_list * t)1996 static void idle_worker_timeout(struct timer_list *t)
1997 {
1998 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1999 
2000 	raw_spin_lock_irq(&pool->lock);
2001 
2002 	while (too_many_workers(pool)) {
2003 		struct worker *worker;
2004 		unsigned long expires;
2005 
2006 		/* idle_list is kept in LIFO order, check the last one */
2007 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2008 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2009 
2010 		if (time_before(jiffies, expires)) {
2011 			mod_timer(&pool->idle_timer, expires);
2012 			break;
2013 		}
2014 
2015 		destroy_worker(worker);
2016 	}
2017 
2018 	raw_spin_unlock_irq(&pool->lock);
2019 }
2020 
send_mayday(struct work_struct * work)2021 static void send_mayday(struct work_struct *work)
2022 {
2023 	struct pool_workqueue *pwq = get_work_pwq(work);
2024 	struct workqueue_struct *wq = pwq->wq;
2025 
2026 	lockdep_assert_held(&wq_mayday_lock);
2027 
2028 	if (!wq->rescuer)
2029 		return;
2030 
2031 	/* mayday mayday mayday */
2032 	if (list_empty(&pwq->mayday_node)) {
2033 		/*
2034 		 * If @pwq is for an unbound wq, its base ref may be put at
2035 		 * any time due to an attribute change.  Pin @pwq until the
2036 		 * rescuer is done with it.
2037 		 */
2038 		get_pwq(pwq);
2039 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2040 		wake_up_process(wq->rescuer->task);
2041 	}
2042 }
2043 
pool_mayday_timeout(struct timer_list * t)2044 static void pool_mayday_timeout(struct timer_list *t)
2045 {
2046 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2047 	struct work_struct *work;
2048 
2049 	raw_spin_lock_irq(&pool->lock);
2050 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2051 
2052 	if (need_to_create_worker(pool)) {
2053 		/*
2054 		 * We've been trying to create a new worker but
2055 		 * haven't been successful.  We might be hitting an
2056 		 * allocation deadlock.  Send distress signals to
2057 		 * rescuers.
2058 		 */
2059 		list_for_each_entry(work, &pool->worklist, entry)
2060 			send_mayday(work);
2061 	}
2062 
2063 	raw_spin_unlock(&wq_mayday_lock);
2064 	raw_spin_unlock_irq(&pool->lock);
2065 
2066 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2067 }
2068 
2069 /**
2070  * maybe_create_worker - create a new worker if necessary
2071  * @pool: pool to create a new worker for
2072  *
2073  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2074  * have at least one idle worker on return from this function.  If
2075  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2076  * sent to all rescuers with works scheduled on @pool to resolve
2077  * possible allocation deadlock.
2078  *
2079  * On return, need_to_create_worker() is guaranteed to be %false and
2080  * may_start_working() %true.
2081  *
2082  * LOCKING:
2083  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2084  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2085  * manager.
2086  */
maybe_create_worker(struct worker_pool * pool)2087 static void maybe_create_worker(struct worker_pool *pool)
2088 __releases(&pool->lock)
2089 __acquires(&pool->lock)
2090 {
2091 restart:
2092 	raw_spin_unlock_irq(&pool->lock);
2093 
2094 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2095 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2096 
2097 	while (true) {
2098 		if (create_worker(pool) || !need_to_create_worker(pool))
2099 			break;
2100 
2101 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2102 
2103 		if (!need_to_create_worker(pool))
2104 			break;
2105 	}
2106 
2107 	del_timer_sync(&pool->mayday_timer);
2108 	raw_spin_lock_irq(&pool->lock);
2109 	/*
2110 	 * This is necessary even after a new worker was just successfully
2111 	 * created as @pool->lock was dropped and the new worker might have
2112 	 * already become busy.
2113 	 */
2114 	if (need_to_create_worker(pool))
2115 		goto restart;
2116 }
2117 
2118 /**
2119  * manage_workers - manage worker pool
2120  * @worker: self
2121  *
2122  * Assume the manager role and manage the worker pool @worker belongs
2123  * to.  At any given time, there can be only zero or one manager per
2124  * pool.  The exclusion is handled automatically by this function.
2125  *
2126  * The caller can safely start processing works on false return.  On
2127  * true return, it's guaranteed that need_to_create_worker() is false
2128  * and may_start_working() is true.
2129  *
2130  * CONTEXT:
2131  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2132  * multiple times.  Does GFP_KERNEL allocations.
2133  *
2134  * Return:
2135  * %false if the pool doesn't need management and the caller can safely
2136  * start processing works, %true if management function was performed and
2137  * the conditions that the caller verified before calling the function may
2138  * no longer be true.
2139  */
manage_workers(struct worker * worker)2140 static bool manage_workers(struct worker *worker)
2141 {
2142 	struct worker_pool *pool = worker->pool;
2143 
2144 	if (pool->flags & POOL_MANAGER_ACTIVE)
2145 		return false;
2146 
2147 	pool->flags |= POOL_MANAGER_ACTIVE;
2148 	pool->manager = worker;
2149 
2150 	maybe_create_worker(pool);
2151 
2152 	pool->manager = NULL;
2153 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2154 	rcuwait_wake_up(&manager_wait);
2155 	return true;
2156 }
2157 
2158 /**
2159  * process_one_work - process single work
2160  * @worker: self
2161  * @work: work to process
2162  *
2163  * Process @work.  This function contains all the logics necessary to
2164  * process a single work including synchronization against and
2165  * interaction with other workers on the same cpu, queueing and
2166  * flushing.  As long as context requirement is met, any worker can
2167  * call this function to process a work.
2168  *
2169  * CONTEXT:
2170  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2171  */
process_one_work(struct worker * worker,struct work_struct * work)2172 static void process_one_work(struct worker *worker, struct work_struct *work)
2173 __releases(&pool->lock)
2174 __acquires(&pool->lock)
2175 {
2176 	struct pool_workqueue *pwq = get_work_pwq(work);
2177 	struct worker_pool *pool = worker->pool;
2178 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2179 	int work_color;
2180 	struct worker *collision;
2181 #ifdef CONFIG_LOCKDEP
2182 	/*
2183 	 * It is permissible to free the struct work_struct from
2184 	 * inside the function that is called from it, this we need to
2185 	 * take into account for lockdep too.  To avoid bogus "held
2186 	 * lock freed" warnings as well as problems when looking into
2187 	 * work->lockdep_map, make a copy and use that here.
2188 	 */
2189 	struct lockdep_map lockdep_map;
2190 
2191 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2192 #endif
2193 	/* ensure we're on the correct CPU */
2194 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2195 		     raw_smp_processor_id() != pool->cpu);
2196 
2197 	/*
2198 	 * A single work shouldn't be executed concurrently by
2199 	 * multiple workers on a single cpu.  Check whether anyone is
2200 	 * already processing the work.  If so, defer the work to the
2201 	 * currently executing one.
2202 	 */
2203 	collision = find_worker_executing_work(pool, work);
2204 	if (unlikely(collision)) {
2205 		move_linked_works(work, &collision->scheduled, NULL);
2206 		return;
2207 	}
2208 
2209 	/* claim and dequeue */
2210 	debug_work_deactivate(work);
2211 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2212 	worker->current_work = work;
2213 	worker->current_func = work->func;
2214 	worker->current_pwq = pwq;
2215 	work_color = get_work_color(work);
2216 
2217 	/*
2218 	 * Record wq name for cmdline and debug reporting, may get
2219 	 * overridden through set_worker_desc().
2220 	 */
2221 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2222 
2223 	list_del_init(&work->entry);
2224 
2225 	/*
2226 	 * CPU intensive works don't participate in concurrency management.
2227 	 * They're the scheduler's responsibility.  This takes @worker out
2228 	 * of concurrency management and the next code block will chain
2229 	 * execution of the pending work items.
2230 	 */
2231 	if (unlikely(cpu_intensive))
2232 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2233 
2234 	/*
2235 	 * Wake up another worker if necessary.  The condition is always
2236 	 * false for normal per-cpu workers since nr_running would always
2237 	 * be >= 1 at this point.  This is used to chain execution of the
2238 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2239 	 * UNBOUND and CPU_INTENSIVE ones.
2240 	 */
2241 	if (need_more_worker(pool))
2242 		wake_up_worker(pool);
2243 
2244 	/*
2245 	 * Record the last pool and clear PENDING which should be the last
2246 	 * update to @work.  Also, do this inside @pool->lock so that
2247 	 * PENDING and queued state changes happen together while IRQ is
2248 	 * disabled.
2249 	 */
2250 	set_work_pool_and_clear_pending(work, pool->id);
2251 
2252 	raw_spin_unlock_irq(&pool->lock);
2253 
2254 	lock_map_acquire(&pwq->wq->lockdep_map);
2255 	lock_map_acquire(&lockdep_map);
2256 	/*
2257 	 * Strictly speaking we should mark the invariant state without holding
2258 	 * any locks, that is, before these two lock_map_acquire()'s.
2259 	 *
2260 	 * However, that would result in:
2261 	 *
2262 	 *   A(W1)
2263 	 *   WFC(C)
2264 	 *		A(W1)
2265 	 *		C(C)
2266 	 *
2267 	 * Which would create W1->C->W1 dependencies, even though there is no
2268 	 * actual deadlock possible. There are two solutions, using a
2269 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2270 	 * hit the lockdep limitation on recursive locks, or simply discard
2271 	 * these locks.
2272 	 *
2273 	 * AFAICT there is no possible deadlock scenario between the
2274 	 * flush_work() and complete() primitives (except for single-threaded
2275 	 * workqueues), so hiding them isn't a problem.
2276 	 */
2277 	lockdep_invariant_state(true);
2278 	trace_workqueue_execute_start(work);
2279 	worker->current_func(work);
2280 	/*
2281 	 * While we must be careful to not use "work" after this, the trace
2282 	 * point will only record its address.
2283 	 */
2284 	trace_workqueue_execute_end(work, worker->current_func);
2285 	lock_map_release(&lockdep_map);
2286 	lock_map_release(&pwq->wq->lockdep_map);
2287 
2288 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2289 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2290 		       "     last function: %ps\n",
2291 		       current->comm, preempt_count(), task_pid_nr(current),
2292 		       worker->current_func);
2293 		debug_show_held_locks(current);
2294 		dump_stack();
2295 	}
2296 
2297 	/*
2298 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2299 	 * kernels, where a requeueing work item waiting for something to
2300 	 * happen could deadlock with stop_machine as such work item could
2301 	 * indefinitely requeue itself while all other CPUs are trapped in
2302 	 * stop_machine. At the same time, report a quiescent RCU state so
2303 	 * the same condition doesn't freeze RCU.
2304 	 */
2305 	cond_resched();
2306 
2307 	raw_spin_lock_irq(&pool->lock);
2308 
2309 	/* clear cpu intensive status */
2310 	if (unlikely(cpu_intensive))
2311 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2312 
2313 	/* tag the worker for identification in schedule() */
2314 	worker->last_func = worker->current_func;
2315 
2316 	/* we're done with it, release */
2317 	hash_del(&worker->hentry);
2318 	worker->current_work = NULL;
2319 	worker->current_func = NULL;
2320 	worker->current_pwq = NULL;
2321 	pwq_dec_nr_in_flight(pwq, work_color);
2322 }
2323 
2324 /**
2325  * process_scheduled_works - process scheduled works
2326  * @worker: self
2327  *
2328  * Process all scheduled works.  Please note that the scheduled list
2329  * may change while processing a work, so this function repeatedly
2330  * fetches a work from the top and executes it.
2331  *
2332  * CONTEXT:
2333  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2334  * multiple times.
2335  */
process_scheduled_works(struct worker * worker)2336 static void process_scheduled_works(struct worker *worker)
2337 {
2338 	while (!list_empty(&worker->scheduled)) {
2339 		struct work_struct *work = list_first_entry(&worker->scheduled,
2340 						struct work_struct, entry);
2341 		process_one_work(worker, work);
2342 	}
2343 }
2344 
set_pf_worker(bool val)2345 static void set_pf_worker(bool val)
2346 {
2347 	mutex_lock(&wq_pool_attach_mutex);
2348 	if (val)
2349 		current->flags |= PF_WQ_WORKER;
2350 	else
2351 		current->flags &= ~PF_WQ_WORKER;
2352 	mutex_unlock(&wq_pool_attach_mutex);
2353 }
2354 
2355 /**
2356  * worker_thread - the worker thread function
2357  * @__worker: self
2358  *
2359  * The worker thread function.  All workers belong to a worker_pool -
2360  * either a per-cpu one or dynamic unbound one.  These workers process all
2361  * work items regardless of their specific target workqueue.  The only
2362  * exception is work items which belong to workqueues with a rescuer which
2363  * will be explained in rescuer_thread().
2364  *
2365  * Return: 0
2366  */
worker_thread(void * __worker)2367 static int worker_thread(void *__worker)
2368 {
2369 	struct worker *worker = __worker;
2370 	struct worker_pool *pool = worker->pool;
2371 
2372 	/* tell the scheduler that this is a workqueue worker */
2373 	set_pf_worker(true);
2374 woke_up:
2375 	raw_spin_lock_irq(&pool->lock);
2376 
2377 	/* am I supposed to die? */
2378 	if (unlikely(worker->flags & WORKER_DIE)) {
2379 		raw_spin_unlock_irq(&pool->lock);
2380 		WARN_ON_ONCE(!list_empty(&worker->entry));
2381 		set_pf_worker(false);
2382 
2383 		set_task_comm(worker->task, "kworker/dying");
2384 		ida_simple_remove(&pool->worker_ida, worker->id);
2385 		worker_detach_from_pool(worker);
2386 		kfree(worker);
2387 		return 0;
2388 	}
2389 
2390 	worker_leave_idle(worker);
2391 recheck:
2392 	/* no more worker necessary? */
2393 	if (!need_more_worker(pool))
2394 		goto sleep;
2395 
2396 	/* do we need to manage? */
2397 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2398 		goto recheck;
2399 
2400 	/*
2401 	 * ->scheduled list can only be filled while a worker is
2402 	 * preparing to process a work or actually processing it.
2403 	 * Make sure nobody diddled with it while I was sleeping.
2404 	 */
2405 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2406 
2407 	/*
2408 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2409 	 * worker or that someone else has already assumed the manager
2410 	 * role.  This is where @worker starts participating in concurrency
2411 	 * management if applicable and concurrency management is restored
2412 	 * after being rebound.  See rebind_workers() for details.
2413 	 */
2414 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2415 
2416 	do {
2417 		struct work_struct *work =
2418 			list_first_entry(&pool->worklist,
2419 					 struct work_struct, entry);
2420 
2421 		pool->watchdog_ts = jiffies;
2422 
2423 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2424 			/* optimization path, not strictly necessary */
2425 			process_one_work(worker, work);
2426 			if (unlikely(!list_empty(&worker->scheduled)))
2427 				process_scheduled_works(worker);
2428 		} else {
2429 			move_linked_works(work, &worker->scheduled, NULL);
2430 			process_scheduled_works(worker);
2431 		}
2432 	} while (keep_working(pool));
2433 
2434 	worker_set_flags(worker, WORKER_PREP);
2435 sleep:
2436 	/*
2437 	 * pool->lock is held and there's no work to process and no need to
2438 	 * manage, sleep.  Workers are woken up only while holding
2439 	 * pool->lock or from local cpu, so setting the current state
2440 	 * before releasing pool->lock is enough to prevent losing any
2441 	 * event.
2442 	 */
2443 	worker_enter_idle(worker);
2444 	__set_current_state(TASK_IDLE);
2445 	raw_spin_unlock_irq(&pool->lock);
2446 	schedule();
2447 	goto woke_up;
2448 }
2449 
2450 /**
2451  * rescuer_thread - the rescuer thread function
2452  * @__rescuer: self
2453  *
2454  * Workqueue rescuer thread function.  There's one rescuer for each
2455  * workqueue which has WQ_MEM_RECLAIM set.
2456  *
2457  * Regular work processing on a pool may block trying to create a new
2458  * worker which uses GFP_KERNEL allocation which has slight chance of
2459  * developing into deadlock if some works currently on the same queue
2460  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2461  * the problem rescuer solves.
2462  *
2463  * When such condition is possible, the pool summons rescuers of all
2464  * workqueues which have works queued on the pool and let them process
2465  * those works so that forward progress can be guaranteed.
2466  *
2467  * This should happen rarely.
2468  *
2469  * Return: 0
2470  */
rescuer_thread(void * __rescuer)2471 static int rescuer_thread(void *__rescuer)
2472 {
2473 	struct worker *rescuer = __rescuer;
2474 	struct workqueue_struct *wq = rescuer->rescue_wq;
2475 	struct list_head *scheduled = &rescuer->scheduled;
2476 	bool should_stop;
2477 
2478 	set_user_nice(current, RESCUER_NICE_LEVEL);
2479 
2480 	/*
2481 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2482 	 * doesn't participate in concurrency management.
2483 	 */
2484 	set_pf_worker(true);
2485 repeat:
2486 	set_current_state(TASK_IDLE);
2487 
2488 	/*
2489 	 * By the time the rescuer is requested to stop, the workqueue
2490 	 * shouldn't have any work pending, but @wq->maydays may still have
2491 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2492 	 * all the work items before the rescuer got to them.  Go through
2493 	 * @wq->maydays processing before acting on should_stop so that the
2494 	 * list is always empty on exit.
2495 	 */
2496 	should_stop = kthread_should_stop();
2497 
2498 	/* see whether any pwq is asking for help */
2499 	raw_spin_lock_irq(&wq_mayday_lock);
2500 
2501 	while (!list_empty(&wq->maydays)) {
2502 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2503 					struct pool_workqueue, mayday_node);
2504 		struct worker_pool *pool = pwq->pool;
2505 		struct work_struct *work, *n;
2506 		bool first = true;
2507 
2508 		__set_current_state(TASK_RUNNING);
2509 		list_del_init(&pwq->mayday_node);
2510 
2511 		raw_spin_unlock_irq(&wq_mayday_lock);
2512 
2513 		worker_attach_to_pool(rescuer, pool);
2514 
2515 		raw_spin_lock_irq(&pool->lock);
2516 
2517 		/*
2518 		 * Slurp in all works issued via this workqueue and
2519 		 * process'em.
2520 		 */
2521 		WARN_ON_ONCE(!list_empty(scheduled));
2522 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2523 			if (get_work_pwq(work) == pwq) {
2524 				if (first)
2525 					pool->watchdog_ts = jiffies;
2526 				move_linked_works(work, scheduled, &n);
2527 			}
2528 			first = false;
2529 		}
2530 
2531 		if (!list_empty(scheduled)) {
2532 			process_scheduled_works(rescuer);
2533 
2534 			/*
2535 			 * The above execution of rescued work items could
2536 			 * have created more to rescue through
2537 			 * pwq_activate_first_delayed() or chained
2538 			 * queueing.  Let's put @pwq back on mayday list so
2539 			 * that such back-to-back work items, which may be
2540 			 * being used to relieve memory pressure, don't
2541 			 * incur MAYDAY_INTERVAL delay inbetween.
2542 			 */
2543 			if (pwq->nr_active && need_to_create_worker(pool)) {
2544 				raw_spin_lock(&wq_mayday_lock);
2545 				/*
2546 				 * Queue iff we aren't racing destruction
2547 				 * and somebody else hasn't queued it already.
2548 				 */
2549 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2550 					get_pwq(pwq);
2551 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2552 				}
2553 				raw_spin_unlock(&wq_mayday_lock);
2554 			}
2555 		}
2556 
2557 		/*
2558 		 * Put the reference grabbed by send_mayday().  @pool won't
2559 		 * go away while we're still attached to it.
2560 		 */
2561 		put_pwq(pwq);
2562 
2563 		/*
2564 		 * Leave this pool.  If need_more_worker() is %true, notify a
2565 		 * regular worker; otherwise, we end up with 0 concurrency
2566 		 * and stalling the execution.
2567 		 */
2568 		if (need_more_worker(pool))
2569 			wake_up_worker(pool);
2570 
2571 		raw_spin_unlock_irq(&pool->lock);
2572 
2573 		worker_detach_from_pool(rescuer);
2574 
2575 		raw_spin_lock_irq(&wq_mayday_lock);
2576 	}
2577 
2578 	raw_spin_unlock_irq(&wq_mayday_lock);
2579 
2580 	if (should_stop) {
2581 		__set_current_state(TASK_RUNNING);
2582 		set_pf_worker(false);
2583 		return 0;
2584 	}
2585 
2586 	/* rescuers should never participate in concurrency management */
2587 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2588 	schedule();
2589 	goto repeat;
2590 }
2591 
2592 /**
2593  * check_flush_dependency - check for flush dependency sanity
2594  * @target_wq: workqueue being flushed
2595  * @target_work: work item being flushed (NULL for workqueue flushes)
2596  *
2597  * %current is trying to flush the whole @target_wq or @target_work on it.
2598  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2599  * reclaiming memory or running on a workqueue which doesn't have
2600  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2601  * a deadlock.
2602  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2603 static void check_flush_dependency(struct workqueue_struct *target_wq,
2604 				   struct work_struct *target_work)
2605 {
2606 	work_func_t target_func = target_work ? target_work->func : NULL;
2607 	struct worker *worker;
2608 
2609 	if (target_wq->flags & WQ_MEM_RECLAIM)
2610 		return;
2611 
2612 	worker = current_wq_worker();
2613 
2614 	WARN_ONCE(current->flags & PF_MEMALLOC,
2615 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2616 		  current->pid, current->comm, target_wq->name, target_func);
2617 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2618 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2619 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2620 		  worker->current_pwq->wq->name, worker->current_func,
2621 		  target_wq->name, target_func);
2622 }
2623 
2624 struct wq_barrier {
2625 	struct work_struct	work;
2626 	struct completion	done;
2627 	struct task_struct	*task;	/* purely informational */
2628 };
2629 
wq_barrier_func(struct work_struct * work)2630 static void wq_barrier_func(struct work_struct *work)
2631 {
2632 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2633 	complete(&barr->done);
2634 }
2635 
2636 /**
2637  * insert_wq_barrier - insert a barrier work
2638  * @pwq: pwq to insert barrier into
2639  * @barr: wq_barrier to insert
2640  * @target: target work to attach @barr to
2641  * @worker: worker currently executing @target, NULL if @target is not executing
2642  *
2643  * @barr is linked to @target such that @barr is completed only after
2644  * @target finishes execution.  Please note that the ordering
2645  * guarantee is observed only with respect to @target and on the local
2646  * cpu.
2647  *
2648  * Currently, a queued barrier can't be canceled.  This is because
2649  * try_to_grab_pending() can't determine whether the work to be
2650  * grabbed is at the head of the queue and thus can't clear LINKED
2651  * flag of the previous work while there must be a valid next work
2652  * after a work with LINKED flag set.
2653  *
2654  * Note that when @worker is non-NULL, @target may be modified
2655  * underneath us, so we can't reliably determine pwq from @target.
2656  *
2657  * CONTEXT:
2658  * raw_spin_lock_irq(pool->lock).
2659  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2660 static void insert_wq_barrier(struct pool_workqueue *pwq,
2661 			      struct wq_barrier *barr,
2662 			      struct work_struct *target, struct worker *worker)
2663 {
2664 	struct list_head *head;
2665 	unsigned int linked = 0;
2666 
2667 	/*
2668 	 * debugobject calls are safe here even with pool->lock locked
2669 	 * as we know for sure that this will not trigger any of the
2670 	 * checks and call back into the fixup functions where we
2671 	 * might deadlock.
2672 	 */
2673 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2674 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2675 
2676 	init_completion_map(&barr->done, &target->lockdep_map);
2677 
2678 	barr->task = current;
2679 
2680 	/*
2681 	 * If @target is currently being executed, schedule the
2682 	 * barrier to the worker; otherwise, put it after @target.
2683 	 */
2684 	if (worker)
2685 		head = worker->scheduled.next;
2686 	else {
2687 		unsigned long *bits = work_data_bits(target);
2688 
2689 		head = target->entry.next;
2690 		/* there can already be other linked works, inherit and set */
2691 		linked = *bits & WORK_STRUCT_LINKED;
2692 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2693 	}
2694 
2695 	debug_work_activate(&barr->work);
2696 	insert_work(pwq, &barr->work, head,
2697 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2698 }
2699 
2700 /**
2701  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2702  * @wq: workqueue being flushed
2703  * @flush_color: new flush color, < 0 for no-op
2704  * @work_color: new work color, < 0 for no-op
2705  *
2706  * Prepare pwqs for workqueue flushing.
2707  *
2708  * If @flush_color is non-negative, flush_color on all pwqs should be
2709  * -1.  If no pwq has in-flight commands at the specified color, all
2710  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2711  * has in flight commands, its pwq->flush_color is set to
2712  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2713  * wakeup logic is armed and %true is returned.
2714  *
2715  * The caller should have initialized @wq->first_flusher prior to
2716  * calling this function with non-negative @flush_color.  If
2717  * @flush_color is negative, no flush color update is done and %false
2718  * is returned.
2719  *
2720  * If @work_color is non-negative, all pwqs should have the same
2721  * work_color which is previous to @work_color and all will be
2722  * advanced to @work_color.
2723  *
2724  * CONTEXT:
2725  * mutex_lock(wq->mutex).
2726  *
2727  * Return:
2728  * %true if @flush_color >= 0 and there's something to flush.  %false
2729  * otherwise.
2730  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2731 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2732 				      int flush_color, int work_color)
2733 {
2734 	bool wait = false;
2735 	struct pool_workqueue *pwq;
2736 
2737 	if (flush_color >= 0) {
2738 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2739 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2740 	}
2741 
2742 	for_each_pwq(pwq, wq) {
2743 		struct worker_pool *pool = pwq->pool;
2744 
2745 		raw_spin_lock_irq(&pool->lock);
2746 
2747 		if (flush_color >= 0) {
2748 			WARN_ON_ONCE(pwq->flush_color != -1);
2749 
2750 			if (pwq->nr_in_flight[flush_color]) {
2751 				pwq->flush_color = flush_color;
2752 				atomic_inc(&wq->nr_pwqs_to_flush);
2753 				wait = true;
2754 			}
2755 		}
2756 
2757 		if (work_color >= 0) {
2758 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2759 			pwq->work_color = work_color;
2760 		}
2761 
2762 		raw_spin_unlock_irq(&pool->lock);
2763 	}
2764 
2765 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2766 		complete(&wq->first_flusher->done);
2767 
2768 	return wait;
2769 }
2770 
2771 /**
2772  * flush_workqueue - ensure that any scheduled work has run to completion.
2773  * @wq: workqueue to flush
2774  *
2775  * This function sleeps until all work items which were queued on entry
2776  * have finished execution, but it is not livelocked by new incoming ones.
2777  */
flush_workqueue(struct workqueue_struct * wq)2778 void flush_workqueue(struct workqueue_struct *wq)
2779 {
2780 	struct wq_flusher this_flusher = {
2781 		.list = LIST_HEAD_INIT(this_flusher.list),
2782 		.flush_color = -1,
2783 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2784 	};
2785 	int next_color;
2786 
2787 	if (WARN_ON(!wq_online))
2788 		return;
2789 
2790 	lock_map_acquire(&wq->lockdep_map);
2791 	lock_map_release(&wq->lockdep_map);
2792 
2793 	mutex_lock(&wq->mutex);
2794 
2795 	/*
2796 	 * Start-to-wait phase
2797 	 */
2798 	next_color = work_next_color(wq->work_color);
2799 
2800 	if (next_color != wq->flush_color) {
2801 		/*
2802 		 * Color space is not full.  The current work_color
2803 		 * becomes our flush_color and work_color is advanced
2804 		 * by one.
2805 		 */
2806 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2807 		this_flusher.flush_color = wq->work_color;
2808 		wq->work_color = next_color;
2809 
2810 		if (!wq->first_flusher) {
2811 			/* no flush in progress, become the first flusher */
2812 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2813 
2814 			wq->first_flusher = &this_flusher;
2815 
2816 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2817 						       wq->work_color)) {
2818 				/* nothing to flush, done */
2819 				wq->flush_color = next_color;
2820 				wq->first_flusher = NULL;
2821 				goto out_unlock;
2822 			}
2823 		} else {
2824 			/* wait in queue */
2825 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2826 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2827 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2828 		}
2829 	} else {
2830 		/*
2831 		 * Oops, color space is full, wait on overflow queue.
2832 		 * The next flush completion will assign us
2833 		 * flush_color and transfer to flusher_queue.
2834 		 */
2835 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2836 	}
2837 
2838 	check_flush_dependency(wq, NULL);
2839 
2840 	mutex_unlock(&wq->mutex);
2841 
2842 	wait_for_completion(&this_flusher.done);
2843 
2844 	/*
2845 	 * Wake-up-and-cascade phase
2846 	 *
2847 	 * First flushers are responsible for cascading flushes and
2848 	 * handling overflow.  Non-first flushers can simply return.
2849 	 */
2850 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2851 		return;
2852 
2853 	mutex_lock(&wq->mutex);
2854 
2855 	/* we might have raced, check again with mutex held */
2856 	if (wq->first_flusher != &this_flusher)
2857 		goto out_unlock;
2858 
2859 	WRITE_ONCE(wq->first_flusher, NULL);
2860 
2861 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2862 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2863 
2864 	while (true) {
2865 		struct wq_flusher *next, *tmp;
2866 
2867 		/* complete all the flushers sharing the current flush color */
2868 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2869 			if (next->flush_color != wq->flush_color)
2870 				break;
2871 			list_del_init(&next->list);
2872 			complete(&next->done);
2873 		}
2874 
2875 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2876 			     wq->flush_color != work_next_color(wq->work_color));
2877 
2878 		/* this flush_color is finished, advance by one */
2879 		wq->flush_color = work_next_color(wq->flush_color);
2880 
2881 		/* one color has been freed, handle overflow queue */
2882 		if (!list_empty(&wq->flusher_overflow)) {
2883 			/*
2884 			 * Assign the same color to all overflowed
2885 			 * flushers, advance work_color and append to
2886 			 * flusher_queue.  This is the start-to-wait
2887 			 * phase for these overflowed flushers.
2888 			 */
2889 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2890 				tmp->flush_color = wq->work_color;
2891 
2892 			wq->work_color = work_next_color(wq->work_color);
2893 
2894 			list_splice_tail_init(&wq->flusher_overflow,
2895 					      &wq->flusher_queue);
2896 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2897 		}
2898 
2899 		if (list_empty(&wq->flusher_queue)) {
2900 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2901 			break;
2902 		}
2903 
2904 		/*
2905 		 * Need to flush more colors.  Make the next flusher
2906 		 * the new first flusher and arm pwqs.
2907 		 */
2908 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2909 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2910 
2911 		list_del_init(&next->list);
2912 		wq->first_flusher = next;
2913 
2914 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2915 			break;
2916 
2917 		/*
2918 		 * Meh... this color is already done, clear first
2919 		 * flusher and repeat cascading.
2920 		 */
2921 		wq->first_flusher = NULL;
2922 	}
2923 
2924 out_unlock:
2925 	mutex_unlock(&wq->mutex);
2926 }
2927 EXPORT_SYMBOL(flush_workqueue);
2928 
2929 /**
2930  * drain_workqueue - drain a workqueue
2931  * @wq: workqueue to drain
2932  *
2933  * Wait until the workqueue becomes empty.  While draining is in progress,
2934  * only chain queueing is allowed.  IOW, only currently pending or running
2935  * work items on @wq can queue further work items on it.  @wq is flushed
2936  * repeatedly until it becomes empty.  The number of flushing is determined
2937  * by the depth of chaining and should be relatively short.  Whine if it
2938  * takes too long.
2939  */
drain_workqueue(struct workqueue_struct * wq)2940 void drain_workqueue(struct workqueue_struct *wq)
2941 {
2942 	unsigned int flush_cnt = 0;
2943 	struct pool_workqueue *pwq;
2944 
2945 	/*
2946 	 * __queue_work() needs to test whether there are drainers, is much
2947 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2948 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2949 	 */
2950 	mutex_lock(&wq->mutex);
2951 	if (!wq->nr_drainers++)
2952 		wq->flags |= __WQ_DRAINING;
2953 	mutex_unlock(&wq->mutex);
2954 reflush:
2955 	flush_workqueue(wq);
2956 
2957 	mutex_lock(&wq->mutex);
2958 
2959 	for_each_pwq(pwq, wq) {
2960 		bool drained;
2961 
2962 		raw_spin_lock_irq(&pwq->pool->lock);
2963 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2964 		raw_spin_unlock_irq(&pwq->pool->lock);
2965 
2966 		if (drained)
2967 			continue;
2968 
2969 		if (++flush_cnt == 10 ||
2970 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2971 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2972 				wq->name, flush_cnt);
2973 
2974 		mutex_unlock(&wq->mutex);
2975 		goto reflush;
2976 	}
2977 
2978 	if (!--wq->nr_drainers)
2979 		wq->flags &= ~__WQ_DRAINING;
2980 	mutex_unlock(&wq->mutex);
2981 }
2982 EXPORT_SYMBOL_GPL(drain_workqueue);
2983 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2984 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2985 			     bool from_cancel)
2986 {
2987 	struct worker *worker = NULL;
2988 	struct worker_pool *pool;
2989 	struct pool_workqueue *pwq;
2990 
2991 	might_sleep();
2992 
2993 	rcu_read_lock();
2994 	pool = get_work_pool(work);
2995 	if (!pool) {
2996 		rcu_read_unlock();
2997 		return false;
2998 	}
2999 
3000 	raw_spin_lock_irq(&pool->lock);
3001 	/* see the comment in try_to_grab_pending() with the same code */
3002 	pwq = get_work_pwq(work);
3003 	if (pwq) {
3004 		if (unlikely(pwq->pool != pool))
3005 			goto already_gone;
3006 	} else {
3007 		worker = find_worker_executing_work(pool, work);
3008 		if (!worker)
3009 			goto already_gone;
3010 		pwq = worker->current_pwq;
3011 	}
3012 
3013 	check_flush_dependency(pwq->wq, work);
3014 
3015 	insert_wq_barrier(pwq, barr, work, worker);
3016 	raw_spin_unlock_irq(&pool->lock);
3017 
3018 	/*
3019 	 * Force a lock recursion deadlock when using flush_work() inside a
3020 	 * single-threaded or rescuer equipped workqueue.
3021 	 *
3022 	 * For single threaded workqueues the deadlock happens when the work
3023 	 * is after the work issuing the flush_work(). For rescuer equipped
3024 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3025 	 * forward progress.
3026 	 */
3027 	if (!from_cancel &&
3028 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3029 		lock_map_acquire(&pwq->wq->lockdep_map);
3030 		lock_map_release(&pwq->wq->lockdep_map);
3031 	}
3032 	rcu_read_unlock();
3033 	return true;
3034 already_gone:
3035 	raw_spin_unlock_irq(&pool->lock);
3036 	rcu_read_unlock();
3037 	return false;
3038 }
3039 
__flush_work(struct work_struct * work,bool from_cancel)3040 static bool __flush_work(struct work_struct *work, bool from_cancel)
3041 {
3042 	struct wq_barrier barr;
3043 
3044 	if (WARN_ON(!wq_online))
3045 		return false;
3046 
3047 	if (WARN_ON(!work->func))
3048 		return false;
3049 
3050 	if (!from_cancel) {
3051 		lock_map_acquire(&work->lockdep_map);
3052 		lock_map_release(&work->lockdep_map);
3053 	}
3054 
3055 	if (start_flush_work(work, &barr, from_cancel)) {
3056 		wait_for_completion(&barr.done);
3057 		destroy_work_on_stack(&barr.work);
3058 		return true;
3059 	} else {
3060 		return false;
3061 	}
3062 }
3063 
3064 /**
3065  * flush_work - wait for a work to finish executing the last queueing instance
3066  * @work: the work to flush
3067  *
3068  * Wait until @work has finished execution.  @work is guaranteed to be idle
3069  * on return if it hasn't been requeued since flush started.
3070  *
3071  * Return:
3072  * %true if flush_work() waited for the work to finish execution,
3073  * %false if it was already idle.
3074  */
flush_work(struct work_struct * work)3075 bool flush_work(struct work_struct *work)
3076 {
3077 	return __flush_work(work, false);
3078 }
3079 EXPORT_SYMBOL_GPL(flush_work);
3080 
3081 struct cwt_wait {
3082 	wait_queue_entry_t		wait;
3083 	struct work_struct	*work;
3084 };
3085 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3086 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3087 {
3088 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3089 
3090 	if (cwait->work != key)
3091 		return 0;
3092 	return autoremove_wake_function(wait, mode, sync, key);
3093 }
3094 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3095 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3096 {
3097 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3098 	unsigned long flags;
3099 	int ret;
3100 
3101 	do {
3102 		ret = try_to_grab_pending(work, is_dwork, &flags);
3103 		/*
3104 		 * If someone else is already canceling, wait for it to
3105 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3106 		 * because we may get scheduled between @work's completion
3107 		 * and the other canceling task resuming and clearing
3108 		 * CANCELING - flush_work() will return false immediately
3109 		 * as @work is no longer busy, try_to_grab_pending() will
3110 		 * return -ENOENT as @work is still being canceled and the
3111 		 * other canceling task won't be able to clear CANCELING as
3112 		 * we're hogging the CPU.
3113 		 *
3114 		 * Let's wait for completion using a waitqueue.  As this
3115 		 * may lead to the thundering herd problem, use a custom
3116 		 * wake function which matches @work along with exclusive
3117 		 * wait and wakeup.
3118 		 */
3119 		if (unlikely(ret == -ENOENT)) {
3120 			struct cwt_wait cwait;
3121 
3122 			init_wait(&cwait.wait);
3123 			cwait.wait.func = cwt_wakefn;
3124 			cwait.work = work;
3125 
3126 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3127 						  TASK_UNINTERRUPTIBLE);
3128 			if (work_is_canceling(work))
3129 				schedule();
3130 			finish_wait(&cancel_waitq, &cwait.wait);
3131 		}
3132 	} while (unlikely(ret < 0));
3133 
3134 	/* tell other tasks trying to grab @work to back off */
3135 	mark_work_canceling(work);
3136 	local_irq_restore(flags);
3137 
3138 	/*
3139 	 * This allows canceling during early boot.  We know that @work
3140 	 * isn't executing.
3141 	 */
3142 	if (wq_online)
3143 		__flush_work(work, true);
3144 
3145 	clear_work_data(work);
3146 
3147 	/*
3148 	 * Paired with prepare_to_wait() above so that either
3149 	 * waitqueue_active() is visible here or !work_is_canceling() is
3150 	 * visible there.
3151 	 */
3152 	smp_mb();
3153 	if (waitqueue_active(&cancel_waitq))
3154 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3155 
3156 	return ret;
3157 }
3158 
3159 /**
3160  * cancel_work_sync - cancel a work and wait for it to finish
3161  * @work: the work to cancel
3162  *
3163  * Cancel @work and wait for its execution to finish.  This function
3164  * can be used even if the work re-queues itself or migrates to
3165  * another workqueue.  On return from this function, @work is
3166  * guaranteed to be not pending or executing on any CPU.
3167  *
3168  * cancel_work_sync(&delayed_work->work) must not be used for
3169  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3170  *
3171  * The caller must ensure that the workqueue on which @work was last
3172  * queued can't be destroyed before this function returns.
3173  *
3174  * Return:
3175  * %true if @work was pending, %false otherwise.
3176  */
cancel_work_sync(struct work_struct * work)3177 bool cancel_work_sync(struct work_struct *work)
3178 {
3179 	return __cancel_work_timer(work, false);
3180 }
3181 EXPORT_SYMBOL_GPL(cancel_work_sync);
3182 
3183 /**
3184  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3185  * @dwork: the delayed work to flush
3186  *
3187  * Delayed timer is cancelled and the pending work is queued for
3188  * immediate execution.  Like flush_work(), this function only
3189  * considers the last queueing instance of @dwork.
3190  *
3191  * Return:
3192  * %true if flush_work() waited for the work to finish execution,
3193  * %false if it was already idle.
3194  */
flush_delayed_work(struct delayed_work * dwork)3195 bool flush_delayed_work(struct delayed_work *dwork)
3196 {
3197 	local_irq_disable();
3198 	if (del_timer_sync(&dwork->timer))
3199 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3200 	local_irq_enable();
3201 	return flush_work(&dwork->work);
3202 }
3203 EXPORT_SYMBOL(flush_delayed_work);
3204 
3205 /**
3206  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3207  * @rwork: the rcu work to flush
3208  *
3209  * Return:
3210  * %true if flush_rcu_work() waited for the work to finish execution,
3211  * %false if it was already idle.
3212  */
flush_rcu_work(struct rcu_work * rwork)3213 bool flush_rcu_work(struct rcu_work *rwork)
3214 {
3215 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3216 		rcu_barrier();
3217 		flush_work(&rwork->work);
3218 		return true;
3219 	} else {
3220 		return flush_work(&rwork->work);
3221 	}
3222 }
3223 EXPORT_SYMBOL(flush_rcu_work);
3224 
__cancel_work(struct work_struct * work,bool is_dwork)3225 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3226 {
3227 	unsigned long flags;
3228 	int ret;
3229 
3230 	do {
3231 		ret = try_to_grab_pending(work, is_dwork, &flags);
3232 	} while (unlikely(ret == -EAGAIN));
3233 
3234 	if (unlikely(ret < 0))
3235 		return false;
3236 
3237 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3238 	local_irq_restore(flags);
3239 	return ret;
3240 }
3241 
3242 /**
3243  * cancel_delayed_work - cancel a delayed work
3244  * @dwork: delayed_work to cancel
3245  *
3246  * Kill off a pending delayed_work.
3247  *
3248  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3249  * pending.
3250  *
3251  * Note:
3252  * The work callback function may still be running on return, unless
3253  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3254  * use cancel_delayed_work_sync() to wait on it.
3255  *
3256  * This function is safe to call from any context including IRQ handler.
3257  */
cancel_delayed_work(struct delayed_work * dwork)3258 bool cancel_delayed_work(struct delayed_work *dwork)
3259 {
3260 	return __cancel_work(&dwork->work, true);
3261 }
3262 EXPORT_SYMBOL(cancel_delayed_work);
3263 
3264 /**
3265  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3266  * @dwork: the delayed work cancel
3267  *
3268  * This is cancel_work_sync() for delayed works.
3269  *
3270  * Return:
3271  * %true if @dwork was pending, %false otherwise.
3272  */
cancel_delayed_work_sync(struct delayed_work * dwork)3273 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3274 {
3275 	return __cancel_work_timer(&dwork->work, true);
3276 }
3277 EXPORT_SYMBOL(cancel_delayed_work_sync);
3278 
3279 /**
3280  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3281  * @func: the function to call
3282  *
3283  * schedule_on_each_cpu() executes @func on each online CPU using the
3284  * system workqueue and blocks until all CPUs have completed.
3285  * schedule_on_each_cpu() is very slow.
3286  *
3287  * Return:
3288  * 0 on success, -errno on failure.
3289  */
schedule_on_each_cpu(work_func_t func)3290 int schedule_on_each_cpu(work_func_t func)
3291 {
3292 	int cpu;
3293 	struct work_struct __percpu *works;
3294 
3295 	works = alloc_percpu(struct work_struct);
3296 	if (!works)
3297 		return -ENOMEM;
3298 
3299 	get_online_cpus();
3300 
3301 	for_each_online_cpu(cpu) {
3302 		struct work_struct *work = per_cpu_ptr(works, cpu);
3303 
3304 		INIT_WORK(work, func);
3305 		schedule_work_on(cpu, work);
3306 	}
3307 
3308 	for_each_online_cpu(cpu)
3309 		flush_work(per_cpu_ptr(works, cpu));
3310 
3311 	put_online_cpus();
3312 	free_percpu(works);
3313 	return 0;
3314 }
3315 
3316 /**
3317  * execute_in_process_context - reliably execute the routine with user context
3318  * @fn:		the function to execute
3319  * @ew:		guaranteed storage for the execute work structure (must
3320  *		be available when the work executes)
3321  *
3322  * Executes the function immediately if process context is available,
3323  * otherwise schedules the function for delayed execution.
3324  *
3325  * Return:	0 - function was executed
3326  *		1 - function was scheduled for execution
3327  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3328 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3329 {
3330 	if (!in_interrupt()) {
3331 		fn(&ew->work);
3332 		return 0;
3333 	}
3334 
3335 	INIT_WORK(&ew->work, fn);
3336 	schedule_work(&ew->work);
3337 
3338 	return 1;
3339 }
3340 EXPORT_SYMBOL_GPL(execute_in_process_context);
3341 
3342 /**
3343  * free_workqueue_attrs - free a workqueue_attrs
3344  * @attrs: workqueue_attrs to free
3345  *
3346  * Undo alloc_workqueue_attrs().
3347  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3348 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3349 {
3350 	if (attrs) {
3351 		free_cpumask_var(attrs->cpumask);
3352 		kfree(attrs);
3353 	}
3354 }
3355 
3356 /**
3357  * alloc_workqueue_attrs - allocate a workqueue_attrs
3358  *
3359  * Allocate a new workqueue_attrs, initialize with default settings and
3360  * return it.
3361  *
3362  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3363  */
alloc_workqueue_attrs(void)3364 struct workqueue_attrs *alloc_workqueue_attrs(void)
3365 {
3366 	struct workqueue_attrs *attrs;
3367 
3368 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3369 	if (!attrs)
3370 		goto fail;
3371 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3372 		goto fail;
3373 
3374 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3375 	return attrs;
3376 fail:
3377 	free_workqueue_attrs(attrs);
3378 	return NULL;
3379 }
3380 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3381 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3382 				 const struct workqueue_attrs *from)
3383 {
3384 	to->nice = from->nice;
3385 	cpumask_copy(to->cpumask, from->cpumask);
3386 	/*
3387 	 * Unlike hash and equality test, this function doesn't ignore
3388 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3389 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3390 	 */
3391 	to->no_numa = from->no_numa;
3392 }
3393 
3394 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3395 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3396 {
3397 	u32 hash = 0;
3398 
3399 	hash = jhash_1word(attrs->nice, hash);
3400 	hash = jhash(cpumask_bits(attrs->cpumask),
3401 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3402 	return hash;
3403 }
3404 
3405 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3406 static bool wqattrs_equal(const struct workqueue_attrs *a,
3407 			  const struct workqueue_attrs *b)
3408 {
3409 	if (a->nice != b->nice)
3410 		return false;
3411 	if (!cpumask_equal(a->cpumask, b->cpumask))
3412 		return false;
3413 	return true;
3414 }
3415 
3416 /**
3417  * init_worker_pool - initialize a newly zalloc'd worker_pool
3418  * @pool: worker_pool to initialize
3419  *
3420  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3421  *
3422  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3423  * inside @pool proper are initialized and put_unbound_pool() can be called
3424  * on @pool safely to release it.
3425  */
init_worker_pool(struct worker_pool * pool)3426 static int init_worker_pool(struct worker_pool *pool)
3427 {
3428 	raw_spin_lock_init(&pool->lock);
3429 	pool->id = -1;
3430 	pool->cpu = -1;
3431 	pool->node = NUMA_NO_NODE;
3432 	pool->flags |= POOL_DISASSOCIATED;
3433 	pool->watchdog_ts = jiffies;
3434 	INIT_LIST_HEAD(&pool->worklist);
3435 	INIT_LIST_HEAD(&pool->idle_list);
3436 	hash_init(pool->busy_hash);
3437 
3438 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3439 
3440 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3441 
3442 	INIT_LIST_HEAD(&pool->workers);
3443 
3444 	ida_init(&pool->worker_ida);
3445 	INIT_HLIST_NODE(&pool->hash_node);
3446 	pool->refcnt = 1;
3447 
3448 	/* shouldn't fail above this point */
3449 	pool->attrs = alloc_workqueue_attrs();
3450 	if (!pool->attrs)
3451 		return -ENOMEM;
3452 	return 0;
3453 }
3454 
3455 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3456 static void wq_init_lockdep(struct workqueue_struct *wq)
3457 {
3458 	char *lock_name;
3459 
3460 	lockdep_register_key(&wq->key);
3461 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3462 	if (!lock_name)
3463 		lock_name = wq->name;
3464 
3465 	wq->lock_name = lock_name;
3466 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3467 }
3468 
wq_unregister_lockdep(struct workqueue_struct * wq)3469 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470 {
3471 	lockdep_unregister_key(&wq->key);
3472 }
3473 
wq_free_lockdep(struct workqueue_struct * wq)3474 static void wq_free_lockdep(struct workqueue_struct *wq)
3475 {
3476 	if (wq->lock_name != wq->name)
3477 		kfree(wq->lock_name);
3478 }
3479 #else
wq_init_lockdep(struct workqueue_struct * wq)3480 static void wq_init_lockdep(struct workqueue_struct *wq)
3481 {
3482 }
3483 
wq_unregister_lockdep(struct workqueue_struct * wq)3484 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3485 {
3486 }
3487 
wq_free_lockdep(struct workqueue_struct * wq)3488 static void wq_free_lockdep(struct workqueue_struct *wq)
3489 {
3490 }
3491 #endif
3492 
rcu_free_wq(struct rcu_head * rcu)3493 static void rcu_free_wq(struct rcu_head *rcu)
3494 {
3495 	struct workqueue_struct *wq =
3496 		container_of(rcu, struct workqueue_struct, rcu);
3497 
3498 	wq_free_lockdep(wq);
3499 
3500 	if (!(wq->flags & WQ_UNBOUND))
3501 		free_percpu(wq->cpu_pwqs);
3502 	else
3503 		free_workqueue_attrs(wq->unbound_attrs);
3504 
3505 	kfree(wq);
3506 }
3507 
rcu_free_pool(struct rcu_head * rcu)3508 static void rcu_free_pool(struct rcu_head *rcu)
3509 {
3510 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3511 
3512 	ida_destroy(&pool->worker_ida);
3513 	free_workqueue_attrs(pool->attrs);
3514 	kfree(pool);
3515 }
3516 
3517 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3518 static bool wq_manager_inactive(struct worker_pool *pool)
3519 {
3520 	raw_spin_lock_irq(&pool->lock);
3521 
3522 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3523 		raw_spin_unlock_irq(&pool->lock);
3524 		return false;
3525 	}
3526 	return true;
3527 }
3528 
3529 /**
3530  * put_unbound_pool - put a worker_pool
3531  * @pool: worker_pool to put
3532  *
3533  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3534  * safe manner.  get_unbound_pool() calls this function on its failure path
3535  * and this function should be able to release pools which went through,
3536  * successfully or not, init_worker_pool().
3537  *
3538  * Should be called with wq_pool_mutex held.
3539  */
put_unbound_pool(struct worker_pool * pool)3540 static void put_unbound_pool(struct worker_pool *pool)
3541 {
3542 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3543 	struct worker *worker;
3544 
3545 	lockdep_assert_held(&wq_pool_mutex);
3546 
3547 	if (--pool->refcnt)
3548 		return;
3549 
3550 	/* sanity checks */
3551 	if (WARN_ON(!(pool->cpu < 0)) ||
3552 	    WARN_ON(!list_empty(&pool->worklist)))
3553 		return;
3554 
3555 	/* release id and unhash */
3556 	if (pool->id >= 0)
3557 		idr_remove(&worker_pool_idr, pool->id);
3558 	hash_del(&pool->hash_node);
3559 
3560 	/*
3561 	 * Become the manager and destroy all workers.  This prevents
3562 	 * @pool's workers from blocking on attach_mutex.  We're the last
3563 	 * manager and @pool gets freed with the flag set.
3564 	 * Because of how wq_manager_inactive() works, we will hold the
3565 	 * spinlock after a successful wait.
3566 	 */
3567 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3568 			   TASK_UNINTERRUPTIBLE);
3569 	pool->flags |= POOL_MANAGER_ACTIVE;
3570 
3571 	while ((worker = first_idle_worker(pool)))
3572 		destroy_worker(worker);
3573 	WARN_ON(pool->nr_workers || pool->nr_idle);
3574 	raw_spin_unlock_irq(&pool->lock);
3575 
3576 	mutex_lock(&wq_pool_attach_mutex);
3577 	if (!list_empty(&pool->workers))
3578 		pool->detach_completion = &detach_completion;
3579 	mutex_unlock(&wq_pool_attach_mutex);
3580 
3581 	if (pool->detach_completion)
3582 		wait_for_completion(pool->detach_completion);
3583 
3584 	/* shut down the timers */
3585 	del_timer_sync(&pool->idle_timer);
3586 	del_timer_sync(&pool->mayday_timer);
3587 
3588 	/* RCU protected to allow dereferences from get_work_pool() */
3589 	call_rcu(&pool->rcu, rcu_free_pool);
3590 }
3591 
3592 /**
3593  * get_unbound_pool - get a worker_pool with the specified attributes
3594  * @attrs: the attributes of the worker_pool to get
3595  *
3596  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3597  * reference count and return it.  If there already is a matching
3598  * worker_pool, it will be used; otherwise, this function attempts to
3599  * create a new one.
3600  *
3601  * Should be called with wq_pool_mutex held.
3602  *
3603  * Return: On success, a worker_pool with the same attributes as @attrs.
3604  * On failure, %NULL.
3605  */
get_unbound_pool(const struct workqueue_attrs * attrs)3606 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3607 {
3608 	u32 hash = wqattrs_hash(attrs);
3609 	struct worker_pool *pool;
3610 	int node;
3611 	int target_node = NUMA_NO_NODE;
3612 
3613 	lockdep_assert_held(&wq_pool_mutex);
3614 
3615 	/* do we already have a matching pool? */
3616 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3617 		if (wqattrs_equal(pool->attrs, attrs)) {
3618 			pool->refcnt++;
3619 			return pool;
3620 		}
3621 	}
3622 
3623 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3624 	if (wq_numa_enabled) {
3625 		for_each_node(node) {
3626 			if (cpumask_subset(attrs->cpumask,
3627 					   wq_numa_possible_cpumask[node])) {
3628 				target_node = node;
3629 				break;
3630 			}
3631 		}
3632 	}
3633 
3634 	/* nope, create a new one */
3635 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3636 	if (!pool || init_worker_pool(pool) < 0)
3637 		goto fail;
3638 
3639 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3640 	copy_workqueue_attrs(pool->attrs, attrs);
3641 	pool->node = target_node;
3642 
3643 	/*
3644 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3645 	 * 'struct workqueue_attrs' comments for detail.
3646 	 */
3647 	pool->attrs->no_numa = false;
3648 
3649 	if (worker_pool_assign_id(pool) < 0)
3650 		goto fail;
3651 
3652 	/* create and start the initial worker */
3653 	if (wq_online && !create_worker(pool))
3654 		goto fail;
3655 
3656 	/* install */
3657 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3658 
3659 	return pool;
3660 fail:
3661 	if (pool)
3662 		put_unbound_pool(pool);
3663 	return NULL;
3664 }
3665 
rcu_free_pwq(struct rcu_head * rcu)3666 static void rcu_free_pwq(struct rcu_head *rcu)
3667 {
3668 	kmem_cache_free(pwq_cache,
3669 			container_of(rcu, struct pool_workqueue, rcu));
3670 }
3671 
3672 /*
3673  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3674  * and needs to be destroyed.
3675  */
pwq_unbound_release_workfn(struct work_struct * work)3676 static void pwq_unbound_release_workfn(struct work_struct *work)
3677 {
3678 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3679 						  unbound_release_work);
3680 	struct workqueue_struct *wq = pwq->wq;
3681 	struct worker_pool *pool = pwq->pool;
3682 	bool is_last = false;
3683 
3684 	/*
3685 	 * when @pwq is not linked, it doesn't hold any reference to the
3686 	 * @wq, and @wq is invalid to access.
3687 	 */
3688 	if (!list_empty(&pwq->pwqs_node)) {
3689 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3690 			return;
3691 
3692 		mutex_lock(&wq->mutex);
3693 		list_del_rcu(&pwq->pwqs_node);
3694 		is_last = list_empty(&wq->pwqs);
3695 		mutex_unlock(&wq->mutex);
3696 	}
3697 
3698 	mutex_lock(&wq_pool_mutex);
3699 	put_unbound_pool(pool);
3700 	mutex_unlock(&wq_pool_mutex);
3701 
3702 	call_rcu(&pwq->rcu, rcu_free_pwq);
3703 
3704 	/*
3705 	 * If we're the last pwq going away, @wq is already dead and no one
3706 	 * is gonna access it anymore.  Schedule RCU free.
3707 	 */
3708 	if (is_last) {
3709 		wq_unregister_lockdep(wq);
3710 		call_rcu(&wq->rcu, rcu_free_wq);
3711 	}
3712 }
3713 
3714 /**
3715  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3716  * @pwq: target pool_workqueue
3717  *
3718  * If @pwq isn't freezing, set @pwq->max_active to the associated
3719  * workqueue's saved_max_active and activate delayed work items
3720  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3721  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3722 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3723 {
3724 	struct workqueue_struct *wq = pwq->wq;
3725 	bool freezable = wq->flags & WQ_FREEZABLE;
3726 	unsigned long flags;
3727 
3728 	/* for @wq->saved_max_active */
3729 	lockdep_assert_held(&wq->mutex);
3730 
3731 	/* fast exit for non-freezable wqs */
3732 	if (!freezable && pwq->max_active == wq->saved_max_active)
3733 		return;
3734 
3735 	/* this function can be called during early boot w/ irq disabled */
3736 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3737 
3738 	/*
3739 	 * During [un]freezing, the caller is responsible for ensuring that
3740 	 * this function is called at least once after @workqueue_freezing
3741 	 * is updated and visible.
3742 	 */
3743 	if (!freezable || !workqueue_freezing) {
3744 		bool kick = false;
3745 
3746 		pwq->max_active = wq->saved_max_active;
3747 
3748 		while (!list_empty(&pwq->delayed_works) &&
3749 		       pwq->nr_active < pwq->max_active) {
3750 			pwq_activate_first_delayed(pwq);
3751 			kick = true;
3752 		}
3753 
3754 		/*
3755 		 * Need to kick a worker after thawed or an unbound wq's
3756 		 * max_active is bumped. In realtime scenarios, always kicking a
3757 		 * worker will cause interference on the isolated cpu cores, so
3758 		 * let's kick iff work items were activated.
3759 		 */
3760 		if (kick)
3761 			wake_up_worker(pwq->pool);
3762 	} else {
3763 		pwq->max_active = 0;
3764 	}
3765 
3766 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3767 }
3768 
3769 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3770 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3771 		     struct worker_pool *pool)
3772 {
3773 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3774 
3775 	memset(pwq, 0, sizeof(*pwq));
3776 
3777 	pwq->pool = pool;
3778 	pwq->wq = wq;
3779 	pwq->flush_color = -1;
3780 	pwq->refcnt = 1;
3781 	INIT_LIST_HEAD(&pwq->delayed_works);
3782 	INIT_LIST_HEAD(&pwq->pwqs_node);
3783 	INIT_LIST_HEAD(&pwq->mayday_node);
3784 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3785 }
3786 
3787 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3788 static void link_pwq(struct pool_workqueue *pwq)
3789 {
3790 	struct workqueue_struct *wq = pwq->wq;
3791 
3792 	lockdep_assert_held(&wq->mutex);
3793 
3794 	/* may be called multiple times, ignore if already linked */
3795 	if (!list_empty(&pwq->pwqs_node))
3796 		return;
3797 
3798 	/* set the matching work_color */
3799 	pwq->work_color = wq->work_color;
3800 
3801 	/* sync max_active to the current setting */
3802 	pwq_adjust_max_active(pwq);
3803 
3804 	/* link in @pwq */
3805 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3806 }
3807 
3808 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3809 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3810 					const struct workqueue_attrs *attrs)
3811 {
3812 	struct worker_pool *pool;
3813 	struct pool_workqueue *pwq;
3814 
3815 	lockdep_assert_held(&wq_pool_mutex);
3816 
3817 	pool = get_unbound_pool(attrs);
3818 	if (!pool)
3819 		return NULL;
3820 
3821 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3822 	if (!pwq) {
3823 		put_unbound_pool(pool);
3824 		return NULL;
3825 	}
3826 
3827 	init_pwq(pwq, wq, pool);
3828 	return pwq;
3829 }
3830 
3831 /**
3832  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3833  * @attrs: the wq_attrs of the default pwq of the target workqueue
3834  * @node: the target NUMA node
3835  * @cpu_going_down: if >= 0, the CPU to consider as offline
3836  * @cpumask: outarg, the resulting cpumask
3837  *
3838  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3839  * @cpu_going_down is >= 0, that cpu is considered offline during
3840  * calculation.  The result is stored in @cpumask.
3841  *
3842  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3843  * enabled and @node has online CPUs requested by @attrs, the returned
3844  * cpumask is the intersection of the possible CPUs of @node and
3845  * @attrs->cpumask.
3846  *
3847  * The caller is responsible for ensuring that the cpumask of @node stays
3848  * stable.
3849  *
3850  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3851  * %false if equal.
3852  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3853 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3854 				 int cpu_going_down, cpumask_t *cpumask)
3855 {
3856 	if (!wq_numa_enabled || attrs->no_numa)
3857 		goto use_dfl;
3858 
3859 	/* does @node have any online CPUs @attrs wants? */
3860 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3861 	if (cpu_going_down >= 0)
3862 		cpumask_clear_cpu(cpu_going_down, cpumask);
3863 
3864 	if (cpumask_empty(cpumask))
3865 		goto use_dfl;
3866 
3867 	/* yeap, return possible CPUs in @node that @attrs wants */
3868 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3869 
3870 	if (cpumask_empty(cpumask)) {
3871 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3872 				"possible intersect\n");
3873 		return false;
3874 	}
3875 
3876 	return !cpumask_equal(cpumask, attrs->cpumask);
3877 
3878 use_dfl:
3879 	cpumask_copy(cpumask, attrs->cpumask);
3880 	return false;
3881 }
3882 
3883 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3884 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3885 						   int node,
3886 						   struct pool_workqueue *pwq)
3887 {
3888 	struct pool_workqueue *old_pwq;
3889 
3890 	lockdep_assert_held(&wq_pool_mutex);
3891 	lockdep_assert_held(&wq->mutex);
3892 
3893 	/* link_pwq() can handle duplicate calls */
3894 	link_pwq(pwq);
3895 
3896 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3897 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3898 	return old_pwq;
3899 }
3900 
3901 /* context to store the prepared attrs & pwqs before applying */
3902 struct apply_wqattrs_ctx {
3903 	struct workqueue_struct	*wq;		/* target workqueue */
3904 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3905 	struct list_head	list;		/* queued for batching commit */
3906 	struct pool_workqueue	*dfl_pwq;
3907 	struct pool_workqueue	*pwq_tbl[];
3908 };
3909 
3910 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3911 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3912 {
3913 	if (ctx) {
3914 		int node;
3915 
3916 		for_each_node(node)
3917 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3918 		put_pwq_unlocked(ctx->dfl_pwq);
3919 
3920 		free_workqueue_attrs(ctx->attrs);
3921 
3922 		kfree(ctx);
3923 	}
3924 }
3925 
3926 /* allocate the attrs and pwqs for later installation */
3927 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3928 apply_wqattrs_prepare(struct workqueue_struct *wq,
3929 		      const struct workqueue_attrs *attrs)
3930 {
3931 	struct apply_wqattrs_ctx *ctx;
3932 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3933 	int node;
3934 
3935 	lockdep_assert_held(&wq_pool_mutex);
3936 
3937 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3938 
3939 	new_attrs = alloc_workqueue_attrs();
3940 	tmp_attrs = alloc_workqueue_attrs();
3941 	if (!ctx || !new_attrs || !tmp_attrs)
3942 		goto out_free;
3943 
3944 	/*
3945 	 * Calculate the attrs of the default pwq.
3946 	 * If the user configured cpumask doesn't overlap with the
3947 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3948 	 */
3949 	copy_workqueue_attrs(new_attrs, attrs);
3950 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3951 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3952 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3953 
3954 	/*
3955 	 * We may create multiple pwqs with differing cpumasks.  Make a
3956 	 * copy of @new_attrs which will be modified and used to obtain
3957 	 * pools.
3958 	 */
3959 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3960 
3961 	/*
3962 	 * If something goes wrong during CPU up/down, we'll fall back to
3963 	 * the default pwq covering whole @attrs->cpumask.  Always create
3964 	 * it even if we don't use it immediately.
3965 	 */
3966 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3967 	if (!ctx->dfl_pwq)
3968 		goto out_free;
3969 
3970 	for_each_node(node) {
3971 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3972 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3973 			if (!ctx->pwq_tbl[node])
3974 				goto out_free;
3975 		} else {
3976 			ctx->dfl_pwq->refcnt++;
3977 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3978 		}
3979 	}
3980 
3981 	/* save the user configured attrs and sanitize it. */
3982 	copy_workqueue_attrs(new_attrs, attrs);
3983 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3984 	ctx->attrs = new_attrs;
3985 
3986 	ctx->wq = wq;
3987 	free_workqueue_attrs(tmp_attrs);
3988 	return ctx;
3989 
3990 out_free:
3991 	free_workqueue_attrs(tmp_attrs);
3992 	free_workqueue_attrs(new_attrs);
3993 	apply_wqattrs_cleanup(ctx);
3994 	return NULL;
3995 }
3996 
3997 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3998 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3999 {
4000 	int node;
4001 
4002 	/* all pwqs have been created successfully, let's install'em */
4003 	mutex_lock(&ctx->wq->mutex);
4004 
4005 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4006 
4007 	/* save the previous pwq and install the new one */
4008 	for_each_node(node)
4009 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4010 							  ctx->pwq_tbl[node]);
4011 
4012 	/* @dfl_pwq might not have been used, ensure it's linked */
4013 	link_pwq(ctx->dfl_pwq);
4014 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4015 
4016 	mutex_unlock(&ctx->wq->mutex);
4017 }
4018 
apply_wqattrs_lock(void)4019 static void apply_wqattrs_lock(void)
4020 {
4021 	/* CPUs should stay stable across pwq creations and installations */
4022 	get_online_cpus();
4023 	mutex_lock(&wq_pool_mutex);
4024 }
4025 
apply_wqattrs_unlock(void)4026 static void apply_wqattrs_unlock(void)
4027 {
4028 	mutex_unlock(&wq_pool_mutex);
4029 	put_online_cpus();
4030 }
4031 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4032 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4033 					const struct workqueue_attrs *attrs)
4034 {
4035 	struct apply_wqattrs_ctx *ctx;
4036 
4037 	/* only unbound workqueues can change attributes */
4038 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4039 		return -EINVAL;
4040 
4041 	/* creating multiple pwqs breaks ordering guarantee */
4042 	if (!list_empty(&wq->pwqs)) {
4043 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4044 			return -EINVAL;
4045 
4046 		wq->flags &= ~__WQ_ORDERED;
4047 	}
4048 
4049 	ctx = apply_wqattrs_prepare(wq, attrs);
4050 	if (!ctx)
4051 		return -ENOMEM;
4052 
4053 	/* the ctx has been prepared successfully, let's commit it */
4054 	apply_wqattrs_commit(ctx);
4055 	apply_wqattrs_cleanup(ctx);
4056 
4057 	return 0;
4058 }
4059 
4060 /**
4061  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4062  * @wq: the target workqueue
4063  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4064  *
4065  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4066  * machines, this function maps a separate pwq to each NUMA node with
4067  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4068  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4069  * items finish.  Note that a work item which repeatedly requeues itself
4070  * back-to-back will stay on its current pwq.
4071  *
4072  * Performs GFP_KERNEL allocations.
4073  *
4074  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4075  *
4076  * Return: 0 on success and -errno on failure.
4077  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4078 int apply_workqueue_attrs(struct workqueue_struct *wq,
4079 			  const struct workqueue_attrs *attrs)
4080 {
4081 	int ret;
4082 
4083 	lockdep_assert_cpus_held();
4084 
4085 	mutex_lock(&wq_pool_mutex);
4086 	ret = apply_workqueue_attrs_locked(wq, attrs);
4087 	mutex_unlock(&wq_pool_mutex);
4088 
4089 	return ret;
4090 }
4091 
4092 /**
4093  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4094  * @wq: the target workqueue
4095  * @cpu: the CPU coming up or going down
4096  * @online: whether @cpu is coming up or going down
4097  *
4098  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4099  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4100  * @wq accordingly.
4101  *
4102  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4103  * falls back to @wq->dfl_pwq which may not be optimal but is always
4104  * correct.
4105  *
4106  * Note that when the last allowed CPU of a NUMA node goes offline for a
4107  * workqueue with a cpumask spanning multiple nodes, the workers which were
4108  * already executing the work items for the workqueue will lose their CPU
4109  * affinity and may execute on any CPU.  This is similar to how per-cpu
4110  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4111  * affinity, it's the user's responsibility to flush the work item from
4112  * CPU_DOWN_PREPARE.
4113  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4114 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4115 				   bool online)
4116 {
4117 	int node = cpu_to_node(cpu);
4118 	int cpu_off = online ? -1 : cpu;
4119 	struct pool_workqueue *old_pwq = NULL, *pwq;
4120 	struct workqueue_attrs *target_attrs;
4121 	cpumask_t *cpumask;
4122 
4123 	lockdep_assert_held(&wq_pool_mutex);
4124 
4125 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4126 	    wq->unbound_attrs->no_numa)
4127 		return;
4128 
4129 	/*
4130 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4131 	 * Let's use a preallocated one.  The following buf is protected by
4132 	 * CPU hotplug exclusion.
4133 	 */
4134 	target_attrs = wq_update_unbound_numa_attrs_buf;
4135 	cpumask = target_attrs->cpumask;
4136 
4137 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4138 	pwq = unbound_pwq_by_node(wq, node);
4139 
4140 	/*
4141 	 * Let's determine what needs to be done.  If the target cpumask is
4142 	 * different from the default pwq's, we need to compare it to @pwq's
4143 	 * and create a new one if they don't match.  If the target cpumask
4144 	 * equals the default pwq's, the default pwq should be used.
4145 	 */
4146 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4147 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4148 			return;
4149 	} else {
4150 		goto use_dfl_pwq;
4151 	}
4152 
4153 	/* create a new pwq */
4154 	pwq = alloc_unbound_pwq(wq, target_attrs);
4155 	if (!pwq) {
4156 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4157 			wq->name);
4158 		goto use_dfl_pwq;
4159 	}
4160 
4161 	/* Install the new pwq. */
4162 	mutex_lock(&wq->mutex);
4163 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4164 	goto out_unlock;
4165 
4166 use_dfl_pwq:
4167 	mutex_lock(&wq->mutex);
4168 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4169 	get_pwq(wq->dfl_pwq);
4170 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4171 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4172 out_unlock:
4173 	mutex_unlock(&wq->mutex);
4174 	put_pwq_unlocked(old_pwq);
4175 }
4176 
alloc_and_link_pwqs(struct workqueue_struct * wq)4177 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4178 {
4179 	bool highpri = wq->flags & WQ_HIGHPRI;
4180 	int cpu, ret;
4181 
4182 	if (!(wq->flags & WQ_UNBOUND)) {
4183 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4184 		if (!wq->cpu_pwqs)
4185 			return -ENOMEM;
4186 
4187 		for_each_possible_cpu(cpu) {
4188 			struct pool_workqueue *pwq =
4189 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4190 			struct worker_pool *cpu_pools =
4191 				per_cpu(cpu_worker_pools, cpu);
4192 
4193 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4194 
4195 			mutex_lock(&wq->mutex);
4196 			link_pwq(pwq);
4197 			mutex_unlock(&wq->mutex);
4198 		}
4199 		return 0;
4200 	}
4201 
4202 	get_online_cpus();
4203 	if (wq->flags & __WQ_ORDERED) {
4204 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4205 		/* there should only be single pwq for ordering guarantee */
4206 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4207 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4208 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4209 	} else {
4210 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4211 	}
4212 	put_online_cpus();
4213 
4214 	return ret;
4215 }
4216 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4217 static int wq_clamp_max_active(int max_active, unsigned int flags,
4218 			       const char *name)
4219 {
4220 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4221 
4222 	if (max_active < 1 || max_active > lim)
4223 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4224 			max_active, name, 1, lim);
4225 
4226 	return clamp_val(max_active, 1, lim);
4227 }
4228 
4229 /*
4230  * Workqueues which may be used during memory reclaim should have a rescuer
4231  * to guarantee forward progress.
4232  */
init_rescuer(struct workqueue_struct * wq)4233 static int init_rescuer(struct workqueue_struct *wq)
4234 {
4235 	struct worker *rescuer;
4236 	int ret;
4237 
4238 	if (!(wq->flags & WQ_MEM_RECLAIM))
4239 		return 0;
4240 
4241 	rescuer = alloc_worker(NUMA_NO_NODE);
4242 	if (!rescuer)
4243 		return -ENOMEM;
4244 
4245 	rescuer->rescue_wq = wq;
4246 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4247 	if (IS_ERR(rescuer->task)) {
4248 		ret = PTR_ERR(rescuer->task);
4249 		kfree(rescuer);
4250 		return ret;
4251 	}
4252 
4253 	wq->rescuer = rescuer;
4254 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4255 	wake_up_process(rescuer->task);
4256 
4257 	return 0;
4258 }
4259 
4260 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4261 struct workqueue_struct *alloc_workqueue(const char *fmt,
4262 					 unsigned int flags,
4263 					 int max_active, ...)
4264 {
4265 	size_t tbl_size = 0;
4266 	va_list args;
4267 	struct workqueue_struct *wq;
4268 	struct pool_workqueue *pwq;
4269 
4270 	/*
4271 	 * Unbound && max_active == 1 used to imply ordered, which is no
4272 	 * longer the case on NUMA machines due to per-node pools.  While
4273 	 * alloc_ordered_workqueue() is the right way to create an ordered
4274 	 * workqueue, keep the previous behavior to avoid subtle breakages
4275 	 * on NUMA.
4276 	 */
4277 	if ((flags & WQ_UNBOUND) && max_active == 1)
4278 		flags |= __WQ_ORDERED;
4279 
4280 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4281 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4282 		flags |= WQ_UNBOUND;
4283 
4284 	/* allocate wq and format name */
4285 	if (flags & WQ_UNBOUND)
4286 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4287 
4288 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4289 	if (!wq)
4290 		return NULL;
4291 
4292 	if (flags & WQ_UNBOUND) {
4293 		wq->unbound_attrs = alloc_workqueue_attrs();
4294 		if (!wq->unbound_attrs)
4295 			goto err_free_wq;
4296 	}
4297 
4298 	va_start(args, max_active);
4299 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4300 	va_end(args);
4301 
4302 	max_active = max_active ?: WQ_DFL_ACTIVE;
4303 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4304 
4305 	/* init wq */
4306 	wq->flags = flags;
4307 	wq->saved_max_active = max_active;
4308 	mutex_init(&wq->mutex);
4309 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4310 	INIT_LIST_HEAD(&wq->pwqs);
4311 	INIT_LIST_HEAD(&wq->flusher_queue);
4312 	INIT_LIST_HEAD(&wq->flusher_overflow);
4313 	INIT_LIST_HEAD(&wq->maydays);
4314 
4315 	wq_init_lockdep(wq);
4316 	INIT_LIST_HEAD(&wq->list);
4317 
4318 	if (alloc_and_link_pwqs(wq) < 0)
4319 		goto err_unreg_lockdep;
4320 
4321 	if (wq_online && init_rescuer(wq) < 0)
4322 		goto err_destroy;
4323 
4324 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4325 		goto err_destroy;
4326 
4327 	/*
4328 	 * wq_pool_mutex protects global freeze state and workqueues list.
4329 	 * Grab it, adjust max_active and add the new @wq to workqueues
4330 	 * list.
4331 	 */
4332 	mutex_lock(&wq_pool_mutex);
4333 
4334 	mutex_lock(&wq->mutex);
4335 	for_each_pwq(pwq, wq)
4336 		pwq_adjust_max_active(pwq);
4337 	mutex_unlock(&wq->mutex);
4338 
4339 	list_add_tail_rcu(&wq->list, &workqueues);
4340 
4341 	mutex_unlock(&wq_pool_mutex);
4342 
4343 	return wq;
4344 
4345 err_unreg_lockdep:
4346 	wq_unregister_lockdep(wq);
4347 	wq_free_lockdep(wq);
4348 err_free_wq:
4349 	free_workqueue_attrs(wq->unbound_attrs);
4350 	kfree(wq);
4351 	return NULL;
4352 err_destroy:
4353 	destroy_workqueue(wq);
4354 	return NULL;
4355 }
4356 EXPORT_SYMBOL_GPL(alloc_workqueue);
4357 
pwq_busy(struct pool_workqueue * pwq)4358 static bool pwq_busy(struct pool_workqueue *pwq)
4359 {
4360 	int i;
4361 
4362 	for (i = 0; i < WORK_NR_COLORS; i++)
4363 		if (pwq->nr_in_flight[i])
4364 			return true;
4365 
4366 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4367 		return true;
4368 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4369 		return true;
4370 
4371 	return false;
4372 }
4373 
4374 /**
4375  * destroy_workqueue - safely terminate a workqueue
4376  * @wq: target workqueue
4377  *
4378  * Safely destroy a workqueue. All work currently pending will be done first.
4379  */
destroy_workqueue(struct workqueue_struct * wq)4380 void destroy_workqueue(struct workqueue_struct *wq)
4381 {
4382 	struct pool_workqueue *pwq;
4383 	int node;
4384 
4385 	/*
4386 	 * Remove it from sysfs first so that sanity check failure doesn't
4387 	 * lead to sysfs name conflicts.
4388 	 */
4389 	workqueue_sysfs_unregister(wq);
4390 
4391 	/* drain it before proceeding with destruction */
4392 	drain_workqueue(wq);
4393 
4394 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4395 	if (wq->rescuer) {
4396 		struct worker *rescuer = wq->rescuer;
4397 
4398 		/* this prevents new queueing */
4399 		raw_spin_lock_irq(&wq_mayday_lock);
4400 		wq->rescuer = NULL;
4401 		raw_spin_unlock_irq(&wq_mayday_lock);
4402 
4403 		/* rescuer will empty maydays list before exiting */
4404 		kthread_stop(rescuer->task);
4405 		kfree(rescuer);
4406 	}
4407 
4408 	/*
4409 	 * Sanity checks - grab all the locks so that we wait for all
4410 	 * in-flight operations which may do put_pwq().
4411 	 */
4412 	mutex_lock(&wq_pool_mutex);
4413 	mutex_lock(&wq->mutex);
4414 	for_each_pwq(pwq, wq) {
4415 		raw_spin_lock_irq(&pwq->pool->lock);
4416 		if (WARN_ON(pwq_busy(pwq))) {
4417 			pr_warn("%s: %s has the following busy pwq\n",
4418 				__func__, wq->name);
4419 			show_pwq(pwq);
4420 			raw_spin_unlock_irq(&pwq->pool->lock);
4421 			mutex_unlock(&wq->mutex);
4422 			mutex_unlock(&wq_pool_mutex);
4423 			show_workqueue_state();
4424 			return;
4425 		}
4426 		raw_spin_unlock_irq(&pwq->pool->lock);
4427 	}
4428 	mutex_unlock(&wq->mutex);
4429 
4430 	/*
4431 	 * wq list is used to freeze wq, remove from list after
4432 	 * flushing is complete in case freeze races us.
4433 	 */
4434 	list_del_rcu(&wq->list);
4435 	mutex_unlock(&wq_pool_mutex);
4436 
4437 	if (!(wq->flags & WQ_UNBOUND)) {
4438 		wq_unregister_lockdep(wq);
4439 		/*
4440 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4441 		 * schedule RCU free.
4442 		 */
4443 		call_rcu(&wq->rcu, rcu_free_wq);
4444 	} else {
4445 		/*
4446 		 * We're the sole accessor of @wq at this point.  Directly
4447 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4448 		 * @wq will be freed when the last pwq is released.
4449 		 */
4450 		for_each_node(node) {
4451 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4452 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4453 			put_pwq_unlocked(pwq);
4454 		}
4455 
4456 		/*
4457 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4458 		 * put.  Don't access it afterwards.
4459 		 */
4460 		pwq = wq->dfl_pwq;
4461 		wq->dfl_pwq = NULL;
4462 		put_pwq_unlocked(pwq);
4463 	}
4464 }
4465 EXPORT_SYMBOL_GPL(destroy_workqueue);
4466 
4467 /**
4468  * workqueue_set_max_active - adjust max_active of a workqueue
4469  * @wq: target workqueue
4470  * @max_active: new max_active value.
4471  *
4472  * Set max_active of @wq to @max_active.
4473  *
4474  * CONTEXT:
4475  * Don't call from IRQ context.
4476  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4477 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4478 {
4479 	struct pool_workqueue *pwq;
4480 
4481 	/* disallow meddling with max_active for ordered workqueues */
4482 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4483 		return;
4484 
4485 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4486 
4487 	mutex_lock(&wq->mutex);
4488 
4489 	wq->flags &= ~__WQ_ORDERED;
4490 	wq->saved_max_active = max_active;
4491 
4492 	for_each_pwq(pwq, wq)
4493 		pwq_adjust_max_active(pwq);
4494 
4495 	mutex_unlock(&wq->mutex);
4496 }
4497 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4498 
4499 /**
4500  * current_work - retrieve %current task's work struct
4501  *
4502  * Determine if %current task is a workqueue worker and what it's working on.
4503  * Useful to find out the context that the %current task is running in.
4504  *
4505  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4506  */
current_work(void)4507 struct work_struct *current_work(void)
4508 {
4509 	struct worker *worker = current_wq_worker();
4510 
4511 	return worker ? worker->current_work : NULL;
4512 }
4513 EXPORT_SYMBOL(current_work);
4514 
4515 /**
4516  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4517  *
4518  * Determine whether %current is a workqueue rescuer.  Can be used from
4519  * work functions to determine whether it's being run off the rescuer task.
4520  *
4521  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4522  */
current_is_workqueue_rescuer(void)4523 bool current_is_workqueue_rescuer(void)
4524 {
4525 	struct worker *worker = current_wq_worker();
4526 
4527 	return worker && worker->rescue_wq;
4528 }
4529 
4530 /**
4531  * workqueue_congested - test whether a workqueue is congested
4532  * @cpu: CPU in question
4533  * @wq: target workqueue
4534  *
4535  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4536  * no synchronization around this function and the test result is
4537  * unreliable and only useful as advisory hints or for debugging.
4538  *
4539  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4540  * Note that both per-cpu and unbound workqueues may be associated with
4541  * multiple pool_workqueues which have separate congested states.  A
4542  * workqueue being congested on one CPU doesn't mean the workqueue is also
4543  * contested on other CPUs / NUMA nodes.
4544  *
4545  * Return:
4546  * %true if congested, %false otherwise.
4547  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4548 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4549 {
4550 	struct pool_workqueue *pwq;
4551 	bool ret;
4552 
4553 	rcu_read_lock();
4554 	preempt_disable();
4555 
4556 	if (cpu == WORK_CPU_UNBOUND)
4557 		cpu = smp_processor_id();
4558 
4559 	if (!(wq->flags & WQ_UNBOUND))
4560 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4561 	else
4562 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4563 
4564 	ret = !list_empty(&pwq->delayed_works);
4565 	preempt_enable();
4566 	rcu_read_unlock();
4567 
4568 	return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(workqueue_congested);
4571 
4572 /**
4573  * work_busy - test whether a work is currently pending or running
4574  * @work: the work to be tested
4575  *
4576  * Test whether @work is currently pending or running.  There is no
4577  * synchronization around this function and the test result is
4578  * unreliable and only useful as advisory hints or for debugging.
4579  *
4580  * Return:
4581  * OR'd bitmask of WORK_BUSY_* bits.
4582  */
work_busy(struct work_struct * work)4583 unsigned int work_busy(struct work_struct *work)
4584 {
4585 	struct worker_pool *pool;
4586 	unsigned long flags;
4587 	unsigned int ret = 0;
4588 
4589 	if (work_pending(work))
4590 		ret |= WORK_BUSY_PENDING;
4591 
4592 	rcu_read_lock();
4593 	pool = get_work_pool(work);
4594 	if (pool) {
4595 		raw_spin_lock_irqsave(&pool->lock, flags);
4596 		if (find_worker_executing_work(pool, work))
4597 			ret |= WORK_BUSY_RUNNING;
4598 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4599 	}
4600 	rcu_read_unlock();
4601 
4602 	return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(work_busy);
4605 
4606 /**
4607  * set_worker_desc - set description for the current work item
4608  * @fmt: printf-style format string
4609  * @...: arguments for the format string
4610  *
4611  * This function can be called by a running work function to describe what
4612  * the work item is about.  If the worker task gets dumped, this
4613  * information will be printed out together to help debugging.  The
4614  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4615  */
set_worker_desc(const char * fmt,...)4616 void set_worker_desc(const char *fmt, ...)
4617 {
4618 	struct worker *worker = current_wq_worker();
4619 	va_list args;
4620 
4621 	if (worker) {
4622 		va_start(args, fmt);
4623 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4624 		va_end(args);
4625 	}
4626 }
4627 EXPORT_SYMBOL_GPL(set_worker_desc);
4628 
4629 /**
4630  * print_worker_info - print out worker information and description
4631  * @log_lvl: the log level to use when printing
4632  * @task: target task
4633  *
4634  * If @task is a worker and currently executing a work item, print out the
4635  * name of the workqueue being serviced and worker description set with
4636  * set_worker_desc() by the currently executing work item.
4637  *
4638  * This function can be safely called on any task as long as the
4639  * task_struct itself is accessible.  While safe, this function isn't
4640  * synchronized and may print out mixups or garbages of limited length.
4641  */
print_worker_info(const char * log_lvl,struct task_struct * task)4642 void print_worker_info(const char *log_lvl, struct task_struct *task)
4643 {
4644 	work_func_t *fn = NULL;
4645 	char name[WQ_NAME_LEN] = { };
4646 	char desc[WORKER_DESC_LEN] = { };
4647 	struct pool_workqueue *pwq = NULL;
4648 	struct workqueue_struct *wq = NULL;
4649 	struct worker *worker;
4650 
4651 	if (!(task->flags & PF_WQ_WORKER))
4652 		return;
4653 
4654 	/*
4655 	 * This function is called without any synchronization and @task
4656 	 * could be in any state.  Be careful with dereferences.
4657 	 */
4658 	worker = kthread_probe_data(task);
4659 
4660 	/*
4661 	 * Carefully copy the associated workqueue's workfn, name and desc.
4662 	 * Keep the original last '\0' in case the original is garbage.
4663 	 */
4664 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4665 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4666 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4667 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4668 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4669 
4670 	if (fn || name[0] || desc[0]) {
4671 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4672 		if (strcmp(name, desc))
4673 			pr_cont(" (%s)", desc);
4674 		pr_cont("\n");
4675 	}
4676 }
4677 
pr_cont_pool_info(struct worker_pool * pool)4678 static void pr_cont_pool_info(struct worker_pool *pool)
4679 {
4680 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4681 	if (pool->node != NUMA_NO_NODE)
4682 		pr_cont(" node=%d", pool->node);
4683 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4684 }
4685 
pr_cont_work(bool comma,struct work_struct * work)4686 static void pr_cont_work(bool comma, struct work_struct *work)
4687 {
4688 	if (work->func == wq_barrier_func) {
4689 		struct wq_barrier *barr;
4690 
4691 		barr = container_of(work, struct wq_barrier, work);
4692 
4693 		pr_cont("%s BAR(%d)", comma ? "," : "",
4694 			task_pid_nr(barr->task));
4695 	} else {
4696 		pr_cont("%s %ps", comma ? "," : "", work->func);
4697 	}
4698 }
4699 
show_pwq(struct pool_workqueue * pwq)4700 static void show_pwq(struct pool_workqueue *pwq)
4701 {
4702 	struct worker_pool *pool = pwq->pool;
4703 	struct work_struct *work;
4704 	struct worker *worker;
4705 	bool has_in_flight = false, has_pending = false;
4706 	int bkt;
4707 
4708 	pr_info("  pwq %d:", pool->id);
4709 	pr_cont_pool_info(pool);
4710 
4711 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4712 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4713 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4714 
4715 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4716 		if (worker->current_pwq == pwq) {
4717 			has_in_flight = true;
4718 			break;
4719 		}
4720 	}
4721 	if (has_in_flight) {
4722 		bool comma = false;
4723 
4724 		pr_info("    in-flight:");
4725 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4726 			if (worker->current_pwq != pwq)
4727 				continue;
4728 
4729 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4730 				task_pid_nr(worker->task),
4731 				worker->rescue_wq ? "(RESCUER)" : "",
4732 				worker->current_func);
4733 			list_for_each_entry(work, &worker->scheduled, entry)
4734 				pr_cont_work(false, work);
4735 			comma = true;
4736 		}
4737 		pr_cont("\n");
4738 	}
4739 
4740 	list_for_each_entry(work, &pool->worklist, entry) {
4741 		if (get_work_pwq(work) == pwq) {
4742 			has_pending = true;
4743 			break;
4744 		}
4745 	}
4746 	if (has_pending) {
4747 		bool comma = false;
4748 
4749 		pr_info("    pending:");
4750 		list_for_each_entry(work, &pool->worklist, entry) {
4751 			if (get_work_pwq(work) != pwq)
4752 				continue;
4753 
4754 			pr_cont_work(comma, work);
4755 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4756 		}
4757 		pr_cont("\n");
4758 	}
4759 
4760 	if (!list_empty(&pwq->delayed_works)) {
4761 		bool comma = false;
4762 
4763 		pr_info("    delayed:");
4764 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4765 			pr_cont_work(comma, work);
4766 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4767 		}
4768 		pr_cont("\n");
4769 	}
4770 }
4771 
4772 /**
4773  * show_workqueue_state - dump workqueue state
4774  *
4775  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4776  * all busy workqueues and pools.
4777  */
show_workqueue_state(void)4778 void show_workqueue_state(void)
4779 {
4780 	struct workqueue_struct *wq;
4781 	struct worker_pool *pool;
4782 	unsigned long flags;
4783 	int pi;
4784 
4785 	rcu_read_lock();
4786 
4787 	pr_info("Showing busy workqueues and worker pools:\n");
4788 
4789 	list_for_each_entry_rcu(wq, &workqueues, list) {
4790 		struct pool_workqueue *pwq;
4791 		bool idle = true;
4792 
4793 		for_each_pwq(pwq, wq) {
4794 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4795 				idle = false;
4796 				break;
4797 			}
4798 		}
4799 		if (idle)
4800 			continue;
4801 
4802 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4803 
4804 		for_each_pwq(pwq, wq) {
4805 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4806 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4807 				show_pwq(pwq);
4808 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4809 			/*
4810 			 * We could be printing a lot from atomic context, e.g.
4811 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4812 			 * hard lockup.
4813 			 */
4814 			touch_nmi_watchdog();
4815 		}
4816 	}
4817 
4818 	for_each_pool(pool, pi) {
4819 		struct worker *worker;
4820 		bool first = true;
4821 
4822 		raw_spin_lock_irqsave(&pool->lock, flags);
4823 		if (pool->nr_workers == pool->nr_idle)
4824 			goto next_pool;
4825 
4826 		pr_info("pool %d:", pool->id);
4827 		pr_cont_pool_info(pool);
4828 		pr_cont(" hung=%us workers=%d",
4829 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4830 			pool->nr_workers);
4831 		if (pool->manager)
4832 			pr_cont(" manager: %d",
4833 				task_pid_nr(pool->manager->task));
4834 		list_for_each_entry(worker, &pool->idle_list, entry) {
4835 			pr_cont(" %s%d", first ? "idle: " : "",
4836 				task_pid_nr(worker->task));
4837 			first = false;
4838 		}
4839 		pr_cont("\n");
4840 	next_pool:
4841 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4842 		/*
4843 		 * We could be printing a lot from atomic context, e.g.
4844 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4845 		 * hard lockup.
4846 		 */
4847 		touch_nmi_watchdog();
4848 	}
4849 
4850 	rcu_read_unlock();
4851 }
4852 
4853 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4854 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4855 {
4856 	int off;
4857 
4858 	/* always show the actual comm */
4859 	off = strscpy(buf, task->comm, size);
4860 	if (off < 0)
4861 		return;
4862 
4863 	/* stabilize PF_WQ_WORKER and worker pool association */
4864 	mutex_lock(&wq_pool_attach_mutex);
4865 
4866 	if (task->flags & PF_WQ_WORKER) {
4867 		struct worker *worker = kthread_data(task);
4868 		struct worker_pool *pool = worker->pool;
4869 
4870 		if (pool) {
4871 			raw_spin_lock_irq(&pool->lock);
4872 			/*
4873 			 * ->desc tracks information (wq name or
4874 			 * set_worker_desc()) for the latest execution.  If
4875 			 * current, prepend '+', otherwise '-'.
4876 			 */
4877 			if (worker->desc[0] != '\0') {
4878 				if (worker->current_work)
4879 					scnprintf(buf + off, size - off, "+%s",
4880 						  worker->desc);
4881 				else
4882 					scnprintf(buf + off, size - off, "-%s",
4883 						  worker->desc);
4884 			}
4885 			raw_spin_unlock_irq(&pool->lock);
4886 		}
4887 	}
4888 
4889 	mutex_unlock(&wq_pool_attach_mutex);
4890 }
4891 
4892 #ifdef CONFIG_SMP
4893 
4894 /*
4895  * CPU hotplug.
4896  *
4897  * There are two challenges in supporting CPU hotplug.  Firstly, there
4898  * are a lot of assumptions on strong associations among work, pwq and
4899  * pool which make migrating pending and scheduled works very
4900  * difficult to implement without impacting hot paths.  Secondly,
4901  * worker pools serve mix of short, long and very long running works making
4902  * blocked draining impractical.
4903  *
4904  * This is solved by allowing the pools to be disassociated from the CPU
4905  * running as an unbound one and allowing it to be reattached later if the
4906  * cpu comes back online.
4907  */
4908 
unbind_workers(int cpu)4909 static void unbind_workers(int cpu)
4910 {
4911 	struct worker_pool *pool;
4912 	struct worker *worker;
4913 
4914 	for_each_cpu_worker_pool(pool, cpu) {
4915 		mutex_lock(&wq_pool_attach_mutex);
4916 		raw_spin_lock_irq(&pool->lock);
4917 
4918 		/*
4919 		 * We've blocked all attach/detach operations. Make all workers
4920 		 * unbound and set DISASSOCIATED.  Before this, all workers
4921 		 * except for the ones which are still executing works from
4922 		 * before the last CPU down must be on the cpu.  After
4923 		 * this, they may become diasporas.
4924 		 */
4925 		for_each_pool_worker(worker, pool)
4926 			worker->flags |= WORKER_UNBOUND;
4927 
4928 		pool->flags |= POOL_DISASSOCIATED;
4929 
4930 		raw_spin_unlock_irq(&pool->lock);
4931 		mutex_unlock(&wq_pool_attach_mutex);
4932 
4933 		/*
4934 		 * Call schedule() so that we cross rq->lock and thus can
4935 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4936 		 * This is necessary as scheduler callbacks may be invoked
4937 		 * from other cpus.
4938 		 */
4939 		schedule();
4940 
4941 		/*
4942 		 * Sched callbacks are disabled now.  Zap nr_running.
4943 		 * After this, nr_running stays zero and need_more_worker()
4944 		 * and keep_working() are always true as long as the
4945 		 * worklist is not empty.  This pool now behaves as an
4946 		 * unbound (in terms of concurrency management) pool which
4947 		 * are served by workers tied to the pool.
4948 		 */
4949 		atomic_set(&pool->nr_running, 0);
4950 
4951 		/*
4952 		 * With concurrency management just turned off, a busy
4953 		 * worker blocking could lead to lengthy stalls.  Kick off
4954 		 * unbound chain execution of currently pending work items.
4955 		 */
4956 		raw_spin_lock_irq(&pool->lock);
4957 		wake_up_worker(pool);
4958 		raw_spin_unlock_irq(&pool->lock);
4959 	}
4960 }
4961 
4962 /**
4963  * rebind_workers - rebind all workers of a pool to the associated CPU
4964  * @pool: pool of interest
4965  *
4966  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4967  */
rebind_workers(struct worker_pool * pool)4968 static void rebind_workers(struct worker_pool *pool)
4969 {
4970 	struct worker *worker;
4971 
4972 	lockdep_assert_held(&wq_pool_attach_mutex);
4973 
4974 	/*
4975 	 * Restore CPU affinity of all workers.  As all idle workers should
4976 	 * be on the run-queue of the associated CPU before any local
4977 	 * wake-ups for concurrency management happen, restore CPU affinity
4978 	 * of all workers first and then clear UNBOUND.  As we're called
4979 	 * from CPU_ONLINE, the following shouldn't fail.
4980 	 */
4981 	for_each_pool_worker(worker, pool)
4982 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4983 						  pool->attrs->cpumask) < 0);
4984 
4985 	raw_spin_lock_irq(&pool->lock);
4986 
4987 	pool->flags &= ~POOL_DISASSOCIATED;
4988 
4989 	for_each_pool_worker(worker, pool) {
4990 		unsigned int worker_flags = worker->flags;
4991 
4992 		/*
4993 		 * A bound idle worker should actually be on the runqueue
4994 		 * of the associated CPU for local wake-ups targeting it to
4995 		 * work.  Kick all idle workers so that they migrate to the
4996 		 * associated CPU.  Doing this in the same loop as
4997 		 * replacing UNBOUND with REBOUND is safe as no worker will
4998 		 * be bound before @pool->lock is released.
4999 		 */
5000 		if (worker_flags & WORKER_IDLE)
5001 			wake_up_process(worker->task);
5002 
5003 		/*
5004 		 * We want to clear UNBOUND but can't directly call
5005 		 * worker_clr_flags() or adjust nr_running.  Atomically
5006 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5007 		 * @worker will clear REBOUND using worker_clr_flags() when
5008 		 * it initiates the next execution cycle thus restoring
5009 		 * concurrency management.  Note that when or whether
5010 		 * @worker clears REBOUND doesn't affect correctness.
5011 		 *
5012 		 * WRITE_ONCE() is necessary because @worker->flags may be
5013 		 * tested without holding any lock in
5014 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5015 		 * fail incorrectly leading to premature concurrency
5016 		 * management operations.
5017 		 */
5018 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5019 		worker_flags |= WORKER_REBOUND;
5020 		worker_flags &= ~WORKER_UNBOUND;
5021 		WRITE_ONCE(worker->flags, worker_flags);
5022 	}
5023 
5024 	raw_spin_unlock_irq(&pool->lock);
5025 }
5026 
5027 /**
5028  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5029  * @pool: unbound pool of interest
5030  * @cpu: the CPU which is coming up
5031  *
5032  * An unbound pool may end up with a cpumask which doesn't have any online
5033  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5034  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5035  * online CPU before, cpus_allowed of all its workers should be restored.
5036  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5037 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5038 {
5039 	static cpumask_t cpumask;
5040 	struct worker *worker;
5041 
5042 	lockdep_assert_held(&wq_pool_attach_mutex);
5043 
5044 	/* is @cpu allowed for @pool? */
5045 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5046 		return;
5047 
5048 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5049 
5050 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5051 	for_each_pool_worker(worker, pool)
5052 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5053 }
5054 
workqueue_prepare_cpu(unsigned int cpu)5055 int workqueue_prepare_cpu(unsigned int cpu)
5056 {
5057 	struct worker_pool *pool;
5058 
5059 	for_each_cpu_worker_pool(pool, cpu) {
5060 		if (pool->nr_workers)
5061 			continue;
5062 		if (!create_worker(pool))
5063 			return -ENOMEM;
5064 	}
5065 	return 0;
5066 }
5067 
workqueue_online_cpu(unsigned int cpu)5068 int workqueue_online_cpu(unsigned int cpu)
5069 {
5070 	struct worker_pool *pool;
5071 	struct workqueue_struct *wq;
5072 	int pi;
5073 
5074 	mutex_lock(&wq_pool_mutex);
5075 
5076 	for_each_pool(pool, pi) {
5077 		mutex_lock(&wq_pool_attach_mutex);
5078 
5079 		if (pool->cpu == cpu)
5080 			rebind_workers(pool);
5081 		else if (pool->cpu < 0)
5082 			restore_unbound_workers_cpumask(pool, cpu);
5083 
5084 		mutex_unlock(&wq_pool_attach_mutex);
5085 	}
5086 
5087 	/* update NUMA affinity of unbound workqueues */
5088 	list_for_each_entry(wq, &workqueues, list)
5089 		wq_update_unbound_numa(wq, cpu, true);
5090 
5091 	mutex_unlock(&wq_pool_mutex);
5092 	return 0;
5093 }
5094 
workqueue_offline_cpu(unsigned int cpu)5095 int workqueue_offline_cpu(unsigned int cpu)
5096 {
5097 	struct workqueue_struct *wq;
5098 
5099 	/* unbinding per-cpu workers should happen on the local CPU */
5100 	if (WARN_ON(cpu != smp_processor_id()))
5101 		return -1;
5102 
5103 	unbind_workers(cpu);
5104 
5105 	/* update NUMA affinity of unbound workqueues */
5106 	mutex_lock(&wq_pool_mutex);
5107 	list_for_each_entry(wq, &workqueues, list)
5108 		wq_update_unbound_numa(wq, cpu, false);
5109 	mutex_unlock(&wq_pool_mutex);
5110 
5111 	return 0;
5112 }
5113 
5114 struct work_for_cpu {
5115 	struct work_struct work;
5116 	long (*fn)(void *);
5117 	void *arg;
5118 	long ret;
5119 };
5120 
work_for_cpu_fn(struct work_struct * work)5121 static void work_for_cpu_fn(struct work_struct *work)
5122 {
5123 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5124 
5125 	wfc->ret = wfc->fn(wfc->arg);
5126 }
5127 
5128 /**
5129  * work_on_cpu - run a function in thread context on a particular cpu
5130  * @cpu: the cpu to run on
5131  * @fn: the function to run
5132  * @arg: the function arg
5133  *
5134  * It is up to the caller to ensure that the cpu doesn't go offline.
5135  * The caller must not hold any locks which would prevent @fn from completing.
5136  *
5137  * Return: The value @fn returns.
5138  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5139 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5140 {
5141 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5142 
5143 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5144 	schedule_work_on(cpu, &wfc.work);
5145 	flush_work(&wfc.work);
5146 	destroy_work_on_stack(&wfc.work);
5147 	return wfc.ret;
5148 }
5149 EXPORT_SYMBOL_GPL(work_on_cpu);
5150 
5151 /**
5152  * work_on_cpu_safe - run a function in thread context on a particular cpu
5153  * @cpu: the cpu to run on
5154  * @fn:  the function to run
5155  * @arg: the function argument
5156  *
5157  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5158  * any locks which would prevent @fn from completing.
5159  *
5160  * Return: The value @fn returns.
5161  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5162 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5163 {
5164 	long ret = -ENODEV;
5165 
5166 	get_online_cpus();
5167 	if (cpu_online(cpu))
5168 		ret = work_on_cpu(cpu, fn, arg);
5169 	put_online_cpus();
5170 	return ret;
5171 }
5172 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5173 #endif /* CONFIG_SMP */
5174 
5175 #ifdef CONFIG_FREEZER
5176 
5177 /**
5178  * freeze_workqueues_begin - begin freezing workqueues
5179  *
5180  * Start freezing workqueues.  After this function returns, all freezable
5181  * workqueues will queue new works to their delayed_works list instead of
5182  * pool->worklist.
5183  *
5184  * CONTEXT:
5185  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5186  */
freeze_workqueues_begin(void)5187 void freeze_workqueues_begin(void)
5188 {
5189 	struct workqueue_struct *wq;
5190 	struct pool_workqueue *pwq;
5191 
5192 	mutex_lock(&wq_pool_mutex);
5193 
5194 	WARN_ON_ONCE(workqueue_freezing);
5195 	workqueue_freezing = true;
5196 
5197 	list_for_each_entry(wq, &workqueues, list) {
5198 		mutex_lock(&wq->mutex);
5199 		for_each_pwq(pwq, wq)
5200 			pwq_adjust_max_active(pwq);
5201 		mutex_unlock(&wq->mutex);
5202 	}
5203 
5204 	mutex_unlock(&wq_pool_mutex);
5205 }
5206 
5207 /**
5208  * freeze_workqueues_busy - are freezable workqueues still busy?
5209  *
5210  * Check whether freezing is complete.  This function must be called
5211  * between freeze_workqueues_begin() and thaw_workqueues().
5212  *
5213  * CONTEXT:
5214  * Grabs and releases wq_pool_mutex.
5215  *
5216  * Return:
5217  * %true if some freezable workqueues are still busy.  %false if freezing
5218  * is complete.
5219  */
freeze_workqueues_busy(void)5220 bool freeze_workqueues_busy(void)
5221 {
5222 	bool busy = false;
5223 	struct workqueue_struct *wq;
5224 	struct pool_workqueue *pwq;
5225 
5226 	mutex_lock(&wq_pool_mutex);
5227 
5228 	WARN_ON_ONCE(!workqueue_freezing);
5229 
5230 	list_for_each_entry(wq, &workqueues, list) {
5231 		if (!(wq->flags & WQ_FREEZABLE))
5232 			continue;
5233 		/*
5234 		 * nr_active is monotonically decreasing.  It's safe
5235 		 * to peek without lock.
5236 		 */
5237 		rcu_read_lock();
5238 		for_each_pwq(pwq, wq) {
5239 			WARN_ON_ONCE(pwq->nr_active < 0);
5240 			if (pwq->nr_active) {
5241 				busy = true;
5242 				rcu_read_unlock();
5243 				goto out_unlock;
5244 			}
5245 		}
5246 		rcu_read_unlock();
5247 	}
5248 out_unlock:
5249 	mutex_unlock(&wq_pool_mutex);
5250 	return busy;
5251 }
5252 
5253 /**
5254  * thaw_workqueues - thaw workqueues
5255  *
5256  * Thaw workqueues.  Normal queueing is restored and all collected
5257  * frozen works are transferred to their respective pool worklists.
5258  *
5259  * CONTEXT:
5260  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5261  */
thaw_workqueues(void)5262 void thaw_workqueues(void)
5263 {
5264 	struct workqueue_struct *wq;
5265 	struct pool_workqueue *pwq;
5266 
5267 	mutex_lock(&wq_pool_mutex);
5268 
5269 	if (!workqueue_freezing)
5270 		goto out_unlock;
5271 
5272 	workqueue_freezing = false;
5273 
5274 	/* restore max_active and repopulate worklist */
5275 	list_for_each_entry(wq, &workqueues, list) {
5276 		mutex_lock(&wq->mutex);
5277 		for_each_pwq(pwq, wq)
5278 			pwq_adjust_max_active(pwq);
5279 		mutex_unlock(&wq->mutex);
5280 	}
5281 
5282 out_unlock:
5283 	mutex_unlock(&wq_pool_mutex);
5284 }
5285 #endif /* CONFIG_FREEZER */
5286 
workqueue_apply_unbound_cpumask(void)5287 static int workqueue_apply_unbound_cpumask(void)
5288 {
5289 	LIST_HEAD(ctxs);
5290 	int ret = 0;
5291 	struct workqueue_struct *wq;
5292 	struct apply_wqattrs_ctx *ctx, *n;
5293 
5294 	lockdep_assert_held(&wq_pool_mutex);
5295 
5296 	list_for_each_entry(wq, &workqueues, list) {
5297 		if (!(wq->flags & WQ_UNBOUND))
5298 			continue;
5299 		/* creating multiple pwqs breaks ordering guarantee */
5300 		if (wq->flags & __WQ_ORDERED)
5301 			continue;
5302 
5303 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5304 		if (!ctx) {
5305 			ret = -ENOMEM;
5306 			break;
5307 		}
5308 
5309 		list_add_tail(&ctx->list, &ctxs);
5310 	}
5311 
5312 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5313 		if (!ret)
5314 			apply_wqattrs_commit(ctx);
5315 		apply_wqattrs_cleanup(ctx);
5316 	}
5317 
5318 	return ret;
5319 }
5320 
5321 /**
5322  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5323  *  @cpumask: the cpumask to set
5324  *
5325  *  The low-level workqueues cpumask is a global cpumask that limits
5326  *  the affinity of all unbound workqueues.  This function check the @cpumask
5327  *  and apply it to all unbound workqueues and updates all pwqs of them.
5328  *
5329  *  Retun:	0	- Success
5330  *  		-EINVAL	- Invalid @cpumask
5331  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5332  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5333 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5334 {
5335 	int ret = -EINVAL;
5336 	cpumask_var_t saved_cpumask;
5337 
5338 	/*
5339 	 * Not excluding isolated cpus on purpose.
5340 	 * If the user wishes to include them, we allow that.
5341 	 */
5342 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5343 	if (!cpumask_empty(cpumask)) {
5344 		apply_wqattrs_lock();
5345 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5346 			ret = 0;
5347 			goto out_unlock;
5348 		}
5349 
5350 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5351 			ret = -ENOMEM;
5352 			goto out_unlock;
5353 		}
5354 
5355 		/* save the old wq_unbound_cpumask. */
5356 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5357 
5358 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5359 		cpumask_copy(wq_unbound_cpumask, cpumask);
5360 		ret = workqueue_apply_unbound_cpumask();
5361 
5362 		/* restore the wq_unbound_cpumask when failed. */
5363 		if (ret < 0)
5364 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5365 
5366 		free_cpumask_var(saved_cpumask);
5367 out_unlock:
5368 		apply_wqattrs_unlock();
5369 	}
5370 
5371 	return ret;
5372 }
5373 
5374 #ifdef CONFIG_SYSFS
5375 /*
5376  * Workqueues with WQ_SYSFS flag set is visible to userland via
5377  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5378  * following attributes.
5379  *
5380  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5381  *  max_active	RW int	: maximum number of in-flight work items
5382  *
5383  * Unbound workqueues have the following extra attributes.
5384  *
5385  *  pool_ids	RO int	: the associated pool IDs for each node
5386  *  nice	RW int	: nice value of the workers
5387  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5388  *  numa	RW bool	: whether enable NUMA affinity
5389  */
5390 struct wq_device {
5391 	struct workqueue_struct		*wq;
5392 	struct device			dev;
5393 };
5394 
dev_to_wq(struct device * dev)5395 static struct workqueue_struct *dev_to_wq(struct device *dev)
5396 {
5397 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5398 
5399 	return wq_dev->wq;
5400 }
5401 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5402 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5403 			    char *buf)
5404 {
5405 	struct workqueue_struct *wq = dev_to_wq(dev);
5406 
5407 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5408 }
5409 static DEVICE_ATTR_RO(per_cpu);
5410 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5411 static ssize_t max_active_show(struct device *dev,
5412 			       struct device_attribute *attr, char *buf)
5413 {
5414 	struct workqueue_struct *wq = dev_to_wq(dev);
5415 
5416 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5417 }
5418 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5419 static ssize_t max_active_store(struct device *dev,
5420 				struct device_attribute *attr, const char *buf,
5421 				size_t count)
5422 {
5423 	struct workqueue_struct *wq = dev_to_wq(dev);
5424 	int val;
5425 
5426 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5427 		return -EINVAL;
5428 
5429 	workqueue_set_max_active(wq, val);
5430 	return count;
5431 }
5432 static DEVICE_ATTR_RW(max_active);
5433 
5434 static struct attribute *wq_sysfs_attrs[] = {
5435 	&dev_attr_per_cpu.attr,
5436 	&dev_attr_max_active.attr,
5437 	NULL,
5438 };
5439 ATTRIBUTE_GROUPS(wq_sysfs);
5440 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5441 static ssize_t wq_pool_ids_show(struct device *dev,
5442 				struct device_attribute *attr, char *buf)
5443 {
5444 	struct workqueue_struct *wq = dev_to_wq(dev);
5445 	const char *delim = "";
5446 	int node, written = 0;
5447 
5448 	get_online_cpus();
5449 	rcu_read_lock();
5450 	for_each_node(node) {
5451 		written += scnprintf(buf + written, PAGE_SIZE - written,
5452 				     "%s%d:%d", delim, node,
5453 				     unbound_pwq_by_node(wq, node)->pool->id);
5454 		delim = " ";
5455 	}
5456 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5457 	rcu_read_unlock();
5458 	put_online_cpus();
5459 
5460 	return written;
5461 }
5462 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5463 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5464 			    char *buf)
5465 {
5466 	struct workqueue_struct *wq = dev_to_wq(dev);
5467 	int written;
5468 
5469 	mutex_lock(&wq->mutex);
5470 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5471 	mutex_unlock(&wq->mutex);
5472 
5473 	return written;
5474 }
5475 
5476 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5477 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5478 {
5479 	struct workqueue_attrs *attrs;
5480 
5481 	lockdep_assert_held(&wq_pool_mutex);
5482 
5483 	attrs = alloc_workqueue_attrs();
5484 	if (!attrs)
5485 		return NULL;
5486 
5487 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5488 	return attrs;
5489 }
5490 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5491 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5492 			     const char *buf, size_t count)
5493 {
5494 	struct workqueue_struct *wq = dev_to_wq(dev);
5495 	struct workqueue_attrs *attrs;
5496 	int ret = -ENOMEM;
5497 
5498 	apply_wqattrs_lock();
5499 
5500 	attrs = wq_sysfs_prep_attrs(wq);
5501 	if (!attrs)
5502 		goto out_unlock;
5503 
5504 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5505 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5506 		ret = apply_workqueue_attrs_locked(wq, attrs);
5507 	else
5508 		ret = -EINVAL;
5509 
5510 out_unlock:
5511 	apply_wqattrs_unlock();
5512 	free_workqueue_attrs(attrs);
5513 	return ret ?: count;
5514 }
5515 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5516 static ssize_t wq_cpumask_show(struct device *dev,
5517 			       struct device_attribute *attr, char *buf)
5518 {
5519 	struct workqueue_struct *wq = dev_to_wq(dev);
5520 	int written;
5521 
5522 	mutex_lock(&wq->mutex);
5523 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5524 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5525 	mutex_unlock(&wq->mutex);
5526 	return written;
5527 }
5528 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5529 static ssize_t wq_cpumask_store(struct device *dev,
5530 				struct device_attribute *attr,
5531 				const char *buf, size_t count)
5532 {
5533 	struct workqueue_struct *wq = dev_to_wq(dev);
5534 	struct workqueue_attrs *attrs;
5535 	int ret = -ENOMEM;
5536 
5537 	apply_wqattrs_lock();
5538 
5539 	attrs = wq_sysfs_prep_attrs(wq);
5540 	if (!attrs)
5541 		goto out_unlock;
5542 
5543 	ret = cpumask_parse(buf, attrs->cpumask);
5544 	if (!ret)
5545 		ret = apply_workqueue_attrs_locked(wq, attrs);
5546 
5547 out_unlock:
5548 	apply_wqattrs_unlock();
5549 	free_workqueue_attrs(attrs);
5550 	return ret ?: count;
5551 }
5552 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5553 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5554 			    char *buf)
5555 {
5556 	struct workqueue_struct *wq = dev_to_wq(dev);
5557 	int written;
5558 
5559 	mutex_lock(&wq->mutex);
5560 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5561 			    !wq->unbound_attrs->no_numa);
5562 	mutex_unlock(&wq->mutex);
5563 
5564 	return written;
5565 }
5566 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5567 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5568 			     const char *buf, size_t count)
5569 {
5570 	struct workqueue_struct *wq = dev_to_wq(dev);
5571 	struct workqueue_attrs *attrs;
5572 	int v, ret = -ENOMEM;
5573 
5574 	apply_wqattrs_lock();
5575 
5576 	attrs = wq_sysfs_prep_attrs(wq);
5577 	if (!attrs)
5578 		goto out_unlock;
5579 
5580 	ret = -EINVAL;
5581 	if (sscanf(buf, "%d", &v) == 1) {
5582 		attrs->no_numa = !v;
5583 		ret = apply_workqueue_attrs_locked(wq, attrs);
5584 	}
5585 
5586 out_unlock:
5587 	apply_wqattrs_unlock();
5588 	free_workqueue_attrs(attrs);
5589 	return ret ?: count;
5590 }
5591 
5592 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5593 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5594 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5595 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5596 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5597 	__ATTR_NULL,
5598 };
5599 
5600 static struct bus_type wq_subsys = {
5601 	.name				= "workqueue",
5602 	.dev_groups			= wq_sysfs_groups,
5603 };
5604 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5605 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5606 		struct device_attribute *attr, char *buf)
5607 {
5608 	int written;
5609 
5610 	mutex_lock(&wq_pool_mutex);
5611 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5612 			    cpumask_pr_args(wq_unbound_cpumask));
5613 	mutex_unlock(&wq_pool_mutex);
5614 
5615 	return written;
5616 }
5617 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5618 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5619 		struct device_attribute *attr, const char *buf, size_t count)
5620 {
5621 	cpumask_var_t cpumask;
5622 	int ret;
5623 
5624 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5625 		return -ENOMEM;
5626 
5627 	ret = cpumask_parse(buf, cpumask);
5628 	if (!ret)
5629 		ret = workqueue_set_unbound_cpumask(cpumask);
5630 
5631 	free_cpumask_var(cpumask);
5632 	return ret ? ret : count;
5633 }
5634 
5635 static struct device_attribute wq_sysfs_cpumask_attr =
5636 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5637 	       wq_unbound_cpumask_store);
5638 
wq_sysfs_init(void)5639 static int __init wq_sysfs_init(void)
5640 {
5641 	int err;
5642 
5643 	err = subsys_virtual_register(&wq_subsys, NULL);
5644 	if (err)
5645 		return err;
5646 
5647 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5648 }
5649 core_initcall(wq_sysfs_init);
5650 
wq_device_release(struct device * dev)5651 static void wq_device_release(struct device *dev)
5652 {
5653 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5654 
5655 	kfree(wq_dev);
5656 }
5657 
5658 /**
5659  * workqueue_sysfs_register - make a workqueue visible in sysfs
5660  * @wq: the workqueue to register
5661  *
5662  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5663  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5664  * which is the preferred method.
5665  *
5666  * Workqueue user should use this function directly iff it wants to apply
5667  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5668  * apply_workqueue_attrs() may race against userland updating the
5669  * attributes.
5670  *
5671  * Return: 0 on success, -errno on failure.
5672  */
workqueue_sysfs_register(struct workqueue_struct * wq)5673 int workqueue_sysfs_register(struct workqueue_struct *wq)
5674 {
5675 	struct wq_device *wq_dev;
5676 	int ret;
5677 
5678 	/*
5679 	 * Adjusting max_active or creating new pwqs by applying
5680 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5681 	 * workqueues.
5682 	 */
5683 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5684 		return -EINVAL;
5685 
5686 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5687 	if (!wq_dev)
5688 		return -ENOMEM;
5689 
5690 	wq_dev->wq = wq;
5691 	wq_dev->dev.bus = &wq_subsys;
5692 	wq_dev->dev.release = wq_device_release;
5693 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5694 
5695 	/*
5696 	 * unbound_attrs are created separately.  Suppress uevent until
5697 	 * everything is ready.
5698 	 */
5699 	dev_set_uevent_suppress(&wq_dev->dev, true);
5700 
5701 	ret = device_register(&wq_dev->dev);
5702 	if (ret) {
5703 		put_device(&wq_dev->dev);
5704 		wq->wq_dev = NULL;
5705 		return ret;
5706 	}
5707 
5708 	if (wq->flags & WQ_UNBOUND) {
5709 		struct device_attribute *attr;
5710 
5711 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5712 			ret = device_create_file(&wq_dev->dev, attr);
5713 			if (ret) {
5714 				device_unregister(&wq_dev->dev);
5715 				wq->wq_dev = NULL;
5716 				return ret;
5717 			}
5718 		}
5719 	}
5720 
5721 	dev_set_uevent_suppress(&wq_dev->dev, false);
5722 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5723 	return 0;
5724 }
5725 
5726 /**
5727  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5728  * @wq: the workqueue to unregister
5729  *
5730  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5731  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5732 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5733 {
5734 	struct wq_device *wq_dev = wq->wq_dev;
5735 
5736 	if (!wq->wq_dev)
5737 		return;
5738 
5739 	wq->wq_dev = NULL;
5740 	device_unregister(&wq_dev->dev);
5741 }
5742 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5743 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5744 #endif	/* CONFIG_SYSFS */
5745 
5746 /*
5747  * Workqueue watchdog.
5748  *
5749  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5750  * flush dependency, a concurrency managed work item which stays RUNNING
5751  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5752  * usual warning mechanisms don't trigger and internal workqueue state is
5753  * largely opaque.
5754  *
5755  * Workqueue watchdog monitors all worker pools periodically and dumps
5756  * state if some pools failed to make forward progress for a while where
5757  * forward progress is defined as the first item on ->worklist changing.
5758  *
5759  * This mechanism is controlled through the kernel parameter
5760  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5761  * corresponding sysfs parameter file.
5762  */
5763 #ifdef CONFIG_WQ_WATCHDOG
5764 
5765 static unsigned long wq_watchdog_thresh = 30;
5766 static struct timer_list wq_watchdog_timer;
5767 
5768 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5769 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5770 
wq_watchdog_reset_touched(void)5771 static void wq_watchdog_reset_touched(void)
5772 {
5773 	int cpu;
5774 
5775 	wq_watchdog_touched = jiffies;
5776 	for_each_possible_cpu(cpu)
5777 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5778 }
5779 
wq_watchdog_timer_fn(struct timer_list * unused)5780 static void wq_watchdog_timer_fn(struct timer_list *unused)
5781 {
5782 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5783 	bool lockup_detected = false;
5784 	unsigned long now = jiffies;
5785 	struct worker_pool *pool;
5786 	int pi;
5787 
5788 	if (!thresh)
5789 		return;
5790 
5791 	rcu_read_lock();
5792 
5793 	for_each_pool(pool, pi) {
5794 		unsigned long pool_ts, touched, ts;
5795 
5796 		if (list_empty(&pool->worklist))
5797 			continue;
5798 
5799 		/*
5800 		 * If a virtual machine is stopped by the host it can look to
5801 		 * the watchdog like a stall.
5802 		 */
5803 		kvm_check_and_clear_guest_paused();
5804 
5805 		/* get the latest of pool and touched timestamps */
5806 		pool_ts = READ_ONCE(pool->watchdog_ts);
5807 		touched = READ_ONCE(wq_watchdog_touched);
5808 
5809 		if (time_after(pool_ts, touched))
5810 			ts = pool_ts;
5811 		else
5812 			ts = touched;
5813 
5814 		if (pool->cpu >= 0) {
5815 			unsigned long cpu_touched =
5816 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5817 						  pool->cpu));
5818 			if (time_after(cpu_touched, ts))
5819 				ts = cpu_touched;
5820 		}
5821 
5822 		/* did we stall? */
5823 		if (time_after(now, ts + thresh)) {
5824 			lockup_detected = true;
5825 			pr_emerg("BUG: workqueue lockup - pool");
5826 			pr_cont_pool_info(pool);
5827 			pr_cont(" stuck for %us!\n",
5828 				jiffies_to_msecs(now - pool_ts) / 1000);
5829 		}
5830 	}
5831 
5832 	rcu_read_unlock();
5833 
5834 	if (lockup_detected)
5835 		show_workqueue_state();
5836 
5837 	wq_watchdog_reset_touched();
5838 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5839 }
5840 
wq_watchdog_touch(int cpu)5841 notrace void wq_watchdog_touch(int cpu)
5842 {
5843 	if (cpu >= 0)
5844 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5845 	else
5846 		wq_watchdog_touched = jiffies;
5847 }
5848 
wq_watchdog_set_thresh(unsigned long thresh)5849 static void wq_watchdog_set_thresh(unsigned long thresh)
5850 {
5851 	wq_watchdog_thresh = 0;
5852 	del_timer_sync(&wq_watchdog_timer);
5853 
5854 	if (thresh) {
5855 		wq_watchdog_thresh = thresh;
5856 		wq_watchdog_reset_touched();
5857 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5858 	}
5859 }
5860 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5861 static int wq_watchdog_param_set_thresh(const char *val,
5862 					const struct kernel_param *kp)
5863 {
5864 	unsigned long thresh;
5865 	int ret;
5866 
5867 	ret = kstrtoul(val, 0, &thresh);
5868 	if (ret)
5869 		return ret;
5870 
5871 	if (system_wq)
5872 		wq_watchdog_set_thresh(thresh);
5873 	else
5874 		wq_watchdog_thresh = thresh;
5875 
5876 	return 0;
5877 }
5878 
5879 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5880 	.set	= wq_watchdog_param_set_thresh,
5881 	.get	= param_get_ulong,
5882 };
5883 
5884 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5885 		0644);
5886 
wq_watchdog_init(void)5887 static void wq_watchdog_init(void)
5888 {
5889 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5890 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5891 }
5892 
5893 #else	/* CONFIG_WQ_WATCHDOG */
5894 
wq_watchdog_init(void)5895 static inline void wq_watchdog_init(void) { }
5896 
5897 #endif	/* CONFIG_WQ_WATCHDOG */
5898 
wq_numa_init(void)5899 static void __init wq_numa_init(void)
5900 {
5901 	cpumask_var_t *tbl;
5902 	int node, cpu;
5903 
5904 	if (num_possible_nodes() <= 1)
5905 		return;
5906 
5907 	if (wq_disable_numa) {
5908 		pr_info("workqueue: NUMA affinity support disabled\n");
5909 		return;
5910 	}
5911 
5912 	for_each_possible_cpu(cpu) {
5913 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5914 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5915 			return;
5916 		}
5917 	}
5918 
5919 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5920 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5921 
5922 	/*
5923 	 * We want masks of possible CPUs of each node which isn't readily
5924 	 * available.  Build one from cpu_to_node() which should have been
5925 	 * fully initialized by now.
5926 	 */
5927 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5928 	BUG_ON(!tbl);
5929 
5930 	for_each_node(node)
5931 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5932 				node_online(node) ? node : NUMA_NO_NODE));
5933 
5934 	for_each_possible_cpu(cpu) {
5935 		node = cpu_to_node(cpu);
5936 		cpumask_set_cpu(cpu, tbl[node]);
5937 	}
5938 
5939 	wq_numa_possible_cpumask = tbl;
5940 	wq_numa_enabled = true;
5941 }
5942 
5943 /**
5944  * workqueue_init_early - early init for workqueue subsystem
5945  *
5946  * This is the first half of two-staged workqueue subsystem initialization
5947  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5948  * idr are up.  It sets up all the data structures and system workqueues
5949  * and allows early boot code to create workqueues and queue/cancel work
5950  * items.  Actual work item execution starts only after kthreads can be
5951  * created and scheduled right before early initcalls.
5952  */
workqueue_init_early(void)5953 void __init workqueue_init_early(void)
5954 {
5955 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5956 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5957 	int i, cpu;
5958 
5959 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5960 
5961 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5962 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5963 
5964 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5965 
5966 	/* initialize CPU pools */
5967 	for_each_possible_cpu(cpu) {
5968 		struct worker_pool *pool;
5969 
5970 		i = 0;
5971 		for_each_cpu_worker_pool(pool, cpu) {
5972 			BUG_ON(init_worker_pool(pool));
5973 			pool->cpu = cpu;
5974 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5975 			pool->attrs->nice = std_nice[i++];
5976 			pool->node = cpu_to_node(cpu);
5977 
5978 			/* alloc pool ID */
5979 			mutex_lock(&wq_pool_mutex);
5980 			BUG_ON(worker_pool_assign_id(pool));
5981 			mutex_unlock(&wq_pool_mutex);
5982 		}
5983 	}
5984 
5985 	/* create default unbound and ordered wq attrs */
5986 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5987 		struct workqueue_attrs *attrs;
5988 
5989 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5990 		attrs->nice = std_nice[i];
5991 		unbound_std_wq_attrs[i] = attrs;
5992 
5993 		/*
5994 		 * An ordered wq should have only one pwq as ordering is
5995 		 * guaranteed by max_active which is enforced by pwqs.
5996 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5997 		 */
5998 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5999 		attrs->nice = std_nice[i];
6000 		attrs->no_numa = true;
6001 		ordered_wq_attrs[i] = attrs;
6002 	}
6003 
6004 	system_wq = alloc_workqueue("events", 0, 0);
6005 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6006 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6007 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6008 					    WQ_UNBOUND_MAX_ACTIVE);
6009 	system_freezable_wq = alloc_workqueue("events_freezable",
6010 					      WQ_FREEZABLE, 0);
6011 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6012 					      WQ_POWER_EFFICIENT, 0);
6013 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6014 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6015 					      0);
6016 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6017 	       !system_unbound_wq || !system_freezable_wq ||
6018 	       !system_power_efficient_wq ||
6019 	       !system_freezable_power_efficient_wq);
6020 }
6021 
6022 /**
6023  * workqueue_init - bring workqueue subsystem fully online
6024  *
6025  * This is the latter half of two-staged workqueue subsystem initialization
6026  * and invoked as soon as kthreads can be created and scheduled.
6027  * Workqueues have been created and work items queued on them, but there
6028  * are no kworkers executing the work items yet.  Populate the worker pools
6029  * with the initial workers and enable future kworker creations.
6030  */
workqueue_init(void)6031 void __init workqueue_init(void)
6032 {
6033 	struct workqueue_struct *wq;
6034 	struct worker_pool *pool;
6035 	int cpu, bkt;
6036 
6037 	/*
6038 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6039 	 * CPU to node mapping may not be available that early on some
6040 	 * archs such as power and arm64.  As per-cpu pools created
6041 	 * previously could be missing node hint and unbound pools NUMA
6042 	 * affinity, fix them up.
6043 	 *
6044 	 * Also, while iterating workqueues, create rescuers if requested.
6045 	 */
6046 	wq_numa_init();
6047 
6048 	mutex_lock(&wq_pool_mutex);
6049 
6050 	for_each_possible_cpu(cpu) {
6051 		for_each_cpu_worker_pool(pool, cpu) {
6052 			pool->node = cpu_to_node(cpu);
6053 		}
6054 	}
6055 
6056 	list_for_each_entry(wq, &workqueues, list) {
6057 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6058 		WARN(init_rescuer(wq),
6059 		     "workqueue: failed to create early rescuer for %s",
6060 		     wq->name);
6061 	}
6062 
6063 	mutex_unlock(&wq_pool_mutex);
6064 
6065 	/* create the initial workers */
6066 	for_each_online_cpu(cpu) {
6067 		for_each_cpu_worker_pool(pool, cpu) {
6068 			pool->flags &= ~POOL_DISASSOCIATED;
6069 			BUG_ON(!create_worker(pool));
6070 		}
6071 	}
6072 
6073 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6074 		BUG_ON(!create_worker(pool));
6075 
6076 	wq_online = true;
6077 	wq_watchdog_init();
6078 }
6079