• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return MHZ_TO_KHZ(2484);
85 		else if (chan < 14)
86 			return MHZ_TO_KHZ(2407 + chan * 5);
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return MHZ_TO_KHZ(4000 + chan * 5);
91 		else
92 			return MHZ_TO_KHZ(5000 + chan * 5);
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D6.1 27.3.23.2 */
96 		if (chan == 2)
97 			return MHZ_TO_KHZ(5935);
98 		if (chan <= 233)
99 			return MHZ_TO_KHZ(5950 + chan * 5);
100 		break;
101 	case NL80211_BAND_60GHZ:
102 		if (chan < 7)
103 			return MHZ_TO_KHZ(56160 + chan * 2160);
104 		break;
105 	case NL80211_BAND_S1GHZ:
106 		return 902000 + chan * 500;
107 	default:
108 		;
109 	}
110 	return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113 
114 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 		return NL80211_CHAN_WIDTH_20_NOHT;
119 
120 	/*S1G defines a single allowed channel width per channel.
121 	 * Extract that width here.
122 	 */
123 	if (chan->flags & IEEE80211_CHAN_1MHZ)
124 		return NL80211_CHAN_WIDTH_1;
125 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 		return NL80211_CHAN_WIDTH_2;
127 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 		return NL80211_CHAN_WIDTH_4;
129 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 		return NL80211_CHAN_WIDTH_8;
131 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 		return NL80211_CHAN_WIDTH_16;
133 
134 	pr_err("unknown channel width for channel at %dKHz?\n",
135 	       ieee80211_channel_to_khz(chan));
136 
137 	return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140 
ieee80211_freq_khz_to_channel(u32 freq)141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143 	/* TODO: just handle MHz for now */
144 	freq = KHZ_TO_MHZ(freq);
145 
146 	/* see 802.11 17.3.8.3.2 and Annex J */
147 	if (freq == 2484)
148 		return 14;
149 	else if (freq < 2484)
150 		return (freq - 2407) / 5;
151 	else if (freq >= 4910 && freq <= 4980)
152 		return (freq - 4000) / 5;
153 	else if (freq < 5925)
154 		return (freq - 5000) / 5;
155 	else if (freq == 5935)
156 		return 2;
157 	else if (freq <= 45000) /* DMG band lower limit */
158 		/* see 802.11ax D6.1 27.3.22.2 */
159 		return (freq - 5950) / 5;
160 	else if (freq >= 58320 && freq <= 70200)
161 		return (freq - 56160) / 2160;
162 	else
163 		return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 						    u32 freq)
169 {
170 	enum nl80211_band band;
171 	struct ieee80211_supported_band *sband;
172 	int i;
173 
174 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 		sband = wiphy->bands[band];
176 
177 		if (!sband)
178 			continue;
179 
180 		for (i = 0; i < sband->n_channels; i++) {
181 			struct ieee80211_channel *chan = &sband->channels[i];
182 
183 			if (ieee80211_channel_to_khz(chan) == freq)
184 				return chan;
185 		}
186 	}
187 
188 	return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194 	int i, want;
195 
196 	switch (sband->band) {
197 	case NL80211_BAND_5GHZ:
198 	case NL80211_BAND_6GHZ:
199 		want = 3;
200 		for (i = 0; i < sband->n_bitrates; i++) {
201 			if (sband->bitrates[i].bitrate == 60 ||
202 			    sband->bitrates[i].bitrate == 120 ||
203 			    sband->bitrates[i].bitrate == 240) {
204 				sband->bitrates[i].flags |=
205 					IEEE80211_RATE_MANDATORY_A;
206 				want--;
207 			}
208 		}
209 		WARN_ON(want);
210 		break;
211 	case NL80211_BAND_2GHZ:
212 		want = 7;
213 		for (i = 0; i < sband->n_bitrates; i++) {
214 			switch (sband->bitrates[i].bitrate) {
215 			case 10:
216 			case 20:
217 			case 55:
218 			case 110:
219 				sband->bitrates[i].flags |=
220 					IEEE80211_RATE_MANDATORY_B |
221 					IEEE80211_RATE_MANDATORY_G;
222 				want--;
223 				break;
224 			case 60:
225 			case 120:
226 			case 240:
227 				sband->bitrates[i].flags |=
228 					IEEE80211_RATE_MANDATORY_G;
229 				want--;
230 				fallthrough;
231 			default:
232 				sband->bitrates[i].flags |=
233 					IEEE80211_RATE_ERP_G;
234 				break;
235 			}
236 		}
237 		WARN_ON(want != 0 && want != 3);
238 		break;
239 	case NL80211_BAND_60GHZ:
240 		/* check for mandatory HT MCS 1..4 */
241 		WARN_ON(!sband->ht_cap.ht_supported);
242 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 		break;
244 	case NL80211_BAND_S1GHZ:
245 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 		 * mandatory is ok.
247 		 */
248 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 		break;
250 	case NUM_NL80211_BANDS:
251 	default:
252 		WARN_ON(1);
253 		break;
254 	}
255 }
256 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259 	enum nl80211_band band;
260 
261 	for (band = 0; band < NUM_NL80211_BANDS; band++)
262 		if (wiphy->bands[band])
263 			set_mandatory_flags_band(wiphy->bands[band]);
264 }
265 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268 	int i;
269 	for (i = 0; i < wiphy->n_cipher_suites; i++)
270 		if (cipher == wiphy->cipher_suites[i])
271 			return true;
272 	return false;
273 }
274 
275 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278 	struct wiphy *wiphy = &rdev->wiphy;
279 	int i;
280 
281 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
282 		switch (wiphy->cipher_suites[i]) {
283 		case WLAN_CIPHER_SUITE_AES_CMAC:
284 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287 			return true;
288 		}
289 	}
290 
291 	return false;
292 }
293 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295 			    int key_idx, bool pairwise)
296 {
297 	int max_key_idx;
298 
299 	if (pairwise)
300 		max_key_idx = 3;
301 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
302 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303 		 wiphy_ext_feature_isset(&rdev->wiphy,
304 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305 		max_key_idx = 7;
306 	else if (cfg80211_igtk_cipher_supported(rdev))
307 		max_key_idx = 5;
308 	else
309 		max_key_idx = 3;
310 
311 	if (key_idx < 0 || key_idx > max_key_idx)
312 		return false;
313 
314 	return true;
315 }
316 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318 				   struct key_params *params, int key_idx,
319 				   bool pairwise, const u8 *mac_addr)
320 {
321 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322 		return -EINVAL;
323 
324 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325 		return -EINVAL;
326 
327 	if (pairwise && !mac_addr)
328 		return -EINVAL;
329 
330 	switch (params->cipher) {
331 	case WLAN_CIPHER_SUITE_TKIP:
332 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 		if ((pairwise && key_idx) ||
334 		    params->mode != NL80211_KEY_RX_TX)
335 			return -EINVAL;
336 		break;
337 	case WLAN_CIPHER_SUITE_CCMP:
338 	case WLAN_CIPHER_SUITE_CCMP_256:
339 	case WLAN_CIPHER_SUITE_GCMP:
340 	case WLAN_CIPHER_SUITE_GCMP_256:
341 		/* IEEE802.11-2016 allows only 0 and - when supporting
342 		 * Extended Key ID - 1 as index for pairwise keys.
343 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 		 * the driver supports Extended Key ID.
345 		 * @NL80211_KEY_SET_TX can't be set when installing and
346 		 * validating a key.
347 		 */
348 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349 		    params->mode == NL80211_KEY_SET_TX)
350 			return -EINVAL;
351 		if (wiphy_ext_feature_isset(&rdev->wiphy,
352 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353 			if (pairwise && (key_idx < 0 || key_idx > 1))
354 				return -EINVAL;
355 		} else if (pairwise && key_idx) {
356 			return -EINVAL;
357 		}
358 		break;
359 	case WLAN_CIPHER_SUITE_AES_CMAC:
360 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363 		/* Disallow BIP (group-only) cipher as pairwise cipher */
364 		if (pairwise)
365 			return -EINVAL;
366 		if (key_idx < 4)
367 			return -EINVAL;
368 		break;
369 	case WLAN_CIPHER_SUITE_WEP40:
370 	case WLAN_CIPHER_SUITE_WEP104:
371 		if (key_idx > 3)
372 			return -EINVAL;
373 	default:
374 		break;
375 	}
376 
377 	switch (params->cipher) {
378 	case WLAN_CIPHER_SUITE_WEP40:
379 		if (params->key_len != WLAN_KEY_LEN_WEP40)
380 			return -EINVAL;
381 		break;
382 	case WLAN_CIPHER_SUITE_TKIP:
383 		if (params->key_len != WLAN_KEY_LEN_TKIP)
384 			return -EINVAL;
385 		break;
386 	case WLAN_CIPHER_SUITE_CCMP:
387 		if (params->key_len != WLAN_KEY_LEN_CCMP)
388 			return -EINVAL;
389 		break;
390 	case WLAN_CIPHER_SUITE_CCMP_256:
391 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
392 			return -EINVAL;
393 		break;
394 	case WLAN_CIPHER_SUITE_GCMP:
395 		if (params->key_len != WLAN_KEY_LEN_GCMP)
396 			return -EINVAL;
397 		break;
398 	case WLAN_CIPHER_SUITE_GCMP_256:
399 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
400 			return -EINVAL;
401 		break;
402 	case WLAN_CIPHER_SUITE_WEP104:
403 		if (params->key_len != WLAN_KEY_LEN_WEP104)
404 			return -EINVAL;
405 		break;
406 	case WLAN_CIPHER_SUITE_AES_CMAC:
407 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
408 			return -EINVAL;
409 		break;
410 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
412 			return -EINVAL;
413 		break;
414 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
415 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
416 			return -EINVAL;
417 		break;
418 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
419 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
420 			return -EINVAL;
421 		break;
422 	default:
423 		/*
424 		 * We don't know anything about this algorithm,
425 		 * allow using it -- but the driver must check
426 		 * all parameters! We still check below whether
427 		 * or not the driver supports this algorithm,
428 		 * of course.
429 		 */
430 		break;
431 	}
432 
433 	if (params->seq) {
434 		switch (params->cipher) {
435 		case WLAN_CIPHER_SUITE_WEP40:
436 		case WLAN_CIPHER_SUITE_WEP104:
437 			/* These ciphers do not use key sequence */
438 			return -EINVAL;
439 		case WLAN_CIPHER_SUITE_TKIP:
440 		case WLAN_CIPHER_SUITE_CCMP:
441 		case WLAN_CIPHER_SUITE_CCMP_256:
442 		case WLAN_CIPHER_SUITE_GCMP:
443 		case WLAN_CIPHER_SUITE_GCMP_256:
444 		case WLAN_CIPHER_SUITE_AES_CMAC:
445 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
446 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448 			if (params->seq_len != 6)
449 				return -EINVAL;
450 			break;
451 		}
452 	}
453 
454 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
455 		return -EINVAL;
456 
457 	return 0;
458 }
459 
ieee80211_hdrlen(__le16 fc)460 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
461 {
462 	unsigned int hdrlen = 24;
463 
464 	if (ieee80211_is_ext(fc)) {
465 		hdrlen = 4;
466 		goto out;
467 	}
468 
469 	if (ieee80211_is_data(fc)) {
470 		if (ieee80211_has_a4(fc))
471 			hdrlen = 30;
472 		if (ieee80211_is_data_qos(fc)) {
473 			hdrlen += IEEE80211_QOS_CTL_LEN;
474 			if (ieee80211_has_order(fc))
475 				hdrlen += IEEE80211_HT_CTL_LEN;
476 		}
477 		goto out;
478 	}
479 
480 	if (ieee80211_is_mgmt(fc)) {
481 		if (ieee80211_has_order(fc))
482 			hdrlen += IEEE80211_HT_CTL_LEN;
483 		goto out;
484 	}
485 
486 	if (ieee80211_is_ctl(fc)) {
487 		/*
488 		 * ACK and CTS are 10 bytes, all others 16. To see how
489 		 * to get this condition consider
490 		 *   subtype mask:   0b0000000011110000 (0x00F0)
491 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
492 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
493 		 *   bits that matter:         ^^^      (0x00E0)
494 		 *   value of those: 0b0000000011000000 (0x00C0)
495 		 */
496 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
497 			hdrlen = 10;
498 		else
499 			hdrlen = 16;
500 	}
501 out:
502 	return hdrlen;
503 }
504 EXPORT_SYMBOL(ieee80211_hdrlen);
505 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)506 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
507 {
508 	const struct ieee80211_hdr *hdr =
509 			(const struct ieee80211_hdr *)skb->data;
510 	unsigned int hdrlen;
511 
512 	if (unlikely(skb->len < 10))
513 		return 0;
514 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
515 	if (unlikely(hdrlen > skb->len))
516 		return 0;
517 	return hdrlen;
518 }
519 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
520 
__ieee80211_get_mesh_hdrlen(u8 flags)521 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
522 {
523 	int ae = flags & MESH_FLAGS_AE;
524 	/* 802.11-2012, 8.2.4.7.3 */
525 	switch (ae) {
526 	default:
527 	case 0:
528 		return 6;
529 	case MESH_FLAGS_AE_A4:
530 		return 12;
531 	case MESH_FLAGS_AE_A5_A6:
532 		return 18;
533 	}
534 }
535 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)536 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
537 {
538 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
539 }
540 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
541 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)542 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
543 				  const u8 *addr, enum nl80211_iftype iftype,
544 				  u8 data_offset, bool is_amsdu)
545 {
546 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
547 	struct {
548 		u8 hdr[ETH_ALEN] __aligned(2);
549 		__be16 proto;
550 	} payload;
551 	struct ethhdr tmp;
552 	u16 hdrlen;
553 	u8 mesh_flags = 0;
554 
555 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
556 		return -1;
557 
558 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
559 	if (skb->len < hdrlen + 8)
560 		return -1;
561 
562 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
563 	 * header
564 	 * IEEE 802.11 address fields:
565 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
566 	 *   0     0   DA    SA    BSSID n/a
567 	 *   0     1   DA    BSSID SA    n/a
568 	 *   1     0   BSSID SA    DA    n/a
569 	 *   1     1   RA    TA    DA    SA
570 	 */
571 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
572 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
573 
574 	if (iftype == NL80211_IFTYPE_MESH_POINT)
575 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
576 
577 	mesh_flags &= MESH_FLAGS_AE;
578 
579 	switch (hdr->frame_control &
580 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
581 	case cpu_to_le16(IEEE80211_FCTL_TODS):
582 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
583 			     iftype != NL80211_IFTYPE_AP_VLAN &&
584 			     iftype != NL80211_IFTYPE_P2P_GO))
585 			return -1;
586 		break;
587 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
588 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
589 			     iftype != NL80211_IFTYPE_MESH_POINT &&
590 			     iftype != NL80211_IFTYPE_AP_VLAN &&
591 			     iftype != NL80211_IFTYPE_STATION))
592 			return -1;
593 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
594 			if (mesh_flags == MESH_FLAGS_AE_A4)
595 				return -1;
596 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597 				skb_copy_bits(skb, hdrlen +
598 					offsetof(struct ieee80211s_hdr, eaddr1),
599 					tmp.h_dest, 2 * ETH_ALEN);
600 			}
601 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602 		}
603 		break;
604 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605 		if ((iftype != NL80211_IFTYPE_STATION &&
606 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
607 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
608 		    (is_multicast_ether_addr(tmp.h_dest) &&
609 		     ether_addr_equal(tmp.h_source, addr)))
610 			return -1;
611 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
612 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613 				return -1;
614 			if (mesh_flags == MESH_FLAGS_AE_A4)
615 				skb_copy_bits(skb, hdrlen +
616 					offsetof(struct ieee80211s_hdr, eaddr1),
617 					tmp.h_source, ETH_ALEN);
618 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619 		}
620 		break;
621 	case cpu_to_le16(0):
622 		if (iftype != NL80211_IFTYPE_ADHOC &&
623 		    iftype != NL80211_IFTYPE_STATION &&
624 		    iftype != NL80211_IFTYPE_OCB)
625 				return -1;
626 		break;
627 	}
628 
629 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630 	tmp.h_proto = payload.proto;
631 
632 	if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633 		    tmp.h_proto != htons(ETH_P_AARP) &&
634 		    tmp.h_proto != htons(ETH_P_IPX)) ||
635 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
637 		 * replace EtherType */
638 		hdrlen += ETH_ALEN + 2;
639 	else
640 		tmp.h_proto = htons(skb->len - hdrlen);
641 
642 	pskb_pull(skb, hdrlen);
643 
644 	if (!ehdr)
645 		ehdr = skb_push(skb, sizeof(struct ethhdr));
646 	memcpy(ehdr, &tmp, sizeof(tmp));
647 
648 	return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651 
652 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654 		 void *ptr, int len, int size)
655 {
656 	struct skb_shared_info *sh = skb_shinfo(skb);
657 	int page_offset;
658 
659 	get_page(page);
660 	page_offset = ptr - page_address(page);
661 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663 
664 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666 			    int offset, int len)
667 {
668 	struct skb_shared_info *sh = skb_shinfo(skb);
669 	const skb_frag_t *frag = &sh->frags[0];
670 	struct page *frag_page;
671 	void *frag_ptr;
672 	int frag_len, frag_size;
673 	int head_size = skb->len - skb->data_len;
674 	int cur_len;
675 
676 	frag_page = virt_to_head_page(skb->head);
677 	frag_ptr = skb->data;
678 	frag_size = head_size;
679 
680 	while (offset >= frag_size) {
681 		offset -= frag_size;
682 		frag_page = skb_frag_page(frag);
683 		frag_ptr = skb_frag_address(frag);
684 		frag_size = skb_frag_size(frag);
685 		frag++;
686 	}
687 
688 	frag_ptr += offset;
689 	frag_len = frag_size - offset;
690 
691 	cur_len = min(len, frag_len);
692 
693 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694 	len -= cur_len;
695 
696 	while (len > 0) {
697 		frag_len = skb_frag_size(frag);
698 		cur_len = min(len, frag_len);
699 		__frame_add_frag(frame, skb_frag_page(frag),
700 				 skb_frag_address(frag), cur_len, frag_len);
701 		len -= cur_len;
702 		frag++;
703 	}
704 }
705 
706 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708 		       int offset, int len, bool reuse_frag)
709 {
710 	struct sk_buff *frame;
711 	int cur_len = len;
712 
713 	if (skb->len - offset < len)
714 		return NULL;
715 
716 	/*
717 	 * When reusing framents, copy some data to the head to simplify
718 	 * ethernet header handling and speed up protocol header processing
719 	 * in the stack later.
720 	 */
721 	if (reuse_frag)
722 		cur_len = min_t(int, len, 32);
723 
724 	/*
725 	 * Allocate and reserve two bytes more for payload
726 	 * alignment since sizeof(struct ethhdr) is 14.
727 	 */
728 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729 	if (!frame)
730 		return NULL;
731 
732 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734 
735 	len -= cur_len;
736 	if (!len)
737 		return frame;
738 
739 	offset += cur_len;
740 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741 
742 	return frame;
743 }
744 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746 			      const u8 *addr, enum nl80211_iftype iftype,
747 			      const unsigned int extra_headroom,
748 			      const u8 *check_da, const u8 *check_sa)
749 {
750 	unsigned int hlen = ALIGN(extra_headroom, 4);
751 	struct sk_buff *frame = NULL;
752 	u16 ethertype;
753 	u8 *payload;
754 	int offset = 0, remaining;
755 	struct ethhdr eth;
756 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757 	bool reuse_skb = false;
758 	bool last = false;
759 
760 	while (!last) {
761 		unsigned int subframe_len;
762 		int len;
763 		u8 padding;
764 
765 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
766 		len = ntohs(eth.h_proto);
767 		subframe_len = sizeof(struct ethhdr) + len;
768 		padding = (4 - subframe_len) & 0x3;
769 
770 		/* the last MSDU has no padding */
771 		remaining = skb->len - offset;
772 		if (subframe_len > remaining)
773 			goto purge;
774 		/* mitigate A-MSDU aggregation injection attacks */
775 		if (ether_addr_equal(eth.h_dest, rfc1042_header))
776 			goto purge;
777 
778 		offset += sizeof(struct ethhdr);
779 		last = remaining <= subframe_len + padding;
780 
781 		/* FIXME: should we really accept multicast DA? */
782 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
783 		     !ether_addr_equal(check_da, eth.h_dest)) ||
784 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
785 			offset += len + padding;
786 			continue;
787 		}
788 
789 		/* reuse skb for the last subframe */
790 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
791 			skb_pull(skb, offset);
792 			frame = skb;
793 			reuse_skb = true;
794 		} else {
795 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
796 						       reuse_frag);
797 			if (!frame)
798 				goto purge;
799 
800 			offset += len + padding;
801 		}
802 
803 		skb_reset_network_header(frame);
804 		frame->dev = skb->dev;
805 		frame->priority = skb->priority;
806 
807 		payload = frame->data;
808 		ethertype = (payload[6] << 8) | payload[7];
809 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
810 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
811 			   ether_addr_equal(payload, bridge_tunnel_header))) {
812 			eth.h_proto = htons(ethertype);
813 			skb_pull(frame, ETH_ALEN + 2);
814 		}
815 
816 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
817 		__skb_queue_tail(list, frame);
818 	}
819 
820 	if (!reuse_skb)
821 		dev_kfree_skb(skb);
822 
823 	return;
824 
825  purge:
826 	__skb_queue_purge(list);
827 	dev_kfree_skb(skb);
828 }
829 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
830 
831 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)832 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
833 				    struct cfg80211_qos_map *qos_map)
834 {
835 	unsigned int dscp;
836 	unsigned char vlan_priority;
837 	unsigned int ret;
838 
839 	/* skb->priority values from 256->263 are magic values to
840 	 * directly indicate a specific 802.1d priority.  This is used
841 	 * to allow 802.1d priority to be passed directly in from VLAN
842 	 * tags, etc.
843 	 */
844 	if (skb->priority >= 256 && skb->priority <= 263) {
845 		ret = skb->priority - 256;
846 		goto out;
847 	}
848 
849 	if (skb_vlan_tag_present(skb)) {
850 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
851 			>> VLAN_PRIO_SHIFT;
852 		if (vlan_priority > 0) {
853 			ret = vlan_priority;
854 			goto out;
855 		}
856 	}
857 
858 	switch (skb->protocol) {
859 	case htons(ETH_P_IP):
860 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
861 		break;
862 	case htons(ETH_P_IPV6):
863 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
864 		break;
865 	case htons(ETH_P_MPLS_UC):
866 	case htons(ETH_P_MPLS_MC): {
867 		struct mpls_label mpls_tmp, *mpls;
868 
869 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
870 					  sizeof(*mpls), &mpls_tmp);
871 		if (!mpls)
872 			return 0;
873 
874 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
875 			>> MPLS_LS_TC_SHIFT;
876 		goto out;
877 	}
878 	case htons(ETH_P_80221):
879 		/* 802.21 is always network control traffic */
880 		return 7;
881 	default:
882 		return 0;
883 	}
884 
885 	if (qos_map) {
886 		unsigned int i, tmp_dscp = dscp >> 2;
887 
888 		for (i = 0; i < qos_map->num_des; i++) {
889 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
890 				ret = qos_map->dscp_exception[i].up;
891 				goto out;
892 			}
893 		}
894 
895 		for (i = 0; i < 8; i++) {
896 			if (tmp_dscp >= qos_map->up[i].low &&
897 			    tmp_dscp <= qos_map->up[i].high) {
898 				ret = i;
899 				goto out;
900 			}
901 		}
902 	}
903 
904 	ret = dscp >> 5;
905 out:
906 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
907 }
908 EXPORT_SYMBOL(cfg80211_classify8021d);
909 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)910 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
911 {
912 	const struct cfg80211_bss_ies *ies;
913 
914 	ies = rcu_dereference(bss->ies);
915 	if (!ies)
916 		return NULL;
917 
918 	return cfg80211_find_elem(id, ies->data, ies->len);
919 }
920 EXPORT_SYMBOL(ieee80211_bss_get_elem);
921 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)922 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
923 {
924 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
925 	struct net_device *dev = wdev->netdev;
926 	int i;
927 
928 	if (!wdev->connect_keys)
929 		return;
930 
931 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
932 		if (!wdev->connect_keys->params[i].cipher)
933 			continue;
934 		if (rdev_add_key(rdev, dev, i, false, NULL,
935 				 &wdev->connect_keys->params[i])) {
936 			netdev_err(dev, "failed to set key %d\n", i);
937 			continue;
938 		}
939 		if (wdev->connect_keys->def == i &&
940 		    rdev_set_default_key(rdev, dev, i, true, true)) {
941 			netdev_err(dev, "failed to set defkey %d\n", i);
942 			continue;
943 		}
944 	}
945 
946 	kfree_sensitive(wdev->connect_keys);
947 	wdev->connect_keys = NULL;
948 }
949 
cfg80211_process_wdev_events(struct wireless_dev * wdev)950 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
951 {
952 	struct cfg80211_event *ev;
953 	unsigned long flags;
954 
955 	spin_lock_irqsave(&wdev->event_lock, flags);
956 	while (!list_empty(&wdev->event_list)) {
957 		ev = list_first_entry(&wdev->event_list,
958 				      struct cfg80211_event, list);
959 		list_del(&ev->list);
960 		spin_unlock_irqrestore(&wdev->event_lock, flags);
961 
962 		wdev_lock(wdev);
963 		switch (ev->type) {
964 		case EVENT_CONNECT_RESULT:
965 			__cfg80211_connect_result(
966 				wdev->netdev,
967 				&ev->cr,
968 				ev->cr.status == WLAN_STATUS_SUCCESS);
969 			break;
970 		case EVENT_ROAMED:
971 			__cfg80211_roamed(wdev, &ev->rm);
972 			break;
973 		case EVENT_DISCONNECTED:
974 			__cfg80211_disconnected(wdev->netdev,
975 						ev->dc.ie, ev->dc.ie_len,
976 						ev->dc.reason,
977 						!ev->dc.locally_generated);
978 			break;
979 		case EVENT_IBSS_JOINED:
980 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
981 					       ev->ij.channel);
982 			break;
983 		case EVENT_STOPPED:
984 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
985 			break;
986 		case EVENT_PORT_AUTHORIZED:
987 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
988 			break;
989 		}
990 		wdev_unlock(wdev);
991 
992 		kfree(ev);
993 
994 		spin_lock_irqsave(&wdev->event_lock, flags);
995 	}
996 	spin_unlock_irqrestore(&wdev->event_lock, flags);
997 }
998 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)999 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1000 {
1001 	struct wireless_dev *wdev;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1006 		cfg80211_process_wdev_events(wdev);
1007 }
1008 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1009 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1010 			  struct net_device *dev, enum nl80211_iftype ntype,
1011 			  struct vif_params *params)
1012 {
1013 	int err;
1014 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1015 
1016 	ASSERT_RTNL();
1017 
1018 	/* don't support changing VLANs, you just re-create them */
1019 	if (otype == NL80211_IFTYPE_AP_VLAN)
1020 		return -EOPNOTSUPP;
1021 
1022 	/* cannot change into P2P device or NAN */
1023 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1024 	    ntype == NL80211_IFTYPE_NAN)
1025 		return -EOPNOTSUPP;
1026 
1027 	if (!rdev->ops->change_virtual_intf ||
1028 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1029 		return -EOPNOTSUPP;
1030 
1031 	if (ntype != otype) {
1032 		/* if it's part of a bridge, reject changing type to station/ibss */
1033 		if (netif_is_bridge_port(dev) &&
1034 		    (ntype == NL80211_IFTYPE_ADHOC ||
1035 		     ntype == NL80211_IFTYPE_STATION ||
1036 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1037 			return -EBUSY;
1038 
1039 		dev->ieee80211_ptr->use_4addr = false;
1040 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1041 		wdev_lock(dev->ieee80211_ptr);
1042 		rdev_set_qos_map(rdev, dev, NULL);
1043 		wdev_unlock(dev->ieee80211_ptr);
1044 
1045 		switch (otype) {
1046 		case NL80211_IFTYPE_AP:
1047 		case NL80211_IFTYPE_P2P_GO:
1048 			cfg80211_stop_ap(rdev, dev, true);
1049 			break;
1050 		case NL80211_IFTYPE_ADHOC:
1051 			cfg80211_leave_ibss(rdev, dev, false);
1052 			break;
1053 		case NL80211_IFTYPE_STATION:
1054 		case NL80211_IFTYPE_P2P_CLIENT:
1055 			wdev_lock(dev->ieee80211_ptr);
1056 			cfg80211_disconnect(rdev, dev,
1057 					    WLAN_REASON_DEAUTH_LEAVING, true);
1058 			wdev_unlock(dev->ieee80211_ptr);
1059 			break;
1060 		case NL80211_IFTYPE_MESH_POINT:
1061 			/* mesh should be handled? */
1062 			break;
1063 		case NL80211_IFTYPE_OCB:
1064 			cfg80211_leave_ocb(rdev, dev);
1065 			break;
1066 		default:
1067 			break;
1068 		}
1069 
1070 		cfg80211_process_rdev_events(rdev);
1071 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1072 	}
1073 
1074 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1075 
1076 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1077 
1078 	if (!err && params && params->use_4addr != -1)
1079 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1080 
1081 	if (!err) {
1082 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1083 		switch (ntype) {
1084 		case NL80211_IFTYPE_STATION:
1085 			if (dev->ieee80211_ptr->use_4addr)
1086 				break;
1087 			fallthrough;
1088 		case NL80211_IFTYPE_OCB:
1089 		case NL80211_IFTYPE_P2P_CLIENT:
1090 		case NL80211_IFTYPE_ADHOC:
1091 			dev->priv_flags |= IFF_DONT_BRIDGE;
1092 			break;
1093 		case NL80211_IFTYPE_P2P_GO:
1094 		case NL80211_IFTYPE_AP:
1095 		case NL80211_IFTYPE_AP_VLAN:
1096 		case NL80211_IFTYPE_WDS:
1097 		case NL80211_IFTYPE_MESH_POINT:
1098 			/* bridging OK */
1099 			break;
1100 		case NL80211_IFTYPE_MONITOR:
1101 			/* monitor can't bridge anyway */
1102 			break;
1103 		case NL80211_IFTYPE_UNSPECIFIED:
1104 		case NUM_NL80211_IFTYPES:
1105 			/* not happening */
1106 			break;
1107 		case NL80211_IFTYPE_P2P_DEVICE:
1108 		case NL80211_IFTYPE_NAN:
1109 			WARN_ON(1);
1110 			break;
1111 		}
1112 	}
1113 
1114 	if (!err && ntype != otype && netif_running(dev)) {
1115 		cfg80211_update_iface_num(rdev, ntype, 1);
1116 		cfg80211_update_iface_num(rdev, otype, -1);
1117 	}
1118 
1119 	return err;
1120 }
1121 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1122 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1123 {
1124 	int modulation, streams, bitrate;
1125 
1126 	/* the formula below does only work for MCS values smaller than 32 */
1127 	if (WARN_ON_ONCE(rate->mcs >= 32))
1128 		return 0;
1129 
1130 	modulation = rate->mcs & 7;
1131 	streams = (rate->mcs >> 3) + 1;
1132 
1133 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1134 
1135 	if (modulation < 4)
1136 		bitrate *= (modulation + 1);
1137 	else if (modulation == 4)
1138 		bitrate *= (modulation + 2);
1139 	else
1140 		bitrate *= (modulation + 3);
1141 
1142 	bitrate *= streams;
1143 
1144 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1145 		bitrate = (bitrate / 9) * 10;
1146 
1147 	/* do NOT round down here */
1148 	return (bitrate + 50000) / 100000;
1149 }
1150 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1151 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1152 {
1153 	static const u32 __mcs2bitrate[] = {
1154 		/* control PHY */
1155 		[0] =   275,
1156 		/* SC PHY */
1157 		[1] =  3850,
1158 		[2] =  7700,
1159 		[3] =  9625,
1160 		[4] = 11550,
1161 		[5] = 12512, /* 1251.25 mbps */
1162 		[6] = 15400,
1163 		[7] = 19250,
1164 		[8] = 23100,
1165 		[9] = 25025,
1166 		[10] = 30800,
1167 		[11] = 38500,
1168 		[12] = 46200,
1169 		/* OFDM PHY */
1170 		[13] =  6930,
1171 		[14] =  8662, /* 866.25 mbps */
1172 		[15] = 13860,
1173 		[16] = 17325,
1174 		[17] = 20790,
1175 		[18] = 27720,
1176 		[19] = 34650,
1177 		[20] = 41580,
1178 		[21] = 45045,
1179 		[22] = 51975,
1180 		[23] = 62370,
1181 		[24] = 67568, /* 6756.75 mbps */
1182 		/* LP-SC PHY */
1183 		[25] =  6260,
1184 		[26] =  8340,
1185 		[27] = 11120,
1186 		[28] = 12510,
1187 		[29] = 16680,
1188 		[30] = 22240,
1189 		[31] = 25030,
1190 	};
1191 
1192 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1193 		return 0;
1194 
1195 	return __mcs2bitrate[rate->mcs];
1196 }
1197 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1198 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1199 {
1200 	static const u32 __mcs2bitrate[] = {
1201 		/* control PHY */
1202 		[0] =   275,
1203 		/* SC PHY */
1204 		[1] =  3850,
1205 		[2] =  7700,
1206 		[3] =  9625,
1207 		[4] = 11550,
1208 		[5] = 12512, /* 1251.25 mbps */
1209 		[6] = 13475,
1210 		[7] = 15400,
1211 		[8] = 19250,
1212 		[9] = 23100,
1213 		[10] = 25025,
1214 		[11] = 26950,
1215 		[12] = 30800,
1216 		[13] = 38500,
1217 		[14] = 46200,
1218 		[15] = 50050,
1219 		[16] = 53900,
1220 		[17] = 57750,
1221 		[18] = 69300,
1222 		[19] = 75075,
1223 		[20] = 80850,
1224 	};
1225 
1226 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1227 		return 0;
1228 
1229 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1230 }
1231 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1232 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1233 {
1234 	static const u32 base[4][10] = {
1235 		{   6500000,
1236 		   13000000,
1237 		   19500000,
1238 		   26000000,
1239 		   39000000,
1240 		   52000000,
1241 		   58500000,
1242 		   65000000,
1243 		   78000000,
1244 		/* not in the spec, but some devices use this: */
1245 		   86500000,
1246 		},
1247 		{  13500000,
1248 		   27000000,
1249 		   40500000,
1250 		   54000000,
1251 		   81000000,
1252 		  108000000,
1253 		  121500000,
1254 		  135000000,
1255 		  162000000,
1256 		  180000000,
1257 		},
1258 		{  29300000,
1259 		   58500000,
1260 		   87800000,
1261 		  117000000,
1262 		  175500000,
1263 		  234000000,
1264 		  263300000,
1265 		  292500000,
1266 		  351000000,
1267 		  390000000,
1268 		},
1269 		{  58500000,
1270 		  117000000,
1271 		  175500000,
1272 		  234000000,
1273 		  351000000,
1274 		  468000000,
1275 		  526500000,
1276 		  585000000,
1277 		  702000000,
1278 		  780000000,
1279 		},
1280 	};
1281 	u32 bitrate;
1282 	int idx;
1283 
1284 	if (rate->mcs > 9)
1285 		goto warn;
1286 
1287 	switch (rate->bw) {
1288 	case RATE_INFO_BW_160:
1289 		idx = 3;
1290 		break;
1291 	case RATE_INFO_BW_80:
1292 		idx = 2;
1293 		break;
1294 	case RATE_INFO_BW_40:
1295 		idx = 1;
1296 		break;
1297 	case RATE_INFO_BW_5:
1298 	case RATE_INFO_BW_10:
1299 	default:
1300 		goto warn;
1301 	case RATE_INFO_BW_20:
1302 		idx = 0;
1303 	}
1304 
1305 	bitrate = base[idx][rate->mcs];
1306 	bitrate *= rate->nss;
1307 
1308 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1309 		bitrate = (bitrate / 9) * 10;
1310 
1311 	/* do NOT round down here */
1312 	return (bitrate + 50000) / 100000;
1313  warn:
1314 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1315 		  rate->bw, rate->mcs, rate->nss);
1316 	return 0;
1317 }
1318 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1319 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1320 {
1321 #define SCALE 2048
1322 	u16 mcs_divisors[12] = {
1323 		34133, /* 16.666666... */
1324 		17067, /*  8.333333... */
1325 		11378, /*  5.555555... */
1326 		 8533, /*  4.166666... */
1327 		 5689, /*  2.777777... */
1328 		 4267, /*  2.083333... */
1329 		 3923, /*  1.851851... */
1330 		 3413, /*  1.666666... */
1331 		 2844, /*  1.388888... */
1332 		 2560, /*  1.250000... */
1333 		 2276, /*  1.111111... */
1334 		 2048, /*  1.000000... */
1335 	};
1336 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1337 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1338 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1339 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1340 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1341 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1342 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1343 	u64 tmp;
1344 	u32 result;
1345 
1346 	if (WARN_ON_ONCE(rate->mcs > 11))
1347 		return 0;
1348 
1349 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1350 		return 0;
1351 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1352 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1353 		return 0;
1354 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1355 		return 0;
1356 
1357 	if (rate->bw == RATE_INFO_BW_160)
1358 		result = rates_160M[rate->he_gi];
1359 	else if (rate->bw == RATE_INFO_BW_80 ||
1360 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1361 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1362 		result = rates_969[rate->he_gi];
1363 	else if (rate->bw == RATE_INFO_BW_40 ||
1364 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1365 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1366 		result = rates_484[rate->he_gi];
1367 	else if (rate->bw == RATE_INFO_BW_20 ||
1368 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1369 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1370 		result = rates_242[rate->he_gi];
1371 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1372 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1373 		result = rates_106[rate->he_gi];
1374 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1375 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1376 		result = rates_52[rate->he_gi];
1377 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1378 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1379 		result = rates_26[rate->he_gi];
1380 	else {
1381 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1382 		     rate->bw, rate->he_ru_alloc);
1383 		return 0;
1384 	}
1385 
1386 	/* now scale to the appropriate MCS */
1387 	tmp = result;
1388 	tmp *= SCALE;
1389 	do_div(tmp, mcs_divisors[rate->mcs]);
1390 	result = tmp;
1391 
1392 	/* and take NSS, DCM into account */
1393 	result = (result * rate->nss) / 8;
1394 	if (rate->he_dcm)
1395 		result /= 2;
1396 
1397 	return result / 10000;
1398 }
1399 
cfg80211_calculate_bitrate(struct rate_info * rate)1400 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1401 {
1402 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1403 		return cfg80211_calculate_bitrate_ht(rate);
1404 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1405 		return cfg80211_calculate_bitrate_dmg(rate);
1406 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1407 		return cfg80211_calculate_bitrate_edmg(rate);
1408 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1409 		return cfg80211_calculate_bitrate_vht(rate);
1410 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1411 		return cfg80211_calculate_bitrate_he(rate);
1412 
1413 	return rate->legacy;
1414 }
1415 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1416 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1417 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1418 			  enum ieee80211_p2p_attr_id attr,
1419 			  u8 *buf, unsigned int bufsize)
1420 {
1421 	u8 *out = buf;
1422 	u16 attr_remaining = 0;
1423 	bool desired_attr = false;
1424 	u16 desired_len = 0;
1425 
1426 	while (len > 0) {
1427 		unsigned int iedatalen;
1428 		unsigned int copy;
1429 		const u8 *iedata;
1430 
1431 		if (len < 2)
1432 			return -EILSEQ;
1433 		iedatalen = ies[1];
1434 		if (iedatalen + 2 > len)
1435 			return -EILSEQ;
1436 
1437 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1438 			goto cont;
1439 
1440 		if (iedatalen < 4)
1441 			goto cont;
1442 
1443 		iedata = ies + 2;
1444 
1445 		/* check WFA OUI, P2P subtype */
1446 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1447 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1448 			goto cont;
1449 
1450 		iedatalen -= 4;
1451 		iedata += 4;
1452 
1453 		/* check attribute continuation into this IE */
1454 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1455 		if (copy && desired_attr) {
1456 			desired_len += copy;
1457 			if (out) {
1458 				memcpy(out, iedata, min(bufsize, copy));
1459 				out += min(bufsize, copy);
1460 				bufsize -= min(bufsize, copy);
1461 			}
1462 
1463 
1464 			if (copy == attr_remaining)
1465 				return desired_len;
1466 		}
1467 
1468 		attr_remaining -= copy;
1469 		if (attr_remaining)
1470 			goto cont;
1471 
1472 		iedatalen -= copy;
1473 		iedata += copy;
1474 
1475 		while (iedatalen > 0) {
1476 			u16 attr_len;
1477 
1478 			/* P2P attribute ID & size must fit */
1479 			if (iedatalen < 3)
1480 				return -EILSEQ;
1481 			desired_attr = iedata[0] == attr;
1482 			attr_len = get_unaligned_le16(iedata + 1);
1483 			iedatalen -= 3;
1484 			iedata += 3;
1485 
1486 			copy = min_t(unsigned int, attr_len, iedatalen);
1487 
1488 			if (desired_attr) {
1489 				desired_len += copy;
1490 				if (out) {
1491 					memcpy(out, iedata, min(bufsize, copy));
1492 					out += min(bufsize, copy);
1493 					bufsize -= min(bufsize, copy);
1494 				}
1495 
1496 				if (copy == attr_len)
1497 					return desired_len;
1498 			}
1499 
1500 			iedata += copy;
1501 			iedatalen -= copy;
1502 			attr_remaining = attr_len - copy;
1503 		}
1504 
1505  cont:
1506 		len -= ies[1] + 2;
1507 		ies += ies[1] + 2;
1508 	}
1509 
1510 	if (attr_remaining && desired_attr)
1511 		return -EILSEQ;
1512 
1513 	return -ENOENT;
1514 }
1515 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1516 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1517 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1518 {
1519 	int i;
1520 
1521 	/* Make sure array values are legal */
1522 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1523 		return false;
1524 
1525 	i = 0;
1526 	while (i < n_ids) {
1527 		if (ids[i] == WLAN_EID_EXTENSION) {
1528 			if (id_ext && (ids[i + 1] == id))
1529 				return true;
1530 
1531 			i += 2;
1532 			continue;
1533 		}
1534 
1535 		if (ids[i] == id && !id_ext)
1536 			return true;
1537 
1538 		i++;
1539 	}
1540 	return false;
1541 }
1542 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1543 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1544 {
1545 	/* we assume a validly formed IEs buffer */
1546 	u8 len = ies[pos + 1];
1547 
1548 	pos += 2 + len;
1549 
1550 	/* the IE itself must have 255 bytes for fragments to follow */
1551 	if (len < 255)
1552 		return pos;
1553 
1554 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1555 		len = ies[pos + 1];
1556 		pos += 2 + len;
1557 	}
1558 
1559 	return pos;
1560 }
1561 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1562 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1563 			      const u8 *ids, int n_ids,
1564 			      const u8 *after_ric, int n_after_ric,
1565 			      size_t offset)
1566 {
1567 	size_t pos = offset;
1568 
1569 	while (pos < ielen) {
1570 		u8 ext = 0;
1571 
1572 		if (ies[pos] == WLAN_EID_EXTENSION)
1573 			ext = 2;
1574 		if ((pos + ext) >= ielen)
1575 			break;
1576 
1577 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1578 					  ies[pos] == WLAN_EID_EXTENSION))
1579 			break;
1580 
1581 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1582 			pos = skip_ie(ies, ielen, pos);
1583 
1584 			while (pos < ielen) {
1585 				if (ies[pos] == WLAN_EID_EXTENSION)
1586 					ext = 2;
1587 				else
1588 					ext = 0;
1589 
1590 				if ((pos + ext) >= ielen)
1591 					break;
1592 
1593 				if (!ieee80211_id_in_list(after_ric,
1594 							  n_after_ric,
1595 							  ies[pos + ext],
1596 							  ext == 2))
1597 					pos = skip_ie(ies, ielen, pos);
1598 				else
1599 					break;
1600 			}
1601 		} else {
1602 			pos = skip_ie(ies, ielen, pos);
1603 		}
1604 	}
1605 
1606 	return pos;
1607 }
1608 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1609 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1610 bool ieee80211_operating_class_to_band(u8 operating_class,
1611 				       enum nl80211_band *band)
1612 {
1613 	switch (operating_class) {
1614 	case 112:
1615 	case 115 ... 127:
1616 	case 128 ... 130:
1617 		*band = NL80211_BAND_5GHZ;
1618 		return true;
1619 	case 131 ... 135:
1620 		*band = NL80211_BAND_6GHZ;
1621 		return true;
1622 	case 81:
1623 	case 82:
1624 	case 83:
1625 	case 84:
1626 		*band = NL80211_BAND_2GHZ;
1627 		return true;
1628 	case 180:
1629 		*band = NL80211_BAND_60GHZ;
1630 		return true;
1631 	}
1632 
1633 	return false;
1634 }
1635 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1636 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1637 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1638 					  u8 *op_class)
1639 {
1640 	u8 vht_opclass;
1641 	u32 freq = chandef->center_freq1;
1642 
1643 	if (freq >= 2412 && freq <= 2472) {
1644 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1645 			return false;
1646 
1647 		/* 2.407 GHz, channels 1..13 */
1648 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1649 			if (freq > chandef->chan->center_freq)
1650 				*op_class = 83; /* HT40+ */
1651 			else
1652 				*op_class = 84; /* HT40- */
1653 		} else {
1654 			*op_class = 81;
1655 		}
1656 
1657 		return true;
1658 	}
1659 
1660 	if (freq == 2484) {
1661 		/* channel 14 is only for IEEE 802.11b */
1662 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1663 			return false;
1664 
1665 		*op_class = 82; /* channel 14 */
1666 		return true;
1667 	}
1668 
1669 	switch (chandef->width) {
1670 	case NL80211_CHAN_WIDTH_80:
1671 		vht_opclass = 128;
1672 		break;
1673 	case NL80211_CHAN_WIDTH_160:
1674 		vht_opclass = 129;
1675 		break;
1676 	case NL80211_CHAN_WIDTH_80P80:
1677 		vht_opclass = 130;
1678 		break;
1679 	case NL80211_CHAN_WIDTH_10:
1680 	case NL80211_CHAN_WIDTH_5:
1681 		return false; /* unsupported for now */
1682 	default:
1683 		vht_opclass = 0;
1684 		break;
1685 	}
1686 
1687 	/* 5 GHz, channels 36..48 */
1688 	if (freq >= 5180 && freq <= 5240) {
1689 		if (vht_opclass) {
1690 			*op_class = vht_opclass;
1691 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1692 			if (freq > chandef->chan->center_freq)
1693 				*op_class = 116;
1694 			else
1695 				*op_class = 117;
1696 		} else {
1697 			*op_class = 115;
1698 		}
1699 
1700 		return true;
1701 	}
1702 
1703 	/* 5 GHz, channels 52..64 */
1704 	if (freq >= 5260 && freq <= 5320) {
1705 		if (vht_opclass) {
1706 			*op_class = vht_opclass;
1707 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1708 			if (freq > chandef->chan->center_freq)
1709 				*op_class = 119;
1710 			else
1711 				*op_class = 120;
1712 		} else {
1713 			*op_class = 118;
1714 		}
1715 
1716 		return true;
1717 	}
1718 
1719 	/* 5 GHz, channels 100..144 */
1720 	if (freq >= 5500 && freq <= 5720) {
1721 		if (vht_opclass) {
1722 			*op_class = vht_opclass;
1723 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1724 			if (freq > chandef->chan->center_freq)
1725 				*op_class = 122;
1726 			else
1727 				*op_class = 123;
1728 		} else {
1729 			*op_class = 121;
1730 		}
1731 
1732 		return true;
1733 	}
1734 
1735 	/* 5 GHz, channels 149..169 */
1736 	if (freq >= 5745 && freq <= 5845) {
1737 		if (vht_opclass) {
1738 			*op_class = vht_opclass;
1739 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1740 			if (freq > chandef->chan->center_freq)
1741 				*op_class = 126;
1742 			else
1743 				*op_class = 127;
1744 		} else if (freq <= 5805) {
1745 			*op_class = 124;
1746 		} else {
1747 			*op_class = 125;
1748 		}
1749 
1750 		return true;
1751 	}
1752 
1753 	/* 56.16 GHz, channel 1..4 */
1754 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1755 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1756 			return false;
1757 
1758 		*op_class = 180;
1759 		return true;
1760 	}
1761 
1762 	/* not supported yet */
1763 	return false;
1764 }
1765 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1766 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1767 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1768 				       u32 *beacon_int_gcd,
1769 				       bool *beacon_int_different)
1770 {
1771 	struct wireless_dev *wdev;
1772 
1773 	*beacon_int_gcd = 0;
1774 	*beacon_int_different = false;
1775 
1776 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1777 		if (!wdev->beacon_interval)
1778 			continue;
1779 
1780 		if (!*beacon_int_gcd) {
1781 			*beacon_int_gcd = wdev->beacon_interval;
1782 			continue;
1783 		}
1784 
1785 		if (wdev->beacon_interval == *beacon_int_gcd)
1786 			continue;
1787 
1788 		*beacon_int_different = true;
1789 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1790 	}
1791 
1792 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1793 		if (*beacon_int_gcd)
1794 			*beacon_int_different = true;
1795 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1796 	}
1797 }
1798 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1799 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1800 				 enum nl80211_iftype iftype, u32 beacon_int)
1801 {
1802 	/*
1803 	 * This is just a basic pre-condition check; if interface combinations
1804 	 * are possible the driver must already be checking those with a call
1805 	 * to cfg80211_check_combinations(), in which case we'll validate more
1806 	 * through the cfg80211_calculate_bi_data() call and code in
1807 	 * cfg80211_iter_combinations().
1808 	 */
1809 
1810 	if (beacon_int < 10 || beacon_int > 10000)
1811 		return -EINVAL;
1812 
1813 	return 0;
1814 }
1815 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1816 int cfg80211_iter_combinations(struct wiphy *wiphy,
1817 			       struct iface_combination_params *params,
1818 			       void (*iter)(const struct ieee80211_iface_combination *c,
1819 					    void *data),
1820 			       void *data)
1821 {
1822 	const struct ieee80211_regdomain *regdom;
1823 	enum nl80211_dfs_regions region = 0;
1824 	int i, j, iftype;
1825 	int num_interfaces = 0;
1826 	u32 used_iftypes = 0;
1827 	u32 beacon_int_gcd;
1828 	bool beacon_int_different;
1829 
1830 	/*
1831 	 * This is a bit strange, since the iteration used to rely only on
1832 	 * the data given by the driver, but here it now relies on context,
1833 	 * in form of the currently operating interfaces.
1834 	 * This is OK for all current users, and saves us from having to
1835 	 * push the GCD calculations into all the drivers.
1836 	 * In the future, this should probably rely more on data that's in
1837 	 * cfg80211 already - the only thing not would appear to be any new
1838 	 * interfaces (while being brought up) and channel/radar data.
1839 	 */
1840 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1841 				   &beacon_int_gcd, &beacon_int_different);
1842 
1843 	if (params->radar_detect) {
1844 		rcu_read_lock();
1845 		regdom = rcu_dereference(cfg80211_regdomain);
1846 		if (regdom)
1847 			region = regdom->dfs_region;
1848 		rcu_read_unlock();
1849 	}
1850 
1851 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1852 		num_interfaces += params->iftype_num[iftype];
1853 		if (params->iftype_num[iftype] > 0 &&
1854 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1855 			used_iftypes |= BIT(iftype);
1856 	}
1857 
1858 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1859 		const struct ieee80211_iface_combination *c;
1860 		struct ieee80211_iface_limit *limits;
1861 		u32 all_iftypes = 0;
1862 
1863 		c = &wiphy->iface_combinations[i];
1864 
1865 		if (num_interfaces > c->max_interfaces)
1866 			continue;
1867 		if (params->num_different_channels > c->num_different_channels)
1868 			continue;
1869 
1870 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1871 				 GFP_KERNEL);
1872 		if (!limits)
1873 			return -ENOMEM;
1874 
1875 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1876 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1877 				continue;
1878 			for (j = 0; j < c->n_limits; j++) {
1879 				all_iftypes |= limits[j].types;
1880 				if (!(limits[j].types & BIT(iftype)))
1881 					continue;
1882 				if (limits[j].max < params->iftype_num[iftype])
1883 					goto cont;
1884 				limits[j].max -= params->iftype_num[iftype];
1885 			}
1886 		}
1887 
1888 		if (params->radar_detect !=
1889 			(c->radar_detect_widths & params->radar_detect))
1890 			goto cont;
1891 
1892 		if (params->radar_detect && c->radar_detect_regions &&
1893 		    !(c->radar_detect_regions & BIT(region)))
1894 			goto cont;
1895 
1896 		/* Finally check that all iftypes that we're currently
1897 		 * using are actually part of this combination. If they
1898 		 * aren't then we can't use this combination and have
1899 		 * to continue to the next.
1900 		 */
1901 		if ((all_iftypes & used_iftypes) != used_iftypes)
1902 			goto cont;
1903 
1904 		if (beacon_int_gcd) {
1905 			if (c->beacon_int_min_gcd &&
1906 			    beacon_int_gcd < c->beacon_int_min_gcd)
1907 				goto cont;
1908 			if (!c->beacon_int_min_gcd && beacon_int_different)
1909 				goto cont;
1910 		}
1911 
1912 		/* This combination covered all interface types and
1913 		 * supported the requested numbers, so we're good.
1914 		 */
1915 
1916 		(*iter)(c, data);
1917  cont:
1918 		kfree(limits);
1919 	}
1920 
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL(cfg80211_iter_combinations);
1924 
1925 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1926 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1927 			  void *data)
1928 {
1929 	int *num = data;
1930 	(*num)++;
1931 }
1932 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1933 int cfg80211_check_combinations(struct wiphy *wiphy,
1934 				struct iface_combination_params *params)
1935 {
1936 	int err, num = 0;
1937 
1938 	err = cfg80211_iter_combinations(wiphy, params,
1939 					 cfg80211_iter_sum_ifcombs, &num);
1940 	if (err)
1941 		return err;
1942 	if (num == 0)
1943 		return -EBUSY;
1944 
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL(cfg80211_check_combinations);
1948 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1949 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1950 			   const u8 *rates, unsigned int n_rates,
1951 			   u32 *mask)
1952 {
1953 	int i, j;
1954 
1955 	if (!sband)
1956 		return -EINVAL;
1957 
1958 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1959 		return -EINVAL;
1960 
1961 	*mask = 0;
1962 
1963 	for (i = 0; i < n_rates; i++) {
1964 		int rate = (rates[i] & 0x7f) * 5;
1965 		bool found = false;
1966 
1967 		for (j = 0; j < sband->n_bitrates; j++) {
1968 			if (sband->bitrates[j].bitrate == rate) {
1969 				found = true;
1970 				*mask |= BIT(j);
1971 				break;
1972 			}
1973 		}
1974 		if (!found)
1975 			return -EINVAL;
1976 	}
1977 
1978 	/*
1979 	 * mask must have at least one bit set here since we
1980 	 * didn't accept a 0-length rates array nor allowed
1981 	 * entries in the array that didn't exist
1982 	 */
1983 
1984 	return 0;
1985 }
1986 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1987 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1988 {
1989 	enum nl80211_band band;
1990 	unsigned int n_channels = 0;
1991 
1992 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1993 		if (wiphy->bands[band])
1994 			n_channels += wiphy->bands[band]->n_channels;
1995 
1996 	return n_channels;
1997 }
1998 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1999 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2000 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2001 			 struct station_info *sinfo)
2002 {
2003 	struct cfg80211_registered_device *rdev;
2004 	struct wireless_dev *wdev;
2005 
2006 	wdev = dev->ieee80211_ptr;
2007 	if (!wdev)
2008 		return -EOPNOTSUPP;
2009 
2010 	rdev = wiphy_to_rdev(wdev->wiphy);
2011 	if (!rdev->ops->get_station)
2012 		return -EOPNOTSUPP;
2013 
2014 	memset(sinfo, 0, sizeof(*sinfo));
2015 
2016 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2017 }
2018 EXPORT_SYMBOL(cfg80211_get_station);
2019 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2020 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2021 {
2022 	int i;
2023 
2024 	if (!f)
2025 		return;
2026 
2027 	kfree(f->serv_spec_info);
2028 	kfree(f->srf_bf);
2029 	kfree(f->srf_macs);
2030 	for (i = 0; i < f->num_rx_filters; i++)
2031 		kfree(f->rx_filters[i].filter);
2032 
2033 	for (i = 0; i < f->num_tx_filters; i++)
2034 		kfree(f->tx_filters[i].filter);
2035 
2036 	kfree(f->rx_filters);
2037 	kfree(f->tx_filters);
2038 	kfree(f);
2039 }
2040 EXPORT_SYMBOL(cfg80211_free_nan_func);
2041 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2042 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2043 				u32 center_freq_khz, u32 bw_khz)
2044 {
2045 	u32 start_freq_khz, end_freq_khz;
2046 
2047 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2048 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2049 
2050 	if (start_freq_khz >= freq_range->start_freq_khz &&
2051 	    end_freq_khz <= freq_range->end_freq_khz)
2052 		return true;
2053 
2054 	return false;
2055 }
2056 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2057 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2058 {
2059 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2060 				sizeof(*(sinfo->pertid)),
2061 				gfp);
2062 	if (!sinfo->pertid)
2063 		return -ENOMEM;
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2068 
2069 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2070 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2071 const unsigned char rfc1042_header[] __aligned(2) =
2072 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2073 EXPORT_SYMBOL(rfc1042_header);
2074 
2075 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2076 const unsigned char bridge_tunnel_header[] __aligned(2) =
2077 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2078 EXPORT_SYMBOL(bridge_tunnel_header);
2079 
2080 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2081 struct iapp_layer2_update {
2082 	u8 da[ETH_ALEN];	/* broadcast */
2083 	u8 sa[ETH_ALEN];	/* STA addr */
2084 	__be16 len;		/* 6 */
2085 	u8 dsap;		/* 0 */
2086 	u8 ssap;		/* 0 */
2087 	u8 control;
2088 	u8 xid_info[3];
2089 } __packed;
2090 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2091 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2092 {
2093 	struct iapp_layer2_update *msg;
2094 	struct sk_buff *skb;
2095 
2096 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2097 	 * bridge devices */
2098 
2099 	skb = dev_alloc_skb(sizeof(*msg));
2100 	if (!skb)
2101 		return;
2102 	msg = skb_put(skb, sizeof(*msg));
2103 
2104 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2105 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2106 
2107 	eth_broadcast_addr(msg->da);
2108 	ether_addr_copy(msg->sa, addr);
2109 	msg->len = htons(6);
2110 	msg->dsap = 0;
2111 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2112 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2113 				 * F=0 (no poll command; unsolicited frame) */
2114 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2115 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2116 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2117 
2118 	skb->dev = dev;
2119 	skb->protocol = eth_type_trans(skb, dev);
2120 	memset(skb->cb, 0, sizeof(skb->cb));
2121 	netif_rx_ni(skb);
2122 }
2123 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2124 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2125 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2126 			      enum ieee80211_vht_chanwidth bw,
2127 			      int mcs, bool ext_nss_bw_capable,
2128 			      unsigned int max_vht_nss)
2129 {
2130 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2131 	int ext_nss_bw;
2132 	int supp_width;
2133 	int i, mcs_encoding;
2134 
2135 	if (map == 0xffff)
2136 		return 0;
2137 
2138 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2139 		return 0;
2140 	if (mcs <= 7)
2141 		mcs_encoding = 0;
2142 	else if (mcs == 8)
2143 		mcs_encoding = 1;
2144 	else
2145 		mcs_encoding = 2;
2146 
2147 	if (!max_vht_nss) {
2148 		/* find max_vht_nss for the given MCS */
2149 		for (i = 7; i >= 0; i--) {
2150 			int supp = (map >> (2 * i)) & 3;
2151 
2152 			if (supp == 3)
2153 				continue;
2154 
2155 			if (supp >= mcs_encoding) {
2156 				max_vht_nss = i + 1;
2157 				break;
2158 			}
2159 		}
2160 	}
2161 
2162 	if (!(cap->supp_mcs.tx_mcs_map &
2163 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2164 		return max_vht_nss;
2165 
2166 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2167 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2168 	supp_width = le32_get_bits(cap->vht_cap_info,
2169 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2170 
2171 	/* if not capable, treat ext_nss_bw as 0 */
2172 	if (!ext_nss_bw_capable)
2173 		ext_nss_bw = 0;
2174 
2175 	/* This is invalid */
2176 	if (supp_width == 3)
2177 		return 0;
2178 
2179 	/* This is an invalid combination so pretend nothing is supported */
2180 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2181 		return 0;
2182 
2183 	/*
2184 	 * Cover all the special cases according to IEEE 802.11-2016
2185 	 * Table 9-250. All other cases are either factor of 1 or not
2186 	 * valid/supported.
2187 	 */
2188 	switch (bw) {
2189 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2190 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2191 		if ((supp_width == 1 || supp_width == 2) &&
2192 		    ext_nss_bw == 3)
2193 			return 2 * max_vht_nss;
2194 		break;
2195 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2196 		if (supp_width == 0 &&
2197 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2198 			return max_vht_nss / 2;
2199 		if (supp_width == 0 &&
2200 		    ext_nss_bw == 3)
2201 			return (3 * max_vht_nss) / 4;
2202 		if (supp_width == 1 &&
2203 		    ext_nss_bw == 3)
2204 			return 2 * max_vht_nss;
2205 		break;
2206 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2207 		if (supp_width == 0 && ext_nss_bw == 1)
2208 			return 0; /* not possible */
2209 		if (supp_width == 0 &&
2210 		    ext_nss_bw == 2)
2211 			return max_vht_nss / 2;
2212 		if (supp_width == 0 &&
2213 		    ext_nss_bw == 3)
2214 			return (3 * max_vht_nss) / 4;
2215 		if (supp_width == 1 &&
2216 		    ext_nss_bw == 0)
2217 			return 0; /* not possible */
2218 		if (supp_width == 1 &&
2219 		    ext_nss_bw == 1)
2220 			return max_vht_nss / 2;
2221 		if (supp_width == 1 &&
2222 		    ext_nss_bw == 2)
2223 			return (3 * max_vht_nss) / 4;
2224 		break;
2225 	}
2226 
2227 	/* not covered or invalid combination received */
2228 	return max_vht_nss;
2229 }
2230 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2231 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2232 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2233 			     bool is_4addr, u8 check_swif)
2234 
2235 {
2236 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2237 
2238 	switch (check_swif) {
2239 	case 0:
2240 		if (is_vlan && is_4addr)
2241 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2242 		return wiphy->interface_modes & BIT(iftype);
2243 	case 1:
2244 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2245 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2246 		return wiphy->software_iftypes & BIT(iftype);
2247 	default:
2248 		break;
2249 	}
2250 
2251 	return false;
2252 }
2253 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2254