1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return MHZ_TO_KHZ(2484);
85 else if (chan < 14)
86 return MHZ_TO_KHZ(2407 + chan * 5);
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return MHZ_TO_KHZ(4000 + chan * 5);
91 else
92 return MHZ_TO_KHZ(5000 + chan * 5);
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D6.1 27.3.23.2 */
96 if (chan == 2)
97 return MHZ_TO_KHZ(5935);
98 if (chan <= 233)
99 return MHZ_TO_KHZ(5950 + chan * 5);
100 break;
101 case NL80211_BAND_60GHZ:
102 if (chan < 7)
103 return MHZ_TO_KHZ(56160 + chan * 2160);
104 break;
105 case NL80211_BAND_S1GHZ:
106 return 902000 + chan * 500;
107 default:
108 ;
109 }
110 return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 return NL80211_CHAN_WIDTH_20_NOHT;
119
120 /*S1G defines a single allowed channel width per channel.
121 * Extract that width here.
122 */
123 if (chan->flags & IEEE80211_CHAN_1MHZ)
124 return NL80211_CHAN_WIDTH_1;
125 else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 return NL80211_CHAN_WIDTH_2;
127 else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 return NL80211_CHAN_WIDTH_4;
129 else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 return NL80211_CHAN_WIDTH_8;
131 else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 return NL80211_CHAN_WIDTH_16;
133
134 pr_err("unknown channel width for channel at %dKHz?\n",
135 ieee80211_channel_to_khz(chan));
136
137 return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
ieee80211_freq_khz_to_channel(u32 freq)141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143 /* TODO: just handle MHz for now */
144 freq = KHZ_TO_MHZ(freq);
145
146 /* see 802.11 17.3.8.3.2 and Annex J */
147 if (freq == 2484)
148 return 14;
149 else if (freq < 2484)
150 return (freq - 2407) / 5;
151 else if (freq >= 4910 && freq <= 4980)
152 return (freq - 4000) / 5;
153 else if (freq < 5925)
154 return (freq - 5000) / 5;
155 else if (freq == 5935)
156 return 2;
157 else if (freq <= 45000) /* DMG band lower limit */
158 /* see 802.11ax D6.1 27.3.22.2 */
159 return (freq - 5950) / 5;
160 else if (freq >= 58320 && freq <= 70200)
161 return (freq - 56160) / 2160;
162 else
163 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 u32 freq)
169 {
170 enum nl80211_band band;
171 struct ieee80211_supported_band *sband;
172 int i;
173
174 for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 sband = wiphy->bands[band];
176
177 if (!sband)
178 continue;
179
180 for (i = 0; i < sband->n_channels; i++) {
181 struct ieee80211_channel *chan = &sband->channels[i];
182
183 if (ieee80211_channel_to_khz(chan) == freq)
184 return chan;
185 }
186 }
187
188 return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
set_mandatory_flags_band(struct ieee80211_supported_band * sband)192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194 int i, want;
195
196 switch (sband->band) {
197 case NL80211_BAND_5GHZ:
198 case NL80211_BAND_6GHZ:
199 want = 3;
200 for (i = 0; i < sband->n_bitrates; i++) {
201 if (sband->bitrates[i].bitrate == 60 ||
202 sband->bitrates[i].bitrate == 120 ||
203 sband->bitrates[i].bitrate == 240) {
204 sband->bitrates[i].flags |=
205 IEEE80211_RATE_MANDATORY_A;
206 want--;
207 }
208 }
209 WARN_ON(want);
210 break;
211 case NL80211_BAND_2GHZ:
212 want = 7;
213 for (i = 0; i < sband->n_bitrates; i++) {
214 switch (sband->bitrates[i].bitrate) {
215 case 10:
216 case 20:
217 case 55:
218 case 110:
219 sband->bitrates[i].flags |=
220 IEEE80211_RATE_MANDATORY_B |
221 IEEE80211_RATE_MANDATORY_G;
222 want--;
223 break;
224 case 60:
225 case 120:
226 case 240:
227 sband->bitrates[i].flags |=
228 IEEE80211_RATE_MANDATORY_G;
229 want--;
230 fallthrough;
231 default:
232 sband->bitrates[i].flags |=
233 IEEE80211_RATE_ERP_G;
234 break;
235 }
236 }
237 WARN_ON(want != 0 && want != 3);
238 break;
239 case NL80211_BAND_60GHZ:
240 /* check for mandatory HT MCS 1..4 */
241 WARN_ON(!sband->ht_cap.ht_supported);
242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 break;
244 case NL80211_BAND_S1GHZ:
245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 * mandatory is ok.
247 */
248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 break;
250 case NUM_NL80211_BANDS:
251 default:
252 WARN_ON(1);
253 break;
254 }
255 }
256
ieee80211_set_bitrate_flags(struct wiphy * wiphy)257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259 enum nl80211_band band;
260
261 for (band = 0; band < NUM_NL80211_BANDS; band++)
262 if (wiphy->bands[band])
263 set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268 int i;
269 for (i = 0; i < wiphy->n_cipher_suites; i++)
270 if (cipher == wiphy->cipher_suites[i])
271 return true;
272 return false;
273 }
274
275 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278 struct wiphy *wiphy = &rdev->wiphy;
279 int i;
280
281 for (i = 0; i < wiphy->n_cipher_suites; i++) {
282 switch (wiphy->cipher_suites[i]) {
283 case WLAN_CIPHER_SUITE_AES_CMAC:
284 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287 return true;
288 }
289 }
290
291 return false;
292 }
293
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295 int key_idx, bool pairwise)
296 {
297 int max_key_idx;
298
299 if (pairwise)
300 max_key_idx = 3;
301 else if (wiphy_ext_feature_isset(&rdev->wiphy,
302 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303 wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305 max_key_idx = 7;
306 else if (cfg80211_igtk_cipher_supported(rdev))
307 max_key_idx = 5;
308 else
309 max_key_idx = 3;
310
311 if (key_idx < 0 || key_idx > max_key_idx)
312 return false;
313
314 return true;
315 }
316
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318 struct key_params *params, int key_idx,
319 bool pairwise, const u8 *mac_addr)
320 {
321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322 return -EINVAL;
323
324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325 return -EINVAL;
326
327 if (pairwise && !mac_addr)
328 return -EINVAL;
329
330 switch (params->cipher) {
331 case WLAN_CIPHER_SUITE_TKIP:
332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 if ((pairwise && key_idx) ||
334 params->mode != NL80211_KEY_RX_TX)
335 return -EINVAL;
336 break;
337 case WLAN_CIPHER_SUITE_CCMP:
338 case WLAN_CIPHER_SUITE_CCMP_256:
339 case WLAN_CIPHER_SUITE_GCMP:
340 case WLAN_CIPHER_SUITE_GCMP_256:
341 /* IEEE802.11-2016 allows only 0 and - when supporting
342 * Extended Key ID - 1 as index for pairwise keys.
343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 * the driver supports Extended Key ID.
345 * @NL80211_KEY_SET_TX can't be set when installing and
346 * validating a key.
347 */
348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349 params->mode == NL80211_KEY_SET_TX)
350 return -EINVAL;
351 if (wiphy_ext_feature_isset(&rdev->wiphy,
352 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353 if (pairwise && (key_idx < 0 || key_idx > 1))
354 return -EINVAL;
355 } else if (pairwise && key_idx) {
356 return -EINVAL;
357 }
358 break;
359 case WLAN_CIPHER_SUITE_AES_CMAC:
360 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363 /* Disallow BIP (group-only) cipher as pairwise cipher */
364 if (pairwise)
365 return -EINVAL;
366 if (key_idx < 4)
367 return -EINVAL;
368 break;
369 case WLAN_CIPHER_SUITE_WEP40:
370 case WLAN_CIPHER_SUITE_WEP104:
371 if (key_idx > 3)
372 return -EINVAL;
373 default:
374 break;
375 }
376
377 switch (params->cipher) {
378 case WLAN_CIPHER_SUITE_WEP40:
379 if (params->key_len != WLAN_KEY_LEN_WEP40)
380 return -EINVAL;
381 break;
382 case WLAN_CIPHER_SUITE_TKIP:
383 if (params->key_len != WLAN_KEY_LEN_TKIP)
384 return -EINVAL;
385 break;
386 case WLAN_CIPHER_SUITE_CCMP:
387 if (params->key_len != WLAN_KEY_LEN_CCMP)
388 return -EINVAL;
389 break;
390 case WLAN_CIPHER_SUITE_CCMP_256:
391 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
392 return -EINVAL;
393 break;
394 case WLAN_CIPHER_SUITE_GCMP:
395 if (params->key_len != WLAN_KEY_LEN_GCMP)
396 return -EINVAL;
397 break;
398 case WLAN_CIPHER_SUITE_GCMP_256:
399 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
400 return -EINVAL;
401 break;
402 case WLAN_CIPHER_SUITE_WEP104:
403 if (params->key_len != WLAN_KEY_LEN_WEP104)
404 return -EINVAL;
405 break;
406 case WLAN_CIPHER_SUITE_AES_CMAC:
407 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
408 return -EINVAL;
409 break;
410 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
412 return -EINVAL;
413 break;
414 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
415 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
416 return -EINVAL;
417 break;
418 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
419 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
420 return -EINVAL;
421 break;
422 default:
423 /*
424 * We don't know anything about this algorithm,
425 * allow using it -- but the driver must check
426 * all parameters! We still check below whether
427 * or not the driver supports this algorithm,
428 * of course.
429 */
430 break;
431 }
432
433 if (params->seq) {
434 switch (params->cipher) {
435 case WLAN_CIPHER_SUITE_WEP40:
436 case WLAN_CIPHER_SUITE_WEP104:
437 /* These ciphers do not use key sequence */
438 return -EINVAL;
439 case WLAN_CIPHER_SUITE_TKIP:
440 case WLAN_CIPHER_SUITE_CCMP:
441 case WLAN_CIPHER_SUITE_CCMP_256:
442 case WLAN_CIPHER_SUITE_GCMP:
443 case WLAN_CIPHER_SUITE_GCMP_256:
444 case WLAN_CIPHER_SUITE_AES_CMAC:
445 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
446 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448 if (params->seq_len != 6)
449 return -EINVAL;
450 break;
451 }
452 }
453
454 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
455 return -EINVAL;
456
457 return 0;
458 }
459
ieee80211_hdrlen(__le16 fc)460 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
461 {
462 unsigned int hdrlen = 24;
463
464 if (ieee80211_is_ext(fc)) {
465 hdrlen = 4;
466 goto out;
467 }
468
469 if (ieee80211_is_data(fc)) {
470 if (ieee80211_has_a4(fc))
471 hdrlen = 30;
472 if (ieee80211_is_data_qos(fc)) {
473 hdrlen += IEEE80211_QOS_CTL_LEN;
474 if (ieee80211_has_order(fc))
475 hdrlen += IEEE80211_HT_CTL_LEN;
476 }
477 goto out;
478 }
479
480 if (ieee80211_is_mgmt(fc)) {
481 if (ieee80211_has_order(fc))
482 hdrlen += IEEE80211_HT_CTL_LEN;
483 goto out;
484 }
485
486 if (ieee80211_is_ctl(fc)) {
487 /*
488 * ACK and CTS are 10 bytes, all others 16. To see how
489 * to get this condition consider
490 * subtype mask: 0b0000000011110000 (0x00F0)
491 * ACK subtype: 0b0000000011010000 (0x00D0)
492 * CTS subtype: 0b0000000011000000 (0x00C0)
493 * bits that matter: ^^^ (0x00E0)
494 * value of those: 0b0000000011000000 (0x00C0)
495 */
496 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
497 hdrlen = 10;
498 else
499 hdrlen = 16;
500 }
501 out:
502 return hdrlen;
503 }
504 EXPORT_SYMBOL(ieee80211_hdrlen);
505
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)506 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
507 {
508 const struct ieee80211_hdr *hdr =
509 (const struct ieee80211_hdr *)skb->data;
510 unsigned int hdrlen;
511
512 if (unlikely(skb->len < 10))
513 return 0;
514 hdrlen = ieee80211_hdrlen(hdr->frame_control);
515 if (unlikely(hdrlen > skb->len))
516 return 0;
517 return hdrlen;
518 }
519 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
520
__ieee80211_get_mesh_hdrlen(u8 flags)521 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
522 {
523 int ae = flags & MESH_FLAGS_AE;
524 /* 802.11-2012, 8.2.4.7.3 */
525 switch (ae) {
526 default:
527 case 0:
528 return 6;
529 case MESH_FLAGS_AE_A4:
530 return 12;
531 case MESH_FLAGS_AE_A5_A6:
532 return 18;
533 }
534 }
535
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)536 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
537 {
538 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
539 }
540 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
541
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)542 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
543 const u8 *addr, enum nl80211_iftype iftype,
544 u8 data_offset, bool is_amsdu)
545 {
546 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
547 struct {
548 u8 hdr[ETH_ALEN] __aligned(2);
549 __be16 proto;
550 } payload;
551 struct ethhdr tmp;
552 u16 hdrlen;
553 u8 mesh_flags = 0;
554
555 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
556 return -1;
557
558 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
559 if (skb->len < hdrlen + 8)
560 return -1;
561
562 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
563 * header
564 * IEEE 802.11 address fields:
565 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
566 * 0 0 DA SA BSSID n/a
567 * 0 1 DA BSSID SA n/a
568 * 1 0 BSSID SA DA n/a
569 * 1 1 RA TA DA SA
570 */
571 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
572 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
573
574 if (iftype == NL80211_IFTYPE_MESH_POINT)
575 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
576
577 mesh_flags &= MESH_FLAGS_AE;
578
579 switch (hdr->frame_control &
580 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
581 case cpu_to_le16(IEEE80211_FCTL_TODS):
582 if (unlikely(iftype != NL80211_IFTYPE_AP &&
583 iftype != NL80211_IFTYPE_AP_VLAN &&
584 iftype != NL80211_IFTYPE_P2P_GO))
585 return -1;
586 break;
587 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
588 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
589 iftype != NL80211_IFTYPE_MESH_POINT &&
590 iftype != NL80211_IFTYPE_AP_VLAN &&
591 iftype != NL80211_IFTYPE_STATION))
592 return -1;
593 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594 if (mesh_flags == MESH_FLAGS_AE_A4)
595 return -1;
596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597 skb_copy_bits(skb, hdrlen +
598 offsetof(struct ieee80211s_hdr, eaddr1),
599 tmp.h_dest, 2 * ETH_ALEN);
600 }
601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602 }
603 break;
604 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605 if ((iftype != NL80211_IFTYPE_STATION &&
606 iftype != NL80211_IFTYPE_P2P_CLIENT &&
607 iftype != NL80211_IFTYPE_MESH_POINT) ||
608 (is_multicast_ether_addr(tmp.h_dest) &&
609 ether_addr_equal(tmp.h_source, addr)))
610 return -1;
611 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613 return -1;
614 if (mesh_flags == MESH_FLAGS_AE_A4)
615 skb_copy_bits(skb, hdrlen +
616 offsetof(struct ieee80211s_hdr, eaddr1),
617 tmp.h_source, ETH_ALEN);
618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619 }
620 break;
621 case cpu_to_le16(0):
622 if (iftype != NL80211_IFTYPE_ADHOC &&
623 iftype != NL80211_IFTYPE_STATION &&
624 iftype != NL80211_IFTYPE_OCB)
625 return -1;
626 break;
627 }
628
629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630 tmp.h_proto = payload.proto;
631
632 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633 tmp.h_proto != htons(ETH_P_AARP) &&
634 tmp.h_proto != htons(ETH_P_IPX)) ||
635 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637 * replace EtherType */
638 hdrlen += ETH_ALEN + 2;
639 else
640 tmp.h_proto = htons(skb->len - hdrlen);
641
642 pskb_pull(skb, hdrlen);
643
644 if (!ehdr)
645 ehdr = skb_push(skb, sizeof(struct ethhdr));
646 memcpy(ehdr, &tmp, sizeof(tmp));
647
648 return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654 void *ptr, int len, int size)
655 {
656 struct skb_shared_info *sh = skb_shinfo(skb);
657 int page_offset;
658
659 get_page(page);
660 page_offset = ptr - page_address(page);
661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663
664 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666 int offset, int len)
667 {
668 struct skb_shared_info *sh = skb_shinfo(skb);
669 const skb_frag_t *frag = &sh->frags[0];
670 struct page *frag_page;
671 void *frag_ptr;
672 int frag_len, frag_size;
673 int head_size = skb->len - skb->data_len;
674 int cur_len;
675
676 frag_page = virt_to_head_page(skb->head);
677 frag_ptr = skb->data;
678 frag_size = head_size;
679
680 while (offset >= frag_size) {
681 offset -= frag_size;
682 frag_page = skb_frag_page(frag);
683 frag_ptr = skb_frag_address(frag);
684 frag_size = skb_frag_size(frag);
685 frag++;
686 }
687
688 frag_ptr += offset;
689 frag_len = frag_size - offset;
690
691 cur_len = min(len, frag_len);
692
693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694 len -= cur_len;
695
696 while (len > 0) {
697 frag_len = skb_frag_size(frag);
698 cur_len = min(len, frag_len);
699 __frame_add_frag(frame, skb_frag_page(frag),
700 skb_frag_address(frag), cur_len, frag_len);
701 len -= cur_len;
702 frag++;
703 }
704 }
705
706 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708 int offset, int len, bool reuse_frag)
709 {
710 struct sk_buff *frame;
711 int cur_len = len;
712
713 if (skb->len - offset < len)
714 return NULL;
715
716 /*
717 * When reusing framents, copy some data to the head to simplify
718 * ethernet header handling and speed up protocol header processing
719 * in the stack later.
720 */
721 if (reuse_frag)
722 cur_len = min_t(int, len, 32);
723
724 /*
725 * Allocate and reserve two bytes more for payload
726 * alignment since sizeof(struct ethhdr) is 14.
727 */
728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729 if (!frame)
730 return NULL;
731
732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735 len -= cur_len;
736 if (!len)
737 return frame;
738
739 offset += cur_len;
740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742 return frame;
743 }
744
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746 const u8 *addr, enum nl80211_iftype iftype,
747 const unsigned int extra_headroom,
748 const u8 *check_da, const u8 *check_sa)
749 {
750 unsigned int hlen = ALIGN(extra_headroom, 4);
751 struct sk_buff *frame = NULL;
752 u16 ethertype;
753 u8 *payload;
754 int offset = 0, remaining;
755 struct ethhdr eth;
756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757 bool reuse_skb = false;
758 bool last = false;
759
760 while (!last) {
761 unsigned int subframe_len;
762 int len;
763 u8 padding;
764
765 skb_copy_bits(skb, offset, ð, sizeof(eth));
766 len = ntohs(eth.h_proto);
767 subframe_len = sizeof(struct ethhdr) + len;
768 padding = (4 - subframe_len) & 0x3;
769
770 /* the last MSDU has no padding */
771 remaining = skb->len - offset;
772 if (subframe_len > remaining)
773 goto purge;
774 /* mitigate A-MSDU aggregation injection attacks */
775 if (ether_addr_equal(eth.h_dest, rfc1042_header))
776 goto purge;
777
778 offset += sizeof(struct ethhdr);
779 last = remaining <= subframe_len + padding;
780
781 /* FIXME: should we really accept multicast DA? */
782 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
783 !ether_addr_equal(check_da, eth.h_dest)) ||
784 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
785 offset += len + padding;
786 continue;
787 }
788
789 /* reuse skb for the last subframe */
790 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
791 skb_pull(skb, offset);
792 frame = skb;
793 reuse_skb = true;
794 } else {
795 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
796 reuse_frag);
797 if (!frame)
798 goto purge;
799
800 offset += len + padding;
801 }
802
803 skb_reset_network_header(frame);
804 frame->dev = skb->dev;
805 frame->priority = skb->priority;
806
807 payload = frame->data;
808 ethertype = (payload[6] << 8) | payload[7];
809 if (likely((ether_addr_equal(payload, rfc1042_header) &&
810 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
811 ether_addr_equal(payload, bridge_tunnel_header))) {
812 eth.h_proto = htons(ethertype);
813 skb_pull(frame, ETH_ALEN + 2);
814 }
815
816 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
817 __skb_queue_tail(list, frame);
818 }
819
820 if (!reuse_skb)
821 dev_kfree_skb(skb);
822
823 return;
824
825 purge:
826 __skb_queue_purge(list);
827 dev_kfree_skb(skb);
828 }
829 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
830
831 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)832 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
833 struct cfg80211_qos_map *qos_map)
834 {
835 unsigned int dscp;
836 unsigned char vlan_priority;
837 unsigned int ret;
838
839 /* skb->priority values from 256->263 are magic values to
840 * directly indicate a specific 802.1d priority. This is used
841 * to allow 802.1d priority to be passed directly in from VLAN
842 * tags, etc.
843 */
844 if (skb->priority >= 256 && skb->priority <= 263) {
845 ret = skb->priority - 256;
846 goto out;
847 }
848
849 if (skb_vlan_tag_present(skb)) {
850 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
851 >> VLAN_PRIO_SHIFT;
852 if (vlan_priority > 0) {
853 ret = vlan_priority;
854 goto out;
855 }
856 }
857
858 switch (skb->protocol) {
859 case htons(ETH_P_IP):
860 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
861 break;
862 case htons(ETH_P_IPV6):
863 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
864 break;
865 case htons(ETH_P_MPLS_UC):
866 case htons(ETH_P_MPLS_MC): {
867 struct mpls_label mpls_tmp, *mpls;
868
869 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
870 sizeof(*mpls), &mpls_tmp);
871 if (!mpls)
872 return 0;
873
874 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
875 >> MPLS_LS_TC_SHIFT;
876 goto out;
877 }
878 case htons(ETH_P_80221):
879 /* 802.21 is always network control traffic */
880 return 7;
881 default:
882 return 0;
883 }
884
885 if (qos_map) {
886 unsigned int i, tmp_dscp = dscp >> 2;
887
888 for (i = 0; i < qos_map->num_des; i++) {
889 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
890 ret = qos_map->dscp_exception[i].up;
891 goto out;
892 }
893 }
894
895 for (i = 0; i < 8; i++) {
896 if (tmp_dscp >= qos_map->up[i].low &&
897 tmp_dscp <= qos_map->up[i].high) {
898 ret = i;
899 goto out;
900 }
901 }
902 }
903
904 ret = dscp >> 5;
905 out:
906 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
907 }
908 EXPORT_SYMBOL(cfg80211_classify8021d);
909
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)910 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
911 {
912 const struct cfg80211_bss_ies *ies;
913
914 ies = rcu_dereference(bss->ies);
915 if (!ies)
916 return NULL;
917
918 return cfg80211_find_elem(id, ies->data, ies->len);
919 }
920 EXPORT_SYMBOL(ieee80211_bss_get_elem);
921
cfg80211_upload_connect_keys(struct wireless_dev * wdev)922 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
923 {
924 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
925 struct net_device *dev = wdev->netdev;
926 int i;
927
928 if (!wdev->connect_keys)
929 return;
930
931 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
932 if (!wdev->connect_keys->params[i].cipher)
933 continue;
934 if (rdev_add_key(rdev, dev, i, false, NULL,
935 &wdev->connect_keys->params[i])) {
936 netdev_err(dev, "failed to set key %d\n", i);
937 continue;
938 }
939 if (wdev->connect_keys->def == i &&
940 rdev_set_default_key(rdev, dev, i, true, true)) {
941 netdev_err(dev, "failed to set defkey %d\n", i);
942 continue;
943 }
944 }
945
946 kfree_sensitive(wdev->connect_keys);
947 wdev->connect_keys = NULL;
948 }
949
cfg80211_process_wdev_events(struct wireless_dev * wdev)950 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
951 {
952 struct cfg80211_event *ev;
953 unsigned long flags;
954
955 spin_lock_irqsave(&wdev->event_lock, flags);
956 while (!list_empty(&wdev->event_list)) {
957 ev = list_first_entry(&wdev->event_list,
958 struct cfg80211_event, list);
959 list_del(&ev->list);
960 spin_unlock_irqrestore(&wdev->event_lock, flags);
961
962 wdev_lock(wdev);
963 switch (ev->type) {
964 case EVENT_CONNECT_RESULT:
965 __cfg80211_connect_result(
966 wdev->netdev,
967 &ev->cr,
968 ev->cr.status == WLAN_STATUS_SUCCESS);
969 break;
970 case EVENT_ROAMED:
971 __cfg80211_roamed(wdev, &ev->rm);
972 break;
973 case EVENT_DISCONNECTED:
974 __cfg80211_disconnected(wdev->netdev,
975 ev->dc.ie, ev->dc.ie_len,
976 ev->dc.reason,
977 !ev->dc.locally_generated);
978 break;
979 case EVENT_IBSS_JOINED:
980 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
981 ev->ij.channel);
982 break;
983 case EVENT_STOPPED:
984 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
985 break;
986 case EVENT_PORT_AUTHORIZED:
987 __cfg80211_port_authorized(wdev, ev->pa.bssid);
988 break;
989 }
990 wdev_unlock(wdev);
991
992 kfree(ev);
993
994 spin_lock_irqsave(&wdev->event_lock, flags);
995 }
996 spin_unlock_irqrestore(&wdev->event_lock, flags);
997 }
998
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)999 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1000 {
1001 struct wireless_dev *wdev;
1002
1003 ASSERT_RTNL();
1004
1005 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1006 cfg80211_process_wdev_events(wdev);
1007 }
1008
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1009 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1010 struct net_device *dev, enum nl80211_iftype ntype,
1011 struct vif_params *params)
1012 {
1013 int err;
1014 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1015
1016 ASSERT_RTNL();
1017
1018 /* don't support changing VLANs, you just re-create them */
1019 if (otype == NL80211_IFTYPE_AP_VLAN)
1020 return -EOPNOTSUPP;
1021
1022 /* cannot change into P2P device or NAN */
1023 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1024 ntype == NL80211_IFTYPE_NAN)
1025 return -EOPNOTSUPP;
1026
1027 if (!rdev->ops->change_virtual_intf ||
1028 !(rdev->wiphy.interface_modes & (1 << ntype)))
1029 return -EOPNOTSUPP;
1030
1031 if (ntype != otype) {
1032 /* if it's part of a bridge, reject changing type to station/ibss */
1033 if (netif_is_bridge_port(dev) &&
1034 (ntype == NL80211_IFTYPE_ADHOC ||
1035 ntype == NL80211_IFTYPE_STATION ||
1036 ntype == NL80211_IFTYPE_P2P_CLIENT))
1037 return -EBUSY;
1038
1039 dev->ieee80211_ptr->use_4addr = false;
1040 dev->ieee80211_ptr->mesh_id_up_len = 0;
1041 wdev_lock(dev->ieee80211_ptr);
1042 rdev_set_qos_map(rdev, dev, NULL);
1043 wdev_unlock(dev->ieee80211_ptr);
1044
1045 switch (otype) {
1046 case NL80211_IFTYPE_AP:
1047 case NL80211_IFTYPE_P2P_GO:
1048 cfg80211_stop_ap(rdev, dev, true);
1049 break;
1050 case NL80211_IFTYPE_ADHOC:
1051 cfg80211_leave_ibss(rdev, dev, false);
1052 break;
1053 case NL80211_IFTYPE_STATION:
1054 case NL80211_IFTYPE_P2P_CLIENT:
1055 wdev_lock(dev->ieee80211_ptr);
1056 cfg80211_disconnect(rdev, dev,
1057 WLAN_REASON_DEAUTH_LEAVING, true);
1058 wdev_unlock(dev->ieee80211_ptr);
1059 break;
1060 case NL80211_IFTYPE_MESH_POINT:
1061 /* mesh should be handled? */
1062 break;
1063 case NL80211_IFTYPE_OCB:
1064 cfg80211_leave_ocb(rdev, dev);
1065 break;
1066 default:
1067 break;
1068 }
1069
1070 cfg80211_process_rdev_events(rdev);
1071 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1072 }
1073
1074 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1075
1076 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1077
1078 if (!err && params && params->use_4addr != -1)
1079 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1080
1081 if (!err) {
1082 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1083 switch (ntype) {
1084 case NL80211_IFTYPE_STATION:
1085 if (dev->ieee80211_ptr->use_4addr)
1086 break;
1087 fallthrough;
1088 case NL80211_IFTYPE_OCB:
1089 case NL80211_IFTYPE_P2P_CLIENT:
1090 case NL80211_IFTYPE_ADHOC:
1091 dev->priv_flags |= IFF_DONT_BRIDGE;
1092 break;
1093 case NL80211_IFTYPE_P2P_GO:
1094 case NL80211_IFTYPE_AP:
1095 case NL80211_IFTYPE_AP_VLAN:
1096 case NL80211_IFTYPE_WDS:
1097 case NL80211_IFTYPE_MESH_POINT:
1098 /* bridging OK */
1099 break;
1100 case NL80211_IFTYPE_MONITOR:
1101 /* monitor can't bridge anyway */
1102 break;
1103 case NL80211_IFTYPE_UNSPECIFIED:
1104 case NUM_NL80211_IFTYPES:
1105 /* not happening */
1106 break;
1107 case NL80211_IFTYPE_P2P_DEVICE:
1108 case NL80211_IFTYPE_NAN:
1109 WARN_ON(1);
1110 break;
1111 }
1112 }
1113
1114 if (!err && ntype != otype && netif_running(dev)) {
1115 cfg80211_update_iface_num(rdev, ntype, 1);
1116 cfg80211_update_iface_num(rdev, otype, -1);
1117 }
1118
1119 return err;
1120 }
1121
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1122 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1123 {
1124 int modulation, streams, bitrate;
1125
1126 /* the formula below does only work for MCS values smaller than 32 */
1127 if (WARN_ON_ONCE(rate->mcs >= 32))
1128 return 0;
1129
1130 modulation = rate->mcs & 7;
1131 streams = (rate->mcs >> 3) + 1;
1132
1133 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1134
1135 if (modulation < 4)
1136 bitrate *= (modulation + 1);
1137 else if (modulation == 4)
1138 bitrate *= (modulation + 2);
1139 else
1140 bitrate *= (modulation + 3);
1141
1142 bitrate *= streams;
1143
1144 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1145 bitrate = (bitrate / 9) * 10;
1146
1147 /* do NOT round down here */
1148 return (bitrate + 50000) / 100000;
1149 }
1150
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1151 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1152 {
1153 static const u32 __mcs2bitrate[] = {
1154 /* control PHY */
1155 [0] = 275,
1156 /* SC PHY */
1157 [1] = 3850,
1158 [2] = 7700,
1159 [3] = 9625,
1160 [4] = 11550,
1161 [5] = 12512, /* 1251.25 mbps */
1162 [6] = 15400,
1163 [7] = 19250,
1164 [8] = 23100,
1165 [9] = 25025,
1166 [10] = 30800,
1167 [11] = 38500,
1168 [12] = 46200,
1169 /* OFDM PHY */
1170 [13] = 6930,
1171 [14] = 8662, /* 866.25 mbps */
1172 [15] = 13860,
1173 [16] = 17325,
1174 [17] = 20790,
1175 [18] = 27720,
1176 [19] = 34650,
1177 [20] = 41580,
1178 [21] = 45045,
1179 [22] = 51975,
1180 [23] = 62370,
1181 [24] = 67568, /* 6756.75 mbps */
1182 /* LP-SC PHY */
1183 [25] = 6260,
1184 [26] = 8340,
1185 [27] = 11120,
1186 [28] = 12510,
1187 [29] = 16680,
1188 [30] = 22240,
1189 [31] = 25030,
1190 };
1191
1192 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1193 return 0;
1194
1195 return __mcs2bitrate[rate->mcs];
1196 }
1197
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1198 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1199 {
1200 static const u32 __mcs2bitrate[] = {
1201 /* control PHY */
1202 [0] = 275,
1203 /* SC PHY */
1204 [1] = 3850,
1205 [2] = 7700,
1206 [3] = 9625,
1207 [4] = 11550,
1208 [5] = 12512, /* 1251.25 mbps */
1209 [6] = 13475,
1210 [7] = 15400,
1211 [8] = 19250,
1212 [9] = 23100,
1213 [10] = 25025,
1214 [11] = 26950,
1215 [12] = 30800,
1216 [13] = 38500,
1217 [14] = 46200,
1218 [15] = 50050,
1219 [16] = 53900,
1220 [17] = 57750,
1221 [18] = 69300,
1222 [19] = 75075,
1223 [20] = 80850,
1224 };
1225
1226 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1227 return 0;
1228
1229 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1230 }
1231
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1232 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1233 {
1234 static const u32 base[4][10] = {
1235 { 6500000,
1236 13000000,
1237 19500000,
1238 26000000,
1239 39000000,
1240 52000000,
1241 58500000,
1242 65000000,
1243 78000000,
1244 /* not in the spec, but some devices use this: */
1245 86500000,
1246 },
1247 { 13500000,
1248 27000000,
1249 40500000,
1250 54000000,
1251 81000000,
1252 108000000,
1253 121500000,
1254 135000000,
1255 162000000,
1256 180000000,
1257 },
1258 { 29300000,
1259 58500000,
1260 87800000,
1261 117000000,
1262 175500000,
1263 234000000,
1264 263300000,
1265 292500000,
1266 351000000,
1267 390000000,
1268 },
1269 { 58500000,
1270 117000000,
1271 175500000,
1272 234000000,
1273 351000000,
1274 468000000,
1275 526500000,
1276 585000000,
1277 702000000,
1278 780000000,
1279 },
1280 };
1281 u32 bitrate;
1282 int idx;
1283
1284 if (rate->mcs > 9)
1285 goto warn;
1286
1287 switch (rate->bw) {
1288 case RATE_INFO_BW_160:
1289 idx = 3;
1290 break;
1291 case RATE_INFO_BW_80:
1292 idx = 2;
1293 break;
1294 case RATE_INFO_BW_40:
1295 idx = 1;
1296 break;
1297 case RATE_INFO_BW_5:
1298 case RATE_INFO_BW_10:
1299 default:
1300 goto warn;
1301 case RATE_INFO_BW_20:
1302 idx = 0;
1303 }
1304
1305 bitrate = base[idx][rate->mcs];
1306 bitrate *= rate->nss;
1307
1308 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1309 bitrate = (bitrate / 9) * 10;
1310
1311 /* do NOT round down here */
1312 return (bitrate + 50000) / 100000;
1313 warn:
1314 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1315 rate->bw, rate->mcs, rate->nss);
1316 return 0;
1317 }
1318
cfg80211_calculate_bitrate_he(struct rate_info * rate)1319 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1320 {
1321 #define SCALE 2048
1322 u16 mcs_divisors[12] = {
1323 34133, /* 16.666666... */
1324 17067, /* 8.333333... */
1325 11378, /* 5.555555... */
1326 8533, /* 4.166666... */
1327 5689, /* 2.777777... */
1328 4267, /* 2.083333... */
1329 3923, /* 1.851851... */
1330 3413, /* 1.666666... */
1331 2844, /* 1.388888... */
1332 2560, /* 1.250000... */
1333 2276, /* 1.111111... */
1334 2048, /* 1.000000... */
1335 };
1336 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1337 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1338 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1339 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1340 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1341 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1342 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1343 u64 tmp;
1344 u32 result;
1345
1346 if (WARN_ON_ONCE(rate->mcs > 11))
1347 return 0;
1348
1349 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1350 return 0;
1351 if (WARN_ON_ONCE(rate->he_ru_alloc >
1352 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1353 return 0;
1354 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1355 return 0;
1356
1357 if (rate->bw == RATE_INFO_BW_160)
1358 result = rates_160M[rate->he_gi];
1359 else if (rate->bw == RATE_INFO_BW_80 ||
1360 (rate->bw == RATE_INFO_BW_HE_RU &&
1361 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1362 result = rates_969[rate->he_gi];
1363 else if (rate->bw == RATE_INFO_BW_40 ||
1364 (rate->bw == RATE_INFO_BW_HE_RU &&
1365 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1366 result = rates_484[rate->he_gi];
1367 else if (rate->bw == RATE_INFO_BW_20 ||
1368 (rate->bw == RATE_INFO_BW_HE_RU &&
1369 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1370 result = rates_242[rate->he_gi];
1371 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1372 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1373 result = rates_106[rate->he_gi];
1374 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1375 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1376 result = rates_52[rate->he_gi];
1377 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1378 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1379 result = rates_26[rate->he_gi];
1380 else {
1381 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1382 rate->bw, rate->he_ru_alloc);
1383 return 0;
1384 }
1385
1386 /* now scale to the appropriate MCS */
1387 tmp = result;
1388 tmp *= SCALE;
1389 do_div(tmp, mcs_divisors[rate->mcs]);
1390 result = tmp;
1391
1392 /* and take NSS, DCM into account */
1393 result = (result * rate->nss) / 8;
1394 if (rate->he_dcm)
1395 result /= 2;
1396
1397 return result / 10000;
1398 }
1399
cfg80211_calculate_bitrate(struct rate_info * rate)1400 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1401 {
1402 if (rate->flags & RATE_INFO_FLAGS_MCS)
1403 return cfg80211_calculate_bitrate_ht(rate);
1404 if (rate->flags & RATE_INFO_FLAGS_DMG)
1405 return cfg80211_calculate_bitrate_dmg(rate);
1406 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1407 return cfg80211_calculate_bitrate_edmg(rate);
1408 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1409 return cfg80211_calculate_bitrate_vht(rate);
1410 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1411 return cfg80211_calculate_bitrate_he(rate);
1412
1413 return rate->legacy;
1414 }
1415 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1416
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1417 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1418 enum ieee80211_p2p_attr_id attr,
1419 u8 *buf, unsigned int bufsize)
1420 {
1421 u8 *out = buf;
1422 u16 attr_remaining = 0;
1423 bool desired_attr = false;
1424 u16 desired_len = 0;
1425
1426 while (len > 0) {
1427 unsigned int iedatalen;
1428 unsigned int copy;
1429 const u8 *iedata;
1430
1431 if (len < 2)
1432 return -EILSEQ;
1433 iedatalen = ies[1];
1434 if (iedatalen + 2 > len)
1435 return -EILSEQ;
1436
1437 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1438 goto cont;
1439
1440 if (iedatalen < 4)
1441 goto cont;
1442
1443 iedata = ies + 2;
1444
1445 /* check WFA OUI, P2P subtype */
1446 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1447 iedata[2] != 0x9a || iedata[3] != 0x09)
1448 goto cont;
1449
1450 iedatalen -= 4;
1451 iedata += 4;
1452
1453 /* check attribute continuation into this IE */
1454 copy = min_t(unsigned int, attr_remaining, iedatalen);
1455 if (copy && desired_attr) {
1456 desired_len += copy;
1457 if (out) {
1458 memcpy(out, iedata, min(bufsize, copy));
1459 out += min(bufsize, copy);
1460 bufsize -= min(bufsize, copy);
1461 }
1462
1463
1464 if (copy == attr_remaining)
1465 return desired_len;
1466 }
1467
1468 attr_remaining -= copy;
1469 if (attr_remaining)
1470 goto cont;
1471
1472 iedatalen -= copy;
1473 iedata += copy;
1474
1475 while (iedatalen > 0) {
1476 u16 attr_len;
1477
1478 /* P2P attribute ID & size must fit */
1479 if (iedatalen < 3)
1480 return -EILSEQ;
1481 desired_attr = iedata[0] == attr;
1482 attr_len = get_unaligned_le16(iedata + 1);
1483 iedatalen -= 3;
1484 iedata += 3;
1485
1486 copy = min_t(unsigned int, attr_len, iedatalen);
1487
1488 if (desired_attr) {
1489 desired_len += copy;
1490 if (out) {
1491 memcpy(out, iedata, min(bufsize, copy));
1492 out += min(bufsize, copy);
1493 bufsize -= min(bufsize, copy);
1494 }
1495
1496 if (copy == attr_len)
1497 return desired_len;
1498 }
1499
1500 iedata += copy;
1501 iedatalen -= copy;
1502 attr_remaining = attr_len - copy;
1503 }
1504
1505 cont:
1506 len -= ies[1] + 2;
1507 ies += ies[1] + 2;
1508 }
1509
1510 if (attr_remaining && desired_attr)
1511 return -EILSEQ;
1512
1513 return -ENOENT;
1514 }
1515 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1516
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1517 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1518 {
1519 int i;
1520
1521 /* Make sure array values are legal */
1522 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1523 return false;
1524
1525 i = 0;
1526 while (i < n_ids) {
1527 if (ids[i] == WLAN_EID_EXTENSION) {
1528 if (id_ext && (ids[i + 1] == id))
1529 return true;
1530
1531 i += 2;
1532 continue;
1533 }
1534
1535 if (ids[i] == id && !id_ext)
1536 return true;
1537
1538 i++;
1539 }
1540 return false;
1541 }
1542
skip_ie(const u8 * ies,size_t ielen,size_t pos)1543 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1544 {
1545 /* we assume a validly formed IEs buffer */
1546 u8 len = ies[pos + 1];
1547
1548 pos += 2 + len;
1549
1550 /* the IE itself must have 255 bytes for fragments to follow */
1551 if (len < 255)
1552 return pos;
1553
1554 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1555 len = ies[pos + 1];
1556 pos += 2 + len;
1557 }
1558
1559 return pos;
1560 }
1561
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1562 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1563 const u8 *ids, int n_ids,
1564 const u8 *after_ric, int n_after_ric,
1565 size_t offset)
1566 {
1567 size_t pos = offset;
1568
1569 while (pos < ielen) {
1570 u8 ext = 0;
1571
1572 if (ies[pos] == WLAN_EID_EXTENSION)
1573 ext = 2;
1574 if ((pos + ext) >= ielen)
1575 break;
1576
1577 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1578 ies[pos] == WLAN_EID_EXTENSION))
1579 break;
1580
1581 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1582 pos = skip_ie(ies, ielen, pos);
1583
1584 while (pos < ielen) {
1585 if (ies[pos] == WLAN_EID_EXTENSION)
1586 ext = 2;
1587 else
1588 ext = 0;
1589
1590 if ((pos + ext) >= ielen)
1591 break;
1592
1593 if (!ieee80211_id_in_list(after_ric,
1594 n_after_ric,
1595 ies[pos + ext],
1596 ext == 2))
1597 pos = skip_ie(ies, ielen, pos);
1598 else
1599 break;
1600 }
1601 } else {
1602 pos = skip_ie(ies, ielen, pos);
1603 }
1604 }
1605
1606 return pos;
1607 }
1608 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1609
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1610 bool ieee80211_operating_class_to_band(u8 operating_class,
1611 enum nl80211_band *band)
1612 {
1613 switch (operating_class) {
1614 case 112:
1615 case 115 ... 127:
1616 case 128 ... 130:
1617 *band = NL80211_BAND_5GHZ;
1618 return true;
1619 case 131 ... 135:
1620 *band = NL80211_BAND_6GHZ;
1621 return true;
1622 case 81:
1623 case 82:
1624 case 83:
1625 case 84:
1626 *band = NL80211_BAND_2GHZ;
1627 return true;
1628 case 180:
1629 *band = NL80211_BAND_60GHZ;
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1636
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1637 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1638 u8 *op_class)
1639 {
1640 u8 vht_opclass;
1641 u32 freq = chandef->center_freq1;
1642
1643 if (freq >= 2412 && freq <= 2472) {
1644 if (chandef->width > NL80211_CHAN_WIDTH_40)
1645 return false;
1646
1647 /* 2.407 GHz, channels 1..13 */
1648 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1649 if (freq > chandef->chan->center_freq)
1650 *op_class = 83; /* HT40+ */
1651 else
1652 *op_class = 84; /* HT40- */
1653 } else {
1654 *op_class = 81;
1655 }
1656
1657 return true;
1658 }
1659
1660 if (freq == 2484) {
1661 /* channel 14 is only for IEEE 802.11b */
1662 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1663 return false;
1664
1665 *op_class = 82; /* channel 14 */
1666 return true;
1667 }
1668
1669 switch (chandef->width) {
1670 case NL80211_CHAN_WIDTH_80:
1671 vht_opclass = 128;
1672 break;
1673 case NL80211_CHAN_WIDTH_160:
1674 vht_opclass = 129;
1675 break;
1676 case NL80211_CHAN_WIDTH_80P80:
1677 vht_opclass = 130;
1678 break;
1679 case NL80211_CHAN_WIDTH_10:
1680 case NL80211_CHAN_WIDTH_5:
1681 return false; /* unsupported for now */
1682 default:
1683 vht_opclass = 0;
1684 break;
1685 }
1686
1687 /* 5 GHz, channels 36..48 */
1688 if (freq >= 5180 && freq <= 5240) {
1689 if (vht_opclass) {
1690 *op_class = vht_opclass;
1691 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1692 if (freq > chandef->chan->center_freq)
1693 *op_class = 116;
1694 else
1695 *op_class = 117;
1696 } else {
1697 *op_class = 115;
1698 }
1699
1700 return true;
1701 }
1702
1703 /* 5 GHz, channels 52..64 */
1704 if (freq >= 5260 && freq <= 5320) {
1705 if (vht_opclass) {
1706 *op_class = vht_opclass;
1707 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1708 if (freq > chandef->chan->center_freq)
1709 *op_class = 119;
1710 else
1711 *op_class = 120;
1712 } else {
1713 *op_class = 118;
1714 }
1715
1716 return true;
1717 }
1718
1719 /* 5 GHz, channels 100..144 */
1720 if (freq >= 5500 && freq <= 5720) {
1721 if (vht_opclass) {
1722 *op_class = vht_opclass;
1723 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1724 if (freq > chandef->chan->center_freq)
1725 *op_class = 122;
1726 else
1727 *op_class = 123;
1728 } else {
1729 *op_class = 121;
1730 }
1731
1732 return true;
1733 }
1734
1735 /* 5 GHz, channels 149..169 */
1736 if (freq >= 5745 && freq <= 5845) {
1737 if (vht_opclass) {
1738 *op_class = vht_opclass;
1739 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1740 if (freq > chandef->chan->center_freq)
1741 *op_class = 126;
1742 else
1743 *op_class = 127;
1744 } else if (freq <= 5805) {
1745 *op_class = 124;
1746 } else {
1747 *op_class = 125;
1748 }
1749
1750 return true;
1751 }
1752
1753 /* 56.16 GHz, channel 1..4 */
1754 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1755 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1756 return false;
1757
1758 *op_class = 180;
1759 return true;
1760 }
1761
1762 /* not supported yet */
1763 return false;
1764 }
1765 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1766
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1767 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1768 u32 *beacon_int_gcd,
1769 bool *beacon_int_different)
1770 {
1771 struct wireless_dev *wdev;
1772
1773 *beacon_int_gcd = 0;
1774 *beacon_int_different = false;
1775
1776 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1777 if (!wdev->beacon_interval)
1778 continue;
1779
1780 if (!*beacon_int_gcd) {
1781 *beacon_int_gcd = wdev->beacon_interval;
1782 continue;
1783 }
1784
1785 if (wdev->beacon_interval == *beacon_int_gcd)
1786 continue;
1787
1788 *beacon_int_different = true;
1789 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1790 }
1791
1792 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1793 if (*beacon_int_gcd)
1794 *beacon_int_different = true;
1795 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1796 }
1797 }
1798
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1799 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1800 enum nl80211_iftype iftype, u32 beacon_int)
1801 {
1802 /*
1803 * This is just a basic pre-condition check; if interface combinations
1804 * are possible the driver must already be checking those with a call
1805 * to cfg80211_check_combinations(), in which case we'll validate more
1806 * through the cfg80211_calculate_bi_data() call and code in
1807 * cfg80211_iter_combinations().
1808 */
1809
1810 if (beacon_int < 10 || beacon_int > 10000)
1811 return -EINVAL;
1812
1813 return 0;
1814 }
1815
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1816 int cfg80211_iter_combinations(struct wiphy *wiphy,
1817 struct iface_combination_params *params,
1818 void (*iter)(const struct ieee80211_iface_combination *c,
1819 void *data),
1820 void *data)
1821 {
1822 const struct ieee80211_regdomain *regdom;
1823 enum nl80211_dfs_regions region = 0;
1824 int i, j, iftype;
1825 int num_interfaces = 0;
1826 u32 used_iftypes = 0;
1827 u32 beacon_int_gcd;
1828 bool beacon_int_different;
1829
1830 /*
1831 * This is a bit strange, since the iteration used to rely only on
1832 * the data given by the driver, but here it now relies on context,
1833 * in form of the currently operating interfaces.
1834 * This is OK for all current users, and saves us from having to
1835 * push the GCD calculations into all the drivers.
1836 * In the future, this should probably rely more on data that's in
1837 * cfg80211 already - the only thing not would appear to be any new
1838 * interfaces (while being brought up) and channel/radar data.
1839 */
1840 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1841 &beacon_int_gcd, &beacon_int_different);
1842
1843 if (params->radar_detect) {
1844 rcu_read_lock();
1845 regdom = rcu_dereference(cfg80211_regdomain);
1846 if (regdom)
1847 region = regdom->dfs_region;
1848 rcu_read_unlock();
1849 }
1850
1851 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1852 num_interfaces += params->iftype_num[iftype];
1853 if (params->iftype_num[iftype] > 0 &&
1854 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1855 used_iftypes |= BIT(iftype);
1856 }
1857
1858 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1859 const struct ieee80211_iface_combination *c;
1860 struct ieee80211_iface_limit *limits;
1861 u32 all_iftypes = 0;
1862
1863 c = &wiphy->iface_combinations[i];
1864
1865 if (num_interfaces > c->max_interfaces)
1866 continue;
1867 if (params->num_different_channels > c->num_different_channels)
1868 continue;
1869
1870 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1871 GFP_KERNEL);
1872 if (!limits)
1873 return -ENOMEM;
1874
1875 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1876 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1877 continue;
1878 for (j = 0; j < c->n_limits; j++) {
1879 all_iftypes |= limits[j].types;
1880 if (!(limits[j].types & BIT(iftype)))
1881 continue;
1882 if (limits[j].max < params->iftype_num[iftype])
1883 goto cont;
1884 limits[j].max -= params->iftype_num[iftype];
1885 }
1886 }
1887
1888 if (params->radar_detect !=
1889 (c->radar_detect_widths & params->radar_detect))
1890 goto cont;
1891
1892 if (params->radar_detect && c->radar_detect_regions &&
1893 !(c->radar_detect_regions & BIT(region)))
1894 goto cont;
1895
1896 /* Finally check that all iftypes that we're currently
1897 * using are actually part of this combination. If they
1898 * aren't then we can't use this combination and have
1899 * to continue to the next.
1900 */
1901 if ((all_iftypes & used_iftypes) != used_iftypes)
1902 goto cont;
1903
1904 if (beacon_int_gcd) {
1905 if (c->beacon_int_min_gcd &&
1906 beacon_int_gcd < c->beacon_int_min_gcd)
1907 goto cont;
1908 if (!c->beacon_int_min_gcd && beacon_int_different)
1909 goto cont;
1910 }
1911
1912 /* This combination covered all interface types and
1913 * supported the requested numbers, so we're good.
1914 */
1915
1916 (*iter)(c, data);
1917 cont:
1918 kfree(limits);
1919 }
1920
1921 return 0;
1922 }
1923 EXPORT_SYMBOL(cfg80211_iter_combinations);
1924
1925 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1926 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1927 void *data)
1928 {
1929 int *num = data;
1930 (*num)++;
1931 }
1932
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1933 int cfg80211_check_combinations(struct wiphy *wiphy,
1934 struct iface_combination_params *params)
1935 {
1936 int err, num = 0;
1937
1938 err = cfg80211_iter_combinations(wiphy, params,
1939 cfg80211_iter_sum_ifcombs, &num);
1940 if (err)
1941 return err;
1942 if (num == 0)
1943 return -EBUSY;
1944
1945 return 0;
1946 }
1947 EXPORT_SYMBOL(cfg80211_check_combinations);
1948
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1949 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1950 const u8 *rates, unsigned int n_rates,
1951 u32 *mask)
1952 {
1953 int i, j;
1954
1955 if (!sband)
1956 return -EINVAL;
1957
1958 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1959 return -EINVAL;
1960
1961 *mask = 0;
1962
1963 for (i = 0; i < n_rates; i++) {
1964 int rate = (rates[i] & 0x7f) * 5;
1965 bool found = false;
1966
1967 for (j = 0; j < sband->n_bitrates; j++) {
1968 if (sband->bitrates[j].bitrate == rate) {
1969 found = true;
1970 *mask |= BIT(j);
1971 break;
1972 }
1973 }
1974 if (!found)
1975 return -EINVAL;
1976 }
1977
1978 /*
1979 * mask must have at least one bit set here since we
1980 * didn't accept a 0-length rates array nor allowed
1981 * entries in the array that didn't exist
1982 */
1983
1984 return 0;
1985 }
1986
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1987 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1988 {
1989 enum nl80211_band band;
1990 unsigned int n_channels = 0;
1991
1992 for (band = 0; band < NUM_NL80211_BANDS; band++)
1993 if (wiphy->bands[band])
1994 n_channels += wiphy->bands[band]->n_channels;
1995
1996 return n_channels;
1997 }
1998 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1999
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2000 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2001 struct station_info *sinfo)
2002 {
2003 struct cfg80211_registered_device *rdev;
2004 struct wireless_dev *wdev;
2005
2006 wdev = dev->ieee80211_ptr;
2007 if (!wdev)
2008 return -EOPNOTSUPP;
2009
2010 rdev = wiphy_to_rdev(wdev->wiphy);
2011 if (!rdev->ops->get_station)
2012 return -EOPNOTSUPP;
2013
2014 memset(sinfo, 0, sizeof(*sinfo));
2015
2016 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2017 }
2018 EXPORT_SYMBOL(cfg80211_get_station);
2019
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2020 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2021 {
2022 int i;
2023
2024 if (!f)
2025 return;
2026
2027 kfree(f->serv_spec_info);
2028 kfree(f->srf_bf);
2029 kfree(f->srf_macs);
2030 for (i = 0; i < f->num_rx_filters; i++)
2031 kfree(f->rx_filters[i].filter);
2032
2033 for (i = 0; i < f->num_tx_filters; i++)
2034 kfree(f->tx_filters[i].filter);
2035
2036 kfree(f->rx_filters);
2037 kfree(f->tx_filters);
2038 kfree(f);
2039 }
2040 EXPORT_SYMBOL(cfg80211_free_nan_func);
2041
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2042 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2043 u32 center_freq_khz, u32 bw_khz)
2044 {
2045 u32 start_freq_khz, end_freq_khz;
2046
2047 start_freq_khz = center_freq_khz - (bw_khz / 2);
2048 end_freq_khz = center_freq_khz + (bw_khz / 2);
2049
2050 if (start_freq_khz >= freq_range->start_freq_khz &&
2051 end_freq_khz <= freq_range->end_freq_khz)
2052 return true;
2053
2054 return false;
2055 }
2056
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2057 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2058 {
2059 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2060 sizeof(*(sinfo->pertid)),
2061 gfp);
2062 if (!sinfo->pertid)
2063 return -ENOMEM;
2064
2065 return 0;
2066 }
2067 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2068
2069 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2070 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2071 const unsigned char rfc1042_header[] __aligned(2) =
2072 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2073 EXPORT_SYMBOL(rfc1042_header);
2074
2075 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2076 const unsigned char bridge_tunnel_header[] __aligned(2) =
2077 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2078 EXPORT_SYMBOL(bridge_tunnel_header);
2079
2080 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2081 struct iapp_layer2_update {
2082 u8 da[ETH_ALEN]; /* broadcast */
2083 u8 sa[ETH_ALEN]; /* STA addr */
2084 __be16 len; /* 6 */
2085 u8 dsap; /* 0 */
2086 u8 ssap; /* 0 */
2087 u8 control;
2088 u8 xid_info[3];
2089 } __packed;
2090
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2091 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2092 {
2093 struct iapp_layer2_update *msg;
2094 struct sk_buff *skb;
2095
2096 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2097 * bridge devices */
2098
2099 skb = dev_alloc_skb(sizeof(*msg));
2100 if (!skb)
2101 return;
2102 msg = skb_put(skb, sizeof(*msg));
2103
2104 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2105 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2106
2107 eth_broadcast_addr(msg->da);
2108 ether_addr_copy(msg->sa, addr);
2109 msg->len = htons(6);
2110 msg->dsap = 0;
2111 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2112 msg->control = 0xaf; /* XID response lsb.1111F101.
2113 * F=0 (no poll command; unsolicited frame) */
2114 msg->xid_info[0] = 0x81; /* XID format identifier */
2115 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2116 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2117
2118 skb->dev = dev;
2119 skb->protocol = eth_type_trans(skb, dev);
2120 memset(skb->cb, 0, sizeof(skb->cb));
2121 netif_rx_ni(skb);
2122 }
2123 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2124
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2125 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2126 enum ieee80211_vht_chanwidth bw,
2127 int mcs, bool ext_nss_bw_capable,
2128 unsigned int max_vht_nss)
2129 {
2130 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2131 int ext_nss_bw;
2132 int supp_width;
2133 int i, mcs_encoding;
2134
2135 if (map == 0xffff)
2136 return 0;
2137
2138 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2139 return 0;
2140 if (mcs <= 7)
2141 mcs_encoding = 0;
2142 else if (mcs == 8)
2143 mcs_encoding = 1;
2144 else
2145 mcs_encoding = 2;
2146
2147 if (!max_vht_nss) {
2148 /* find max_vht_nss for the given MCS */
2149 for (i = 7; i >= 0; i--) {
2150 int supp = (map >> (2 * i)) & 3;
2151
2152 if (supp == 3)
2153 continue;
2154
2155 if (supp >= mcs_encoding) {
2156 max_vht_nss = i + 1;
2157 break;
2158 }
2159 }
2160 }
2161
2162 if (!(cap->supp_mcs.tx_mcs_map &
2163 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2164 return max_vht_nss;
2165
2166 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2167 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2168 supp_width = le32_get_bits(cap->vht_cap_info,
2169 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2170
2171 /* if not capable, treat ext_nss_bw as 0 */
2172 if (!ext_nss_bw_capable)
2173 ext_nss_bw = 0;
2174
2175 /* This is invalid */
2176 if (supp_width == 3)
2177 return 0;
2178
2179 /* This is an invalid combination so pretend nothing is supported */
2180 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2181 return 0;
2182
2183 /*
2184 * Cover all the special cases according to IEEE 802.11-2016
2185 * Table 9-250. All other cases are either factor of 1 or not
2186 * valid/supported.
2187 */
2188 switch (bw) {
2189 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2190 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2191 if ((supp_width == 1 || supp_width == 2) &&
2192 ext_nss_bw == 3)
2193 return 2 * max_vht_nss;
2194 break;
2195 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2196 if (supp_width == 0 &&
2197 (ext_nss_bw == 1 || ext_nss_bw == 2))
2198 return max_vht_nss / 2;
2199 if (supp_width == 0 &&
2200 ext_nss_bw == 3)
2201 return (3 * max_vht_nss) / 4;
2202 if (supp_width == 1 &&
2203 ext_nss_bw == 3)
2204 return 2 * max_vht_nss;
2205 break;
2206 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2207 if (supp_width == 0 && ext_nss_bw == 1)
2208 return 0; /* not possible */
2209 if (supp_width == 0 &&
2210 ext_nss_bw == 2)
2211 return max_vht_nss / 2;
2212 if (supp_width == 0 &&
2213 ext_nss_bw == 3)
2214 return (3 * max_vht_nss) / 4;
2215 if (supp_width == 1 &&
2216 ext_nss_bw == 0)
2217 return 0; /* not possible */
2218 if (supp_width == 1 &&
2219 ext_nss_bw == 1)
2220 return max_vht_nss / 2;
2221 if (supp_width == 1 &&
2222 ext_nss_bw == 2)
2223 return (3 * max_vht_nss) / 4;
2224 break;
2225 }
2226
2227 /* not covered or invalid combination received */
2228 return max_vht_nss;
2229 }
2230 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2231
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2232 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2233 bool is_4addr, u8 check_swif)
2234
2235 {
2236 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2237
2238 switch (check_swif) {
2239 case 0:
2240 if (is_vlan && is_4addr)
2241 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2242 return wiphy->interface_modes & BIT(iftype);
2243 case 1:
2244 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2245 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2246 return wiphy->software_iftypes & BIT(iftype);
2247 default:
2248 break;
2249 }
2250
2251 return false;
2252 }
2253 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2254