• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static struct discard_policy dpolicys[MAX_DPOLICY] = {
34 	{DPOLICY_BG, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
35 		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
36 		{{1, 0}, {0, 0}, {0, 0}}},
37 	{DPOLICY_BALANCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
38 		MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_BL,
39 		{{1, 0}, {2, 50}, {0, 0}}},
40 	{DPOLICY_FORCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
41 		MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_FORCE,
42 		{{1, 0}, {2, 50}, {4, 2000}}},
43 	{DPOLICY_FSTRIM, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
44 		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_FORCE,
45 		{{8, 0}, {8, 0}, {8, 0}}},
46 	{DPOLICY_UMOUNT, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
47 		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
48 		{{UINT_MAX, 0}, {0, 0}, {0, 0}}}
49 };
50 
__reverse_ulong(unsigned char * str)51 static unsigned long __reverse_ulong(unsigned char *str)
52 {
53 	unsigned long tmp = 0;
54 	int shift = 24, idx = 0;
55 
56 #if BITS_PER_LONG == 64
57 	shift = 56;
58 #endif
59 	while (shift >= 0) {
60 		tmp |= (unsigned long)str[idx++] << shift;
61 		shift -= BITS_PER_BYTE;
62 	}
63 	return tmp;
64 }
65 
66 /*
67  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
68  * MSB and LSB are reversed in a byte by f2fs_set_bit.
69  */
__reverse_ffs(unsigned long word)70 static inline unsigned long __reverse_ffs(unsigned long word)
71 {
72 	int num = 0;
73 
74 #if BITS_PER_LONG == 64
75 	if ((word & 0xffffffff00000000UL) == 0)
76 		num += 32;
77 	else
78 		word >>= 32;
79 #endif
80 	if ((word & 0xffff0000) == 0)
81 		num += 16;
82 	else
83 		word >>= 16;
84 
85 	if ((word & 0xff00) == 0)
86 		num += 8;
87 	else
88 		word >>= 8;
89 
90 	if ((word & 0xf0) == 0)
91 		num += 4;
92 	else
93 		word >>= 4;
94 
95 	if ((word & 0xc) == 0)
96 		num += 2;
97 	else
98 		word >>= 2;
99 
100 	if ((word & 0x2) == 0)
101 		num += 1;
102 	return num;
103 }
104 
105 /*
106  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
107  * f2fs_set_bit makes MSB and LSB reversed in a byte.
108  * @size must be integral times of unsigned long.
109  * Example:
110  *                             MSB <--> LSB
111  *   f2fs_set_bit(0, bitmap) => 1000 0000
112  *   f2fs_set_bit(7, bitmap) => 0000 0001
113  */
find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)114 unsigned long find_rev_next_bit(const unsigned long *addr,
115 			unsigned long size, unsigned long offset)
116 {
117 	const unsigned long *p = addr + BIT_WORD(offset);
118 	unsigned long result = size;
119 	unsigned long tmp;
120 
121 	if (offset >= size)
122 		return size;
123 
124 	size -= (offset & ~(BITS_PER_LONG - 1));
125 	offset %= BITS_PER_LONG;
126 
127 	while (1) {
128 		if (*p == 0)
129 			goto pass;
130 
131 		tmp = __reverse_ulong((unsigned char *)p);
132 
133 		tmp &= ~0UL >> offset;
134 		if (size < BITS_PER_LONG)
135 			tmp &= (~0UL << (BITS_PER_LONG - size));
136 		if (tmp)
137 			goto found;
138 pass:
139 		if (size <= BITS_PER_LONG)
140 			break;
141 		size -= BITS_PER_LONG;
142 		offset = 0;
143 		p++;
144 	}
145 	return result;
146 found:
147 	return result - size + __reverse_ffs(tmp);
148 }
149 
find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)150 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
151 			unsigned long size, unsigned long offset)
152 {
153 	const unsigned long *p = addr + BIT_WORD(offset);
154 	unsigned long result = size;
155 	unsigned long tmp;
156 
157 	if (offset >= size)
158 		return size;
159 
160 	size -= (offset & ~(BITS_PER_LONG - 1));
161 	offset %= BITS_PER_LONG;
162 
163 	while (1) {
164 		if (*p == ~0UL)
165 			goto pass;
166 
167 		tmp = __reverse_ulong((unsigned char *)p);
168 
169 		if (offset)
170 			tmp |= ~0UL << (BITS_PER_LONG - offset);
171 		if (size < BITS_PER_LONG)
172 			tmp |= ~0UL >> size;
173 		if (tmp != ~0UL)
174 			goto found;
175 pass:
176 		if (size <= BITS_PER_LONG)
177 			break;
178 		size -= BITS_PER_LONG;
179 		offset = 0;
180 		p++;
181 	}
182 	return result;
183 found:
184 	return result - size + __reverse_ffz(tmp);
185 }
186 
f2fs_need_SSR(struct f2fs_sb_info * sbi)187 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
188 {
189 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
190 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
191 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
192 
193 	if (f2fs_lfs_mode(sbi))
194 		return false;
195 	if (sbi->gc_mode == GC_URGENT_HIGH)
196 		return true;
197 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
198 		return true;
199 
200 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
201 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
202 }
203 
204 #ifdef CONFIG_F2FS_GRADING_SSR
need_ssr_by_type(struct f2fs_sb_info * sbi,int type,int contig_level)205 static bool need_ssr_by_type(struct f2fs_sb_info *sbi, int type, int contig_level)
206 {
207 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
208 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
209 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
210 	u64 valid_blocks = sbi->total_valid_block_count;
211 	u64 total_blocks = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
212 	u64 left_space = (total_blocks - valid_blocks) << 2;
213 	unsigned int free_segs = free_segments(sbi);
214 	unsigned int ovp_segments = overprovision_segments(sbi);
215 	unsigned int lower_limit = 0;
216 	unsigned int waterline = 0;
217 	int dirty_sum = node_secs + 2 * dent_secs + imeta_secs;
218 
219 	if (sbi->hot_cold_params.enable == GRADING_SSR_OFF)
220 		return f2fs_need_SSR(sbi);
221 	if (f2fs_lfs_mode(sbi))
222 		return false;
223 	if (sbi->gc_mode == GC_URGENT_HIGH)
224 		return true;
225 	if (contig_level == SEQ_256BLKS && type == CURSEG_WARM_DATA &&
226 	    free_sections(sbi) > dirty_sum + 3 * reserved_sections(sbi) / 2)
227 		return false;
228 	if (free_sections(sbi) <= (unsigned int)(dirty_sum + 2 * reserved_sections(sbi)))
229 		return true;
230 	if (contig_level >= SEQ_32BLKS || total_blocks <= SSR_MIN_BLKS_LIMIT)
231 		return false;
232 
233 	left_space -= ovp_segments * KBS_PER_SEGMENT;
234 	if (unlikely(left_space == 0))
235 		return false;
236 
237 	switch (type) {
238 	case CURSEG_HOT_DATA:
239 		lower_limit = sbi->hot_cold_params.hot_data_lower_limit;
240 		waterline = sbi->hot_cold_params.hot_data_waterline;
241 		break;
242 	case CURSEG_WARM_DATA:
243 		lower_limit = sbi->hot_cold_params.warm_data_lower_limit;
244 		waterline = sbi->hot_cold_params.warm_data_waterline;
245 		break;
246 	case CURSEG_HOT_NODE:
247 		lower_limit = sbi->hot_cold_params.hot_node_lower_limit;
248 		waterline = sbi->hot_cold_params.hot_node_waterline;
249 		break;
250 	case CURSEG_WARM_NODE:
251 		lower_limit = sbi->hot_cold_params.warm_node_lower_limit;
252 		waterline = sbi->hot_cold_params.warm_node_waterline;
253 		break;
254 	default:
255 		return false;
256 	}
257 
258 	if (left_space > lower_limit)
259 		return false;
260 
261 	if (div_u64((free_segs - ovp_segments) * 100, (left_space / KBS_PER_SEGMENT))
262 									<= waterline) {
263 		trace_f2fs_grading_ssr_allocate(
264 			(le64_to_cpu(sbi->raw_super->block_count) - sbi->total_valid_block_count),
265 			free_segments(sbi), contig_level);
266 		return true;
267 	} else {
268 		return false;
269 	}
270 }
271 #endif
272 
f2fs_register_inmem_page(struct inode * inode,struct page * page)273 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
274 {
275 	struct inmem_pages *new;
276 
277 	f2fs_trace_pid(page);
278 
279 	f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
280 
281 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
282 
283 	/* add atomic page indices to the list */
284 	new->page = page;
285 	INIT_LIST_HEAD(&new->list);
286 
287 	/* increase reference count with clean state */
288 	get_page(page);
289 	mutex_lock(&F2FS_I(inode)->inmem_lock);
290 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
291 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
292 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
293 
294 	trace_f2fs_register_inmem_page(page, INMEM);
295 }
296 
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)297 static int __revoke_inmem_pages(struct inode *inode,
298 				struct list_head *head, bool drop, bool recover,
299 				bool trylock)
300 {
301 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
302 	struct inmem_pages *cur, *tmp;
303 	int err = 0;
304 
305 	list_for_each_entry_safe(cur, tmp, head, list) {
306 		struct page *page = cur->page;
307 
308 		if (drop)
309 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
310 
311 		if (trylock) {
312 			/*
313 			 * to avoid deadlock in between page lock and
314 			 * inmem_lock.
315 			 */
316 			if (!trylock_page(page))
317 				continue;
318 		} else {
319 			lock_page(page);
320 		}
321 
322 		f2fs_wait_on_page_writeback(page, DATA, true, true);
323 
324 		if (recover) {
325 			struct dnode_of_data dn;
326 			struct node_info ni;
327 
328 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
329 retry:
330 			set_new_dnode(&dn, inode, NULL, NULL, 0);
331 			err = f2fs_get_dnode_of_data(&dn, page->index,
332 								LOOKUP_NODE);
333 			if (err) {
334 				if (err == -ENOMEM) {
335 					congestion_wait(BLK_RW_ASYNC,
336 							DEFAULT_IO_TIMEOUT);
337 					cond_resched();
338 					goto retry;
339 				}
340 				err = -EAGAIN;
341 				goto next;
342 			}
343 
344 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
345 			if (err) {
346 				f2fs_put_dnode(&dn);
347 				return err;
348 			}
349 
350 			if (cur->old_addr == NEW_ADDR) {
351 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
352 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
353 			} else
354 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
355 					cur->old_addr, ni.version, true, true);
356 			f2fs_put_dnode(&dn);
357 		}
358 next:
359 		/* we don't need to invalidate this in the sccessful status */
360 		if (drop || recover) {
361 			ClearPageUptodate(page);
362 			clear_cold_data(page);
363 		}
364 		f2fs_clear_page_private(page);
365 		f2fs_put_page(page, 1);
366 
367 		list_del(&cur->list);
368 		kmem_cache_free(inmem_entry_slab, cur);
369 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
370 	}
371 	return err;
372 }
373 
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)374 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
375 {
376 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
377 	struct inode *inode;
378 	struct f2fs_inode_info *fi;
379 	unsigned int count = sbi->atomic_files;
380 	unsigned int looped = 0;
381 next:
382 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
383 	if (list_empty(head)) {
384 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
385 		return;
386 	}
387 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
388 	inode = igrab(&fi->vfs_inode);
389 	if (inode)
390 		list_move_tail(&fi->inmem_ilist, head);
391 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
392 
393 	if (inode) {
394 		if (gc_failure) {
395 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
396 				goto skip;
397 		}
398 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
399 		f2fs_drop_inmem_pages(inode);
400 skip:
401 		iput(inode);
402 	}
403 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
404 	cond_resched();
405 	if (gc_failure) {
406 		if (++looped >= count)
407 			return;
408 	}
409 	goto next;
410 }
411 
f2fs_drop_inmem_pages(struct inode * inode)412 void f2fs_drop_inmem_pages(struct inode *inode)
413 {
414 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415 	struct f2fs_inode_info *fi = F2FS_I(inode);
416 
417 	do {
418 		mutex_lock(&fi->inmem_lock);
419 		if (list_empty(&fi->inmem_pages)) {
420 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
421 
422 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
423 			if (!list_empty(&fi->inmem_ilist))
424 				list_del_init(&fi->inmem_ilist);
425 			if (f2fs_is_atomic_file(inode)) {
426 				clear_inode_flag(inode, FI_ATOMIC_FILE);
427 				sbi->atomic_files--;
428 			}
429 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
430 
431 			mutex_unlock(&fi->inmem_lock);
432 			break;
433 		}
434 		__revoke_inmem_pages(inode, &fi->inmem_pages,
435 						true, false, true);
436 		mutex_unlock(&fi->inmem_lock);
437 	} while (1);
438 }
439 
f2fs_drop_inmem_page(struct inode * inode,struct page * page)440 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
441 {
442 	struct f2fs_inode_info *fi = F2FS_I(inode);
443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
444 	struct list_head *head = &fi->inmem_pages;
445 	struct inmem_pages *cur = NULL;
446 
447 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
448 
449 	mutex_lock(&fi->inmem_lock);
450 	list_for_each_entry(cur, head, list) {
451 		if (cur->page == page)
452 			break;
453 	}
454 
455 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
456 	list_del(&cur->list);
457 	mutex_unlock(&fi->inmem_lock);
458 
459 	dec_page_count(sbi, F2FS_INMEM_PAGES);
460 	kmem_cache_free(inmem_entry_slab, cur);
461 
462 	ClearPageUptodate(page);
463 	f2fs_clear_page_private(page);
464 	f2fs_put_page(page, 0);
465 
466 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
467 }
468 
__f2fs_commit_inmem_pages(struct inode * inode)469 static int __f2fs_commit_inmem_pages(struct inode *inode)
470 {
471 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
472 	struct f2fs_inode_info *fi = F2FS_I(inode);
473 	struct inmem_pages *cur, *tmp;
474 	struct f2fs_io_info fio = {
475 		.sbi = sbi,
476 		.ino = inode->i_ino,
477 		.type = DATA,
478 		.op = REQ_OP_WRITE,
479 		.op_flags = REQ_SYNC | REQ_PRIO,
480 		.io_type = FS_DATA_IO,
481 	};
482 	struct list_head revoke_list;
483 	bool submit_bio = false;
484 	int err = 0;
485 
486 	INIT_LIST_HEAD(&revoke_list);
487 
488 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
489 		struct page *page = cur->page;
490 
491 		lock_page(page);
492 		if (page->mapping == inode->i_mapping) {
493 			trace_f2fs_commit_inmem_page(page, INMEM);
494 
495 			f2fs_wait_on_page_writeback(page, DATA, true, true);
496 
497 			set_page_dirty(page);
498 			if (clear_page_dirty_for_io(page)) {
499 				inode_dec_dirty_pages(inode);
500 				f2fs_remove_dirty_inode(inode);
501 			}
502 retry:
503 			fio.page = page;
504 			fio.old_blkaddr = NULL_ADDR;
505 			fio.encrypted_page = NULL;
506 			fio.need_lock = LOCK_DONE;
507 			err = f2fs_do_write_data_page(&fio);
508 			if (err) {
509 				if (err == -ENOMEM) {
510 					congestion_wait(BLK_RW_ASYNC,
511 							DEFAULT_IO_TIMEOUT);
512 					cond_resched();
513 					goto retry;
514 				}
515 				unlock_page(page);
516 				break;
517 			}
518 			/* record old blkaddr for revoking */
519 			cur->old_addr = fio.old_blkaddr;
520 			submit_bio = true;
521 		}
522 		unlock_page(page);
523 		list_move_tail(&cur->list, &revoke_list);
524 	}
525 
526 	if (submit_bio)
527 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
528 
529 	if (err) {
530 		/*
531 		 * try to revoke all committed pages, but still we could fail
532 		 * due to no memory or other reason, if that happened, EAGAIN
533 		 * will be returned, which means in such case, transaction is
534 		 * already not integrity, caller should use journal to do the
535 		 * recovery or rewrite & commit last transaction. For other
536 		 * error number, revoking was done by filesystem itself.
537 		 */
538 		err = __revoke_inmem_pages(inode, &revoke_list,
539 						false, true, false);
540 
541 		/* drop all uncommitted pages */
542 		__revoke_inmem_pages(inode, &fi->inmem_pages,
543 						true, false, false);
544 	} else {
545 		__revoke_inmem_pages(inode, &revoke_list,
546 						false, false, false);
547 	}
548 
549 	return err;
550 }
551 
f2fs_commit_inmem_pages(struct inode * inode)552 int f2fs_commit_inmem_pages(struct inode *inode)
553 {
554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555 	struct f2fs_inode_info *fi = F2FS_I(inode);
556 	int err;
557 
558 	f2fs_balance_fs(sbi, true);
559 
560 	down_write(&fi->i_gc_rwsem[WRITE]);
561 
562 	f2fs_lock_op(sbi);
563 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
564 
565 	mutex_lock(&fi->inmem_lock);
566 	err = __f2fs_commit_inmem_pages(inode);
567 	mutex_unlock(&fi->inmem_lock);
568 
569 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
570 
571 	f2fs_unlock_op(sbi);
572 	up_write(&fi->i_gc_rwsem[WRITE]);
573 
574 	return err;
575 }
576 
577 /*
578  * This function balances dirty node and dentry pages.
579  * In addition, it controls garbage collection.
580  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)581 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
582 {
583 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
584 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
585 		f2fs_stop_checkpoint(sbi, false);
586 	}
587 
588 	/* balance_fs_bg is able to be pending */
589 	if (need && excess_cached_nats(sbi))
590 		f2fs_balance_fs_bg(sbi, false);
591 
592 	if (!f2fs_is_checkpoint_ready(sbi))
593 		return;
594 
595 	/*
596 	 * We should do GC or end up with checkpoint, if there are so many dirty
597 	 * dir/node pages without enough free segments.
598 	 */
599 	if (has_not_enough_free_secs(sbi, 0, 0)) {
600 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
601 					sbi->gc_thread->f2fs_gc_task) {
602 			DEFINE_WAIT(wait);
603 
604 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
605 						TASK_UNINTERRUPTIBLE);
606 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
607 			io_schedule();
608 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
609 		} else {
610 			down_write(&sbi->gc_lock);
611 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
612 		}
613 	}
614 }
615 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)616 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
617 {
618 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
619 		return;
620 
621 	/* try to shrink extent cache when there is no enough memory */
622 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
623 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
624 
625 	/* check the # of cached NAT entries */
626 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
627 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
628 
629 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
630 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
631 	else
632 		f2fs_build_free_nids(sbi, false, false);
633 
634 	if (!is_idle(sbi, REQ_TIME) &&
635 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
636 		return;
637 
638 	/* checkpoint is the only way to shrink partial cached entries */
639 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
640 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
641 			excess_prefree_segs(sbi) ||
642 			excess_dirty_nats(sbi) ||
643 			excess_dirty_nodes(sbi) ||
644 			f2fs_time_over(sbi, CP_TIME)) {
645 		if (test_opt(sbi, DATA_FLUSH) && from_bg) {
646 			struct blk_plug plug;
647 
648 			mutex_lock(&sbi->flush_lock);
649 
650 			blk_start_plug(&plug);
651 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
652 			blk_finish_plug(&plug);
653 
654 			mutex_unlock(&sbi->flush_lock);
655 		}
656 		f2fs_sync_fs(sbi->sb, true);
657 		stat_inc_bg_cp_count(sbi->stat_info);
658 	}
659 }
660 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)661 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
662 				struct block_device *bdev)
663 {
664 	struct bio *bio;
665 	int ret;
666 
667 	bio = f2fs_bio_alloc(sbi, 0, false);
668 	if (!bio)
669 		return -ENOMEM;
670 
671 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
672 	bio_set_dev(bio, bdev);
673 	ret = submit_bio_wait(bio);
674 	bio_put(bio);
675 
676 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
677 				test_opt(sbi, FLUSH_MERGE), ret);
678 	return ret;
679 }
680 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)681 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
682 {
683 	int ret = 0;
684 	int i;
685 
686 	if (!f2fs_is_multi_device(sbi))
687 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
688 
689 	for (i = 0; i < sbi->s_ndevs; i++) {
690 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
691 			continue;
692 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
693 		if (ret)
694 			break;
695 	}
696 	return ret;
697 }
698 
issue_flush_thread(void * data)699 static int issue_flush_thread(void *data)
700 {
701 	struct f2fs_sb_info *sbi = data;
702 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
703 	wait_queue_head_t *q = &fcc->flush_wait_queue;
704 repeat:
705 	if (kthread_should_stop())
706 		return 0;
707 
708 	sb_start_intwrite(sbi->sb);
709 
710 	if (!llist_empty(&fcc->issue_list)) {
711 		struct flush_cmd *cmd, *next;
712 		int ret;
713 
714 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
715 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
716 
717 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
718 
719 		ret = submit_flush_wait(sbi, cmd->ino);
720 		atomic_inc(&fcc->issued_flush);
721 
722 		llist_for_each_entry_safe(cmd, next,
723 					  fcc->dispatch_list, llnode) {
724 			cmd->ret = ret;
725 			complete(&cmd->wait);
726 		}
727 		fcc->dispatch_list = NULL;
728 	}
729 
730 	sb_end_intwrite(sbi->sb);
731 
732 	wait_event_interruptible(*q,
733 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
734 	goto repeat;
735 }
736 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)737 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
738 {
739 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
740 	struct flush_cmd cmd;
741 	int ret;
742 
743 	if (test_opt(sbi, NOBARRIER))
744 		return 0;
745 
746 	if (!test_opt(sbi, FLUSH_MERGE)) {
747 		atomic_inc(&fcc->queued_flush);
748 		ret = submit_flush_wait(sbi, ino);
749 		atomic_dec(&fcc->queued_flush);
750 		atomic_inc(&fcc->issued_flush);
751 		return ret;
752 	}
753 
754 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
755 	    f2fs_is_multi_device(sbi)) {
756 		ret = submit_flush_wait(sbi, ino);
757 		atomic_dec(&fcc->queued_flush);
758 
759 		atomic_inc(&fcc->issued_flush);
760 		return ret;
761 	}
762 
763 	cmd.ino = ino;
764 	init_completion(&cmd.wait);
765 
766 	llist_add(&cmd.llnode, &fcc->issue_list);
767 
768 	/* update issue_list before we wake up issue_flush thread */
769 	smp_mb();
770 
771 	if (waitqueue_active(&fcc->flush_wait_queue))
772 		wake_up(&fcc->flush_wait_queue);
773 
774 	if (fcc->f2fs_issue_flush) {
775 		wait_for_completion(&cmd.wait);
776 		atomic_dec(&fcc->queued_flush);
777 	} else {
778 		struct llist_node *list;
779 
780 		list = llist_del_all(&fcc->issue_list);
781 		if (!list) {
782 			wait_for_completion(&cmd.wait);
783 			atomic_dec(&fcc->queued_flush);
784 		} else {
785 			struct flush_cmd *tmp, *next;
786 
787 			ret = submit_flush_wait(sbi, ino);
788 
789 			llist_for_each_entry_safe(tmp, next, list, llnode) {
790 				if (tmp == &cmd) {
791 					cmd.ret = ret;
792 					atomic_dec(&fcc->queued_flush);
793 					continue;
794 				}
795 				tmp->ret = ret;
796 				complete(&tmp->wait);
797 			}
798 		}
799 	}
800 
801 	return cmd.ret;
802 }
803 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)804 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
805 {
806 	dev_t dev = sbi->sb->s_bdev->bd_dev;
807 	struct flush_cmd_control *fcc;
808 	int err = 0;
809 
810 	if (SM_I(sbi)->fcc_info) {
811 		fcc = SM_I(sbi)->fcc_info;
812 		if (fcc->f2fs_issue_flush)
813 			return err;
814 		goto init_thread;
815 	}
816 
817 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
818 	if (!fcc)
819 		return -ENOMEM;
820 	atomic_set(&fcc->issued_flush, 0);
821 	atomic_set(&fcc->queued_flush, 0);
822 	init_waitqueue_head(&fcc->flush_wait_queue);
823 	init_llist_head(&fcc->issue_list);
824 	SM_I(sbi)->fcc_info = fcc;
825 	if (!test_opt(sbi, FLUSH_MERGE))
826 		return err;
827 
828 init_thread:
829 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
830 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
831 	if (IS_ERR(fcc->f2fs_issue_flush)) {
832 		err = PTR_ERR(fcc->f2fs_issue_flush);
833 		kfree(fcc);
834 		SM_I(sbi)->fcc_info = NULL;
835 		return err;
836 	}
837 
838 	return err;
839 }
840 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)841 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
842 {
843 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
844 
845 	if (fcc && fcc->f2fs_issue_flush) {
846 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
847 
848 		fcc->f2fs_issue_flush = NULL;
849 		kthread_stop(flush_thread);
850 	}
851 	if (free) {
852 		kfree(fcc);
853 		SM_I(sbi)->fcc_info = NULL;
854 	}
855 }
856 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)857 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
858 {
859 	int ret = 0, i;
860 
861 	if (!f2fs_is_multi_device(sbi))
862 		return 0;
863 
864 	if (test_opt(sbi, NOBARRIER))
865 		return 0;
866 
867 	for (i = 1; i < sbi->s_ndevs; i++) {
868 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
869 			continue;
870 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
871 		if (ret)
872 			break;
873 
874 		spin_lock(&sbi->dev_lock);
875 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
876 		spin_unlock(&sbi->dev_lock);
877 	}
878 
879 	return ret;
880 }
881 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)882 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
883 		enum dirty_type dirty_type)
884 {
885 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
886 
887 	/* need not be added */
888 	if (IS_CURSEG(sbi, segno))
889 		return;
890 
891 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
892 		dirty_i->nr_dirty[dirty_type]++;
893 
894 	if (dirty_type == DIRTY) {
895 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
896 		enum dirty_type t = sentry->type;
897 
898 		if (unlikely(t >= DIRTY)) {
899 			f2fs_bug_on(sbi, 1);
900 			return;
901 		}
902 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
903 			dirty_i->nr_dirty[t]++;
904 
905 		if (__is_large_section(sbi)) {
906 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
907 			block_t valid_blocks =
908 				get_valid_blocks(sbi, segno, true);
909 
910 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
911 					valid_blocks == BLKS_PER_SEC(sbi)));
912 
913 			if (!IS_CURSEC(sbi, secno))
914 				set_bit(secno, dirty_i->dirty_secmap);
915 		}
916 	}
917 }
918 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)919 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
920 		enum dirty_type dirty_type)
921 {
922 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
923 	block_t valid_blocks;
924 
925 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
926 		dirty_i->nr_dirty[dirty_type]--;
927 
928 	if (dirty_type == DIRTY) {
929 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
930 		enum dirty_type t = sentry->type;
931 
932 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
933 			dirty_i->nr_dirty[t]--;
934 
935 		valid_blocks = get_valid_blocks(sbi, segno, true);
936 		if (valid_blocks == 0) {
937 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
938 						dirty_i->victim_secmap);
939 #ifdef CONFIG_F2FS_CHECK_FS
940 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
941 #endif
942 		}
943 		if (__is_large_section(sbi)) {
944 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
945 
946 			if (!valid_blocks ||
947 					valid_blocks == BLKS_PER_SEC(sbi)) {
948 				clear_bit(secno, dirty_i->dirty_secmap);
949 				return;
950 			}
951 
952 			if (!IS_CURSEC(sbi, secno))
953 				set_bit(secno, dirty_i->dirty_secmap);
954 		}
955 	}
956 }
957 
958 /*
959  * Should not occur error such as -ENOMEM.
960  * Adding dirty entry into seglist is not critical operation.
961  * If a given segment is one of current working segments, it won't be added.
962  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)963 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
964 {
965 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 	unsigned short valid_blocks, ckpt_valid_blocks;
967 	unsigned int usable_blocks;
968 
969 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
970 		return;
971 
972 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
973 	mutex_lock(&dirty_i->seglist_lock);
974 
975 	valid_blocks = get_valid_blocks(sbi, segno, false);
976 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
977 
978 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
979 		ckpt_valid_blocks == usable_blocks)) {
980 		__locate_dirty_segment(sbi, segno, PRE);
981 		__remove_dirty_segment(sbi, segno, DIRTY);
982 	} else if (valid_blocks < usable_blocks) {
983 		__locate_dirty_segment(sbi, segno, DIRTY);
984 	} else {
985 		/* Recovery routine with SSR needs this */
986 		__remove_dirty_segment(sbi, segno, DIRTY);
987 	}
988 
989 	mutex_unlock(&dirty_i->seglist_lock);
990 }
991 
992 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)993 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
994 {
995 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
996 	unsigned int segno;
997 
998 	mutex_lock(&dirty_i->seglist_lock);
999 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1000 		if (get_valid_blocks(sbi, segno, false))
1001 			continue;
1002 		if (IS_CURSEG(sbi, segno))
1003 			continue;
1004 		__locate_dirty_segment(sbi, segno, PRE);
1005 		__remove_dirty_segment(sbi, segno, DIRTY);
1006 	}
1007 	mutex_unlock(&dirty_i->seglist_lock);
1008 }
1009 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)1010 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
1011 {
1012 	int ovp_hole_segs =
1013 		(overprovision_segments(sbi) - reserved_segments(sbi));
1014 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
1015 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1016 	block_t holes[2] = {0, 0};	/* DATA and NODE */
1017 	block_t unusable;
1018 	struct seg_entry *se;
1019 	unsigned int segno;
1020 
1021 	mutex_lock(&dirty_i->seglist_lock);
1022 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1023 		se = get_seg_entry(sbi, segno);
1024 		if (IS_NODESEG(se->type))
1025 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
1026 							se->valid_blocks;
1027 		else
1028 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
1029 							se->valid_blocks;
1030 	}
1031 	mutex_unlock(&dirty_i->seglist_lock);
1032 
1033 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
1034 	if (unusable > ovp_holes)
1035 		return unusable - ovp_holes;
1036 	return 0;
1037 }
1038 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)1039 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
1040 {
1041 	int ovp_hole_segs =
1042 		(overprovision_segments(sbi) - reserved_segments(sbi));
1043 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
1044 		return -EAGAIN;
1045 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
1046 		dirty_segments(sbi) > ovp_hole_segs)
1047 		return -EAGAIN;
1048 	return 0;
1049 }
1050 
1051 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)1052 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
1053 {
1054 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1055 	unsigned int segno = 0;
1056 
1057 	mutex_lock(&dirty_i->seglist_lock);
1058 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1059 		if (get_valid_blocks(sbi, segno, false))
1060 			continue;
1061 		if (get_ckpt_valid_blocks(sbi, segno, false))
1062 			continue;
1063 		mutex_unlock(&dirty_i->seglist_lock);
1064 		return segno;
1065 	}
1066 	mutex_unlock(&dirty_i->seglist_lock);
1067 	return NULL_SEGNO;
1068 }
1069 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1070 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1071 		struct block_device *bdev, block_t lstart,
1072 		block_t start, block_t len)
1073 {
1074 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1075 	struct list_head *pend_list;
1076 	struct discard_cmd *dc;
1077 
1078 	f2fs_bug_on(sbi, !len);
1079 
1080 	pend_list = &dcc->pend_list[plist_idx(len)];
1081 
1082 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
1083 	INIT_LIST_HEAD(&dc->list);
1084 	dc->bdev = bdev;
1085 	dc->lstart = lstart;
1086 	dc->start = start;
1087 	dc->len = len;
1088 	dc->ref = 0;
1089 	dc->state = D_PREP;
1090 	dc->queued = 0;
1091 	dc->error = 0;
1092 	init_completion(&dc->wait);
1093 	list_add_tail(&dc->list, pend_list);
1094 	spin_lock_init(&dc->lock);
1095 	dc->bio_ref = 0;
1096 	atomic_inc(&dcc->discard_cmd_cnt);
1097 	dcc->undiscard_blks += len;
1098 
1099 	return dc;
1100 }
1101 
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)1102 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1103 				struct block_device *bdev, block_t lstart,
1104 				block_t start, block_t len,
1105 				struct rb_node *parent, struct rb_node **p,
1106 				bool leftmost)
1107 {
1108 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1109 	struct discard_cmd *dc;
1110 
1111 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1112 
1113 	rb_link_node(&dc->rb_node, parent, p);
1114 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1115 
1116 	return dc;
1117 }
1118 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1119 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1120 							struct discard_cmd *dc)
1121 {
1122 	if (dc->state == D_DONE)
1123 		atomic_sub(dc->queued, &dcc->queued_discard);
1124 
1125 	list_del(&dc->list);
1126 	rb_erase_cached(&dc->rb_node, &dcc->root);
1127 	dcc->undiscard_blks -= dc->len;
1128 
1129 	kmem_cache_free(discard_cmd_slab, dc);
1130 
1131 	atomic_dec(&dcc->discard_cmd_cnt);
1132 }
1133 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1134 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1135 							struct discard_cmd *dc)
1136 {
1137 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 	unsigned long flags;
1139 
1140 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1141 
1142 	spin_lock_irqsave(&dc->lock, flags);
1143 	if (dc->bio_ref) {
1144 		spin_unlock_irqrestore(&dc->lock, flags);
1145 		return;
1146 	}
1147 	spin_unlock_irqrestore(&dc->lock, flags);
1148 
1149 	f2fs_bug_on(sbi, dc->ref);
1150 
1151 	if (dc->error == -EOPNOTSUPP)
1152 		dc->error = 0;
1153 
1154 	if (dc->error)
1155 		printk_ratelimited(
1156 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1157 			KERN_INFO, sbi->sb->s_id,
1158 			dc->lstart, dc->start, dc->len, dc->error);
1159 	__detach_discard_cmd(dcc, dc);
1160 }
1161 
f2fs_submit_discard_endio(struct bio * bio)1162 static void f2fs_submit_discard_endio(struct bio *bio)
1163 {
1164 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1165 	unsigned long flags;
1166 
1167 	spin_lock_irqsave(&dc->lock, flags);
1168 	if (!dc->error)
1169 		dc->error = blk_status_to_errno(bio->bi_status);
1170 	dc->bio_ref--;
1171 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1172 		dc->state = D_DONE;
1173 		complete_all(&dc->wait);
1174 	}
1175 	spin_unlock_irqrestore(&dc->lock, flags);
1176 	bio_put(bio);
1177 }
1178 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1179 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1180 				block_t start, block_t end)
1181 {
1182 #ifdef CONFIG_F2FS_CHECK_FS
1183 	struct seg_entry *sentry;
1184 	unsigned int segno;
1185 	block_t blk = start;
1186 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1187 	unsigned long *map;
1188 
1189 	while (blk < end) {
1190 		segno = GET_SEGNO(sbi, blk);
1191 		sentry = get_seg_entry(sbi, segno);
1192 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1193 
1194 		if (end < START_BLOCK(sbi, segno + 1))
1195 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1196 		else
1197 			size = max_blocks;
1198 		map = (unsigned long *)(sentry->cur_valid_map);
1199 		offset = find_rev_next_bit(map, size, offset);
1200 		f2fs_bug_on(sbi, offset != size);
1201 		blk = START_BLOCK(sbi, segno + 1);
1202 	}
1203 #endif
1204 }
1205 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * policy,int discard_type,unsigned int granularity)1206 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1207 				struct discard_policy *policy,
1208 				int discard_type, unsigned int granularity)
1209 {
1210 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1211 
1212 	if (discard_type == DPOLICY_BG) {
1213 		*policy = dpolicys[DPOLICY_BG];
1214 	} else if (discard_type == DPOLICY_BALANCE) {
1215 		*policy = dpolicys[DPOLICY_BALANCE];
1216 	} else if (discard_type == DPOLICY_FORCE) {
1217 		*policy = dpolicys[DPOLICY_FORCE];
1218 	} else if (discard_type == DPOLICY_FSTRIM) {
1219 		*policy = dpolicys[DPOLICY_FSTRIM];
1220 		if (policy->granularity != granularity)
1221 			policy->granularity = granularity;
1222 	} else if (discard_type == DPOLICY_UMOUNT) {
1223 		*policy = dpolicys[DPOLICY_UMOUNT];
1224 	}
1225 	dcc->discard_type = discard_type;
1226 }
1227 
select_sub_discard_policy(struct discard_sub_policy ** spolicy,int index,struct discard_policy * dpolicy)1228 static void select_sub_discard_policy(struct discard_sub_policy **spolicy,
1229 						       int index, struct discard_policy *dpolicy)
1230 {
1231 	if (dpolicy->type == DPOLICY_FSTRIM) {
1232 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1233 		return;
1234 	}
1235 
1236 	if ((index + 1) >= DISCARD_GRAN_BG)
1237 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1238 	else if ((index + 1) >= DISCARD_GRAN_BL)
1239 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_MID];
1240 	else
1241 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_SMALL];
1242 }
1243 
1244 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1245 				struct block_device *bdev, block_t lstart,
1246 				block_t start, block_t len);
1247 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int spolicy_index,struct discard_cmd * dc,unsigned int * issued)1248 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1249 						struct discard_policy *dpolicy,
1250 						int spolicy_index,
1251 						struct discard_cmd *dc,
1252 						unsigned int *issued)
1253 {
1254 	struct block_device *bdev = dc->bdev;
1255 	struct request_queue *q = bdev_get_queue(bdev);
1256 	unsigned int max_discard_blocks =
1257 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1258 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1259 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1260 					&(dcc->fstrim_list) : &(dcc->wait_list);
1261 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1262 	struct discard_sub_policy *spolicy = NULL;
1263 	block_t lstart, start, len, total_len;
1264 	int err = 0;
1265 
1266 	select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1267 
1268 	if (dc->state != D_PREP)
1269 		return 0;
1270 
1271 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1272 		return 0;
1273 
1274 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1275 
1276 	lstart = dc->lstart;
1277 	start = dc->start;
1278 	len = dc->len;
1279 	total_len = len;
1280 
1281 	dc->len = 0;
1282 
1283 	while (total_len && *issued < spolicy->max_requests && !err) {
1284 		struct bio *bio = NULL;
1285 		unsigned long flags;
1286 		bool last = true;
1287 
1288 		if (len > max_discard_blocks) {
1289 			len = max_discard_blocks;
1290 			last = false;
1291 		}
1292 
1293 		(*issued)++;
1294 		if (*issued == spolicy->max_requests)
1295 			last = true;
1296 
1297 		dc->len += len;
1298 
1299 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1300 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1301 			err = -EIO;
1302 			goto submit;
1303 		}
1304 		err = __blkdev_issue_discard(bdev,
1305 					SECTOR_FROM_BLOCK(start),
1306 					SECTOR_FROM_BLOCK(len),
1307 					GFP_NOFS, 0, &bio);
1308 submit:
1309 		if (err) {
1310 			spin_lock_irqsave(&dc->lock, flags);
1311 			if (dc->state == D_PARTIAL)
1312 				dc->state = D_SUBMIT;
1313 			spin_unlock_irqrestore(&dc->lock, flags);
1314 
1315 			break;
1316 		}
1317 
1318 		f2fs_bug_on(sbi, !bio);
1319 
1320 		/*
1321 		 * should keep before submission to avoid D_DONE
1322 		 * right away
1323 		 */
1324 		spin_lock_irqsave(&dc->lock, flags);
1325 		if (last)
1326 			dc->state = D_SUBMIT;
1327 		else
1328 			dc->state = D_PARTIAL;
1329 		dc->bio_ref++;
1330 		spin_unlock_irqrestore(&dc->lock, flags);
1331 
1332 		atomic_inc(&dcc->queued_discard);
1333 		dc->queued++;
1334 		list_move_tail(&dc->list, wait_list);
1335 
1336 		/* sanity check on discard range */
1337 		__check_sit_bitmap(sbi, lstart, lstart + len);
1338 
1339 		bio->bi_private = dc;
1340 		bio->bi_end_io = f2fs_submit_discard_endio;
1341 		bio->bi_opf |= flag;
1342 		submit_bio(bio);
1343 
1344 		atomic_inc(&dcc->issued_discard);
1345 
1346 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1347 
1348 		lstart += len;
1349 		start += len;
1350 		total_len -= len;
1351 		len = total_len;
1352 	}
1353 
1354 	if (!err && len) {
1355 		dcc->undiscard_blks -= len;
1356 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1357 	}
1358 	return err;
1359 }
1360 
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1361 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1362 				struct block_device *bdev, block_t lstart,
1363 				block_t start, block_t len,
1364 				struct rb_node **insert_p,
1365 				struct rb_node *insert_parent)
1366 {
1367 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1368 	struct rb_node **p;
1369 	struct rb_node *parent = NULL;
1370 	bool leftmost = true;
1371 
1372 	if (insert_p && insert_parent) {
1373 		parent = insert_parent;
1374 		p = insert_p;
1375 		goto do_insert;
1376 	}
1377 
1378 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1379 							lstart, &leftmost);
1380 do_insert:
1381 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1382 								p, leftmost);
1383 }
1384 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1385 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1386 						struct discard_cmd *dc)
1387 {
1388 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1389 }
1390 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1391 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1392 				struct discard_cmd *dc, block_t blkaddr)
1393 {
1394 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1395 	struct discard_info di = dc->di;
1396 	bool modified = false;
1397 
1398 	if (dc->state == D_DONE || dc->len == 1) {
1399 		__remove_discard_cmd(sbi, dc);
1400 		return;
1401 	}
1402 
1403 	dcc->undiscard_blks -= di.len;
1404 
1405 	if (blkaddr > di.lstart) {
1406 		dc->len = blkaddr - dc->lstart;
1407 		dcc->undiscard_blks += dc->len;
1408 		__relocate_discard_cmd(dcc, dc);
1409 		modified = true;
1410 	}
1411 
1412 	if (blkaddr < di.lstart + di.len - 1) {
1413 		if (modified) {
1414 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1415 					di.start + blkaddr + 1 - di.lstart,
1416 					di.lstart + di.len - 1 - blkaddr,
1417 					NULL, NULL);
1418 		} else {
1419 			dc->lstart++;
1420 			dc->len--;
1421 			dc->start++;
1422 			dcc->undiscard_blks += dc->len;
1423 			__relocate_discard_cmd(dcc, dc);
1424 		}
1425 	}
1426 }
1427 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1428 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1429 				struct block_device *bdev, block_t lstart,
1430 				block_t start, block_t len)
1431 {
1432 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1434 	struct discard_cmd *dc;
1435 	struct discard_info di = {0};
1436 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1437 	struct request_queue *q = bdev_get_queue(bdev);
1438 	unsigned int max_discard_blocks =
1439 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1440 	block_t end = lstart + len;
1441 
1442 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1443 					NULL, lstart,
1444 					(struct rb_entry **)&prev_dc,
1445 					(struct rb_entry **)&next_dc,
1446 					&insert_p, &insert_parent, true, NULL);
1447 	if (dc)
1448 		prev_dc = dc;
1449 
1450 	if (!prev_dc) {
1451 		di.lstart = lstart;
1452 		di.len = next_dc ? next_dc->lstart - lstart : len;
1453 		di.len = min(di.len, len);
1454 		di.start = start;
1455 	}
1456 
1457 	while (1) {
1458 		struct rb_node *node;
1459 		bool merged = false;
1460 		struct discard_cmd *tdc = NULL;
1461 
1462 		if (prev_dc) {
1463 			di.lstart = prev_dc->lstart + prev_dc->len;
1464 			if (di.lstart < lstart)
1465 				di.lstart = lstart;
1466 			if (di.lstart >= end)
1467 				break;
1468 
1469 			if (!next_dc || next_dc->lstart > end)
1470 				di.len = end - di.lstart;
1471 			else
1472 				di.len = next_dc->lstart - di.lstart;
1473 			di.start = start + di.lstart - lstart;
1474 		}
1475 
1476 		if (!di.len)
1477 			goto next;
1478 
1479 		if (prev_dc && prev_dc->state == D_PREP &&
1480 			prev_dc->bdev == bdev &&
1481 			__is_discard_back_mergeable(&di, &prev_dc->di,
1482 							max_discard_blocks)) {
1483 			prev_dc->di.len += di.len;
1484 			dcc->undiscard_blks += di.len;
1485 			__relocate_discard_cmd(dcc, prev_dc);
1486 			di = prev_dc->di;
1487 			tdc = prev_dc;
1488 			merged = true;
1489 		}
1490 
1491 		if (next_dc && next_dc->state == D_PREP &&
1492 			next_dc->bdev == bdev &&
1493 			__is_discard_front_mergeable(&di, &next_dc->di,
1494 							max_discard_blocks)) {
1495 			next_dc->di.lstart = di.lstart;
1496 			next_dc->di.len += di.len;
1497 			next_dc->di.start = di.start;
1498 			dcc->undiscard_blks += di.len;
1499 			__relocate_discard_cmd(dcc, next_dc);
1500 			if (tdc)
1501 				__remove_discard_cmd(sbi, tdc);
1502 			merged = true;
1503 		}
1504 
1505 		if (!merged) {
1506 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1507 							di.len, NULL, NULL);
1508 		}
1509  next:
1510 		prev_dc = next_dc;
1511 		if (!prev_dc)
1512 			break;
1513 
1514 		node = rb_next(&prev_dc->rb_node);
1515 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1516 	}
1517 }
1518 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1519 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1520 		struct block_device *bdev, block_t blkstart, block_t blklen)
1521 {
1522 	block_t lblkstart = blkstart;
1523 
1524 	if (!f2fs_bdev_support_discard(bdev))
1525 		return 0;
1526 
1527 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1528 
1529 	if (f2fs_is_multi_device(sbi)) {
1530 		int devi = f2fs_target_device_index(sbi, blkstart);
1531 
1532 		blkstart -= FDEV(devi).start_blk;
1533 	}
1534 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1535 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1536 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1537 	return 0;
1538 }
1539 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int spolicy_index)1540 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1541 					struct discard_policy *dpolicy,
1542 					int spolicy_index)
1543 {
1544 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1545 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1546 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1547 	struct discard_cmd *dc;
1548 	struct blk_plug plug;
1549 	unsigned int pos = dcc->next_pos;
1550 	unsigned int issued = 0;
1551 	bool io_interrupted = false;
1552 	struct discard_sub_policy *spolicy = NULL;
1553 
1554 	select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1555 	mutex_lock(&dcc->cmd_lock);
1556 
1557 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1558 					NULL, pos,
1559 					(struct rb_entry **)&prev_dc,
1560 					(struct rb_entry **)&next_dc,
1561 					&insert_p, &insert_parent, true, NULL);
1562 	if (!dc)
1563 		dc = next_dc;
1564 
1565 	blk_start_plug(&plug);
1566 
1567 	while (dc) {
1568 		struct rb_node *node;
1569 		int err = 0;
1570 
1571 		if (dc->state != D_PREP)
1572 			goto next;
1573 
1574 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1575 			io_interrupted = true;
1576 			break;
1577 		}
1578 
1579 		dcc->next_pos = dc->lstart + dc->len;
1580 		err = __submit_discard_cmd(sbi, dpolicy, spolicy_index, dc, &issued);
1581 
1582 		if (issued >= spolicy->max_requests)
1583 			break;
1584 next:
1585 		node = rb_next(&dc->rb_node);
1586 		if (err)
1587 			__remove_discard_cmd(sbi, dc);
1588 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1589 	}
1590 
1591 	blk_finish_plug(&plug);
1592 
1593 	if (!dc)
1594 		dcc->next_pos = 0;
1595 
1596 	mutex_unlock(&dcc->cmd_lock);
1597 
1598 	if (!issued && io_interrupted)
1599 		issued = -1;
1600 
1601 	return issued;
1602 }
1603 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1604 					struct discard_policy *dpolicy);
1605 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1606 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1607 					struct discard_policy *dpolicy)
1608 {
1609 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1610 	struct list_head *pend_list;
1611 	struct discard_cmd *dc, *tmp;
1612 	struct blk_plug plug;
1613 	int i, issued;
1614 	bool io_interrupted = false;
1615 	struct discard_sub_policy *spolicy = NULL;
1616 
1617 	if (dpolicy->timeout)
1618 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1619 
1620 	/* only do this check in CHECK_FS, may be time consumed */
1621 	if (unlikely(dcc->rbtree_check)) {
1622 		mutex_lock(&dcc->cmd_lock);
1623 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
1624 		mutex_unlock(&dcc->cmd_lock);
1625 	}
1626 retry:
1627 	blk_start_plug(&plug);
1628 	issued = 0;
1629 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1630 		if (dpolicy->timeout &&
1631 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1632 			break;
1633 
1634 		if (i + 1 < dpolicy->granularity)
1635 			break;
1636 
1637 		select_sub_discard_policy(&spolicy, i, dpolicy);
1638 
1639 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) {
1640 			issued = __issue_discard_cmd_orderly(sbi, dpolicy, i);
1641 			blk_finish_plug(&plug);
1642 			return issued;
1643 		}
1644 
1645 		pend_list = &dcc->pend_list[i];
1646 
1647 		mutex_lock(&dcc->cmd_lock);
1648 		if (list_empty(pend_list))
1649 			goto next;
1650 		if (unlikely(dcc->rbtree_check))
1651 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1652 							&dcc->root, false));
1653 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1654 			f2fs_bug_on(sbi, dc->state != D_PREP);
1655 
1656 			if (dpolicy->timeout &&
1657 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1658 				break;
1659 
1660 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1661 						!is_idle(sbi, DISCARD_TIME)) {
1662 				io_interrupted = true;
1663 				goto skip;
1664 			}
1665 			__submit_discard_cmd(sbi, dpolicy, i, dc, &issued);
1666 skip:
1667 			if (issued >= spolicy->max_requests)
1668 				break;
1669 		}
1670 next:
1671 		mutex_unlock(&dcc->cmd_lock);
1672 
1673 		if (issued >= spolicy->max_requests || io_interrupted)
1674 			break;
1675 	}
1676 
1677 	blk_finish_plug(&plug);
1678 	if (spolicy)
1679 		dpolicy->min_interval = spolicy->interval;
1680 
1681 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1682 		__wait_all_discard_cmd(sbi, dpolicy);
1683 		goto retry;
1684 	}
1685 
1686 	if (!issued && io_interrupted)
1687 		issued = -1;
1688 
1689 	return issued;
1690 }
1691 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1692 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1693 {
1694 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1695 	struct list_head *pend_list;
1696 	struct discard_cmd *dc, *tmp;
1697 	int i;
1698 	bool dropped = false;
1699 
1700 	mutex_lock(&dcc->cmd_lock);
1701 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1702 		pend_list = &dcc->pend_list[i];
1703 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1704 			f2fs_bug_on(sbi, dc->state != D_PREP);
1705 			__remove_discard_cmd(sbi, dc);
1706 			dropped = true;
1707 		}
1708 	}
1709 	mutex_unlock(&dcc->cmd_lock);
1710 
1711 	return dropped;
1712 }
1713 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1714 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1715 {
1716 	__drop_discard_cmd(sbi);
1717 }
1718 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1719 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1720 							struct discard_cmd *dc)
1721 {
1722 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1723 	unsigned int len = 0;
1724 
1725 	wait_for_completion_io(&dc->wait);
1726 	mutex_lock(&dcc->cmd_lock);
1727 	f2fs_bug_on(sbi, dc->state != D_DONE);
1728 	dc->ref--;
1729 	if (!dc->ref) {
1730 		if (!dc->error)
1731 			len = dc->len;
1732 		__remove_discard_cmd(sbi, dc);
1733 	}
1734 	mutex_unlock(&dcc->cmd_lock);
1735 
1736 	return len;
1737 }
1738 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1739 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1740 						struct discard_policy *dpolicy,
1741 						block_t start, block_t end)
1742 {
1743 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1744 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1745 					&(dcc->fstrim_list) : &(dcc->wait_list);
1746 	struct discard_cmd *dc, *tmp;
1747 	bool need_wait;
1748 	unsigned int trimmed = 0;
1749 
1750 next:
1751 	need_wait = false;
1752 
1753 	mutex_lock(&dcc->cmd_lock);
1754 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1755 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1756 			continue;
1757 		if (dc->len < dpolicy->granularity)
1758 			continue;
1759 		if (dc->state == D_DONE && !dc->ref) {
1760 			wait_for_completion_io(&dc->wait);
1761 			if (!dc->error)
1762 				trimmed += dc->len;
1763 			__remove_discard_cmd(sbi, dc);
1764 		} else {
1765 			dc->ref++;
1766 			need_wait = true;
1767 			break;
1768 		}
1769 	}
1770 	mutex_unlock(&dcc->cmd_lock);
1771 
1772 	if (need_wait) {
1773 		trimmed += __wait_one_discard_bio(sbi, dc);
1774 		goto next;
1775 	}
1776 
1777 	return trimmed;
1778 }
1779 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1780 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1781 						struct discard_policy *dpolicy)
1782 {
1783 	struct discard_policy dp;
1784 	unsigned int discard_blks;
1785 
1786 	if (dpolicy)
1787 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1788 
1789 	/* wait all */
1790 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1791 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1792 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1793 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1794 
1795 	return discard_blks;
1796 }
1797 
1798 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1799 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1800 {
1801 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1802 	struct discard_cmd *dc;
1803 	bool need_wait = false;
1804 
1805 	mutex_lock(&dcc->cmd_lock);
1806 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1807 							NULL, blkaddr);
1808 	if (dc) {
1809 		if (dc->state == D_PREP) {
1810 			__punch_discard_cmd(sbi, dc, blkaddr);
1811 		} else {
1812 			dc->ref++;
1813 			need_wait = true;
1814 		}
1815 	}
1816 	mutex_unlock(&dcc->cmd_lock);
1817 
1818 	if (need_wait)
1819 		__wait_one_discard_bio(sbi, dc);
1820 }
1821 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1822 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1823 {
1824 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1825 
1826 	if (dcc && dcc->f2fs_issue_discard) {
1827 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1828 
1829 		dcc->f2fs_issue_discard = NULL;
1830 		kthread_stop(discard_thread);
1831 	}
1832 }
1833 
1834 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1835 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1836 {
1837 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1838 	struct discard_policy dpolicy;
1839 	bool dropped;
1840 
1841 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 0);
1842 	__issue_discard_cmd(sbi, &dpolicy);
1843 	dropped = __drop_discard_cmd(sbi);
1844 
1845 	/* just to make sure there is no pending discard commands */
1846 	__wait_all_discard_cmd(sbi, NULL);
1847 
1848 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1849 	return dropped;
1850 }
1851 
select_discard_type(struct f2fs_sb_info * sbi)1852 static int select_discard_type(struct f2fs_sb_info *sbi)
1853 {
1854 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1855 	block_t user_block_count = sbi->user_block_count;
1856 	block_t ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1857 	block_t fs_available_blocks = user_block_count -
1858 				valid_user_blocks(sbi) + ovp_count;
1859 	int discard_type;
1860 
1861 	if (fs_available_blocks >= fs_free_space_threshold(sbi) &&
1862 			fs_available_blocks - dcc->undiscard_blks >=
1863 			device_free_space_threshold(sbi)) {
1864 		discard_type = DPOLICY_BG;
1865 	} else if (fs_available_blocks < fs_free_space_threshold(sbi) &&
1866 			fs_available_blocks - dcc->undiscard_blks <
1867 			device_free_space_threshold(sbi)) {
1868 		discard_type = DPOLICY_FORCE;
1869 	} else {
1870 		discard_type = DPOLICY_BALANCE;
1871 	}
1872 	return discard_type;
1873 }
1874 
issue_discard_thread(void * data)1875 static int issue_discard_thread(void *data)
1876 {
1877 	struct f2fs_sb_info *sbi = data;
1878 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1879 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1880 	struct discard_policy dpolicy;
1881 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1882 	int issued, discard_type;
1883 
1884 	set_freezable();
1885 
1886 	do {
1887 		discard_type = select_discard_type(sbi);
1888 		__init_discard_policy(sbi, &dpolicy, discard_type, 0);
1889 
1890 		wait_event_interruptible_timeout(*q,
1891 				kthread_should_stop() || freezing(current) ||
1892 				dcc->discard_wake,
1893 				msecs_to_jiffies(wait_ms));
1894 
1895 		if (dcc->discard_wake)
1896 			dcc->discard_wake = 0;
1897 
1898 		/* clean up pending candidates before going to sleep */
1899 		if (atomic_read(&dcc->queued_discard))
1900 			__wait_all_discard_cmd(sbi, NULL);
1901 
1902 		if (try_to_freeze())
1903 			continue;
1904 		if (f2fs_readonly(sbi->sb))
1905 			continue;
1906 		if (kthread_should_stop())
1907 			return 0;
1908 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1909 			wait_ms = dpolicy.max_interval;
1910 			continue;
1911 		}
1912 
1913 		if (sbi->gc_mode == GC_URGENT_HIGH)
1914 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 0);
1915 
1916 		sb_start_intwrite(sbi->sb);
1917 
1918 		issued = __issue_discard_cmd(sbi, &dpolicy);
1919 		if (issued > 0) {
1920 			__wait_all_discard_cmd(sbi, &dpolicy);
1921 			wait_ms = dpolicy.min_interval;
1922 		} else if (issued == -1){
1923 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1924 			if (!wait_ms)
1925 				wait_ms = dpolicy.mid_interval;
1926 		} else {
1927 			wait_ms = dpolicy.max_interval;
1928 		}
1929 
1930 		sb_end_intwrite(sbi->sb);
1931 
1932 	} while (!kthread_should_stop());
1933 	return 0;
1934 }
1935 
1936 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1937 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1938 		struct block_device *bdev, block_t blkstart, block_t blklen)
1939 {
1940 	sector_t sector, nr_sects;
1941 	block_t lblkstart = blkstart;
1942 	int devi = 0;
1943 
1944 	if (f2fs_is_multi_device(sbi)) {
1945 		devi = f2fs_target_device_index(sbi, blkstart);
1946 		if (blkstart < FDEV(devi).start_blk ||
1947 		    blkstart > FDEV(devi).end_blk) {
1948 			f2fs_err(sbi, "Invalid block %x", blkstart);
1949 			return -EIO;
1950 		}
1951 		blkstart -= FDEV(devi).start_blk;
1952 	}
1953 
1954 	/* For sequential zones, reset the zone write pointer */
1955 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1956 		sector = SECTOR_FROM_BLOCK(blkstart);
1957 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1958 
1959 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1960 				nr_sects != bdev_zone_sectors(bdev)) {
1961 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1962 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1963 				 blkstart, blklen);
1964 			return -EIO;
1965 		}
1966 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1967 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1968 					sector, nr_sects, GFP_NOFS);
1969 	}
1970 
1971 	/* For conventional zones, use regular discard if supported */
1972 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1973 }
1974 #endif
1975 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1976 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1977 		struct block_device *bdev, block_t blkstart, block_t blklen)
1978 {
1979 #ifdef CONFIG_BLK_DEV_ZONED
1980 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1981 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1982 #endif
1983 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1984 }
1985 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1986 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1987 				block_t blkstart, block_t blklen)
1988 {
1989 	sector_t start = blkstart, len = 0;
1990 	struct block_device *bdev;
1991 	struct seg_entry *se;
1992 	unsigned int offset;
1993 	block_t i;
1994 	int err = 0;
1995 
1996 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1997 
1998 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1999 		if (i != start) {
2000 			struct block_device *bdev2 =
2001 				f2fs_target_device(sbi, i, NULL);
2002 
2003 			if (bdev2 != bdev) {
2004 				err = __issue_discard_async(sbi, bdev,
2005 						start, len);
2006 				if (err)
2007 					return err;
2008 				bdev = bdev2;
2009 				start = i;
2010 				len = 0;
2011 			}
2012 		}
2013 
2014 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2015 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2016 
2017 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2018 			sbi->discard_blks--;
2019 	}
2020 
2021 	if (len)
2022 		err = __issue_discard_async(sbi, bdev, start, len);
2023 	return err;
2024 }
2025 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2026 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2027 							bool check_only)
2028 {
2029 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2030 	int max_blocks = sbi->blocks_per_seg;
2031 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2032 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2033 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2034 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2035 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2036 	unsigned int start = 0, end = -1;
2037 	bool force = (cpc->reason & CP_DISCARD);
2038 	struct discard_entry *de = NULL;
2039 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2040 	int i;
2041 
2042 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
2043 		return false;
2044 
2045 	if (!force) {
2046 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2047 			SM_I(sbi)->dcc_info->nr_discards >=
2048 				SM_I(sbi)->dcc_info->max_discards)
2049 			return false;
2050 	}
2051 
2052 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2053 	for (i = 0; i < entries; i++)
2054 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2055 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2056 
2057 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2058 				SM_I(sbi)->dcc_info->max_discards) {
2059 		start = find_rev_next_bit(dmap, max_blocks, end + 1);
2060 		if (start >= max_blocks)
2061 			break;
2062 
2063 		end = find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2064 		if (force && start && end != max_blocks
2065 					&& (end - start) < cpc->trim_minlen)
2066 			continue;
2067 
2068 		if (check_only)
2069 			return true;
2070 
2071 		if (!de) {
2072 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2073 								GFP_F2FS_ZERO);
2074 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2075 			list_add_tail(&de->list, head);
2076 		}
2077 
2078 		for (i = start; i < end; i++)
2079 			__set_bit_le(i, (void *)de->discard_map);
2080 
2081 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2082 	}
2083 	return false;
2084 }
2085 
release_discard_addr(struct discard_entry * entry)2086 static void release_discard_addr(struct discard_entry *entry)
2087 {
2088 	list_del(&entry->list);
2089 	kmem_cache_free(discard_entry_slab, entry);
2090 }
2091 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2092 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2093 {
2094 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2095 	struct discard_entry *entry, *this;
2096 
2097 	/* drop caches */
2098 	list_for_each_entry_safe(entry, this, head, list)
2099 		release_discard_addr(entry);
2100 }
2101 
2102 /*
2103  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2104  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2105 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2106 {
2107 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2108 	unsigned int segno;
2109 
2110 	mutex_lock(&dirty_i->seglist_lock);
2111 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2112 		__set_test_and_free(sbi, segno, false);
2113 	mutex_unlock(&dirty_i->seglist_lock);
2114 }
2115 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2116 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2117 						struct cp_control *cpc)
2118 {
2119 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2120 	struct list_head *head = &dcc->entry_list;
2121 	struct discard_entry *entry, *this;
2122 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2123 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2124 	unsigned int start = 0, end = -1;
2125 	unsigned int secno, start_segno;
2126 	bool force = (cpc->reason & CP_DISCARD);
2127 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2128 
2129 	mutex_lock(&dirty_i->seglist_lock);
2130 
2131 	while (1) {
2132 		int i;
2133 
2134 		if (need_align && end != -1)
2135 			end--;
2136 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2137 		if (start >= MAIN_SEGS(sbi))
2138 			break;
2139 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2140 								start + 1);
2141 
2142 		if (need_align) {
2143 			start = rounddown(start, sbi->segs_per_sec);
2144 			end = roundup(end, sbi->segs_per_sec);
2145 		}
2146 
2147 		for (i = start; i < end; i++) {
2148 			if (test_and_clear_bit(i, prefree_map))
2149 				dirty_i->nr_dirty[PRE]--;
2150 		}
2151 
2152 		if (!f2fs_realtime_discard_enable(sbi))
2153 			continue;
2154 
2155 		if (force && start >= cpc->trim_start &&
2156 					(end - 1) <= cpc->trim_end)
2157 				continue;
2158 
2159 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2160 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2161 				(end - start) << sbi->log_blocks_per_seg);
2162 			continue;
2163 		}
2164 next:
2165 		secno = GET_SEC_FROM_SEG(sbi, start);
2166 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2167 		if (!IS_CURSEC(sbi, secno) &&
2168 			!get_valid_blocks(sbi, start, true))
2169 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2170 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2171 
2172 		start = start_segno + sbi->segs_per_sec;
2173 		if (start < end)
2174 			goto next;
2175 		else
2176 			end = start - 1;
2177 	}
2178 	mutex_unlock(&dirty_i->seglist_lock);
2179 
2180 	/* send small discards */
2181 	list_for_each_entry_safe(entry, this, head, list) {
2182 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2183 		bool is_valid = test_bit_le(0, entry->discard_map);
2184 
2185 find_next:
2186 		if (is_valid) {
2187 			next_pos = find_next_zero_bit_le(entry->discard_map,
2188 					sbi->blocks_per_seg, cur_pos);
2189 			len = next_pos - cur_pos;
2190 
2191 			if (f2fs_sb_has_blkzoned(sbi) ||
2192 			    (force && len < cpc->trim_minlen))
2193 				goto skip;
2194 
2195 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2196 									len);
2197 			total_len += len;
2198 		} else {
2199 			next_pos = find_next_bit_le(entry->discard_map,
2200 					sbi->blocks_per_seg, cur_pos);
2201 		}
2202 skip:
2203 		cur_pos = next_pos;
2204 		is_valid = !is_valid;
2205 
2206 		if (cur_pos < sbi->blocks_per_seg)
2207 			goto find_next;
2208 
2209 		release_discard_addr(entry);
2210 		dcc->nr_discards -= total_len;
2211 	}
2212 
2213 	wake_up_discard_thread(sbi, false);
2214 }
2215 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2216 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2217 {
2218 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2219 	struct discard_cmd_control *dcc;
2220 	int err = 0, i;
2221 
2222 	if (SM_I(sbi)->dcc_info) {
2223 		dcc = SM_I(sbi)->dcc_info;
2224 		goto init_thread;
2225 	}
2226 
2227 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2228 	if (!dcc)
2229 		return -ENOMEM;
2230 
2231 	dcc->discard_granularity = DISCARD_GRAN_BG;
2232 	INIT_LIST_HEAD(&dcc->entry_list);
2233 	for (i = 0; i < MAX_PLIST_NUM; i++)
2234 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2235 	INIT_LIST_HEAD(&dcc->wait_list);
2236 	INIT_LIST_HEAD(&dcc->fstrim_list);
2237 	mutex_init(&dcc->cmd_lock);
2238 	atomic_set(&dcc->issued_discard, 0);
2239 	atomic_set(&dcc->queued_discard, 0);
2240 	atomic_set(&dcc->discard_cmd_cnt, 0);
2241 	dcc->nr_discards = 0;
2242 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2243 	dcc->undiscard_blks = 0;
2244 	dcc->next_pos = 0;
2245 	dcc->root = RB_ROOT_CACHED;
2246 	dcc->rbtree_check = false;
2247 
2248 	init_waitqueue_head(&dcc->discard_wait_queue);
2249 	SM_I(sbi)->dcc_info = dcc;
2250 init_thread:
2251 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2252 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2253 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2254 		err = PTR_ERR(dcc->f2fs_issue_discard);
2255 		kfree(dcc);
2256 		SM_I(sbi)->dcc_info = NULL;
2257 		return err;
2258 	}
2259 
2260 	return err;
2261 }
2262 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2263 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2264 {
2265 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2266 
2267 	if (!dcc)
2268 		return;
2269 
2270 	f2fs_stop_discard_thread(sbi);
2271 
2272 	/*
2273 	 * Recovery can cache discard commands, so in error path of
2274 	 * fill_super(), it needs to give a chance to handle them.
2275 	 */
2276 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2277 		f2fs_issue_discard_timeout(sbi);
2278 
2279 	kfree(dcc);
2280 	SM_I(sbi)->dcc_info = NULL;
2281 }
2282 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2283 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2284 {
2285 	struct sit_info *sit_i = SIT_I(sbi);
2286 
2287 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2288 		sit_i->dirty_sentries++;
2289 		return false;
2290 	}
2291 
2292 	return true;
2293 }
2294 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2295 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2296 					unsigned int segno, int modified)
2297 {
2298 	struct seg_entry *se = get_seg_entry(sbi, segno);
2299 	se->type = type;
2300 	if (modified)
2301 		__mark_sit_entry_dirty(sbi, segno);
2302 }
2303 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2304 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2305 								block_t blkaddr)
2306 {
2307 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2308 
2309 	if (segno == NULL_SEGNO)
2310 		return 0;
2311 	return get_seg_entry(sbi, segno)->mtime;
2312 }
2313 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2314 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2315 						unsigned long long old_mtime)
2316 {
2317 	struct seg_entry *se;
2318 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2319 	unsigned long long ctime = get_mtime(sbi, false);
2320 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2321 
2322 	if (segno == NULL_SEGNO)
2323 		return;
2324 
2325 	se = get_seg_entry(sbi, segno);
2326 
2327 	if (!se->mtime)
2328 		se->mtime = mtime;
2329 	else
2330 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2331 						se->valid_blocks + 1);
2332 
2333 	if (ctime > SIT_I(sbi)->max_mtime)
2334 		SIT_I(sbi)->max_mtime = ctime;
2335 }
2336 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2337 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2338 {
2339 	struct seg_entry *se;
2340 	unsigned int segno, offset;
2341 	long int new_vblocks;
2342 	bool exist;
2343 #ifdef CONFIG_F2FS_CHECK_FS
2344 	bool mir_exist;
2345 #endif
2346 
2347 	segno = GET_SEGNO(sbi, blkaddr);
2348 
2349 	se = get_seg_entry(sbi, segno);
2350 	new_vblocks = se->valid_blocks + del;
2351 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2352 
2353 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2354 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2355 
2356 	se->valid_blocks = new_vblocks;
2357 
2358 	/* Update valid block bitmap */
2359 	if (del > 0) {
2360 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2361 #ifdef CONFIG_F2FS_CHECK_FS
2362 		mir_exist = f2fs_test_and_set_bit(offset,
2363 						se->cur_valid_map_mir);
2364 		if (unlikely(exist != mir_exist)) {
2365 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2366 				 blkaddr, exist);
2367 			f2fs_bug_on(sbi, 1);
2368 		}
2369 #endif
2370 		if (unlikely(exist)) {
2371 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2372 				 blkaddr);
2373 			f2fs_bug_on(sbi, 1);
2374 			se->valid_blocks--;
2375 			del = 0;
2376 		}
2377 
2378 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2379 			sbi->discard_blks--;
2380 
2381 		/*
2382 		 * SSR should never reuse block which is checkpointed
2383 		 * or newly invalidated.
2384 		 */
2385 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2386 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2387 				se->ckpt_valid_blocks++;
2388 		}
2389 	} else {
2390 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2391 #ifdef CONFIG_F2FS_CHECK_FS
2392 		mir_exist = f2fs_test_and_clear_bit(offset,
2393 						se->cur_valid_map_mir);
2394 		if (unlikely(exist != mir_exist)) {
2395 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2396 				 blkaddr, exist);
2397 			f2fs_bug_on(sbi, 1);
2398 		}
2399 #endif
2400 		if (unlikely(!exist)) {
2401 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2402 				 blkaddr);
2403 			f2fs_bug_on(sbi, 1);
2404 			se->valid_blocks++;
2405 			del = 0;
2406 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2407 			/*
2408 			 * If checkpoints are off, we must not reuse data that
2409 			 * was used in the previous checkpoint. If it was used
2410 			 * before, we must track that to know how much space we
2411 			 * really have.
2412 			 */
2413 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2414 				spin_lock(&sbi->stat_lock);
2415 				sbi->unusable_block_count++;
2416 				spin_unlock(&sbi->stat_lock);
2417 			}
2418 		}
2419 
2420 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2421 			sbi->discard_blks++;
2422 	}
2423 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2424 		se->ckpt_valid_blocks += del;
2425 
2426 	__mark_sit_entry_dirty(sbi, segno);
2427 
2428 	/* update total number of valid blocks to be written in ckpt area */
2429 	SIT_I(sbi)->written_valid_blocks += del;
2430 
2431 	if (__is_large_section(sbi))
2432 		get_sec_entry(sbi, segno)->valid_blocks += del;
2433 }
2434 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2435 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2436 {
2437 	unsigned int segno = GET_SEGNO(sbi, addr);
2438 	struct sit_info *sit_i = SIT_I(sbi);
2439 
2440 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2441 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2442 		return;
2443 
2444 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2445 
2446 	/* add it into sit main buffer */
2447 	down_write(&sit_i->sentry_lock);
2448 
2449 	update_segment_mtime(sbi, addr, 0);
2450 	update_sit_entry(sbi, addr, -1);
2451 
2452 	/* add it into dirty seglist */
2453 	locate_dirty_segment(sbi, segno);
2454 
2455 	up_write(&sit_i->sentry_lock);
2456 }
2457 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2458 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2459 {
2460 	struct sit_info *sit_i = SIT_I(sbi);
2461 	unsigned int segno, offset;
2462 	struct seg_entry *se;
2463 	bool is_cp = false;
2464 
2465 	if (!__is_valid_data_blkaddr(blkaddr))
2466 		return true;
2467 
2468 	down_read(&sit_i->sentry_lock);
2469 
2470 	segno = GET_SEGNO(sbi, blkaddr);
2471 	se = get_seg_entry(sbi, segno);
2472 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2473 
2474 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2475 		is_cp = true;
2476 
2477 	up_read(&sit_i->sentry_lock);
2478 
2479 	return is_cp;
2480 }
2481 
2482 /*
2483  * This function should be resided under the curseg_mutex lock
2484  */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2485 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2486 					struct f2fs_summary *sum)
2487 {
2488 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2489 	void *addr = curseg->sum_blk;
2490 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2491 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2492 }
2493 
2494 /*
2495  * Calculate the number of current summary pages for writing
2496  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2497 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2498 {
2499 	int valid_sum_count = 0;
2500 	int i, sum_in_page;
2501 
2502 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2503 		if (sbi->ckpt->alloc_type[i] == SSR)
2504 			valid_sum_count += sbi->blocks_per_seg;
2505 		else {
2506 			if (for_ra)
2507 				valid_sum_count += le16_to_cpu(
2508 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2509 			else
2510 				valid_sum_count += curseg_blkoff(sbi, i);
2511 		}
2512 	}
2513 
2514 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2515 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2516 	if (valid_sum_count <= sum_in_page)
2517 		return 1;
2518 	else if ((valid_sum_count - sum_in_page) <=
2519 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2520 		return 2;
2521 	return 3;
2522 }
2523 
2524 /*
2525  * Caller should put this summary page
2526  */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2527 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2528 {
2529 	if (unlikely(f2fs_cp_error(sbi)))
2530 		return ERR_PTR(-EIO);
2531 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2532 }
2533 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2534 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2535 					void *src, block_t blk_addr)
2536 {
2537 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2538 
2539 	memcpy(page_address(page), src, PAGE_SIZE);
2540 	set_page_dirty(page);
2541 	f2fs_put_page(page, 1);
2542 }
2543 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2544 static void write_sum_page(struct f2fs_sb_info *sbi,
2545 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2546 {
2547 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2548 }
2549 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2550 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2551 						int type, block_t blk_addr)
2552 {
2553 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2554 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2555 	struct f2fs_summary_block *src = curseg->sum_blk;
2556 	struct f2fs_summary_block *dst;
2557 
2558 	dst = (struct f2fs_summary_block *)page_address(page);
2559 	memset(dst, 0, PAGE_SIZE);
2560 
2561 	mutex_lock(&curseg->curseg_mutex);
2562 
2563 	down_read(&curseg->journal_rwsem);
2564 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2565 	up_read(&curseg->journal_rwsem);
2566 
2567 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2568 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2569 
2570 	mutex_unlock(&curseg->curseg_mutex);
2571 
2572 	set_page_dirty(page);
2573 	f2fs_put_page(page, 1);
2574 }
2575 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2576 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2577 				struct curseg_info *curseg, int type)
2578 {
2579 	unsigned int segno = curseg->segno + 1;
2580 	struct free_segmap_info *free_i = FREE_I(sbi);
2581 
2582 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2583 		return !test_bit(segno, free_i->free_segmap);
2584 	return 0;
2585 }
2586 
2587 /*
2588  * Find a new segment from the free segments bitmap to right order
2589  * This function should be returned with success, otherwise BUG
2590  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2591 static void get_new_segment(struct f2fs_sb_info *sbi,
2592 			unsigned int *newseg, bool new_sec, int dir)
2593 {
2594 	struct free_segmap_info *free_i = FREE_I(sbi);
2595 	unsigned int segno, secno, zoneno;
2596 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2597 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2598 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2599 	unsigned int left_start = hint;
2600 	bool init = true;
2601 	int go_left = 0;
2602 	int i;
2603 
2604 	spin_lock(&free_i->segmap_lock);
2605 
2606 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2607 		segno = find_next_zero_bit(free_i->free_segmap,
2608 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2609 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2610 			goto got_it;
2611 	}
2612 find_other_zone:
2613 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2614 	if (secno >= MAIN_SECS(sbi)) {
2615 		if (dir == ALLOC_RIGHT) {
2616 			secno = find_next_zero_bit(free_i->free_secmap,
2617 							MAIN_SECS(sbi), 0);
2618 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2619 		} else {
2620 			go_left = 1;
2621 			left_start = hint - 1;
2622 		}
2623 	}
2624 	if (go_left == 0)
2625 		goto skip_left;
2626 
2627 	while (test_bit(left_start, free_i->free_secmap)) {
2628 		if (left_start > 0) {
2629 			left_start--;
2630 			continue;
2631 		}
2632 		left_start = find_next_zero_bit(free_i->free_secmap,
2633 							MAIN_SECS(sbi), 0);
2634 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2635 		break;
2636 	}
2637 	secno = left_start;
2638 skip_left:
2639 	segno = GET_SEG_FROM_SEC(sbi, secno);
2640 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2641 
2642 	/* give up on finding another zone */
2643 	if (!init)
2644 		goto got_it;
2645 	if (sbi->secs_per_zone == 1)
2646 		goto got_it;
2647 	if (zoneno == old_zoneno)
2648 		goto got_it;
2649 	if (dir == ALLOC_LEFT) {
2650 		if (!go_left && zoneno + 1 >= total_zones)
2651 			goto got_it;
2652 		if (go_left && zoneno == 0)
2653 			goto got_it;
2654 	}
2655 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2656 		if (CURSEG_I(sbi, i)->zone == zoneno)
2657 			break;
2658 
2659 	if (i < NR_CURSEG_TYPE) {
2660 		/* zone is in user, try another */
2661 		if (go_left)
2662 			hint = zoneno * sbi->secs_per_zone - 1;
2663 		else if (zoneno + 1 >= total_zones)
2664 			hint = 0;
2665 		else
2666 			hint = (zoneno + 1) * sbi->secs_per_zone;
2667 		init = false;
2668 		goto find_other_zone;
2669 	}
2670 got_it:
2671 	/* set it as dirty segment in free segmap */
2672 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2673 	__set_inuse(sbi, segno);
2674 	*newseg = segno;
2675 	spin_unlock(&free_i->segmap_lock);
2676 }
2677 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2678 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2679 {
2680 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2681 	struct summary_footer *sum_footer;
2682 	unsigned short seg_type = curseg->seg_type;
2683 
2684 	curseg->inited = true;
2685 	curseg->segno = curseg->next_segno;
2686 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2687 	curseg->next_blkoff = 0;
2688 	curseg->next_segno = NULL_SEGNO;
2689 
2690 	sum_footer = &(curseg->sum_blk->footer);
2691 	memset(sum_footer, 0, sizeof(struct summary_footer));
2692 
2693 	sanity_check_seg_type(sbi, seg_type);
2694 
2695 	if (IS_DATASEG(seg_type))
2696 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2697 	if (IS_NODESEG(seg_type))
2698 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2699 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2700 }
2701 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2702 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2703 {
2704 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2705 	unsigned short seg_type = curseg->seg_type;
2706 
2707 	sanity_check_seg_type(sbi, seg_type);
2708 
2709 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2710 	if (__is_large_section(sbi))
2711 		return curseg->segno;
2712 
2713 	/* inmem log may not locate on any segment after mount */
2714 	if (!curseg->inited)
2715 		return 0;
2716 
2717 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2718 		return 0;
2719 
2720 	if (test_opt(sbi, NOHEAP) &&
2721 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2722 		return 0;
2723 
2724 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2725 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2726 
2727 	/* find segments from 0 to reuse freed segments */
2728 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2729 		return 0;
2730 
2731 	return curseg->segno;
2732 }
2733 
2734 /*
2735  * Allocate a current working segment.
2736  * This function always allocates a free segment in LFS manner.
2737  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2738 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2739 {
2740 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2741 	unsigned short seg_type = curseg->seg_type;
2742 	unsigned int segno = curseg->segno;
2743 	int dir = ALLOC_LEFT;
2744 
2745 	if (curseg->inited)
2746 		write_sum_page(sbi, curseg->sum_blk,
2747 				GET_SUM_BLOCK(sbi, segno));
2748 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2749 		dir = ALLOC_RIGHT;
2750 
2751 	if (test_opt(sbi, NOHEAP))
2752 		dir = ALLOC_RIGHT;
2753 
2754 	segno = __get_next_segno(sbi, type);
2755 	get_new_segment(sbi, &segno, new_sec, dir);
2756 	curseg->next_segno = segno;
2757 	reset_curseg(sbi, type, 1);
2758 	curseg->alloc_type = LFS;
2759 }
2760 
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2761 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2762 			struct curseg_info *seg, block_t start)
2763 {
2764 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2765 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2766 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2767 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2768 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2769 	int i, pos;
2770 
2771 	for (i = 0; i < entries; i++)
2772 		target_map[i] = ckpt_map[i] | cur_map[i];
2773 
2774 	pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2775 
2776 	seg->next_blkoff = pos;
2777 }
2778 
2779 /*
2780  * If a segment is written by LFS manner, next block offset is just obtained
2781  * by increasing the current block offset. However, if a segment is written by
2782  * SSR manner, next block offset obtained by calling __next_free_blkoff
2783  */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2784 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2785 				struct curseg_info *seg)
2786 {
2787 	if (seg->alloc_type == SSR)
2788 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2789 	else
2790 		seg->next_blkoff++;
2791 }
2792 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2793 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2794 {
2795 	struct seg_entry *se = get_seg_entry(sbi, segno);
2796 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2797 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2798 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2799 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2800 	int i, pos;
2801 
2802 	for (i = 0; i < entries; i++)
2803 		target_map[i] = ckpt_map[i] | cur_map[i];
2804 
2805 	pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, 0);
2806 
2807 	return pos < sbi->blocks_per_seg;
2808 }
2809 
2810 /*
2811  * This function always allocates a used segment(from dirty seglist) by SSR
2812  * manner, so it should recover the existing segment information of valid blocks
2813  */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2814 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2815 {
2816 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2817 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2818 	unsigned int new_segno = curseg->next_segno;
2819 	struct f2fs_summary_block *sum_node;
2820 	struct page *sum_page;
2821 
2822 	if (flush)
2823 		write_sum_page(sbi, curseg->sum_blk,
2824 					GET_SUM_BLOCK(sbi, curseg->segno));
2825 
2826 	__set_test_and_inuse(sbi, new_segno);
2827 
2828 	mutex_lock(&dirty_i->seglist_lock);
2829 	__remove_dirty_segment(sbi, new_segno, PRE);
2830 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2831 	mutex_unlock(&dirty_i->seglist_lock);
2832 
2833 	reset_curseg(sbi, type, 1);
2834 	curseg->alloc_type = SSR;
2835 	__next_free_blkoff(sbi, curseg, 0);
2836 
2837 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2838 	if (IS_ERR(sum_page)) {
2839 		/* GC won't be able to use stale summary pages by cp_error */
2840 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2841 		return;
2842 	}
2843 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2844 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2845 	f2fs_put_page(sum_page, 1);
2846 }
2847 
2848 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2849 				int alloc_mode, unsigned long long age);
2850 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2851 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2852 					int target_type, int alloc_mode,
2853 					unsigned long long age)
2854 {
2855 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2856 
2857 	curseg->seg_type = target_type;
2858 
2859 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2860 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2861 
2862 		curseg->seg_type = se->type;
2863 		change_curseg(sbi, type, true);
2864 	} else {
2865 		/* allocate cold segment by default */
2866 		curseg->seg_type = CURSEG_COLD_DATA;
2867 		new_curseg(sbi, type, true);
2868 	}
2869 	stat_inc_seg_type(sbi, curseg);
2870 }
2871 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2872 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2873 {
2874 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2875 
2876 	if (!sbi->am.atgc_enabled)
2877 		return;
2878 
2879 	down_read(&SM_I(sbi)->curseg_lock);
2880 
2881 	mutex_lock(&curseg->curseg_mutex);
2882 	down_write(&SIT_I(sbi)->sentry_lock);
2883 
2884 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2885 
2886 	up_write(&SIT_I(sbi)->sentry_lock);
2887 	mutex_unlock(&curseg->curseg_mutex);
2888 
2889 	up_read(&SM_I(sbi)->curseg_lock);
2890 
2891 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2892 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2893 {
2894 	__f2fs_init_atgc_curseg(sbi);
2895 }
2896 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2897 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2898 {
2899 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2900 
2901 	mutex_lock(&curseg->curseg_mutex);
2902 	if (!curseg->inited)
2903 		goto out;
2904 
2905 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2906 		write_sum_page(sbi, curseg->sum_blk,
2907 				GET_SUM_BLOCK(sbi, curseg->segno));
2908 	} else {
2909 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2910 		__set_test_and_free(sbi, curseg->segno, true);
2911 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2912 	}
2913 out:
2914 	mutex_unlock(&curseg->curseg_mutex);
2915 }
2916 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2917 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2918 {
2919 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2920 
2921 	if (sbi->am.atgc_enabled)
2922 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2923 }
2924 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2925 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2926 {
2927 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2928 
2929 	mutex_lock(&curseg->curseg_mutex);
2930 	if (!curseg->inited)
2931 		goto out;
2932 	if (get_valid_blocks(sbi, curseg->segno, false))
2933 		goto out;
2934 
2935 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2936 	__set_test_and_inuse(sbi, curseg->segno);
2937 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2938 out:
2939 	mutex_unlock(&curseg->curseg_mutex);
2940 }
2941 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2942 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2943 {
2944 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2945 
2946 	if (sbi->am.atgc_enabled)
2947 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2948 }
2949 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2950 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2951 				int alloc_mode, unsigned long long age)
2952 {
2953 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2954 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2955 	unsigned segno = NULL_SEGNO;
2956 	unsigned short seg_type = curseg->seg_type;
2957 	int i, cnt;
2958 	bool reversed = false;
2959 
2960 	sanity_check_seg_type(sbi, seg_type);
2961 
2962 	/* f2fs_need_SSR() already forces to do this */
2963 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2964 		curseg->next_segno = segno;
2965 		return 1;
2966 	}
2967 
2968 	/* For node segments, let's do SSR more intensively */
2969 	if (IS_NODESEG(seg_type)) {
2970 		if (seg_type >= CURSEG_WARM_NODE) {
2971 			reversed = true;
2972 			i = CURSEG_COLD_NODE;
2973 		} else {
2974 			i = CURSEG_HOT_NODE;
2975 		}
2976 		cnt = NR_CURSEG_NODE_TYPE;
2977 	} else {
2978 		if (seg_type >= CURSEG_WARM_DATA) {
2979 			reversed = true;
2980 			i = CURSEG_COLD_DATA;
2981 		} else {
2982 			i = CURSEG_HOT_DATA;
2983 		}
2984 		cnt = NR_CURSEG_DATA_TYPE;
2985 	}
2986 
2987 	for (; cnt-- > 0; reversed ? i-- : i++) {
2988 		if (i == seg_type)
2989 			continue;
2990 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2991 			curseg->next_segno = segno;
2992 			return 1;
2993 		}
2994 	}
2995 
2996 	/* find valid_blocks=0 in dirty list */
2997 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2998 		segno = get_free_segment(sbi);
2999 		if (segno != NULL_SEGNO) {
3000 			curseg->next_segno = segno;
3001 			return 1;
3002 		}
3003 	}
3004 	return 0;
3005 }
3006 
3007 /*
3008  * flush out current segment and replace it with new segment
3009  * This function should be returned with success, otherwise BUG
3010  */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force,int contig_level)3011 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
3012 					int type, bool force, int contig_level)
3013 {
3014 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3015 
3016 	if (force)
3017 		new_curseg(sbi, type, true);
3018 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3019 					curseg->seg_type == CURSEG_WARM_NODE)
3020 		new_curseg(sbi, type, false);
3021 	else if (curseg->alloc_type == LFS &&
3022 			is_next_segment_free(sbi, curseg, type) &&
3023 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3024 		new_curseg(sbi, type, false);
3025 #ifdef CONFIG_F2FS_GRADING_SSR
3026 	else if (need_ssr_by_type(sbi, type, contig_level) && get_ssr_segment(sbi, type, SSR, 0))
3027 #else
3028 	else if (f2fs_need_SSR(sbi) &&
3029 			get_ssr_segment(sbi, type, SSR, 0))
3030 #endif
3031 		change_curseg(sbi, type, true);
3032 	else
3033 		new_curseg(sbi, type, false);
3034 
3035 	stat_inc_seg_type(sbi, curseg);
3036 }
3037 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3038 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3039 					unsigned int start, unsigned int end)
3040 {
3041 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3042 	unsigned int segno;
3043 
3044 	down_read(&SM_I(sbi)->curseg_lock);
3045 	mutex_lock(&curseg->curseg_mutex);
3046 	down_write(&SIT_I(sbi)->sentry_lock);
3047 
3048 	segno = CURSEG_I(sbi, type)->segno;
3049 	if (segno < start || segno > end)
3050 		goto unlock;
3051 
3052 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3053 		change_curseg(sbi, type, true);
3054 	else
3055 		new_curseg(sbi, type, true);
3056 
3057 	stat_inc_seg_type(sbi, curseg);
3058 
3059 	locate_dirty_segment(sbi, segno);
3060 unlock:
3061 	up_write(&SIT_I(sbi)->sentry_lock);
3062 
3063 	if (segno != curseg->segno)
3064 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3065 			    type, segno, curseg->segno);
3066 
3067 	mutex_unlock(&curseg->curseg_mutex);
3068 	up_read(&SM_I(sbi)->curseg_lock);
3069 }
3070 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec)3071 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3072 								bool new_sec)
3073 {
3074 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3075 	unsigned int old_segno;
3076 
3077 	if (!curseg->inited)
3078 		goto alloc;
3079 
3080 	if (curseg->next_blkoff ||
3081 		get_valid_blocks(sbi, curseg->segno, new_sec))
3082 		goto alloc;
3083 
3084 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3085 		return;
3086 alloc:
3087 	old_segno = curseg->segno;
3088 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true, SEQ_NONE);
3089 	locate_dirty_segment(sbi, old_segno);
3090 }
3091 
__allocate_new_section(struct f2fs_sb_info * sbi,int type)3092 static void __allocate_new_section(struct f2fs_sb_info *sbi, int type)
3093 {
3094 	__allocate_new_segment(sbi, type, true);
3095 }
3096 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type)3097 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type)
3098 {
3099 	down_read(&SM_I(sbi)->curseg_lock);
3100 	down_write(&SIT_I(sbi)->sentry_lock);
3101 	__allocate_new_section(sbi, type);
3102 	up_write(&SIT_I(sbi)->sentry_lock);
3103 	up_read(&SM_I(sbi)->curseg_lock);
3104 }
3105 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3106 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3107 {
3108 	int i;
3109 
3110 	down_read(&SM_I(sbi)->curseg_lock);
3111 	down_write(&SIT_I(sbi)->sentry_lock);
3112 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3113 		__allocate_new_segment(sbi, i, false);
3114 	up_write(&SIT_I(sbi)->sentry_lock);
3115 	up_read(&SM_I(sbi)->curseg_lock);
3116 }
3117 
3118 static const struct segment_allocation default_salloc_ops = {
3119 	.allocate_segment = allocate_segment_by_default,
3120 };
3121 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3122 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3123 						struct cp_control *cpc)
3124 {
3125 	__u64 trim_start = cpc->trim_start;
3126 	bool has_candidate = false;
3127 
3128 	down_write(&SIT_I(sbi)->sentry_lock);
3129 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3130 		if (add_discard_addrs(sbi, cpc, true)) {
3131 			has_candidate = true;
3132 			break;
3133 		}
3134 	}
3135 	up_write(&SIT_I(sbi)->sentry_lock);
3136 
3137 	cpc->trim_start = trim_start;
3138 	return has_candidate;
3139 }
3140 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3141 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3142 					struct discard_policy *dpolicy,
3143 					unsigned int start, unsigned int end)
3144 {
3145 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3146 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3147 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3148 	struct discard_cmd *dc;
3149 	struct blk_plug plug;
3150 	struct discard_sub_policy *spolicy = NULL;
3151 	int issued;
3152 	unsigned int trimmed = 0;
3153 	/* fstrim each time 8 discard without no interrupt */
3154 	select_sub_discard_policy(&spolicy, 0, dpolicy);
3155 
3156 	if (dcc->rbtree_check) {
3157 		mutex_lock(&dcc->cmd_lock);
3158 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
3159 		mutex_unlock(&dcc->cmd_lock);
3160 	}
3161 
3162 next:
3163 	issued = 0;
3164 
3165 	mutex_lock(&dcc->cmd_lock);
3166 	if (unlikely(dcc->rbtree_check))
3167 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3168 							&dcc->root, false));
3169 
3170 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3171 					NULL, start,
3172 					(struct rb_entry **)&prev_dc,
3173 					(struct rb_entry **)&next_dc,
3174 					&insert_p, &insert_parent, true, NULL);
3175 	if (!dc)
3176 		dc = next_dc;
3177 
3178 	blk_start_plug(&plug);
3179 
3180 	while (dc && dc->lstart <= end) {
3181 		struct rb_node *node;
3182 		int err = 0;
3183 
3184 		if (dc->len < dpolicy->granularity)
3185 			goto skip;
3186 
3187 		if (dc->state != D_PREP) {
3188 			list_move_tail(&dc->list, &dcc->fstrim_list);
3189 			goto skip;
3190 		}
3191 
3192 		err = __submit_discard_cmd(sbi, dpolicy, 0, dc, &issued);
3193 
3194 		if (issued >= spolicy->max_requests) {
3195 			start = dc->lstart + dc->len;
3196 
3197 			if (err)
3198 				__remove_discard_cmd(sbi, dc);
3199 
3200 			blk_finish_plug(&plug);
3201 			mutex_unlock(&dcc->cmd_lock);
3202 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3203 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3204 			goto next;
3205 		}
3206 skip:
3207 		node = rb_next(&dc->rb_node);
3208 		if (err)
3209 			__remove_discard_cmd(sbi, dc);
3210 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3211 
3212 		if (fatal_signal_pending(current))
3213 			break;
3214 	}
3215 
3216 	blk_finish_plug(&plug);
3217 	mutex_unlock(&dcc->cmd_lock);
3218 
3219 	return trimmed;
3220 }
3221 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3222 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3223 {
3224 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3225 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3226 	unsigned int start_segno, end_segno;
3227 	block_t start_block, end_block;
3228 	struct cp_control cpc;
3229 	struct discard_policy dpolicy;
3230 	unsigned long long trimmed = 0;
3231 	int err = 0;
3232 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3233 
3234 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3235 		return -EINVAL;
3236 
3237 	if (end < MAIN_BLKADDR(sbi))
3238 		goto out;
3239 
3240 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3241 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3242 		return -EFSCORRUPTED;
3243 	}
3244 
3245 	/* start/end segment number in main_area */
3246 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3247 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3248 						GET_SEGNO(sbi, end);
3249 	if (need_align) {
3250 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3251 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3252 	}
3253 
3254 	cpc.reason = CP_DISCARD;
3255 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3256 	cpc.trim_start = start_segno;
3257 	cpc.trim_end = end_segno;
3258 
3259 	if (sbi->discard_blks == 0)
3260 		goto out;
3261 
3262 	down_write(&sbi->gc_lock);
3263 	err = f2fs_write_checkpoint(sbi, &cpc);
3264 	up_write(&sbi->gc_lock);
3265 	if (err)
3266 		goto out;
3267 
3268 	/*
3269 	 * We filed discard candidates, but actually we don't need to wait for
3270 	 * all of them, since they'll be issued in idle time along with runtime
3271 	 * discard option. User configuration looks like using runtime discard
3272 	 * or periodic fstrim instead of it.
3273 	 */
3274 	if (f2fs_realtime_discard_enable(sbi))
3275 		goto out;
3276 
3277 	start_block = START_BLOCK(sbi, start_segno);
3278 	end_block = START_BLOCK(sbi, end_segno + 1);
3279 
3280 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3281 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3282 					start_block, end_block);
3283 
3284 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3285 					start_block, end_block);
3286 out:
3287 	if (!err)
3288 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3289 	return err;
3290 }
3291 
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3292 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3293 					struct curseg_info *curseg)
3294 {
3295 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3296 							curseg->segno);
3297 }
3298 
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3299 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3300 {
3301 	switch (hint) {
3302 	case WRITE_LIFE_SHORT:
3303 		return CURSEG_HOT_DATA;
3304 	case WRITE_LIFE_EXTREME:
3305 		return CURSEG_COLD_DATA;
3306 	default:
3307 		return CURSEG_WARM_DATA;
3308 	}
3309 }
3310 
3311 /* This returns write hints for each segment type. This hints will be
3312  * passed down to block layer. There are mapping tables which depend on
3313  * the mount option 'whint_mode'.
3314  *
3315  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3316  *
3317  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3318  *
3319  * User                  F2FS                     Block
3320  * ----                  ----                     -----
3321  *                       META                     WRITE_LIFE_NOT_SET
3322  *                       HOT_NODE                 "
3323  *                       WARM_NODE                "
3324  *                       COLD_NODE                "
3325  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3326  * extension list        "                        "
3327  *
3328  * -- buffered io
3329  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3330  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3331  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3332  * WRITE_LIFE_NONE       "                        "
3333  * WRITE_LIFE_MEDIUM     "                        "
3334  * WRITE_LIFE_LONG       "                        "
3335  *
3336  * -- direct io
3337  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3338  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3339  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3340  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3341  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3342  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3343  *
3344  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3345  *
3346  * User                  F2FS                     Block
3347  * ----                  ----                     -----
3348  *                       META                     WRITE_LIFE_MEDIUM;
3349  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3350  *                       WARM_NODE                "
3351  *                       COLD_NODE                WRITE_LIFE_NONE
3352  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3353  * extension list        "                        "
3354  *
3355  * -- buffered io
3356  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3357  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3358  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3359  * WRITE_LIFE_NONE       "                        "
3360  * WRITE_LIFE_MEDIUM     "                        "
3361  * WRITE_LIFE_LONG       "                        "
3362  *
3363  * -- direct io
3364  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3365  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3366  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3367  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3368  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3369  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3370  */
3371 
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3372 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3373 				enum page_type type, enum temp_type temp)
3374 {
3375 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3376 		if (type == DATA) {
3377 			if (temp == WARM)
3378 				return WRITE_LIFE_NOT_SET;
3379 			else if (temp == HOT)
3380 				return WRITE_LIFE_SHORT;
3381 			else if (temp == COLD)
3382 				return WRITE_LIFE_EXTREME;
3383 		} else {
3384 			return WRITE_LIFE_NOT_SET;
3385 		}
3386 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3387 		if (type == DATA) {
3388 			if (temp == WARM)
3389 				return WRITE_LIFE_LONG;
3390 			else if (temp == HOT)
3391 				return WRITE_LIFE_SHORT;
3392 			else if (temp == COLD)
3393 				return WRITE_LIFE_EXTREME;
3394 		} else if (type == NODE) {
3395 			if (temp == WARM || temp == HOT)
3396 				return WRITE_LIFE_NOT_SET;
3397 			else if (temp == COLD)
3398 				return WRITE_LIFE_NONE;
3399 		} else if (type == META) {
3400 			return WRITE_LIFE_MEDIUM;
3401 		}
3402 	}
3403 	return WRITE_LIFE_NOT_SET;
3404 }
3405 
__get_segment_type_2(struct f2fs_io_info * fio)3406 static int __get_segment_type_2(struct f2fs_io_info *fio)
3407 {
3408 	if (fio->type == DATA)
3409 		return CURSEG_HOT_DATA;
3410 	else
3411 		return CURSEG_HOT_NODE;
3412 }
3413 
__get_segment_type_4(struct f2fs_io_info * fio)3414 static int __get_segment_type_4(struct f2fs_io_info *fio)
3415 {
3416 	if (fio->type == DATA) {
3417 		struct inode *inode = fio->page->mapping->host;
3418 
3419 		if (S_ISDIR(inode->i_mode))
3420 			return CURSEG_HOT_DATA;
3421 		else
3422 			return CURSEG_COLD_DATA;
3423 	} else {
3424 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3425 			return CURSEG_WARM_NODE;
3426 		else
3427 			return CURSEG_COLD_NODE;
3428 	}
3429 }
3430 
__get_segment_type_6(struct f2fs_io_info * fio)3431 static int __get_segment_type_6(struct f2fs_io_info *fio)
3432 {
3433 	if (fio->type == DATA) {
3434 		struct inode *inode = fio->page->mapping->host;
3435 
3436 		if (is_cold_data(fio->page)) {
3437 			if (fio->sbi->am.atgc_enabled)
3438 				return CURSEG_ALL_DATA_ATGC;
3439 			else
3440 				return CURSEG_COLD_DATA;
3441 		}
3442 		if (file_is_cold(inode) || f2fs_compressed_file(inode))
3443 			return CURSEG_COLD_DATA;
3444 		if (file_is_hot(inode) ||
3445 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3446 				f2fs_is_atomic_file(inode) ||
3447 				f2fs_is_volatile_file(inode))
3448 			return CURSEG_HOT_DATA;
3449 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3450 	} else {
3451 		if (IS_DNODE(fio->page))
3452 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3453 						CURSEG_HOT_NODE;
3454 		return CURSEG_COLD_NODE;
3455 	}
3456 }
3457 
__get_segment_type(struct f2fs_io_info * fio)3458 static int __get_segment_type(struct f2fs_io_info *fio)
3459 {
3460 	int type = 0;
3461 
3462 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3463 	case 2:
3464 		type = __get_segment_type_2(fio);
3465 		break;
3466 	case 4:
3467 		type = __get_segment_type_4(fio);
3468 		break;
3469 	case 6:
3470 		type = __get_segment_type_6(fio);
3471 		break;
3472 	default:
3473 		f2fs_bug_on(fio->sbi, true);
3474 	}
3475 
3476 	if (IS_HOT(type))
3477 		fio->temp = HOT;
3478 	else if (IS_WARM(type))
3479 		fio->temp = WARM;
3480 	else
3481 		fio->temp = COLD;
3482 	return type;
3483 }
3484 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,int contig_level)3485 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3486 		block_t old_blkaddr, block_t *new_blkaddr,
3487 		struct f2fs_summary *sum, int type,
3488 		struct f2fs_io_info *fio, int contig_level)
3489 {
3490 	struct sit_info *sit_i = SIT_I(sbi);
3491 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3492 	unsigned long long old_mtime;
3493 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3494 	struct seg_entry *se = NULL;
3495 #ifdef CONFIG_F2FS_GRADING_SSR
3496 	struct inode *inode = NULL;
3497 #endif
3498 	int contig = SEQ_NONE;
3499 
3500 	down_read(&SM_I(sbi)->curseg_lock);
3501 
3502 	mutex_lock(&curseg->curseg_mutex);
3503 	down_write(&sit_i->sentry_lock);
3504 
3505 	if (from_gc) {
3506 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3507 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3508 		sanity_check_seg_type(sbi, se->type);
3509 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3510 	}
3511 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3512 
3513 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3514 
3515 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3516 
3517 	/*
3518 	 * __add_sum_entry should be resided under the curseg_mutex
3519 	 * because, this function updates a summary entry in the
3520 	 * current summary block.
3521 	 */
3522 	__add_sum_entry(sbi, type, sum);
3523 
3524 	__refresh_next_blkoff(sbi, curseg);
3525 
3526 	stat_inc_block_count(sbi, curseg);
3527 
3528 	if (from_gc) {
3529 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3530 	} else {
3531 		update_segment_mtime(sbi, old_blkaddr, 0);
3532 		old_mtime = 0;
3533 	}
3534 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3535 
3536 	/*
3537 	 * SIT information should be updated before segment allocation,
3538 	 * since SSR needs latest valid block information.
3539 	 */
3540 	update_sit_entry(sbi, *new_blkaddr, 1);
3541 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3542 		update_sit_entry(sbi, old_blkaddr, -1);
3543 
3544 	if (!__has_curseg_space(sbi, curseg)) {
3545 		if (from_gc) {
3546 			get_atssr_segment(sbi, type, se->type,
3547 						AT_SSR, se->mtime);
3548 		} else {
3549 #ifdef CONFIG_F2FS_GRADING_SSR
3550 			if (contig_level != SEQ_NONE) {
3551 				contig = contig_level;
3552 				goto allocate_label;
3553 			}
3554 
3555 			if (page && page->mapping && page->mapping != NODE_MAPPING(sbi) &&
3556 					page->mapping != META_MAPPING(sbi)) {
3557 				inode = page->mapping->host;
3558 				contig = check_io_seq(get_dirty_pages(inode));
3559 			}
3560 allocate_label:
3561 #endif
3562 			sit_i->s_ops->allocate_segment(sbi, type, false, contig);
3563 		}
3564 	}
3565 	/*
3566 	 * segment dirty status should be updated after segment allocation,
3567 	 * so we just need to update status only one time after previous
3568 	 * segment being closed.
3569 	 */
3570 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3571 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3572 
3573 	up_write(&sit_i->sentry_lock);
3574 
3575 	if (page && IS_NODESEG(type)) {
3576 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3577 
3578 		f2fs_inode_chksum_set(sbi, page);
3579 	}
3580 
3581 	if (fio) {
3582 		struct f2fs_bio_info *io;
3583 
3584 		if (F2FS_IO_ALIGNED(sbi))
3585 			fio->retry = false;
3586 
3587 		INIT_LIST_HEAD(&fio->list);
3588 		fio->in_list = true;
3589 		io = sbi->write_io[fio->type] + fio->temp;
3590 		spin_lock(&io->io_lock);
3591 		list_add_tail(&fio->list, &io->io_list);
3592 		spin_unlock(&io->io_lock);
3593 	}
3594 
3595 	mutex_unlock(&curseg->curseg_mutex);
3596 
3597 	up_read(&SM_I(sbi)->curseg_lock);
3598 }
3599 
update_device_state(struct f2fs_io_info * fio)3600 static void update_device_state(struct f2fs_io_info *fio)
3601 {
3602 	struct f2fs_sb_info *sbi = fio->sbi;
3603 	unsigned int devidx;
3604 
3605 	if (!f2fs_is_multi_device(sbi))
3606 		return;
3607 
3608 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3609 
3610 	/* update device state for fsync */
3611 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3612 
3613 	/* update device state for checkpoint */
3614 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3615 		spin_lock(&sbi->dev_lock);
3616 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3617 		spin_unlock(&sbi->dev_lock);
3618 	}
3619 }
3620 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3621 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3622 {
3623 	int type = __get_segment_type(fio);
3624 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3625 
3626 	if (keep_order)
3627 		down_read(&fio->sbi->io_order_lock);
3628 reallocate:
3629 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3630 			&fio->new_blkaddr, sum, type, fio, SEQ_NONE);
3631 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3632 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3633 					fio->old_blkaddr, fio->old_blkaddr);
3634 
3635 	/* writeout dirty page into bdev */
3636 	f2fs_submit_page_write(fio);
3637 	if (fio->retry) {
3638 		fio->old_blkaddr = fio->new_blkaddr;
3639 		goto reallocate;
3640 	}
3641 
3642 	update_device_state(fio);
3643 
3644 	if (keep_order)
3645 		up_read(&fio->sbi->io_order_lock);
3646 }
3647 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3648 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3649 					enum iostat_type io_type)
3650 {
3651 	struct f2fs_io_info fio = {
3652 		.sbi = sbi,
3653 		.type = META,
3654 		.temp = HOT,
3655 		.op = REQ_OP_WRITE,
3656 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3657 		.old_blkaddr = page->index,
3658 		.new_blkaddr = page->index,
3659 		.page = page,
3660 		.encrypted_page = NULL,
3661 		.in_list = false,
3662 	};
3663 
3664 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3665 		fio.op_flags &= ~REQ_META;
3666 
3667 	set_page_writeback(page);
3668 	ClearPageError(page);
3669 	f2fs_submit_page_write(&fio);
3670 
3671 	stat_inc_meta_count(sbi, page->index);
3672 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3673 }
3674 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3675 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3676 {
3677 	struct f2fs_summary sum;
3678 
3679 	set_summary(&sum, nid, 0, 0);
3680 	do_write_page(&sum, fio);
3681 
3682 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3683 }
3684 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3685 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3686 					struct f2fs_io_info *fio)
3687 {
3688 	struct f2fs_sb_info *sbi = fio->sbi;
3689 	struct f2fs_summary sum;
3690 
3691 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3692 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3693 	do_write_page(&sum, fio);
3694 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3695 
3696 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3697 }
3698 
f2fs_inplace_write_data(struct f2fs_io_info * fio)3699 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3700 {
3701 	int err;
3702 	struct f2fs_sb_info *sbi = fio->sbi;
3703 	unsigned int segno;
3704 
3705 	fio->new_blkaddr = fio->old_blkaddr;
3706 	/* i/o temperature is needed for passing down write hints */
3707 	__get_segment_type(fio);
3708 
3709 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3710 
3711 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3712 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3713 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3714 			  __func__, segno);
3715 		return -EFSCORRUPTED;
3716 	}
3717 
3718 	stat_inc_inplace_blocks(fio->sbi);
3719 
3720 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3721 		err = f2fs_merge_page_bio(fio);
3722 	else
3723 		err = f2fs_submit_page_bio(fio);
3724 	if (!err) {
3725 		update_device_state(fio);
3726 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3727 	}
3728 
3729 	return err;
3730 }
3731 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3732 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3733 						unsigned int segno)
3734 {
3735 	int i;
3736 
3737 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3738 		if (CURSEG_I(sbi, i)->segno == segno)
3739 			break;
3740 	}
3741 	return i;
3742 }
3743 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3744 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3745 				block_t old_blkaddr, block_t new_blkaddr,
3746 				bool recover_curseg, bool recover_newaddr,
3747 				bool from_gc)
3748 {
3749 	struct sit_info *sit_i = SIT_I(sbi);
3750 	struct curseg_info *curseg;
3751 	unsigned int segno, old_cursegno;
3752 	struct seg_entry *se;
3753 	int type;
3754 	unsigned short old_blkoff;
3755 
3756 	segno = GET_SEGNO(sbi, new_blkaddr);
3757 	se = get_seg_entry(sbi, segno);
3758 	type = se->type;
3759 
3760 	down_write(&SM_I(sbi)->curseg_lock);
3761 
3762 	if (!recover_curseg) {
3763 		/* for recovery flow */
3764 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3765 			if (old_blkaddr == NULL_ADDR)
3766 				type = CURSEG_COLD_DATA;
3767 			else
3768 				type = CURSEG_WARM_DATA;
3769 		}
3770 	} else {
3771 		if (IS_CURSEG(sbi, segno)) {
3772 			/* se->type is volatile as SSR allocation */
3773 			type = __f2fs_get_curseg(sbi, segno);
3774 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3775 		} else {
3776 			type = CURSEG_WARM_DATA;
3777 		}
3778 	}
3779 
3780 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3781 	curseg = CURSEG_I(sbi, type);
3782 
3783 	mutex_lock(&curseg->curseg_mutex);
3784 	down_write(&sit_i->sentry_lock);
3785 
3786 	old_cursegno = curseg->segno;
3787 	old_blkoff = curseg->next_blkoff;
3788 
3789 	/* change the current segment */
3790 	if (segno != curseg->segno) {
3791 		curseg->next_segno = segno;
3792 		change_curseg(sbi, type, true);
3793 	}
3794 
3795 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3796 	__add_sum_entry(sbi, type, sum);
3797 
3798 	if (!recover_curseg || recover_newaddr) {
3799 		if (!from_gc)
3800 			update_segment_mtime(sbi, new_blkaddr, 0);
3801 		update_sit_entry(sbi, new_blkaddr, 1);
3802 	}
3803 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3804 		invalidate_mapping_pages(META_MAPPING(sbi),
3805 					old_blkaddr, old_blkaddr);
3806 		if (!from_gc)
3807 			update_segment_mtime(sbi, old_blkaddr, 0);
3808 		update_sit_entry(sbi, old_blkaddr, -1);
3809 	}
3810 
3811 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3812 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3813 
3814 	locate_dirty_segment(sbi, old_cursegno);
3815 
3816 	if (recover_curseg) {
3817 		if (old_cursegno != curseg->segno) {
3818 			curseg->next_segno = old_cursegno;
3819 			change_curseg(sbi, type, true);
3820 		}
3821 		curseg->next_blkoff = old_blkoff;
3822 	}
3823 
3824 	up_write(&sit_i->sentry_lock);
3825 	mutex_unlock(&curseg->curseg_mutex);
3826 	up_write(&SM_I(sbi)->curseg_lock);
3827 }
3828 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3829 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3830 				block_t old_addr, block_t new_addr,
3831 				unsigned char version, bool recover_curseg,
3832 				bool recover_newaddr)
3833 {
3834 	struct f2fs_summary sum;
3835 
3836 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3837 
3838 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3839 					recover_curseg, recover_newaddr, false);
3840 
3841 	f2fs_update_data_blkaddr(dn, new_addr);
3842 }
3843 
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3844 void f2fs_wait_on_page_writeback(struct page *page,
3845 				enum page_type type, bool ordered, bool locked)
3846 {
3847 	if (PageWriteback(page)) {
3848 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3849 
3850 		/* submit cached LFS IO */
3851 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3852 		/* sbumit cached IPU IO */
3853 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3854 		if (ordered) {
3855 			wait_on_page_writeback(page);
3856 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3857 		} else {
3858 			wait_for_stable_page(page);
3859 		}
3860 	}
3861 }
3862 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3863 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3864 {
3865 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3866 	struct page *cpage;
3867 
3868 	if (!f2fs_post_read_required(inode))
3869 		return;
3870 
3871 	if (!__is_valid_data_blkaddr(blkaddr))
3872 		return;
3873 
3874 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3875 	if (cpage) {
3876 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3877 		f2fs_put_page(cpage, 1);
3878 	}
3879 }
3880 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3881 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3882 								block_t len)
3883 {
3884 	block_t i;
3885 
3886 	for (i = 0; i < len; i++)
3887 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3888 }
3889 
read_compacted_summaries(struct f2fs_sb_info * sbi)3890 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3891 {
3892 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3893 	struct curseg_info *seg_i;
3894 	unsigned char *kaddr;
3895 	struct page *page;
3896 	block_t start;
3897 	int i, j, offset;
3898 
3899 	start = start_sum_block(sbi);
3900 
3901 	page = f2fs_get_meta_page(sbi, start++);
3902 	if (IS_ERR(page))
3903 		return PTR_ERR(page);
3904 	kaddr = (unsigned char *)page_address(page);
3905 
3906 	/* Step 1: restore nat cache */
3907 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3908 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3909 
3910 	/* Step 2: restore sit cache */
3911 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3912 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3913 	offset = 2 * SUM_JOURNAL_SIZE;
3914 
3915 	/* Step 3: restore summary entries */
3916 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3917 		unsigned short blk_off;
3918 		unsigned int segno;
3919 
3920 		seg_i = CURSEG_I(sbi, i);
3921 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3922 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3923 		seg_i->next_segno = segno;
3924 		reset_curseg(sbi, i, 0);
3925 		seg_i->alloc_type = ckpt->alloc_type[i];
3926 		seg_i->next_blkoff = blk_off;
3927 
3928 		if (seg_i->alloc_type == SSR)
3929 			blk_off = sbi->blocks_per_seg;
3930 
3931 		for (j = 0; j < blk_off; j++) {
3932 			struct f2fs_summary *s;
3933 			s = (struct f2fs_summary *)(kaddr + offset);
3934 			seg_i->sum_blk->entries[j] = *s;
3935 			offset += SUMMARY_SIZE;
3936 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3937 						SUM_FOOTER_SIZE)
3938 				continue;
3939 
3940 			f2fs_put_page(page, 1);
3941 			page = NULL;
3942 
3943 			page = f2fs_get_meta_page(sbi, start++);
3944 			if (IS_ERR(page))
3945 				return PTR_ERR(page);
3946 			kaddr = (unsigned char *)page_address(page);
3947 			offset = 0;
3948 		}
3949 	}
3950 	f2fs_put_page(page, 1);
3951 	return 0;
3952 }
3953 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3954 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3955 {
3956 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3957 	struct f2fs_summary_block *sum;
3958 	struct curseg_info *curseg;
3959 	struct page *new;
3960 	unsigned short blk_off;
3961 	unsigned int segno = 0;
3962 	block_t blk_addr = 0;
3963 	int err = 0;
3964 
3965 	/* get segment number and block addr */
3966 	if (IS_DATASEG(type)) {
3967 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3968 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3969 							CURSEG_HOT_DATA]);
3970 		if (__exist_node_summaries(sbi))
3971 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3972 		else
3973 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3974 	} else {
3975 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3976 							CURSEG_HOT_NODE]);
3977 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3978 							CURSEG_HOT_NODE]);
3979 		if (__exist_node_summaries(sbi))
3980 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3981 							type - CURSEG_HOT_NODE);
3982 		else
3983 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3984 	}
3985 
3986 	new = f2fs_get_meta_page(sbi, blk_addr);
3987 	if (IS_ERR(new))
3988 		return PTR_ERR(new);
3989 	sum = (struct f2fs_summary_block *)page_address(new);
3990 
3991 	if (IS_NODESEG(type)) {
3992 		if (__exist_node_summaries(sbi)) {
3993 			struct f2fs_summary *ns = &sum->entries[0];
3994 			int i;
3995 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3996 				ns->version = 0;
3997 				ns->ofs_in_node = 0;
3998 			}
3999 		} else {
4000 			err = f2fs_restore_node_summary(sbi, segno, sum);
4001 			if (err)
4002 				goto out;
4003 		}
4004 	}
4005 
4006 	/* set uncompleted segment to curseg */
4007 	curseg = CURSEG_I(sbi, type);
4008 	mutex_lock(&curseg->curseg_mutex);
4009 
4010 	/* update journal info */
4011 	down_write(&curseg->journal_rwsem);
4012 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4013 	up_write(&curseg->journal_rwsem);
4014 
4015 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4016 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4017 	curseg->next_segno = segno;
4018 	reset_curseg(sbi, type, 0);
4019 	curseg->alloc_type = ckpt->alloc_type[type];
4020 	curseg->next_blkoff = blk_off;
4021 	mutex_unlock(&curseg->curseg_mutex);
4022 out:
4023 	f2fs_put_page(new, 1);
4024 	return err;
4025 }
4026 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4027 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4028 {
4029 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4030 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4031 	int type = CURSEG_HOT_DATA;
4032 	int err;
4033 
4034 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4035 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4036 
4037 		if (npages >= 2)
4038 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4039 							META_CP, true);
4040 
4041 		/* restore for compacted data summary */
4042 		err = read_compacted_summaries(sbi);
4043 		if (err)
4044 			return err;
4045 		type = CURSEG_HOT_NODE;
4046 	}
4047 
4048 	if (__exist_node_summaries(sbi))
4049 		f2fs_ra_meta_pages(sbi,
4050 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4051 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4052 
4053 	for (; type <= CURSEG_COLD_NODE; type++) {
4054 		err = read_normal_summaries(sbi, type);
4055 		if (err)
4056 			return err;
4057 	}
4058 
4059 	/* sanity check for summary blocks */
4060 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4061 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4062 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
4063 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4064 		return -EINVAL;
4065 	}
4066 
4067 	return 0;
4068 }
4069 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4070 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4071 {
4072 	struct page *page;
4073 	unsigned char *kaddr;
4074 	struct f2fs_summary *summary;
4075 	struct curseg_info *seg_i;
4076 	int written_size = 0;
4077 	int i, j;
4078 
4079 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4080 	kaddr = (unsigned char *)page_address(page);
4081 	memset(kaddr, 0, PAGE_SIZE);
4082 
4083 	/* Step 1: write nat cache */
4084 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4085 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4086 	written_size += SUM_JOURNAL_SIZE;
4087 
4088 	/* Step 2: write sit cache */
4089 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4090 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4091 	written_size += SUM_JOURNAL_SIZE;
4092 
4093 	/* Step 3: write summary entries */
4094 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4095 		unsigned short blkoff;
4096 		seg_i = CURSEG_I(sbi, i);
4097 		if (sbi->ckpt->alloc_type[i] == SSR)
4098 			blkoff = sbi->blocks_per_seg;
4099 		else
4100 			blkoff = curseg_blkoff(sbi, i);
4101 
4102 		for (j = 0; j < blkoff; j++) {
4103 			if (!page) {
4104 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4105 				kaddr = (unsigned char *)page_address(page);
4106 				memset(kaddr, 0, PAGE_SIZE);
4107 				written_size = 0;
4108 			}
4109 			summary = (struct f2fs_summary *)(kaddr + written_size);
4110 			*summary = seg_i->sum_blk->entries[j];
4111 			written_size += SUMMARY_SIZE;
4112 
4113 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4114 							SUM_FOOTER_SIZE)
4115 				continue;
4116 
4117 			set_page_dirty(page);
4118 			f2fs_put_page(page, 1);
4119 			page = NULL;
4120 		}
4121 	}
4122 	if (page) {
4123 		set_page_dirty(page);
4124 		f2fs_put_page(page, 1);
4125 	}
4126 }
4127 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4128 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4129 					block_t blkaddr, int type)
4130 {
4131 	int i, end;
4132 	if (IS_DATASEG(type))
4133 		end = type + NR_CURSEG_DATA_TYPE;
4134 	else
4135 		end = type + NR_CURSEG_NODE_TYPE;
4136 
4137 	for (i = type; i < end; i++)
4138 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4139 }
4140 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4141 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4142 {
4143 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4144 		write_compacted_summaries(sbi, start_blk);
4145 	else
4146 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4147 }
4148 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4149 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4150 {
4151 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4152 }
4153 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4154 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4155 					unsigned int val, int alloc)
4156 {
4157 	int i;
4158 
4159 	if (type == NAT_JOURNAL) {
4160 		for (i = 0; i < nats_in_cursum(journal); i++) {
4161 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4162 				return i;
4163 		}
4164 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4165 			return update_nats_in_cursum(journal, 1);
4166 	} else if (type == SIT_JOURNAL) {
4167 		for (i = 0; i < sits_in_cursum(journal); i++)
4168 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4169 				return i;
4170 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4171 			return update_sits_in_cursum(journal, 1);
4172 	}
4173 	return -1;
4174 }
4175 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4176 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4177 					unsigned int segno)
4178 {
4179 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4180 }
4181 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4182 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4183 					unsigned int start)
4184 {
4185 	struct sit_info *sit_i = SIT_I(sbi);
4186 	struct page *page;
4187 	pgoff_t src_off, dst_off;
4188 
4189 	src_off = current_sit_addr(sbi, start);
4190 	dst_off = next_sit_addr(sbi, src_off);
4191 
4192 	page = f2fs_grab_meta_page(sbi, dst_off);
4193 	seg_info_to_sit_page(sbi, page, start);
4194 
4195 	set_page_dirty(page);
4196 	set_to_next_sit(sit_i, start);
4197 
4198 	return page;
4199 }
4200 
grab_sit_entry_set(void)4201 static struct sit_entry_set *grab_sit_entry_set(void)
4202 {
4203 	struct sit_entry_set *ses =
4204 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4205 
4206 	ses->entry_cnt = 0;
4207 	INIT_LIST_HEAD(&ses->set_list);
4208 	return ses;
4209 }
4210 
release_sit_entry_set(struct sit_entry_set * ses)4211 static void release_sit_entry_set(struct sit_entry_set *ses)
4212 {
4213 	list_del(&ses->set_list);
4214 	kmem_cache_free(sit_entry_set_slab, ses);
4215 }
4216 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4217 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4218 						struct list_head *head)
4219 {
4220 	struct sit_entry_set *next = ses;
4221 
4222 	if (list_is_last(&ses->set_list, head))
4223 		return;
4224 
4225 	list_for_each_entry_continue(next, head, set_list)
4226 		if (ses->entry_cnt <= next->entry_cnt)
4227 			break;
4228 
4229 	list_move_tail(&ses->set_list, &next->set_list);
4230 }
4231 
add_sit_entry(unsigned int segno,struct list_head * head)4232 static void add_sit_entry(unsigned int segno, struct list_head *head)
4233 {
4234 	struct sit_entry_set *ses;
4235 	unsigned int start_segno = START_SEGNO(segno);
4236 
4237 	list_for_each_entry(ses, head, set_list) {
4238 		if (ses->start_segno == start_segno) {
4239 			ses->entry_cnt++;
4240 			adjust_sit_entry_set(ses, head);
4241 			return;
4242 		}
4243 	}
4244 
4245 	ses = grab_sit_entry_set();
4246 
4247 	ses->start_segno = start_segno;
4248 	ses->entry_cnt++;
4249 	list_add(&ses->set_list, head);
4250 }
4251 
add_sits_in_set(struct f2fs_sb_info * sbi)4252 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4253 {
4254 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4255 	struct list_head *set_list = &sm_info->sit_entry_set;
4256 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4257 	unsigned int segno;
4258 
4259 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4260 		add_sit_entry(segno, set_list);
4261 }
4262 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4263 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4264 {
4265 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4266 	struct f2fs_journal *journal = curseg->journal;
4267 	int i;
4268 
4269 	down_write(&curseg->journal_rwsem);
4270 	for (i = 0; i < sits_in_cursum(journal); i++) {
4271 		unsigned int segno;
4272 		bool dirtied;
4273 
4274 		segno = le32_to_cpu(segno_in_journal(journal, i));
4275 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4276 
4277 		if (!dirtied)
4278 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4279 	}
4280 	update_sits_in_cursum(journal, -i);
4281 	up_write(&curseg->journal_rwsem);
4282 }
4283 
4284 /*
4285  * CP calls this function, which flushes SIT entries including sit_journal,
4286  * and moves prefree segs to free segs.
4287  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4288 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4289 {
4290 	struct sit_info *sit_i = SIT_I(sbi);
4291 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4292 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4293 	struct f2fs_journal *journal = curseg->journal;
4294 	struct sit_entry_set *ses, *tmp;
4295 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4296 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4297 	struct seg_entry *se;
4298 
4299 	down_write(&sit_i->sentry_lock);
4300 
4301 	if (!sit_i->dirty_sentries)
4302 		goto out;
4303 
4304 	/*
4305 	 * add and account sit entries of dirty bitmap in sit entry
4306 	 * set temporarily
4307 	 */
4308 	add_sits_in_set(sbi);
4309 
4310 	/*
4311 	 * if there are no enough space in journal to store dirty sit
4312 	 * entries, remove all entries from journal and add and account
4313 	 * them in sit entry set.
4314 	 */
4315 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4316 								!to_journal)
4317 		remove_sits_in_journal(sbi);
4318 
4319 	/*
4320 	 * there are two steps to flush sit entries:
4321 	 * #1, flush sit entries to journal in current cold data summary block.
4322 	 * #2, flush sit entries to sit page.
4323 	 */
4324 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4325 		struct page *page = NULL;
4326 		struct f2fs_sit_block *raw_sit = NULL;
4327 		unsigned int start_segno = ses->start_segno;
4328 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4329 						(unsigned long)MAIN_SEGS(sbi));
4330 		unsigned int segno = start_segno;
4331 
4332 		if (to_journal &&
4333 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4334 			to_journal = false;
4335 
4336 		if (to_journal) {
4337 			down_write(&curseg->journal_rwsem);
4338 		} else {
4339 			page = get_next_sit_page(sbi, start_segno);
4340 			raw_sit = page_address(page);
4341 		}
4342 
4343 		/* flush dirty sit entries in region of current sit set */
4344 		for_each_set_bit_from(segno, bitmap, end) {
4345 			int offset, sit_offset;
4346 
4347 			se = get_seg_entry(sbi, segno);
4348 #ifdef CONFIG_F2FS_CHECK_FS
4349 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4350 						SIT_VBLOCK_MAP_SIZE))
4351 				f2fs_bug_on(sbi, 1);
4352 #endif
4353 
4354 			/* add discard candidates */
4355 			if (!(cpc->reason & CP_DISCARD)) {
4356 				cpc->trim_start = segno;
4357 				add_discard_addrs(sbi, cpc, false);
4358 			}
4359 
4360 			if (to_journal) {
4361 				offset = f2fs_lookup_journal_in_cursum(journal,
4362 							SIT_JOURNAL, segno, 1);
4363 				f2fs_bug_on(sbi, offset < 0);
4364 				segno_in_journal(journal, offset) =
4365 							cpu_to_le32(segno);
4366 				seg_info_to_raw_sit(se,
4367 					&sit_in_journal(journal, offset));
4368 				check_block_count(sbi, segno,
4369 					&sit_in_journal(journal, offset));
4370 			} else {
4371 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4372 				seg_info_to_raw_sit(se,
4373 						&raw_sit->entries[sit_offset]);
4374 				check_block_count(sbi, segno,
4375 						&raw_sit->entries[sit_offset]);
4376 			}
4377 
4378 			__clear_bit(segno, bitmap);
4379 			sit_i->dirty_sentries--;
4380 			ses->entry_cnt--;
4381 		}
4382 
4383 		if (to_journal)
4384 			up_write(&curseg->journal_rwsem);
4385 		else
4386 			f2fs_put_page(page, 1);
4387 
4388 		f2fs_bug_on(sbi, ses->entry_cnt);
4389 		release_sit_entry_set(ses);
4390 	}
4391 
4392 	f2fs_bug_on(sbi, !list_empty(head));
4393 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4394 out:
4395 	if (cpc->reason & CP_DISCARD) {
4396 		__u64 trim_start = cpc->trim_start;
4397 
4398 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4399 			add_discard_addrs(sbi, cpc, false);
4400 
4401 		cpc->trim_start = trim_start;
4402 	}
4403 	up_write(&sit_i->sentry_lock);
4404 
4405 	set_prefree_as_free_segments(sbi);
4406 }
4407 
build_sit_info(struct f2fs_sb_info * sbi)4408 static int build_sit_info(struct f2fs_sb_info *sbi)
4409 {
4410 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4411 	struct sit_info *sit_i;
4412 	unsigned int sit_segs, start;
4413 	char *src_bitmap, *bitmap;
4414 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4415 
4416 	/* allocate memory for SIT information */
4417 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4418 	if (!sit_i)
4419 		return -ENOMEM;
4420 
4421 	SM_I(sbi)->sit_info = sit_i;
4422 
4423 	sit_i->sentries =
4424 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4425 					      MAIN_SEGS(sbi)),
4426 			      GFP_KERNEL);
4427 	if (!sit_i->sentries)
4428 		return -ENOMEM;
4429 
4430 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4431 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4432 								GFP_KERNEL);
4433 	if (!sit_i->dirty_sentries_bitmap)
4434 		return -ENOMEM;
4435 
4436 #ifdef CONFIG_F2FS_CHECK_FS
4437 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4438 #else
4439 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4440 #endif
4441 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4442 	if (!sit_i->bitmap)
4443 		return -ENOMEM;
4444 
4445 	bitmap = sit_i->bitmap;
4446 
4447 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4448 		sit_i->sentries[start].cur_valid_map = bitmap;
4449 		bitmap += SIT_VBLOCK_MAP_SIZE;
4450 
4451 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4452 		bitmap += SIT_VBLOCK_MAP_SIZE;
4453 
4454 #ifdef CONFIG_F2FS_CHECK_FS
4455 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4456 		bitmap += SIT_VBLOCK_MAP_SIZE;
4457 #endif
4458 
4459 		sit_i->sentries[start].discard_map = bitmap;
4460 		bitmap += SIT_VBLOCK_MAP_SIZE;
4461 	}
4462 
4463 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4464 	if (!sit_i->tmp_map)
4465 		return -ENOMEM;
4466 
4467 	if (__is_large_section(sbi)) {
4468 		sit_i->sec_entries =
4469 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4470 						      MAIN_SECS(sbi)),
4471 				      GFP_KERNEL);
4472 		if (!sit_i->sec_entries)
4473 			return -ENOMEM;
4474 	}
4475 
4476 	/* get information related with SIT */
4477 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4478 
4479 	/* setup SIT bitmap from ckeckpoint pack */
4480 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4481 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4482 
4483 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4484 	if (!sit_i->sit_bitmap)
4485 		return -ENOMEM;
4486 
4487 #ifdef CONFIG_F2FS_CHECK_FS
4488 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4489 					sit_bitmap_size, GFP_KERNEL);
4490 	if (!sit_i->sit_bitmap_mir)
4491 		return -ENOMEM;
4492 
4493 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4494 					main_bitmap_size, GFP_KERNEL);
4495 	if (!sit_i->invalid_segmap)
4496 		return -ENOMEM;
4497 #endif
4498 
4499 	/* init SIT information */
4500 	sit_i->s_ops = &default_salloc_ops;
4501 
4502 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4503 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4504 	sit_i->written_valid_blocks = 0;
4505 	sit_i->bitmap_size = sit_bitmap_size;
4506 	sit_i->dirty_sentries = 0;
4507 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4508 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4509 	sit_i->mounted_time = ktime_get_boottime_seconds();
4510 	init_rwsem(&sit_i->sentry_lock);
4511 	return 0;
4512 }
4513 
build_free_segmap(struct f2fs_sb_info * sbi)4514 static int build_free_segmap(struct f2fs_sb_info *sbi)
4515 {
4516 	struct free_segmap_info *free_i;
4517 	unsigned int bitmap_size, sec_bitmap_size;
4518 
4519 	/* allocate memory for free segmap information */
4520 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4521 	if (!free_i)
4522 		return -ENOMEM;
4523 
4524 	SM_I(sbi)->free_info = free_i;
4525 
4526 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4527 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4528 	if (!free_i->free_segmap)
4529 		return -ENOMEM;
4530 
4531 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4532 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4533 	if (!free_i->free_secmap)
4534 		return -ENOMEM;
4535 
4536 	/* set all segments as dirty temporarily */
4537 	memset(free_i->free_segmap, 0xff, bitmap_size);
4538 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4539 
4540 	/* init free segmap information */
4541 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4542 	free_i->free_segments = 0;
4543 	free_i->free_sections = 0;
4544 	spin_lock_init(&free_i->segmap_lock);
4545 	return 0;
4546 }
4547 
build_curseg(struct f2fs_sb_info * sbi)4548 static int build_curseg(struct f2fs_sb_info *sbi)
4549 {
4550 	struct curseg_info *array;
4551 	int i;
4552 
4553 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4554 					sizeof(*array)), GFP_KERNEL);
4555 	if (!array)
4556 		return -ENOMEM;
4557 
4558 	SM_I(sbi)->curseg_array = array;
4559 
4560 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4561 		mutex_init(&array[i].curseg_mutex);
4562 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4563 		if (!array[i].sum_blk)
4564 			return -ENOMEM;
4565 		init_rwsem(&array[i].journal_rwsem);
4566 		array[i].journal = f2fs_kzalloc(sbi,
4567 				sizeof(struct f2fs_journal), GFP_KERNEL);
4568 		if (!array[i].journal)
4569 			return -ENOMEM;
4570 		if (i < NR_PERSISTENT_LOG)
4571 			array[i].seg_type = CURSEG_HOT_DATA + i;
4572 		else if (i == CURSEG_COLD_DATA_PINNED)
4573 			array[i].seg_type = CURSEG_COLD_DATA;
4574 		else if (i == CURSEG_ALL_DATA_ATGC)
4575 			array[i].seg_type = CURSEG_COLD_DATA;
4576 		array[i].segno = NULL_SEGNO;
4577 		array[i].next_blkoff = 0;
4578 		array[i].inited = false;
4579 	}
4580 	return restore_curseg_summaries(sbi);
4581 }
4582 
build_sit_entries(struct f2fs_sb_info * sbi)4583 static int build_sit_entries(struct f2fs_sb_info *sbi)
4584 {
4585 	struct sit_info *sit_i = SIT_I(sbi);
4586 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4587 	struct f2fs_journal *journal = curseg->journal;
4588 	struct seg_entry *se;
4589 	struct f2fs_sit_entry sit;
4590 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4591 	unsigned int i, start, end;
4592 	unsigned int readed, start_blk = 0;
4593 	int err = 0;
4594 	block_t total_node_blocks = 0;
4595 
4596 	do {
4597 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4598 							META_SIT, true);
4599 
4600 		start = start_blk * sit_i->sents_per_block;
4601 		end = (start_blk + readed) * sit_i->sents_per_block;
4602 
4603 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4604 			struct f2fs_sit_block *sit_blk;
4605 			struct page *page;
4606 
4607 			se = &sit_i->sentries[start];
4608 			page = get_current_sit_page(sbi, start);
4609 			if (IS_ERR(page))
4610 				return PTR_ERR(page);
4611 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4612 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4613 			f2fs_put_page(page, 1);
4614 
4615 			err = check_block_count(sbi, start, &sit);
4616 			if (err)
4617 				return err;
4618 			seg_info_from_raw_sit(se, &sit);
4619 			if (IS_NODESEG(se->type))
4620 				total_node_blocks += se->valid_blocks;
4621 
4622 			/* build discard map only one time */
4623 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4624 				memset(se->discard_map, 0xff,
4625 					SIT_VBLOCK_MAP_SIZE);
4626 			} else {
4627 				memcpy(se->discard_map,
4628 					se->cur_valid_map,
4629 					SIT_VBLOCK_MAP_SIZE);
4630 				sbi->discard_blks +=
4631 					sbi->blocks_per_seg -
4632 					se->valid_blocks;
4633 			}
4634 
4635 			if (__is_large_section(sbi))
4636 				get_sec_entry(sbi, start)->valid_blocks +=
4637 							se->valid_blocks;
4638 		}
4639 		start_blk += readed;
4640 	} while (start_blk < sit_blk_cnt);
4641 
4642 	down_read(&curseg->journal_rwsem);
4643 	for (i = 0; i < sits_in_cursum(journal); i++) {
4644 		unsigned int old_valid_blocks;
4645 
4646 		start = le32_to_cpu(segno_in_journal(journal, i));
4647 		if (start >= MAIN_SEGS(sbi)) {
4648 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4649 				 start);
4650 			err = -EFSCORRUPTED;
4651 			break;
4652 		}
4653 
4654 		se = &sit_i->sentries[start];
4655 		sit = sit_in_journal(journal, i);
4656 
4657 		old_valid_blocks = se->valid_blocks;
4658 		if (IS_NODESEG(se->type))
4659 			total_node_blocks -= old_valid_blocks;
4660 
4661 		err = check_block_count(sbi, start, &sit);
4662 		if (err)
4663 			break;
4664 		seg_info_from_raw_sit(se, &sit);
4665 		if (IS_NODESEG(se->type))
4666 			total_node_blocks += se->valid_blocks;
4667 
4668 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4669 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4670 		} else {
4671 			memcpy(se->discard_map, se->cur_valid_map,
4672 						SIT_VBLOCK_MAP_SIZE);
4673 			sbi->discard_blks += old_valid_blocks;
4674 			sbi->discard_blks -= se->valid_blocks;
4675 		}
4676 
4677 		if (__is_large_section(sbi)) {
4678 			get_sec_entry(sbi, start)->valid_blocks +=
4679 							se->valid_blocks;
4680 			get_sec_entry(sbi, start)->valid_blocks -=
4681 							old_valid_blocks;
4682 		}
4683 	}
4684 	up_read(&curseg->journal_rwsem);
4685 
4686 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4687 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4688 			 total_node_blocks, valid_node_count(sbi));
4689 		err = -EFSCORRUPTED;
4690 	}
4691 
4692 	return err;
4693 }
4694 
init_free_segmap(struct f2fs_sb_info * sbi)4695 static void init_free_segmap(struct f2fs_sb_info *sbi)
4696 {
4697 	unsigned int start;
4698 	int type;
4699 	struct seg_entry *sentry;
4700 
4701 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4702 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4703 			continue;
4704 		sentry = get_seg_entry(sbi, start);
4705 		if (!sentry->valid_blocks)
4706 			__set_free(sbi, start);
4707 		else
4708 			SIT_I(sbi)->written_valid_blocks +=
4709 						sentry->valid_blocks;
4710 	}
4711 
4712 	/* set use the current segments */
4713 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4714 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4715 		__set_test_and_inuse(sbi, curseg_t->segno);
4716 	}
4717 }
4718 
init_dirty_segmap(struct f2fs_sb_info * sbi)4719 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4720 {
4721 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4722 	struct free_segmap_info *free_i = FREE_I(sbi);
4723 	unsigned int segno = 0, offset = 0, secno;
4724 	block_t valid_blocks, usable_blks_in_seg;
4725 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4726 
4727 	while (1) {
4728 		/* find dirty segment based on free segmap */
4729 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4730 		if (segno >= MAIN_SEGS(sbi))
4731 			break;
4732 		offset = segno + 1;
4733 		valid_blocks = get_valid_blocks(sbi, segno, false);
4734 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4735 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4736 			continue;
4737 		if (valid_blocks > usable_blks_in_seg) {
4738 			f2fs_bug_on(sbi, 1);
4739 			continue;
4740 		}
4741 		mutex_lock(&dirty_i->seglist_lock);
4742 		__locate_dirty_segment(sbi, segno, DIRTY);
4743 		mutex_unlock(&dirty_i->seglist_lock);
4744 	}
4745 
4746 	if (!__is_large_section(sbi))
4747 		return;
4748 
4749 	mutex_lock(&dirty_i->seglist_lock);
4750 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4751 		valid_blocks = get_valid_blocks(sbi, segno, true);
4752 		secno = GET_SEC_FROM_SEG(sbi, segno);
4753 
4754 		if (!valid_blocks || valid_blocks == blks_per_sec)
4755 			continue;
4756 		if (IS_CURSEC(sbi, secno))
4757 			continue;
4758 		set_bit(secno, dirty_i->dirty_secmap);
4759 	}
4760 	mutex_unlock(&dirty_i->seglist_lock);
4761 }
4762 
init_victim_secmap(struct f2fs_sb_info * sbi)4763 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4764 {
4765 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4766 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4767 
4768 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4769 	if (!dirty_i->victim_secmap)
4770 		return -ENOMEM;
4771 	return 0;
4772 }
4773 
build_dirty_segmap(struct f2fs_sb_info * sbi)4774 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4775 {
4776 	struct dirty_seglist_info *dirty_i;
4777 	unsigned int bitmap_size, i;
4778 
4779 	/* allocate memory for dirty segments list information */
4780 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4781 								GFP_KERNEL);
4782 	if (!dirty_i)
4783 		return -ENOMEM;
4784 
4785 	SM_I(sbi)->dirty_info = dirty_i;
4786 	mutex_init(&dirty_i->seglist_lock);
4787 
4788 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4789 
4790 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4791 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4792 								GFP_KERNEL);
4793 		if (!dirty_i->dirty_segmap[i])
4794 			return -ENOMEM;
4795 	}
4796 
4797 	if (__is_large_section(sbi)) {
4798 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4799 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4800 						bitmap_size, GFP_KERNEL);
4801 		if (!dirty_i->dirty_secmap)
4802 			return -ENOMEM;
4803 	}
4804 
4805 	init_dirty_segmap(sbi);
4806 	return init_victim_secmap(sbi);
4807 }
4808 
sanity_check_curseg(struct f2fs_sb_info * sbi)4809 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4810 {
4811 	int i;
4812 
4813 	/*
4814 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4815 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4816 	 */
4817 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4818 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4819 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4820 		unsigned int blkofs = curseg->next_blkoff;
4821 
4822 		sanity_check_seg_type(sbi, curseg->seg_type);
4823 
4824 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4825 			goto out;
4826 
4827 		if (curseg->alloc_type == SSR)
4828 			continue;
4829 
4830 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4831 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4832 				continue;
4833 out:
4834 			f2fs_err(sbi,
4835 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4836 				 i, curseg->segno, curseg->alloc_type,
4837 				 curseg->next_blkoff, blkofs);
4838 			return -EFSCORRUPTED;
4839 		}
4840 	}
4841 	return 0;
4842 }
4843 
4844 #ifdef CONFIG_BLK_DEV_ZONED
4845 
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4846 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4847 				    struct f2fs_dev_info *fdev,
4848 				    struct blk_zone *zone)
4849 {
4850 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4851 	block_t zone_block, wp_block, last_valid_block;
4852 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4853 	int i, s, b, ret;
4854 	struct seg_entry *se;
4855 
4856 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4857 		return 0;
4858 
4859 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4860 	wp_segno = GET_SEGNO(sbi, wp_block);
4861 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4862 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4863 	zone_segno = GET_SEGNO(sbi, zone_block);
4864 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4865 
4866 	if (zone_segno >= MAIN_SEGS(sbi))
4867 		return 0;
4868 
4869 	/*
4870 	 * Skip check of zones cursegs point to, since
4871 	 * fix_curseg_write_pointer() checks them.
4872 	 */
4873 	for (i = 0; i < NO_CHECK_TYPE; i++)
4874 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4875 						   CURSEG_I(sbi, i)->segno))
4876 			return 0;
4877 
4878 	/*
4879 	 * Get last valid block of the zone.
4880 	 */
4881 	last_valid_block = zone_block - 1;
4882 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4883 		segno = zone_segno + s;
4884 		se = get_seg_entry(sbi, segno);
4885 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4886 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4887 				last_valid_block = START_BLOCK(sbi, segno) + b;
4888 				break;
4889 			}
4890 		if (last_valid_block >= zone_block)
4891 			break;
4892 	}
4893 
4894 	/*
4895 	 * If last valid block is beyond the write pointer, report the
4896 	 * inconsistency. This inconsistency does not cause write error
4897 	 * because the zone will not be selected for write operation until
4898 	 * it get discarded. Just report it.
4899 	 */
4900 	if (last_valid_block >= wp_block) {
4901 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4902 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4903 			    GET_SEGNO(sbi, last_valid_block),
4904 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4905 			    wp_segno, wp_blkoff);
4906 		return 0;
4907 	}
4908 
4909 	/*
4910 	 * If there is no valid block in the zone and if write pointer is
4911 	 * not at zone start, reset the write pointer.
4912 	 */
4913 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4914 		f2fs_notice(sbi,
4915 			    "Zone without valid block has non-zero write "
4916 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4917 			    wp_segno, wp_blkoff);
4918 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4919 					zone->len >> log_sectors_per_block);
4920 		if (ret) {
4921 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4922 				 fdev->path, ret);
4923 			return ret;
4924 		}
4925 	}
4926 
4927 	return 0;
4928 }
4929 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4930 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4931 						  block_t zone_blkaddr)
4932 {
4933 	int i;
4934 
4935 	for (i = 0; i < sbi->s_ndevs; i++) {
4936 		if (!bdev_is_zoned(FDEV(i).bdev))
4937 			continue;
4938 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4939 				zone_blkaddr <= FDEV(i).end_blk))
4940 			return &FDEV(i);
4941 	}
4942 
4943 	return NULL;
4944 }
4945 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4946 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4947 			      void *data) {
4948 	memcpy(data, zone, sizeof(struct blk_zone));
4949 	return 0;
4950 }
4951 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4952 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4953 {
4954 	struct curseg_info *cs = CURSEG_I(sbi, type);
4955 	struct f2fs_dev_info *zbd;
4956 	struct blk_zone zone;
4957 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4958 	block_t cs_zone_block, wp_block;
4959 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4960 	sector_t zone_sector;
4961 	int err;
4962 
4963 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4964 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4965 
4966 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4967 	if (!zbd)
4968 		return 0;
4969 
4970 	/* report zone for the sector the curseg points to */
4971 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4972 		<< log_sectors_per_block;
4973 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4974 				  report_one_zone_cb, &zone);
4975 	if (err != 1) {
4976 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4977 			 zbd->path, err);
4978 		return err;
4979 	}
4980 
4981 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4982 		return 0;
4983 
4984 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4985 	wp_segno = GET_SEGNO(sbi, wp_block);
4986 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4987 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4988 
4989 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4990 		wp_sector_off == 0)
4991 		return 0;
4992 
4993 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4994 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4995 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4996 
4997 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4998 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4999 	allocate_segment_by_default(sbi, type, true, SEQ_NONE);
5000 
5001 	/* check consistency of the zone curseg pointed to */
5002 	if (check_zone_write_pointer(sbi, zbd, &zone))
5003 		return -EIO;
5004 
5005 	/* check newly assigned zone */
5006 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5007 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5008 
5009 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5010 	if (!zbd)
5011 		return 0;
5012 
5013 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5014 		<< log_sectors_per_block;
5015 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5016 				  report_one_zone_cb, &zone);
5017 	if (err != 1) {
5018 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5019 			 zbd->path, err);
5020 		return err;
5021 	}
5022 
5023 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5024 		return 0;
5025 
5026 	if (zone.wp != zone.start) {
5027 		f2fs_notice(sbi,
5028 			    "New zone for curseg[%d] is not yet discarded. "
5029 			    "Reset the zone: curseg[0x%x,0x%x]",
5030 			    type, cs->segno, cs->next_blkoff);
5031 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5032 				zone_sector >> log_sectors_per_block,
5033 				zone.len >> log_sectors_per_block);
5034 		if (err) {
5035 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5036 				 zbd->path, err);
5037 			return err;
5038 		}
5039 	}
5040 
5041 	return 0;
5042 }
5043 
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5044 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5045 {
5046 	int i, ret;
5047 
5048 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5049 		ret = fix_curseg_write_pointer(sbi, i);
5050 		if (ret)
5051 			return ret;
5052 	}
5053 
5054 	return 0;
5055 }
5056 
5057 struct check_zone_write_pointer_args {
5058 	struct f2fs_sb_info *sbi;
5059 	struct f2fs_dev_info *fdev;
5060 };
5061 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5062 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5063 				      void *data) {
5064 	struct check_zone_write_pointer_args *args;
5065 	args = (struct check_zone_write_pointer_args *)data;
5066 
5067 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5068 }
5069 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5070 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5071 {
5072 	int i, ret;
5073 	struct check_zone_write_pointer_args args;
5074 
5075 	for (i = 0; i < sbi->s_ndevs; i++) {
5076 		if (!bdev_is_zoned(FDEV(i).bdev))
5077 			continue;
5078 
5079 		args.sbi = sbi;
5080 		args.fdev = &FDEV(i);
5081 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5082 					  check_zone_write_pointer_cb, &args);
5083 		if (ret < 0)
5084 			return ret;
5085 	}
5086 
5087 	return 0;
5088 }
5089 
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)5090 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5091 						unsigned int dev_idx)
5092 {
5093 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5094 		return true;
5095 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5096 }
5097 
5098 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)5099 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5100 					int dev_idx)
5101 {
5102 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5103 
5104 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5105 						sbi->log_blocks_per_blkz;
5106 }
5107 
5108 /*
5109  * Return the usable segments in a section based on the zone's
5110  * corresponding zone capacity. Zone is equal to a section.
5111  */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5112 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5113 		struct f2fs_sb_info *sbi, unsigned int segno)
5114 {
5115 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5116 
5117 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5118 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5119 
5120 	/* Conventional zone's capacity is always equal to zone size */
5121 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5122 		return sbi->segs_per_sec;
5123 
5124 	/*
5125 	 * If the zone_capacity_blocks array is NULL, then zone capacity
5126 	 * is equal to the zone size for all zones
5127 	 */
5128 	if (!FDEV(dev_idx).zone_capacity_blocks)
5129 		return sbi->segs_per_sec;
5130 
5131 	/* Get the segment count beyond zone capacity block */
5132 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5133 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5134 				sbi->log_blocks_per_seg;
5135 	return sbi->segs_per_sec - unusable_segs_in_sec;
5136 }
5137 
5138 /*
5139  * Return the number of usable blocks in a segment. The number of blocks
5140  * returned is always equal to the number of blocks in a segment for
5141  * segments fully contained within a sequential zone capacity or a
5142  * conventional zone. For segments partially contained in a sequential
5143  * zone capacity, the number of usable blocks up to the zone capacity
5144  * is returned. 0 is returned in all other cases.
5145  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5146 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5147 			struct f2fs_sb_info *sbi, unsigned int segno)
5148 {
5149 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5150 	unsigned int zone_idx, dev_idx, secno;
5151 
5152 	secno = GET_SEC_FROM_SEG(sbi, segno);
5153 	seg_start = START_BLOCK(sbi, segno);
5154 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5155 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5156 
5157 	/*
5158 	 * Conventional zone's capacity is always equal to zone size,
5159 	 * so, blocks per segment is unchanged.
5160 	 */
5161 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5162 		return sbi->blocks_per_seg;
5163 
5164 	if (!FDEV(dev_idx).zone_capacity_blocks)
5165 		return sbi->blocks_per_seg;
5166 
5167 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5168 	sec_cap_blkaddr = sec_start_blkaddr +
5169 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5170 
5171 	/*
5172 	 * If segment starts before zone capacity and spans beyond
5173 	 * zone capacity, then usable blocks are from seg start to
5174 	 * zone capacity. If the segment starts after the zone capacity,
5175 	 * then there are no usable blocks.
5176 	 */
5177 	if (seg_start >= sec_cap_blkaddr)
5178 		return 0;
5179 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5180 		return sec_cap_blkaddr - seg_start;
5181 
5182 	return sbi->blocks_per_seg;
5183 }
5184 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5185 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5186 {
5187 	return 0;
5188 }
5189 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5190 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5191 {
5192 	return 0;
5193 }
5194 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5195 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5196 							unsigned int segno)
5197 {
5198 	return 0;
5199 }
5200 
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5201 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5202 							unsigned int segno)
5203 {
5204 	return 0;
5205 }
5206 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5207 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5208 					unsigned int segno)
5209 {
5210 	if (f2fs_sb_has_blkzoned(sbi))
5211 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5212 
5213 	return sbi->blocks_per_seg;
5214 }
5215 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5216 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5217 					unsigned int segno)
5218 {
5219 	if (f2fs_sb_has_blkzoned(sbi))
5220 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5221 
5222 	return sbi->segs_per_sec;
5223 }
5224 
5225 /*
5226  * Update min, max modified time for cost-benefit GC algorithm
5227  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5228 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5229 {
5230 	struct sit_info *sit_i = SIT_I(sbi);
5231 	unsigned int segno;
5232 
5233 	down_write(&sit_i->sentry_lock);
5234 
5235 	sit_i->min_mtime = ULLONG_MAX;
5236 
5237 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5238 		unsigned int i;
5239 		unsigned long long mtime = 0;
5240 
5241 		for (i = 0; i < sbi->segs_per_sec; i++)
5242 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5243 
5244 		mtime = div_u64(mtime, sbi->segs_per_sec);
5245 
5246 		if (sit_i->min_mtime > mtime)
5247 			sit_i->min_mtime = mtime;
5248 	}
5249 	sit_i->max_mtime = get_mtime(sbi, false);
5250 	sit_i->dirty_max_mtime = 0;
5251 	up_write(&sit_i->sentry_lock);
5252 }
5253 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5254 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5255 {
5256 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5257 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5258 	struct f2fs_sm_info *sm_info;
5259 	int err;
5260 
5261 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5262 	if (!sm_info)
5263 		return -ENOMEM;
5264 
5265 	/* init sm info */
5266 	sbi->sm_info = sm_info;
5267 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5268 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5269 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5270 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5271 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5272 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5273 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5274 	sm_info->rec_prefree_segments = sm_info->main_segments *
5275 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5276 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5277 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5278 
5279 	if (!f2fs_lfs_mode(sbi))
5280 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5281 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5282 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5283 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5284 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5285 	sm_info->min_ssr_sections = reserved_sections(sbi);
5286 
5287 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5288 
5289 	init_rwsem(&sm_info->curseg_lock);
5290 
5291 	if (!f2fs_readonly(sbi->sb)) {
5292 		err = f2fs_create_flush_cmd_control(sbi);
5293 		if (err)
5294 			return err;
5295 	}
5296 
5297 	err = create_discard_cmd_control(sbi);
5298 	if (err)
5299 		return err;
5300 
5301 	err = build_sit_info(sbi);
5302 	if (err)
5303 		return err;
5304 	err = build_free_segmap(sbi);
5305 	if (err)
5306 		return err;
5307 	err = build_curseg(sbi);
5308 	if (err)
5309 		return err;
5310 
5311 	/* reinit free segmap based on SIT */
5312 	err = build_sit_entries(sbi);
5313 	if (err)
5314 		return err;
5315 
5316 	init_free_segmap(sbi);
5317 	err = build_dirty_segmap(sbi);
5318 	if (err)
5319 		return err;
5320 
5321 	err = sanity_check_curseg(sbi);
5322 	if (err)
5323 		return err;
5324 
5325 	init_min_max_mtime(sbi);
5326 	return 0;
5327 }
5328 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5329 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5330 		enum dirty_type dirty_type)
5331 {
5332 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5333 
5334 	mutex_lock(&dirty_i->seglist_lock);
5335 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5336 	dirty_i->nr_dirty[dirty_type] = 0;
5337 	mutex_unlock(&dirty_i->seglist_lock);
5338 }
5339 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5340 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5341 {
5342 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5343 	kvfree(dirty_i->victim_secmap);
5344 }
5345 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5346 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5347 {
5348 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5349 	int i;
5350 
5351 	if (!dirty_i)
5352 		return;
5353 
5354 	/* discard pre-free/dirty segments list */
5355 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5356 		discard_dirty_segmap(sbi, i);
5357 
5358 	if (__is_large_section(sbi)) {
5359 		mutex_lock(&dirty_i->seglist_lock);
5360 		kvfree(dirty_i->dirty_secmap);
5361 		mutex_unlock(&dirty_i->seglist_lock);
5362 	}
5363 
5364 	destroy_victim_secmap(sbi);
5365 	SM_I(sbi)->dirty_info = NULL;
5366 	kfree(dirty_i);
5367 }
5368 
destroy_curseg(struct f2fs_sb_info * sbi)5369 static void destroy_curseg(struct f2fs_sb_info *sbi)
5370 {
5371 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5372 	int i;
5373 
5374 	if (!array)
5375 		return;
5376 	SM_I(sbi)->curseg_array = NULL;
5377 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5378 		kfree(array[i].sum_blk);
5379 		kfree(array[i].journal);
5380 	}
5381 	kfree(array);
5382 }
5383 
destroy_free_segmap(struct f2fs_sb_info * sbi)5384 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5385 {
5386 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5387 	if (!free_i)
5388 		return;
5389 	SM_I(sbi)->free_info = NULL;
5390 	kvfree(free_i->free_segmap);
5391 	kvfree(free_i->free_secmap);
5392 	kfree(free_i);
5393 }
5394 
destroy_sit_info(struct f2fs_sb_info * sbi)5395 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5396 {
5397 	struct sit_info *sit_i = SIT_I(sbi);
5398 
5399 	if (!sit_i)
5400 		return;
5401 
5402 	if (sit_i->sentries)
5403 		kvfree(sit_i->bitmap);
5404 	kfree(sit_i->tmp_map);
5405 
5406 	kvfree(sit_i->sentries);
5407 	kvfree(sit_i->sec_entries);
5408 	kvfree(sit_i->dirty_sentries_bitmap);
5409 
5410 	SM_I(sbi)->sit_info = NULL;
5411 	kvfree(sit_i->sit_bitmap);
5412 #ifdef CONFIG_F2FS_CHECK_FS
5413 	kvfree(sit_i->sit_bitmap_mir);
5414 	kvfree(sit_i->invalid_segmap);
5415 #endif
5416 	kfree(sit_i);
5417 }
5418 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5419 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5420 {
5421 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5422 
5423 	if (!sm_info)
5424 		return;
5425 	f2fs_destroy_flush_cmd_control(sbi, true);
5426 	destroy_discard_cmd_control(sbi);
5427 	destroy_dirty_segmap(sbi);
5428 	destroy_curseg(sbi);
5429 	destroy_free_segmap(sbi);
5430 	destroy_sit_info(sbi);
5431 	sbi->sm_info = NULL;
5432 	kfree(sm_info);
5433 }
5434 
f2fs_create_segment_manager_caches(void)5435 int __init f2fs_create_segment_manager_caches(void)
5436 {
5437 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5438 			sizeof(struct discard_entry));
5439 	if (!discard_entry_slab)
5440 		goto fail;
5441 
5442 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5443 			sizeof(struct discard_cmd));
5444 	if (!discard_cmd_slab)
5445 		goto destroy_discard_entry;
5446 
5447 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5448 			sizeof(struct sit_entry_set));
5449 	if (!sit_entry_set_slab)
5450 		goto destroy_discard_cmd;
5451 
5452 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5453 			sizeof(struct inmem_pages));
5454 	if (!inmem_entry_slab)
5455 		goto destroy_sit_entry_set;
5456 	return 0;
5457 
5458 destroy_sit_entry_set:
5459 	kmem_cache_destroy(sit_entry_set_slab);
5460 destroy_discard_cmd:
5461 	kmem_cache_destroy(discard_cmd_slab);
5462 destroy_discard_entry:
5463 	kmem_cache_destroy(discard_entry_slab);
5464 fail:
5465 	return -ENOMEM;
5466 }
5467 
f2fs_destroy_segment_manager_caches(void)5468 void f2fs_destroy_segment_manager_caches(void)
5469 {
5470 	kmem_cache_destroy(sit_entry_set_slab);
5471 	kmem_cache_destroy(discard_cmd_slab);
5472 	kmem_cache_destroy(discard_entry_slab);
5473 	kmem_cache_destroy(inmem_entry_slab);
5474 }
5475