1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98 }
99
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108 }
109
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142 }
143
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157 }
158
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt[TOTAL_NAT]++;
181 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 return ne;
183 }
184
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 struct nat_entry *ne;
188
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197 }
198
199 return ne;
200 }
201
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt[TOTAL_NAT]--;
212 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 __free_nat_entry(e);
214 }
215
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
218 {
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
221
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 }
232 return head;
233 }
234
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
237 {
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
243
244 /*
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
248 */
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
252
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
257
258 nm_i->nat_cnt[DIRTY_NAT]++;
259 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 spin_lock(&nm_i->nat_list_lock);
263 if (new_ne)
264 list_del_init(&ne->list);
265 else
266 list_move_tail(&ne->list, &head->entry_list);
267 spin_unlock(&nm_i->nat_list_lock);
268 }
269
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 spin_lock(&nm_i->nat_list_lock);
274 list_move_tail(&ne->list, &nm_i->nat_entries);
275 spin_unlock(&nm_i->nat_list_lock);
276
277 set_nat_flag(ne, IS_DIRTY, false);
278 set->entry_cnt--;
279 nm_i->nat_cnt[DIRTY_NAT]--;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 start, nr);
288 }
289
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 return NODE_MAPPING(sbi) == page->mapping &&
293 IS_DNODE(page) && is_cold_node(page);
294 }
295
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 spin_lock_init(&sbi->fsync_node_lock);
299 INIT_LIST_HEAD(&sbi->fsync_node_list);
300 sbi->fsync_seg_id = 0;
301 sbi->fsync_node_num = 0;
302 }
303
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 struct page *page)
306 {
307 struct fsync_node_entry *fn;
308 unsigned long flags;
309 unsigned int seq_id;
310
311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313 get_page(page);
314 fn->page = page;
315 INIT_LIST_HEAD(&fn->list);
316
317 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 list_add_tail(&fn->list, &sbi->fsync_node_list);
319 fn->seq_id = sbi->fsync_seg_id++;
320 seq_id = fn->seq_id;
321 sbi->fsync_node_num++;
322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324 return seq_id;
325 }
326
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331
332 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 if (fn->page == page) {
335 list_del(&fn->list);
336 sbi->fsync_node_num--;
337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 kmem_cache_free(fsync_node_entry_slab, fn);
339 put_page(page);
340 return;
341 }
342 }
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 f2fs_bug_on(sbi, 1);
345 }
346
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 unsigned long flags;
350
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 sbi->fsync_seg_id = 0;
353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 struct f2fs_nm_info *nm_i = NM_I(sbi);
359 struct nat_entry *e;
360 bool need = false;
361
362 down_read(&nm_i->nat_tree_lock);
363 e = __lookup_nat_cache(nm_i, nid);
364 if (e) {
365 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 !get_nat_flag(e, HAS_FSYNCED_INODE))
367 need = true;
368 }
369 up_read(&nm_i->nat_tree_lock);
370 return need;
371 }
372
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 struct nat_entry *e;
377 bool is_cp = true;
378
379 down_read(&nm_i->nat_tree_lock);
380 e = __lookup_nat_cache(nm_i, nid);
381 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 is_cp = false;
383 up_read(&nm_i->nat_tree_lock);
384 return is_cp;
385 }
386
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 struct f2fs_nm_info *nm_i = NM_I(sbi);
390 struct nat_entry *e;
391 bool need_update = true;
392
393 down_read(&nm_i->nat_tree_lock);
394 e = __lookup_nat_cache(nm_i, ino);
395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 (get_nat_flag(e, IS_CHECKPOINTED) ||
397 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 need_update = false;
399 up_read(&nm_i->nat_tree_lock);
400 return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 struct f2fs_nat_entry *ne)
406 {
407 struct f2fs_nm_info *nm_i = NM_I(sbi);
408 struct nat_entry *new, *e;
409
410 new = __alloc_nat_entry(nid, false);
411 if (!new)
412 return;
413
414 down_write(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, nid);
416 if (!e)
417 e = __init_nat_entry(nm_i, new, ne, false);
418 else
419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 nat_get_blkaddr(e) !=
421 le32_to_cpu(ne->block_addr) ||
422 nat_get_version(e) != ne->version);
423 up_write(&nm_i->nat_tree_lock);
424 if (e != new)
425 __free_nat_entry(new);
426 }
427
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 block_t new_blkaddr, bool fsync_done)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *e;
433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, ni->nid);
437 if (!e) {
438 e = __init_nat_entry(nm_i, new, NULL, true);
439 copy_node_info(&e->ni, ni);
440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 } else if (new_blkaddr == NEW_ADDR) {
442 /*
443 * when nid is reallocated,
444 * previous nat entry can be remained in nat cache.
445 * So, reinitialize it with new information.
446 */
447 copy_node_info(&e->ni, ni);
448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 }
450 /* let's free early to reduce memory consumption */
451 if (e != new)
452 __free_nat_entry(new);
453
454 /* sanity check */
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 new_blkaddr == NULL_ADDR);
458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 new_blkaddr == NEW_ADDR);
460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 new_blkaddr == NEW_ADDR);
462
463 /* increment version no as node is removed */
464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 unsigned char version = nat_get_version(e);
466 nat_set_version(e, inc_node_version(version));
467 }
468
469 /* change address */
470 nat_set_blkaddr(e, new_blkaddr);
471 if (!__is_valid_data_blkaddr(new_blkaddr))
472 set_nat_flag(e, IS_CHECKPOINTED, false);
473 __set_nat_cache_dirty(nm_i, e);
474
475 /* update fsync_mark if its inode nat entry is still alive */
476 if (ni->nid != ni->ino)
477 e = __lookup_nat_cache(nm_i, ni->ino);
478 if (e) {
479 if (fsync_done && ni->nid == ni->ino)
480 set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 }
483 up_write(&nm_i->nat_tree_lock);
484 }
485
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 struct f2fs_nm_info *nm_i = NM_I(sbi);
489 int nr = nr_shrink;
490
491 if (!down_write_trylock(&nm_i->nat_tree_lock))
492 return 0;
493
494 spin_lock(&nm_i->nat_list_lock);
495 while (nr_shrink) {
496 struct nat_entry *ne;
497
498 if (list_empty(&nm_i->nat_entries))
499 break;
500
501 ne = list_first_entry(&nm_i->nat_entries,
502 struct nat_entry, list);
503 list_del(&ne->list);
504 spin_unlock(&nm_i->nat_list_lock);
505
506 __del_from_nat_cache(nm_i, ne);
507 nr_shrink--;
508
509 spin_lock(&nm_i->nat_list_lock);
510 }
511 spin_unlock(&nm_i->nat_list_lock);
512
513 up_write(&nm_i->nat_tree_lock);
514 return nr - nr_shrink;
515 }
516
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
519 {
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 block_t blkaddr;
530 int i;
531
532 ni->nid = nid;
533
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
543 }
544
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
553 }
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
558 }
559
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
563
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
567
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 blkaddr = le32_to_cpu(ne.block_addr);
574 if (__is_valid_data_blkaddr(blkaddr) &&
575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 return -EFAULT;
577
578 /* cache nat entry */
579 cache_nat_entry(sbi, nid, &ne);
580 return 0;
581 }
582
583 /*
584 * readahead MAX_RA_NODE number of node pages.
585 */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 struct blk_plug plug;
590 int i, end;
591 nid_t nid;
592
593 blk_start_plug(&plug);
594
595 /* Then, try readahead for siblings of the desired node */
596 end = start + n;
597 end = min(end, NIDS_PER_BLOCK);
598 for (i = start; i < end; i++) {
599 nid = get_nid(parent, i, false);
600 f2fs_ra_node_page(sbi, nid);
601 }
602
603 blk_finish_plug(&plug);
604 }
605
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 const long direct_index = ADDRS_PER_INODE(dn->inode);
609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 int cur_level = dn->cur_level;
613 int max_level = dn->max_level;
614 pgoff_t base = 0;
615
616 if (!dn->max_level)
617 return pgofs + 1;
618
619 while (max_level-- > cur_level)
620 skipped_unit *= NIDS_PER_BLOCK;
621
622 switch (dn->max_level) {
623 case 3:
624 base += 2 * indirect_blks;
625 fallthrough;
626 case 2:
627 base += 2 * direct_blks;
628 fallthrough;
629 case 1:
630 base += direct_index;
631 break;
632 default:
633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 }
635
636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
642 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 int offset[4], unsigned int noffset[4])
645 {
646 const long direct_index = ADDRS_PER_INODE(inode);
647 const long direct_blks = ADDRS_PER_BLOCK(inode);
648 const long dptrs_per_blk = NIDS_PER_BLOCK;
649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 int n = 0;
652 int level = 0;
653
654 noffset[0] = 0;
655
656 if (block < direct_index) {
657 offset[n] = block;
658 goto got;
659 }
660 block -= direct_index;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR1_BLOCK;
663 noffset[n] = 1;
664 offset[n] = block;
665 level = 1;
666 goto got;
667 }
668 block -= direct_blks;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR2_BLOCK;
671 noffset[n] = 2;
672 offset[n] = block;
673 level = 1;
674 goto got;
675 }
676 block -= direct_blks;
677 if (block < indirect_blks) {
678 offset[n++] = NODE_IND1_BLOCK;
679 noffset[n] = 3;
680 offset[n++] = block / direct_blks;
681 noffset[n] = 4 + offset[n - 1];
682 offset[n] = block % direct_blks;
683 level = 2;
684 goto got;
685 }
686 block -= indirect_blks;
687 if (block < indirect_blks) {
688 offset[n++] = NODE_IND2_BLOCK;
689 noffset[n] = 4 + dptrs_per_blk;
690 offset[n++] = block / direct_blks;
691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 offset[n] = block % direct_blks;
693 level = 2;
694 goto got;
695 }
696 block -= indirect_blks;
697 if (block < dindirect_blks) {
698 offset[n++] = NODE_DIND_BLOCK;
699 noffset[n] = 5 + (dptrs_per_blk * 2);
700 offset[n++] = block / indirect_blks;
701 noffset[n] = 6 + (dptrs_per_blk * 2) +
702 offset[n - 1] * (dptrs_per_blk + 1);
703 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 noffset[n] = 7 + (dptrs_per_blk * 2) +
705 offset[n - 2] * (dptrs_per_blk + 1) +
706 offset[n - 1];
707 offset[n] = block % direct_blks;
708 level = 3;
709 goto got;
710 } else {
711 return -E2BIG;
712 }
713 got:
714 return level;
715 }
716
717 /*
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 return 0;
814
815 release_pages:
816 f2fs_put_page(parent, 1);
817 if (i > 1)
818 f2fs_put_page(npage[0], 0);
819 release_out:
820 dn->inode_page = NULL;
821 dn->node_page = NULL;
822 if (err == -ENOENT) {
823 dn->cur_level = i;
824 dn->max_level = level;
825 dn->ofs_in_node = offset[level];
826 }
827 return err;
828 }
829
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 struct node_info ni;
834 int err;
835 pgoff_t index;
836
837 err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 if (err)
839 return err;
840
841 /* Deallocate node address */
842 f2fs_invalidate_blocks(sbi, ni.blk_addr);
843 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844 set_node_addr(sbi, &ni, NULL_ADDR, false);
845
846 if (dn->nid == dn->inode->i_ino) {
847 f2fs_remove_orphan_inode(sbi, dn->nid);
848 dec_valid_inode_count(sbi);
849 f2fs_inode_synced(dn->inode);
850 }
851
852 clear_node_page_dirty(dn->node_page);
853 set_sbi_flag(sbi, SBI_IS_DIRTY);
854
855 index = dn->node_page->index;
856 f2fs_put_page(dn->node_page, 1);
857
858 invalidate_mapping_pages(NODE_MAPPING(sbi),
859 index, index);
860
861 dn->node_page = NULL;
862 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863
864 return 0;
865 }
866
truncate_dnode(struct dnode_of_data * dn)867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869 struct page *page;
870 int err;
871
872 if (dn->nid == 0)
873 return 1;
874
875 /* get direct node */
876 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877 if (PTR_ERR(page) == -ENOENT)
878 return 1;
879 else if (IS_ERR(page))
880 return PTR_ERR(page);
881
882 /* Make dnode_of_data for parameter */
883 dn->node_page = page;
884 dn->ofs_in_node = 0;
885 f2fs_truncate_data_blocks(dn);
886 err = truncate_node(dn);
887 if (err)
888 return err;
889
890 return 1;
891 }
892
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)893 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
894 int ofs, int depth)
895 {
896 struct dnode_of_data rdn = *dn;
897 struct page *page;
898 struct f2fs_node *rn;
899 nid_t child_nid;
900 unsigned int child_nofs;
901 int freed = 0;
902 int i, ret;
903
904 if (dn->nid == 0)
905 return NIDS_PER_BLOCK + 1;
906
907 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
908
909 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
910 if (IS_ERR(page)) {
911 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
912 return PTR_ERR(page);
913 }
914
915 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
916
917 rn = F2FS_NODE(page);
918 if (depth < 3) {
919 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
920 child_nid = le32_to_cpu(rn->in.nid[i]);
921 if (child_nid == 0)
922 continue;
923 rdn.nid = child_nid;
924 ret = truncate_dnode(&rdn);
925 if (ret < 0)
926 goto out_err;
927 if (set_nid(page, i, 0, false))
928 dn->node_changed = true;
929 }
930 } else {
931 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
932 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
933 child_nid = le32_to_cpu(rn->in.nid[i]);
934 if (child_nid == 0) {
935 child_nofs += NIDS_PER_BLOCK + 1;
936 continue;
937 }
938 rdn.nid = child_nid;
939 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
940 if (ret == (NIDS_PER_BLOCK + 1)) {
941 if (set_nid(page, i, 0, false))
942 dn->node_changed = true;
943 child_nofs += ret;
944 } else if (ret < 0 && ret != -ENOENT) {
945 goto out_err;
946 }
947 }
948 freed = child_nofs;
949 }
950
951 if (!ofs) {
952 /* remove current indirect node */
953 dn->node_page = page;
954 ret = truncate_node(dn);
955 if (ret)
956 goto out_err;
957 freed++;
958 } else {
959 f2fs_put_page(page, 1);
960 }
961 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
962 return freed;
963
964 out_err:
965 f2fs_put_page(page, 1);
966 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
967 return ret;
968 }
969
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)970 static int truncate_partial_nodes(struct dnode_of_data *dn,
971 struct f2fs_inode *ri, int *offset, int depth)
972 {
973 struct page *pages[2];
974 nid_t nid[3];
975 nid_t child_nid;
976 int err = 0;
977 int i;
978 int idx = depth - 2;
979
980 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
981 if (!nid[0])
982 return 0;
983
984 /* get indirect nodes in the path */
985 for (i = 0; i < idx + 1; i++) {
986 /* reference count'll be increased */
987 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
988 if (IS_ERR(pages[i])) {
989 err = PTR_ERR(pages[i]);
990 idx = i - 1;
991 goto fail;
992 }
993 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
994 }
995
996 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
997
998 /* free direct nodes linked to a partial indirect node */
999 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1000 child_nid = get_nid(pages[idx], i, false);
1001 if (!child_nid)
1002 continue;
1003 dn->nid = child_nid;
1004 err = truncate_dnode(dn);
1005 if (err < 0)
1006 goto fail;
1007 if (set_nid(pages[idx], i, 0, false))
1008 dn->node_changed = true;
1009 }
1010
1011 if (offset[idx + 1] == 0) {
1012 dn->node_page = pages[idx];
1013 dn->nid = nid[idx];
1014 err = truncate_node(dn);
1015 if (err)
1016 goto fail;
1017 } else {
1018 f2fs_put_page(pages[idx], 1);
1019 }
1020 offset[idx]++;
1021 offset[idx + 1] = 0;
1022 idx--;
1023 fail:
1024 for (i = idx; i >= 0; i--)
1025 f2fs_put_page(pages[i], 1);
1026
1027 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1028
1029 return err;
1030 }
1031
1032 /*
1033 * All the block addresses of data and nodes should be nullified.
1034 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1035 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1036 {
1037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038 int err = 0, cont = 1;
1039 int level, offset[4], noffset[4];
1040 unsigned int nofs = 0;
1041 struct f2fs_inode *ri;
1042 struct dnode_of_data dn;
1043 struct page *page;
1044
1045 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1046
1047 level = get_node_path(inode, from, offset, noffset);
1048 if (level < 0) {
1049 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1050 return level;
1051 }
1052
1053 page = f2fs_get_node_page(sbi, inode->i_ino);
1054 if (IS_ERR(page)) {
1055 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056 return PTR_ERR(page);
1057 }
1058
1059 set_new_dnode(&dn, inode, page, NULL, 0);
1060 unlock_page(page);
1061
1062 ri = F2FS_INODE(page);
1063 switch (level) {
1064 case 0:
1065 case 1:
1066 nofs = noffset[1];
1067 break;
1068 case 2:
1069 nofs = noffset[1];
1070 if (!offset[level - 1])
1071 goto skip_partial;
1072 err = truncate_partial_nodes(&dn, ri, offset, level);
1073 if (err < 0 && err != -ENOENT)
1074 goto fail;
1075 nofs += 1 + NIDS_PER_BLOCK;
1076 break;
1077 case 3:
1078 nofs = 5 + 2 * NIDS_PER_BLOCK;
1079 if (!offset[level - 1])
1080 goto skip_partial;
1081 err = truncate_partial_nodes(&dn, ri, offset, level);
1082 if (err < 0 && err != -ENOENT)
1083 goto fail;
1084 break;
1085 default:
1086 BUG();
1087 }
1088
1089 skip_partial:
1090 while (cont) {
1091 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092 switch (offset[0]) {
1093 case NODE_DIR1_BLOCK:
1094 case NODE_DIR2_BLOCK:
1095 err = truncate_dnode(&dn);
1096 break;
1097
1098 case NODE_IND1_BLOCK:
1099 case NODE_IND2_BLOCK:
1100 err = truncate_nodes(&dn, nofs, offset[1], 2);
1101 break;
1102
1103 case NODE_DIND_BLOCK:
1104 err = truncate_nodes(&dn, nofs, offset[1], 3);
1105 cont = 0;
1106 break;
1107
1108 default:
1109 BUG();
1110 }
1111 if (err < 0 && err != -ENOENT)
1112 goto fail;
1113 if (offset[1] == 0 &&
1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115 lock_page(page);
1116 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117 f2fs_wait_on_page_writeback(page, NODE, true, true);
1118 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119 set_page_dirty(page);
1120 unlock_page(page);
1121 }
1122 offset[1] = 0;
1123 offset[0]++;
1124 nofs += err;
1125 }
1126 fail:
1127 f2fs_put_page(page, 0);
1128 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129 return err > 0 ? 0 : err;
1130 }
1131
1132 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1133 int f2fs_truncate_xattr_node(struct inode *inode)
1134 {
1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137 struct dnode_of_data dn;
1138 struct page *npage;
1139 int err;
1140
1141 if (!nid)
1142 return 0;
1143
1144 npage = f2fs_get_node_page(sbi, nid);
1145 if (IS_ERR(npage))
1146 return PTR_ERR(npage);
1147
1148 set_new_dnode(&dn, inode, NULL, npage, nid);
1149 err = truncate_node(&dn);
1150 if (err) {
1151 f2fs_put_page(npage, 1);
1152 return err;
1153 }
1154
1155 f2fs_i_xnid_write(inode, 0);
1156
1157 return 0;
1158 }
1159
1160 /*
1161 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162 * f2fs_unlock_op().
1163 */
f2fs_remove_inode_page(struct inode * inode)1164 int f2fs_remove_inode_page(struct inode *inode)
1165 {
1166 struct dnode_of_data dn;
1167 int err;
1168
1169 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171 if (err)
1172 return err;
1173
1174 err = f2fs_truncate_xattr_node(inode);
1175 if (err) {
1176 f2fs_put_dnode(&dn);
1177 return err;
1178 }
1179
1180 /* remove potential inline_data blocks */
1181 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 S_ISLNK(inode->i_mode))
1183 f2fs_truncate_data_blocks_range(&dn, 1);
1184
1185 /* 0 is possible, after f2fs_new_inode() has failed */
1186 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187 f2fs_put_dnode(&dn);
1188 return -EIO;
1189 }
1190
1191 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192 f2fs_warn(F2FS_I_SB(inode),
1193 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194 inode->i_ino, (unsigned long long)inode->i_blocks);
1195 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1196 }
1197
1198 /* will put inode & node pages */
1199 err = truncate_node(&dn);
1200 if (err) {
1201 f2fs_put_dnode(&dn);
1202 return err;
1203 }
1204 return 0;
1205 }
1206
f2fs_new_inode_page(struct inode * inode)1207 struct page *f2fs_new_inode_page(struct inode *inode)
1208 {
1209 struct dnode_of_data dn;
1210
1211 /* allocate inode page for new inode */
1212 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1213
1214 /* caller should f2fs_put_page(page, 1); */
1215 return f2fs_new_node_page(&dn, 0);
1216 }
1217
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1218 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1219 {
1220 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221 struct node_info new_ni;
1222 struct page *page;
1223 int err;
1224
1225 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1226 return ERR_PTR(-EPERM);
1227
1228 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1229 if (!page)
1230 return ERR_PTR(-ENOMEM);
1231
1232 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1233 goto fail;
1234
1235 #ifdef CONFIG_F2FS_CHECK_FS
1236 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1237 if (err) {
1238 dec_valid_node_count(sbi, dn->inode, !ofs);
1239 goto fail;
1240 }
1241 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1242 #endif
1243 new_ni.nid = dn->nid;
1244 new_ni.ino = dn->inode->i_ino;
1245 new_ni.blk_addr = NULL_ADDR;
1246 new_ni.flag = 0;
1247 new_ni.version = 0;
1248 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1249
1250 f2fs_wait_on_page_writeback(page, NODE, true, true);
1251 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1252 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1253 if (!PageUptodate(page))
1254 SetPageUptodate(page);
1255 if (set_page_dirty(page))
1256 dn->node_changed = true;
1257
1258 if (f2fs_has_xattr_block(ofs))
1259 f2fs_i_xnid_write(dn->inode, dn->nid);
1260
1261 if (ofs == 0)
1262 inc_valid_inode_count(sbi);
1263 return page;
1264
1265 fail:
1266 clear_node_page_dirty(page);
1267 f2fs_put_page(page, 1);
1268 return ERR_PTR(err);
1269 }
1270
1271 /*
1272 * Caller should do after getting the following values.
1273 * 0: f2fs_put_page(page, 0)
1274 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1275 */
read_node_page(struct page * page,int op_flags)1276 static int read_node_page(struct page *page, int op_flags)
1277 {
1278 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1279 struct node_info ni;
1280 struct f2fs_io_info fio = {
1281 .sbi = sbi,
1282 .type = NODE,
1283 .op = REQ_OP_READ,
1284 .op_flags = op_flags,
1285 .page = page,
1286 .encrypted_page = NULL,
1287 };
1288 int err;
1289
1290 if (PageUptodate(page)) {
1291 if (!f2fs_inode_chksum_verify(sbi, page)) {
1292 ClearPageUptodate(page);
1293 return -EFSBADCRC;
1294 }
1295 return LOCKED_PAGE;
1296 }
1297
1298 err = f2fs_get_node_info(sbi, page->index, &ni);
1299 if (err)
1300 return err;
1301
1302 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1303 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1304 ClearPageUptodate(page);
1305 return -ENOENT;
1306 }
1307
1308 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1309
1310 err = f2fs_submit_page_bio(&fio);
1311
1312 if (!err)
1313 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1314
1315 return err;
1316 }
1317
1318 /*
1319 * Readahead a node page
1320 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1321 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1322 {
1323 struct page *apage;
1324 int err;
1325
1326 if (!nid)
1327 return;
1328 if (f2fs_check_nid_range(sbi, nid))
1329 return;
1330
1331 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1332 if (apage)
1333 return;
1334
1335 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336 if (!apage)
1337 return;
1338
1339 err = read_node_page(apage, REQ_RAHEAD);
1340 f2fs_put_page(apage, err ? 1 : 0);
1341 }
1342
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1343 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1344 struct page *parent, int start)
1345 {
1346 struct page *page;
1347 int err;
1348
1349 if (!nid)
1350 return ERR_PTR(-ENOENT);
1351 if (f2fs_check_nid_range(sbi, nid))
1352 return ERR_PTR(-EINVAL);
1353 repeat:
1354 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1355 if (!page)
1356 return ERR_PTR(-ENOMEM);
1357
1358 err = read_node_page(page, 0);
1359 if (err < 0) {
1360 f2fs_put_page(page, 1);
1361 return ERR_PTR(err);
1362 } else if (err == LOCKED_PAGE) {
1363 err = 0;
1364 goto page_hit;
1365 }
1366
1367 if (parent)
1368 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1369
1370 lock_page(page);
1371
1372 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1373 f2fs_put_page(page, 1);
1374 goto repeat;
1375 }
1376
1377 if (unlikely(!PageUptodate(page))) {
1378 err = -EIO;
1379 goto out_err;
1380 }
1381
1382 if (!f2fs_inode_chksum_verify(sbi, page)) {
1383 err = -EFSBADCRC;
1384 goto out_err;
1385 }
1386 page_hit:
1387 if(unlikely(nid != nid_of_node(page))) {
1388 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1389 nid, nid_of_node(page), ino_of_node(page),
1390 ofs_of_node(page), cpver_of_node(page),
1391 next_blkaddr_of_node(page));
1392 set_sbi_flag(sbi, SBI_NEED_FSCK);
1393 err = -EINVAL;
1394 out_err:
1395 ClearPageUptodate(page);
1396 f2fs_put_page(page, 1);
1397 return ERR_PTR(err);
1398 }
1399 return page;
1400 }
1401
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1402 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1403 {
1404 return __get_node_page(sbi, nid, NULL, 0);
1405 }
1406
f2fs_get_node_page_ra(struct page * parent,int start)1407 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1408 {
1409 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1410 nid_t nid = get_nid(parent, start, false);
1411
1412 return __get_node_page(sbi, nid, parent, start);
1413 }
1414
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1415 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1416 {
1417 struct inode *inode;
1418 struct page *page;
1419 int ret;
1420
1421 /* should flush inline_data before evict_inode */
1422 inode = ilookup(sbi->sb, ino);
1423 if (!inode)
1424 return;
1425
1426 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1427 FGP_LOCK|FGP_NOWAIT, 0);
1428 if (!page)
1429 goto iput_out;
1430
1431 if (!PageUptodate(page))
1432 goto page_out;
1433
1434 if (!PageDirty(page))
1435 goto page_out;
1436
1437 if (!clear_page_dirty_for_io(page))
1438 goto page_out;
1439
1440 ret = f2fs_write_inline_data(inode, page);
1441 inode_dec_dirty_pages(inode);
1442 f2fs_remove_dirty_inode(inode);
1443 if (ret)
1444 set_page_dirty(page);
1445 page_out:
1446 f2fs_put_page(page, 1);
1447 iput_out:
1448 iput(inode);
1449 }
1450
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1451 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1452 {
1453 pgoff_t index;
1454 struct pagevec pvec;
1455 struct page *last_page = NULL;
1456 int nr_pages;
1457
1458 pagevec_init(&pvec);
1459 index = 0;
1460
1461 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1462 PAGECACHE_TAG_DIRTY))) {
1463 int i;
1464
1465 for (i = 0; i < nr_pages; i++) {
1466 struct page *page = pvec.pages[i];
1467
1468 if (unlikely(f2fs_cp_error(sbi))) {
1469 f2fs_put_page(last_page, 0);
1470 pagevec_release(&pvec);
1471 return ERR_PTR(-EIO);
1472 }
1473
1474 if (!IS_DNODE(page) || !is_cold_node(page))
1475 continue;
1476 if (ino_of_node(page) != ino)
1477 continue;
1478
1479 lock_page(page);
1480
1481 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1482 continue_unlock:
1483 unlock_page(page);
1484 continue;
1485 }
1486 if (ino_of_node(page) != ino)
1487 goto continue_unlock;
1488
1489 if (!PageDirty(page)) {
1490 /* someone wrote it for us */
1491 goto continue_unlock;
1492 }
1493
1494 if (last_page)
1495 f2fs_put_page(last_page, 0);
1496
1497 get_page(page);
1498 last_page = page;
1499 unlock_page(page);
1500 }
1501 pagevec_release(&pvec);
1502 cond_resched();
1503 }
1504 return last_page;
1505 }
1506
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1507 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1508 struct writeback_control *wbc, bool do_balance,
1509 enum iostat_type io_type, unsigned int *seq_id)
1510 {
1511 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1512 nid_t nid;
1513 struct node_info ni;
1514 struct f2fs_io_info fio = {
1515 .sbi = sbi,
1516 .ino = ino_of_node(page),
1517 .type = NODE,
1518 .op = REQ_OP_WRITE,
1519 .op_flags = wbc_to_write_flags(wbc),
1520 .page = page,
1521 .encrypted_page = NULL,
1522 .submitted = false,
1523 .io_type = io_type,
1524 .io_wbc = wbc,
1525 };
1526 unsigned int seq;
1527
1528 trace_f2fs_writepage(page, NODE);
1529
1530 if (unlikely(f2fs_cp_error(sbi))) {
1531 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1532 ClearPageUptodate(page);
1533 dec_page_count(sbi, F2FS_DIRTY_NODES);
1534 unlock_page(page);
1535 return 0;
1536 }
1537 goto redirty_out;
1538 }
1539
1540 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1541 goto redirty_out;
1542
1543 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1544 wbc->sync_mode == WB_SYNC_NONE &&
1545 IS_DNODE(page) && is_cold_node(page))
1546 goto redirty_out;
1547
1548 /* get old block addr of this node page */
1549 nid = nid_of_node(page);
1550 f2fs_bug_on(sbi, page->index != nid);
1551
1552 if (f2fs_get_node_info(sbi, nid, &ni))
1553 goto redirty_out;
1554
1555 if (wbc->for_reclaim) {
1556 if (!down_read_trylock(&sbi->node_write))
1557 goto redirty_out;
1558 } else {
1559 down_read(&sbi->node_write);
1560 }
1561
1562 /* This page is already truncated */
1563 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1564 ClearPageUptodate(page);
1565 dec_page_count(sbi, F2FS_DIRTY_NODES);
1566 up_read(&sbi->node_write);
1567 unlock_page(page);
1568 return 0;
1569 }
1570
1571 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1572 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1573 DATA_GENERIC_ENHANCE)) {
1574 up_read(&sbi->node_write);
1575 goto redirty_out;
1576 }
1577
1578 if (atomic && !test_opt(sbi, NOBARRIER))
1579 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1580
1581 /* should add to global list before clearing PAGECACHE status */
1582 if (f2fs_in_warm_node_list(sbi, page)) {
1583 seq = f2fs_add_fsync_node_entry(sbi, page);
1584 if (seq_id)
1585 *seq_id = seq;
1586 }
1587
1588 set_page_writeback(page);
1589 ClearPageError(page);
1590
1591 fio.old_blkaddr = ni.blk_addr;
1592 f2fs_do_write_node_page(nid, &fio);
1593 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1594 dec_page_count(sbi, F2FS_DIRTY_NODES);
1595 up_read(&sbi->node_write);
1596
1597 if (wbc->for_reclaim) {
1598 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1599 submitted = NULL;
1600 }
1601
1602 unlock_page(page);
1603
1604 if (unlikely(f2fs_cp_error(sbi))) {
1605 f2fs_submit_merged_write(sbi, NODE);
1606 submitted = NULL;
1607 }
1608 if (submitted)
1609 *submitted = fio.submitted;
1610
1611 if (do_balance)
1612 f2fs_balance_fs(sbi, false);
1613 return 0;
1614
1615 redirty_out:
1616 redirty_page_for_writepage(wbc, page);
1617 return AOP_WRITEPAGE_ACTIVATE;
1618 }
1619
f2fs_move_node_page(struct page * node_page,int gc_type)1620 int f2fs_move_node_page(struct page *node_page, int gc_type)
1621 {
1622 int err = 0;
1623
1624 if (gc_type == FG_GC) {
1625 struct writeback_control wbc = {
1626 .sync_mode = WB_SYNC_ALL,
1627 .nr_to_write = 1,
1628 .for_reclaim = 0,
1629 };
1630
1631 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1632
1633 set_page_dirty(node_page);
1634
1635 if (!clear_page_dirty_for_io(node_page)) {
1636 err = -EAGAIN;
1637 goto out_page;
1638 }
1639
1640 if (__write_node_page(node_page, false, NULL,
1641 &wbc, false, FS_GC_NODE_IO, NULL)) {
1642 err = -EAGAIN;
1643 unlock_page(node_page);
1644 }
1645 goto release_page;
1646 } else {
1647 /* set page dirty and write it */
1648 if (!PageWriteback(node_page))
1649 set_page_dirty(node_page);
1650 }
1651 out_page:
1652 unlock_page(node_page);
1653 release_page:
1654 f2fs_put_page(node_page, 0);
1655 return err;
1656 }
1657
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1658 static int f2fs_write_node_page(struct page *page,
1659 struct writeback_control *wbc)
1660 {
1661 return __write_node_page(page, false, NULL, wbc, false,
1662 FS_NODE_IO, NULL);
1663 }
1664
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1665 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1666 struct writeback_control *wbc, bool atomic,
1667 unsigned int *seq_id)
1668 {
1669 pgoff_t index;
1670 struct pagevec pvec;
1671 int ret = 0;
1672 struct page *last_page = NULL;
1673 bool marked = false;
1674 nid_t ino = inode->i_ino;
1675 int nr_pages;
1676 int nwritten = 0;
1677
1678 if (atomic) {
1679 last_page = last_fsync_dnode(sbi, ino);
1680 if (IS_ERR_OR_NULL(last_page))
1681 return PTR_ERR_OR_ZERO(last_page);
1682 }
1683 retry:
1684 pagevec_init(&pvec);
1685 index = 0;
1686
1687 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1688 PAGECACHE_TAG_DIRTY))) {
1689 int i;
1690
1691 for (i = 0; i < nr_pages; i++) {
1692 struct page *page = pvec.pages[i];
1693 bool submitted = false;
1694
1695 if (unlikely(f2fs_cp_error(sbi))) {
1696 f2fs_put_page(last_page, 0);
1697 pagevec_release(&pvec);
1698 ret = -EIO;
1699 goto out;
1700 }
1701
1702 if (!IS_DNODE(page) || !is_cold_node(page))
1703 continue;
1704 if (ino_of_node(page) != ino)
1705 continue;
1706
1707 lock_page(page);
1708
1709 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1710 continue_unlock:
1711 unlock_page(page);
1712 continue;
1713 }
1714 if (ino_of_node(page) != ino)
1715 goto continue_unlock;
1716
1717 if (!PageDirty(page) && page != last_page) {
1718 /* someone wrote it for us */
1719 goto continue_unlock;
1720 }
1721
1722 f2fs_wait_on_page_writeback(page, NODE, true, true);
1723
1724 set_fsync_mark(page, 0);
1725 set_dentry_mark(page, 0);
1726
1727 if (!atomic || page == last_page) {
1728 set_fsync_mark(page, 1);
1729 if (IS_INODE(page)) {
1730 if (is_inode_flag_set(inode,
1731 FI_DIRTY_INODE))
1732 f2fs_update_inode(inode, page);
1733 set_dentry_mark(page,
1734 f2fs_need_dentry_mark(sbi, ino));
1735 }
1736 /* may be written by other thread */
1737 if (!PageDirty(page))
1738 set_page_dirty(page);
1739 }
1740
1741 if (!clear_page_dirty_for_io(page))
1742 goto continue_unlock;
1743
1744 ret = __write_node_page(page, atomic &&
1745 page == last_page,
1746 &submitted, wbc, true,
1747 FS_NODE_IO, seq_id);
1748 if (ret) {
1749 unlock_page(page);
1750 f2fs_put_page(last_page, 0);
1751 break;
1752 } else if (submitted) {
1753 nwritten++;
1754 }
1755
1756 if (page == last_page) {
1757 f2fs_put_page(page, 0);
1758 marked = true;
1759 break;
1760 }
1761 }
1762 pagevec_release(&pvec);
1763 cond_resched();
1764
1765 if (ret || marked)
1766 break;
1767 }
1768 if (!ret && atomic && !marked) {
1769 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1770 ino, last_page->index);
1771 lock_page(last_page);
1772 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1773 set_page_dirty(last_page);
1774 unlock_page(last_page);
1775 goto retry;
1776 }
1777 out:
1778 if (nwritten)
1779 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1780 return ret ? -EIO: 0;
1781 }
1782
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1783 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1784 {
1785 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1786 bool clean;
1787
1788 if (inode->i_ino != ino)
1789 return 0;
1790
1791 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1792 return 0;
1793
1794 spin_lock(&sbi->inode_lock[DIRTY_META]);
1795 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1796 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1797
1798 if (clean)
1799 return 0;
1800
1801 inode = igrab(inode);
1802 if (!inode)
1803 return 0;
1804 return 1;
1805 }
1806
flush_dirty_inode(struct page * page)1807 static bool flush_dirty_inode(struct page *page)
1808 {
1809 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1810 struct inode *inode;
1811 nid_t ino = ino_of_node(page);
1812
1813 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1814 if (!inode)
1815 return false;
1816
1817 f2fs_update_inode(inode, page);
1818 unlock_page(page);
1819
1820 iput(inode);
1821 return true;
1822 }
1823
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1824 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1825 {
1826 pgoff_t index = 0;
1827 struct pagevec pvec;
1828 int nr_pages;
1829
1830 pagevec_init(&pvec);
1831
1832 while ((nr_pages = pagevec_lookup_tag(&pvec,
1833 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1834 int i;
1835
1836 for (i = 0; i < nr_pages; i++) {
1837 struct page *page = pvec.pages[i];
1838
1839 if (!IS_DNODE(page))
1840 continue;
1841
1842 lock_page(page);
1843
1844 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1845 continue_unlock:
1846 unlock_page(page);
1847 continue;
1848 }
1849
1850 if (!PageDirty(page)) {
1851 /* someone wrote it for us */
1852 goto continue_unlock;
1853 }
1854
1855 /* flush inline_data, if it's async context. */
1856 if (is_inline_node(page)) {
1857 clear_inline_node(page);
1858 unlock_page(page);
1859 flush_inline_data(sbi, ino_of_node(page));
1860 continue;
1861 }
1862 unlock_page(page);
1863 }
1864 pagevec_release(&pvec);
1865 cond_resched();
1866 }
1867 }
1868
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1869 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1870 struct writeback_control *wbc,
1871 bool do_balance, enum iostat_type io_type)
1872 {
1873 pgoff_t index;
1874 struct pagevec pvec;
1875 int step = 0;
1876 int nwritten = 0;
1877 int ret = 0;
1878 int nr_pages, done = 0;
1879
1880 pagevec_init(&pvec);
1881
1882 next_step:
1883 index = 0;
1884
1885 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1886 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1887 int i;
1888
1889 for (i = 0; i < nr_pages; i++) {
1890 struct page *page = pvec.pages[i];
1891 bool submitted = false;
1892 bool may_dirty = true;
1893
1894 /* give a priority to WB_SYNC threads */
1895 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1896 wbc->sync_mode == WB_SYNC_NONE) {
1897 done = 1;
1898 break;
1899 }
1900
1901 /*
1902 * flushing sequence with step:
1903 * 0. indirect nodes
1904 * 1. dentry dnodes
1905 * 2. file dnodes
1906 */
1907 if (step == 0 && IS_DNODE(page))
1908 continue;
1909 if (step == 1 && (!IS_DNODE(page) ||
1910 is_cold_node(page)))
1911 continue;
1912 if (step == 2 && (!IS_DNODE(page) ||
1913 !is_cold_node(page)))
1914 continue;
1915 lock_node:
1916 if (wbc->sync_mode == WB_SYNC_ALL)
1917 lock_page(page);
1918 else if (!trylock_page(page))
1919 continue;
1920
1921 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1922 continue_unlock:
1923 unlock_page(page);
1924 continue;
1925 }
1926
1927 if (!PageDirty(page)) {
1928 /* someone wrote it for us */
1929 goto continue_unlock;
1930 }
1931
1932 /* flush inline_data/inode, if it's async context. */
1933 if (!do_balance)
1934 goto write_node;
1935
1936 /* flush inline_data */
1937 if (is_inline_node(page)) {
1938 clear_inline_node(page);
1939 unlock_page(page);
1940 flush_inline_data(sbi, ino_of_node(page));
1941 goto lock_node;
1942 }
1943
1944 /* flush dirty inode */
1945 if (IS_INODE(page) && may_dirty) {
1946 may_dirty = false;
1947 if (flush_dirty_inode(page))
1948 goto lock_node;
1949 }
1950 write_node:
1951 f2fs_wait_on_page_writeback(page, NODE, true, true);
1952
1953 if (!clear_page_dirty_for_io(page))
1954 goto continue_unlock;
1955
1956 set_fsync_mark(page, 0);
1957 set_dentry_mark(page, 0);
1958
1959 ret = __write_node_page(page, false, &submitted,
1960 wbc, do_balance, io_type, NULL);
1961 if (ret)
1962 unlock_page(page);
1963 else if (submitted)
1964 nwritten++;
1965
1966 if (--wbc->nr_to_write == 0)
1967 break;
1968 }
1969 pagevec_release(&pvec);
1970 cond_resched();
1971
1972 if (wbc->nr_to_write == 0) {
1973 step = 2;
1974 break;
1975 }
1976 }
1977
1978 if (step < 2) {
1979 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1980 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1981 goto out;
1982 step++;
1983 goto next_step;
1984 }
1985 out:
1986 if (nwritten)
1987 f2fs_submit_merged_write(sbi, NODE);
1988
1989 if (unlikely(f2fs_cp_error(sbi)))
1990 return -EIO;
1991 return ret;
1992 }
1993
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)1994 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1995 unsigned int seq_id)
1996 {
1997 struct fsync_node_entry *fn;
1998 struct page *page;
1999 struct list_head *head = &sbi->fsync_node_list;
2000 unsigned long flags;
2001 unsigned int cur_seq_id = 0;
2002 int ret2, ret = 0;
2003
2004 while (seq_id && cur_seq_id < seq_id) {
2005 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2006 if (list_empty(head)) {
2007 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2008 break;
2009 }
2010 fn = list_first_entry(head, struct fsync_node_entry, list);
2011 if (fn->seq_id > seq_id) {
2012 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2013 break;
2014 }
2015 cur_seq_id = fn->seq_id;
2016 page = fn->page;
2017 get_page(page);
2018 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2019
2020 f2fs_wait_on_page_writeback(page, NODE, true, false);
2021 if (TestClearPageError(page))
2022 ret = -EIO;
2023
2024 put_page(page);
2025
2026 if (ret)
2027 break;
2028 }
2029
2030 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2031 if (!ret)
2032 ret = ret2;
2033
2034 return ret;
2035 }
2036
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2037 static int f2fs_write_node_pages(struct address_space *mapping,
2038 struct writeback_control *wbc)
2039 {
2040 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2041 struct blk_plug plug;
2042 long diff;
2043
2044 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2045 goto skip_write;
2046
2047 /* balancing f2fs's metadata in background */
2048 f2fs_balance_fs_bg(sbi, true);
2049
2050 /* collect a number of dirty node pages and write together */
2051 if (wbc->sync_mode != WB_SYNC_ALL &&
2052 get_pages(sbi, F2FS_DIRTY_NODES) <
2053 nr_pages_to_skip(sbi, NODE))
2054 goto skip_write;
2055
2056 if (wbc->sync_mode == WB_SYNC_ALL)
2057 atomic_inc(&sbi->wb_sync_req[NODE]);
2058 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2059 goto skip_write;
2060
2061 trace_f2fs_writepages(mapping->host, wbc, NODE);
2062
2063 diff = nr_pages_to_write(sbi, NODE, wbc);
2064 blk_start_plug(&plug);
2065 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2066 blk_finish_plug(&plug);
2067 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2068
2069 if (wbc->sync_mode == WB_SYNC_ALL)
2070 atomic_dec(&sbi->wb_sync_req[NODE]);
2071 return 0;
2072
2073 skip_write:
2074 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2075 trace_f2fs_writepages(mapping->host, wbc, NODE);
2076 return 0;
2077 }
2078
f2fs_set_node_page_dirty(struct page * page)2079 static int f2fs_set_node_page_dirty(struct page *page)
2080 {
2081 trace_f2fs_set_page_dirty(page, NODE);
2082
2083 if (!PageUptodate(page))
2084 SetPageUptodate(page);
2085 #ifdef CONFIG_F2FS_CHECK_FS
2086 if (IS_INODE(page))
2087 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2088 #endif
2089 if (!PageDirty(page)) {
2090 __set_page_dirty_nobuffers(page);
2091 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2092 f2fs_set_page_private(page, 0);
2093 f2fs_trace_pid(page);
2094 return 1;
2095 }
2096 return 0;
2097 }
2098
2099 /*
2100 * Structure of the f2fs node operations
2101 */
2102 const struct address_space_operations f2fs_node_aops = {
2103 .writepage = f2fs_write_node_page,
2104 .writepages = f2fs_write_node_pages,
2105 .set_page_dirty = f2fs_set_node_page_dirty,
2106 .invalidatepage = f2fs_invalidate_page,
2107 .releasepage = f2fs_release_page,
2108 #ifdef CONFIG_MIGRATION
2109 .migratepage = f2fs_migrate_page,
2110 #endif
2111 };
2112
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2113 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2114 nid_t n)
2115 {
2116 return radix_tree_lookup(&nm_i->free_nid_root, n);
2117 }
2118
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2119 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2120 struct free_nid *i)
2121 {
2122 struct f2fs_nm_info *nm_i = NM_I(sbi);
2123
2124 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2125 if (err)
2126 return err;
2127
2128 nm_i->nid_cnt[FREE_NID]++;
2129 list_add_tail(&i->list, &nm_i->free_nid_list);
2130 return 0;
2131 }
2132
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2133 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2134 struct free_nid *i, enum nid_state state)
2135 {
2136 struct f2fs_nm_info *nm_i = NM_I(sbi);
2137
2138 f2fs_bug_on(sbi, state != i->state);
2139 nm_i->nid_cnt[state]--;
2140 if (state == FREE_NID)
2141 list_del(&i->list);
2142 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2143 }
2144
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2145 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2146 enum nid_state org_state, enum nid_state dst_state)
2147 {
2148 struct f2fs_nm_info *nm_i = NM_I(sbi);
2149
2150 f2fs_bug_on(sbi, org_state != i->state);
2151 i->state = dst_state;
2152 nm_i->nid_cnt[org_state]--;
2153 nm_i->nid_cnt[dst_state]++;
2154
2155 switch (dst_state) {
2156 case PREALLOC_NID:
2157 list_del(&i->list);
2158 break;
2159 case FREE_NID:
2160 list_add_tail(&i->list, &nm_i->free_nid_list);
2161 break;
2162 default:
2163 BUG_ON(1);
2164 }
2165 }
2166
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2167 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2168 bool set, bool build)
2169 {
2170 struct f2fs_nm_info *nm_i = NM_I(sbi);
2171 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2172 unsigned int nid_ofs = nid - START_NID(nid);
2173
2174 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2175 return;
2176
2177 if (set) {
2178 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2179 return;
2180 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2181 nm_i->free_nid_count[nat_ofs]++;
2182 } else {
2183 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2184 return;
2185 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2186 if (!build)
2187 nm_i->free_nid_count[nat_ofs]--;
2188 }
2189 }
2190
2191 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2192 static bool add_free_nid(struct f2fs_sb_info *sbi,
2193 nid_t nid, bool build, bool update)
2194 {
2195 struct f2fs_nm_info *nm_i = NM_I(sbi);
2196 struct free_nid *i, *e;
2197 struct nat_entry *ne;
2198 int err = -EINVAL;
2199 bool ret = false;
2200
2201 /* 0 nid should not be used */
2202 if (unlikely(nid == 0))
2203 return false;
2204
2205 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2206 return false;
2207
2208 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2209 i->nid = nid;
2210 i->state = FREE_NID;
2211
2212 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2213
2214 spin_lock(&nm_i->nid_list_lock);
2215
2216 if (build) {
2217 /*
2218 * Thread A Thread B
2219 * - f2fs_create
2220 * - f2fs_new_inode
2221 * - f2fs_alloc_nid
2222 * - __insert_nid_to_list(PREALLOC_NID)
2223 * - f2fs_balance_fs_bg
2224 * - f2fs_build_free_nids
2225 * - __f2fs_build_free_nids
2226 * - scan_nat_page
2227 * - add_free_nid
2228 * - __lookup_nat_cache
2229 * - f2fs_add_link
2230 * - f2fs_init_inode_metadata
2231 * - f2fs_new_inode_page
2232 * - f2fs_new_node_page
2233 * - set_node_addr
2234 * - f2fs_alloc_nid_done
2235 * - __remove_nid_from_list(PREALLOC_NID)
2236 * - __insert_nid_to_list(FREE_NID)
2237 */
2238 ne = __lookup_nat_cache(nm_i, nid);
2239 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2240 nat_get_blkaddr(ne) != NULL_ADDR))
2241 goto err_out;
2242
2243 e = __lookup_free_nid_list(nm_i, nid);
2244 if (e) {
2245 if (e->state == FREE_NID)
2246 ret = true;
2247 goto err_out;
2248 }
2249 }
2250 ret = true;
2251 err = __insert_free_nid(sbi, i);
2252 err_out:
2253 if (update) {
2254 update_free_nid_bitmap(sbi, nid, ret, build);
2255 if (!build)
2256 nm_i->available_nids++;
2257 }
2258 spin_unlock(&nm_i->nid_list_lock);
2259 radix_tree_preload_end();
2260
2261 if (err)
2262 kmem_cache_free(free_nid_slab, i);
2263 return ret;
2264 }
2265
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2266 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2267 {
2268 struct f2fs_nm_info *nm_i = NM_I(sbi);
2269 struct free_nid *i;
2270 bool need_free = false;
2271
2272 spin_lock(&nm_i->nid_list_lock);
2273 i = __lookup_free_nid_list(nm_i, nid);
2274 if (i && i->state == FREE_NID) {
2275 __remove_free_nid(sbi, i, FREE_NID);
2276 need_free = true;
2277 }
2278 spin_unlock(&nm_i->nid_list_lock);
2279
2280 if (need_free)
2281 kmem_cache_free(free_nid_slab, i);
2282 }
2283
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2284 static int scan_nat_page(struct f2fs_sb_info *sbi,
2285 struct page *nat_page, nid_t start_nid)
2286 {
2287 struct f2fs_nm_info *nm_i = NM_I(sbi);
2288 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2289 block_t blk_addr;
2290 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2291 int i;
2292
2293 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2294
2295 i = start_nid % NAT_ENTRY_PER_BLOCK;
2296
2297 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2298 if (unlikely(start_nid >= nm_i->max_nid))
2299 break;
2300
2301 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2302
2303 if (blk_addr == NEW_ADDR)
2304 return -EINVAL;
2305
2306 if (blk_addr == NULL_ADDR) {
2307 add_free_nid(sbi, start_nid, true, true);
2308 } else {
2309 spin_lock(&NM_I(sbi)->nid_list_lock);
2310 update_free_nid_bitmap(sbi, start_nid, false, true);
2311 spin_unlock(&NM_I(sbi)->nid_list_lock);
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
scan_curseg_cache(struct f2fs_sb_info * sbi)2318 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2319 {
2320 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2321 struct f2fs_journal *journal = curseg->journal;
2322 int i;
2323
2324 down_read(&curseg->journal_rwsem);
2325 for (i = 0; i < nats_in_cursum(journal); i++) {
2326 block_t addr;
2327 nid_t nid;
2328
2329 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2330 nid = le32_to_cpu(nid_in_journal(journal, i));
2331 if (addr == NULL_ADDR)
2332 add_free_nid(sbi, nid, true, false);
2333 else
2334 remove_free_nid(sbi, nid);
2335 }
2336 up_read(&curseg->journal_rwsem);
2337 }
2338
scan_free_nid_bits(struct f2fs_sb_info * sbi)2339 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2340 {
2341 struct f2fs_nm_info *nm_i = NM_I(sbi);
2342 unsigned int i, idx;
2343 nid_t nid;
2344
2345 down_read(&nm_i->nat_tree_lock);
2346
2347 for (i = 0; i < nm_i->nat_blocks; i++) {
2348 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2349 continue;
2350 if (!nm_i->free_nid_count[i])
2351 continue;
2352 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2353 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2354 NAT_ENTRY_PER_BLOCK, idx);
2355 if (idx >= NAT_ENTRY_PER_BLOCK)
2356 break;
2357
2358 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2359 add_free_nid(sbi, nid, true, false);
2360
2361 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2362 goto out;
2363 }
2364 }
2365 out:
2366 scan_curseg_cache(sbi);
2367
2368 up_read(&nm_i->nat_tree_lock);
2369 }
2370
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2371 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2372 bool sync, bool mount)
2373 {
2374 struct f2fs_nm_info *nm_i = NM_I(sbi);
2375 int i = 0, ret;
2376 nid_t nid = nm_i->next_scan_nid;
2377
2378 if (unlikely(nid >= nm_i->max_nid))
2379 nid = 0;
2380
2381 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2382 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2383
2384 /* Enough entries */
2385 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2386 return 0;
2387
2388 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2389 return 0;
2390
2391 if (!mount) {
2392 /* try to find free nids in free_nid_bitmap */
2393 scan_free_nid_bits(sbi);
2394
2395 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2396 return 0;
2397 }
2398
2399 /* readahead nat pages to be scanned */
2400 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2401 META_NAT, true);
2402
2403 down_read(&nm_i->nat_tree_lock);
2404
2405 while (1) {
2406 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2407 nm_i->nat_block_bitmap)) {
2408 struct page *page = get_current_nat_page(sbi, nid);
2409
2410 if (IS_ERR(page)) {
2411 ret = PTR_ERR(page);
2412 } else {
2413 ret = scan_nat_page(sbi, page, nid);
2414 f2fs_put_page(page, 1);
2415 }
2416
2417 if (ret) {
2418 up_read(&nm_i->nat_tree_lock);
2419 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2420 return ret;
2421 }
2422 }
2423
2424 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2425 if (unlikely(nid >= nm_i->max_nid))
2426 nid = 0;
2427
2428 if (++i >= FREE_NID_PAGES)
2429 break;
2430 }
2431
2432 /* go to the next free nat pages to find free nids abundantly */
2433 nm_i->next_scan_nid = nid;
2434
2435 /* find free nids from current sum_pages */
2436 scan_curseg_cache(sbi);
2437
2438 up_read(&nm_i->nat_tree_lock);
2439
2440 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2441 nm_i->ra_nid_pages, META_NAT, false);
2442
2443 return 0;
2444 }
2445
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2446 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2447 {
2448 int ret;
2449
2450 mutex_lock(&NM_I(sbi)->build_lock);
2451 ret = __f2fs_build_free_nids(sbi, sync, mount);
2452 mutex_unlock(&NM_I(sbi)->build_lock);
2453
2454 return ret;
2455 }
2456
2457 /*
2458 * If this function returns success, caller can obtain a new nid
2459 * from second parameter of this function.
2460 * The returned nid could be used ino as well as nid when inode is created.
2461 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2462 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2463 {
2464 struct f2fs_nm_info *nm_i = NM_I(sbi);
2465 struct free_nid *i = NULL;
2466 retry:
2467 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2468 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2469 return false;
2470 }
2471
2472 spin_lock(&nm_i->nid_list_lock);
2473
2474 if (unlikely(nm_i->available_nids == 0)) {
2475 spin_unlock(&nm_i->nid_list_lock);
2476 return false;
2477 }
2478
2479 /* We should not use stale free nids created by f2fs_build_free_nids */
2480 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2481 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2482 i = list_first_entry(&nm_i->free_nid_list,
2483 struct free_nid, list);
2484 *nid = i->nid;
2485
2486 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2487 nm_i->available_nids--;
2488
2489 update_free_nid_bitmap(sbi, *nid, false, false);
2490
2491 spin_unlock(&nm_i->nid_list_lock);
2492 return true;
2493 }
2494 spin_unlock(&nm_i->nid_list_lock);
2495
2496 /* Let's scan nat pages and its caches to get free nids */
2497 if (!f2fs_build_free_nids(sbi, true, false))
2498 goto retry;
2499 return false;
2500 }
2501
2502 /*
2503 * f2fs_alloc_nid() should be called prior to this function.
2504 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2505 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2506 {
2507 struct f2fs_nm_info *nm_i = NM_I(sbi);
2508 struct free_nid *i;
2509
2510 spin_lock(&nm_i->nid_list_lock);
2511 i = __lookup_free_nid_list(nm_i, nid);
2512 f2fs_bug_on(sbi, !i);
2513 __remove_free_nid(sbi, i, PREALLOC_NID);
2514 spin_unlock(&nm_i->nid_list_lock);
2515
2516 kmem_cache_free(free_nid_slab, i);
2517 }
2518
2519 /*
2520 * f2fs_alloc_nid() should be called prior to this function.
2521 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2522 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2523 {
2524 struct f2fs_nm_info *nm_i = NM_I(sbi);
2525 struct free_nid *i;
2526 bool need_free = false;
2527
2528 if (!nid)
2529 return;
2530
2531 spin_lock(&nm_i->nid_list_lock);
2532 i = __lookup_free_nid_list(nm_i, nid);
2533 f2fs_bug_on(sbi, !i);
2534
2535 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2536 __remove_free_nid(sbi, i, PREALLOC_NID);
2537 need_free = true;
2538 } else {
2539 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2540 }
2541
2542 nm_i->available_nids++;
2543
2544 update_free_nid_bitmap(sbi, nid, true, false);
2545
2546 spin_unlock(&nm_i->nid_list_lock);
2547
2548 if (need_free)
2549 kmem_cache_free(free_nid_slab, i);
2550 }
2551
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2552 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2553 {
2554 struct f2fs_nm_info *nm_i = NM_I(sbi);
2555 int nr = nr_shrink;
2556
2557 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2558 return 0;
2559
2560 if (!mutex_trylock(&nm_i->build_lock))
2561 return 0;
2562
2563 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2564 struct free_nid *i, *next;
2565 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2566
2567 spin_lock(&nm_i->nid_list_lock);
2568 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2569 if (!nr_shrink || !batch ||
2570 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2571 break;
2572 __remove_free_nid(sbi, i, FREE_NID);
2573 kmem_cache_free(free_nid_slab, i);
2574 nr_shrink--;
2575 batch--;
2576 }
2577 spin_unlock(&nm_i->nid_list_lock);
2578 }
2579
2580 mutex_unlock(&nm_i->build_lock);
2581
2582 return nr - nr_shrink;
2583 }
2584
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2585 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2586 {
2587 void *src_addr, *dst_addr;
2588 size_t inline_size;
2589 struct page *ipage;
2590 struct f2fs_inode *ri;
2591
2592 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2593 if (IS_ERR(ipage))
2594 return PTR_ERR(ipage);
2595
2596 ri = F2FS_INODE(page);
2597 if (ri->i_inline & F2FS_INLINE_XATTR) {
2598 set_inode_flag(inode, FI_INLINE_XATTR);
2599 } else {
2600 clear_inode_flag(inode, FI_INLINE_XATTR);
2601 goto update_inode;
2602 }
2603
2604 dst_addr = inline_xattr_addr(inode, ipage);
2605 src_addr = inline_xattr_addr(inode, page);
2606 inline_size = inline_xattr_size(inode);
2607
2608 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2609 memcpy(dst_addr, src_addr, inline_size);
2610 update_inode:
2611 f2fs_update_inode(inode, ipage);
2612 f2fs_put_page(ipage, 1);
2613 return 0;
2614 }
2615
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2616 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2617 {
2618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2619 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2620 nid_t new_xnid;
2621 struct dnode_of_data dn;
2622 struct node_info ni;
2623 struct page *xpage;
2624 int err;
2625
2626 if (!prev_xnid)
2627 goto recover_xnid;
2628
2629 /* 1: invalidate the previous xattr nid */
2630 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2631 if (err)
2632 return err;
2633
2634 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2635 dec_valid_node_count(sbi, inode, false);
2636 set_node_addr(sbi, &ni, NULL_ADDR, false);
2637
2638 recover_xnid:
2639 /* 2: update xattr nid in inode */
2640 if (!f2fs_alloc_nid(sbi, &new_xnid))
2641 return -ENOSPC;
2642
2643 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2644 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2645 if (IS_ERR(xpage)) {
2646 f2fs_alloc_nid_failed(sbi, new_xnid);
2647 return PTR_ERR(xpage);
2648 }
2649
2650 f2fs_alloc_nid_done(sbi, new_xnid);
2651 f2fs_update_inode_page(inode);
2652
2653 /* 3: update and set xattr node page dirty */
2654 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2655
2656 set_page_dirty(xpage);
2657 f2fs_put_page(xpage, 1);
2658
2659 return 0;
2660 }
2661
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2662 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2663 {
2664 struct f2fs_inode *src, *dst;
2665 nid_t ino = ino_of_node(page);
2666 struct node_info old_ni, new_ni;
2667 struct page *ipage;
2668 int err;
2669
2670 err = f2fs_get_node_info(sbi, ino, &old_ni);
2671 if (err)
2672 return err;
2673
2674 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2675 return -EINVAL;
2676 retry:
2677 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2678 if (!ipage) {
2679 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2680 goto retry;
2681 }
2682
2683 /* Should not use this inode from free nid list */
2684 remove_free_nid(sbi, ino);
2685
2686 if (!PageUptodate(ipage))
2687 SetPageUptodate(ipage);
2688 fill_node_footer(ipage, ino, ino, 0, true);
2689 set_cold_node(ipage, false);
2690
2691 src = F2FS_INODE(page);
2692 dst = F2FS_INODE(ipage);
2693
2694 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2695 dst->i_size = 0;
2696 dst->i_blocks = cpu_to_le64(1);
2697 dst->i_links = cpu_to_le32(1);
2698 dst->i_xattr_nid = 0;
2699 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2700 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2701 dst->i_extra_isize = src->i_extra_isize;
2702
2703 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2704 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2705 i_inline_xattr_size))
2706 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2707
2708 if (f2fs_sb_has_project_quota(sbi) &&
2709 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2710 i_projid))
2711 dst->i_projid = src->i_projid;
2712
2713 if (f2fs_sb_has_inode_crtime(sbi) &&
2714 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715 i_crtime_nsec)) {
2716 dst->i_crtime = src->i_crtime;
2717 dst->i_crtime_nsec = src->i_crtime_nsec;
2718 }
2719 }
2720
2721 new_ni = old_ni;
2722 new_ni.ino = ino;
2723
2724 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2725 WARN_ON(1);
2726 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2727 inc_valid_inode_count(sbi);
2728 set_page_dirty(ipage);
2729 f2fs_put_page(ipage, 1);
2730 return 0;
2731 }
2732
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2733 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2734 unsigned int segno, struct f2fs_summary_block *sum)
2735 {
2736 struct f2fs_node *rn;
2737 struct f2fs_summary *sum_entry;
2738 block_t addr;
2739 int i, idx, last_offset, nrpages;
2740
2741 /* scan the node segment */
2742 last_offset = sbi->blocks_per_seg;
2743 addr = START_BLOCK(sbi, segno);
2744 sum_entry = &sum->entries[0];
2745
2746 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2747 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2748
2749 /* readahead node pages */
2750 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2751
2752 for (idx = addr; idx < addr + nrpages; idx++) {
2753 struct page *page = f2fs_get_tmp_page(sbi, idx);
2754
2755 if (IS_ERR(page))
2756 return PTR_ERR(page);
2757
2758 rn = F2FS_NODE(page);
2759 sum_entry->nid = rn->footer.nid;
2760 sum_entry->version = 0;
2761 sum_entry->ofs_in_node = 0;
2762 sum_entry++;
2763 f2fs_put_page(page, 1);
2764 }
2765
2766 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2767 addr + nrpages);
2768 }
2769 return 0;
2770 }
2771
remove_nats_in_journal(struct f2fs_sb_info * sbi)2772 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2773 {
2774 struct f2fs_nm_info *nm_i = NM_I(sbi);
2775 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2776 struct f2fs_journal *journal = curseg->journal;
2777 int i;
2778
2779 down_write(&curseg->journal_rwsem);
2780 for (i = 0; i < nats_in_cursum(journal); i++) {
2781 struct nat_entry *ne;
2782 struct f2fs_nat_entry raw_ne;
2783 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2784
2785 if (f2fs_check_nid_range(sbi, nid))
2786 continue;
2787
2788 raw_ne = nat_in_journal(journal, i);
2789
2790 ne = __lookup_nat_cache(nm_i, nid);
2791 if (!ne) {
2792 ne = __alloc_nat_entry(nid, true);
2793 __init_nat_entry(nm_i, ne, &raw_ne, true);
2794 }
2795
2796 /*
2797 * if a free nat in journal has not been used after last
2798 * checkpoint, we should remove it from available nids,
2799 * since later we will add it again.
2800 */
2801 if (!get_nat_flag(ne, IS_DIRTY) &&
2802 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2803 spin_lock(&nm_i->nid_list_lock);
2804 nm_i->available_nids--;
2805 spin_unlock(&nm_i->nid_list_lock);
2806 }
2807
2808 __set_nat_cache_dirty(nm_i, ne);
2809 }
2810 update_nats_in_cursum(journal, -i);
2811 up_write(&curseg->journal_rwsem);
2812 }
2813
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2814 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2815 struct list_head *head, int max)
2816 {
2817 struct nat_entry_set *cur;
2818
2819 if (nes->entry_cnt >= max)
2820 goto add_out;
2821
2822 list_for_each_entry(cur, head, set_list) {
2823 if (cur->entry_cnt >= nes->entry_cnt) {
2824 list_add(&nes->set_list, cur->set_list.prev);
2825 return;
2826 }
2827 }
2828 add_out:
2829 list_add_tail(&nes->set_list, head);
2830 }
2831
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2832 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2833 struct page *page)
2834 {
2835 struct f2fs_nm_info *nm_i = NM_I(sbi);
2836 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2837 struct f2fs_nat_block *nat_blk = page_address(page);
2838 int valid = 0;
2839 int i = 0;
2840
2841 if (!enabled_nat_bits(sbi, NULL))
2842 return;
2843
2844 if (nat_index == 0) {
2845 valid = 1;
2846 i = 1;
2847 }
2848 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2849 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2850 valid++;
2851 }
2852 if (valid == 0) {
2853 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2854 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2855 return;
2856 }
2857
2858 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2859 if (valid == NAT_ENTRY_PER_BLOCK)
2860 __set_bit_le(nat_index, nm_i->full_nat_bits);
2861 else
2862 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2863 }
2864
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2865 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2866 struct nat_entry_set *set, struct cp_control *cpc)
2867 {
2868 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2869 struct f2fs_journal *journal = curseg->journal;
2870 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2871 bool to_journal = true;
2872 struct f2fs_nat_block *nat_blk;
2873 struct nat_entry *ne, *cur;
2874 struct page *page = NULL;
2875
2876 /*
2877 * there are two steps to flush nat entries:
2878 * #1, flush nat entries to journal in current hot data summary block.
2879 * #2, flush nat entries to nat page.
2880 */
2881 if (enabled_nat_bits(sbi, cpc) ||
2882 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2883 to_journal = false;
2884
2885 if (to_journal) {
2886 down_write(&curseg->journal_rwsem);
2887 } else {
2888 page = get_next_nat_page(sbi, start_nid);
2889 if (IS_ERR(page))
2890 return PTR_ERR(page);
2891
2892 nat_blk = page_address(page);
2893 f2fs_bug_on(sbi, !nat_blk);
2894 }
2895
2896 /* flush dirty nats in nat entry set */
2897 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2898 struct f2fs_nat_entry *raw_ne;
2899 nid_t nid = nat_get_nid(ne);
2900 int offset;
2901
2902 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2903
2904 if (to_journal) {
2905 offset = f2fs_lookup_journal_in_cursum(journal,
2906 NAT_JOURNAL, nid, 1);
2907 f2fs_bug_on(sbi, offset < 0);
2908 raw_ne = &nat_in_journal(journal, offset);
2909 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2910 } else {
2911 raw_ne = &nat_blk->entries[nid - start_nid];
2912 }
2913 raw_nat_from_node_info(raw_ne, &ne->ni);
2914 nat_reset_flag(ne);
2915 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2916 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2917 add_free_nid(sbi, nid, false, true);
2918 } else {
2919 spin_lock(&NM_I(sbi)->nid_list_lock);
2920 update_free_nid_bitmap(sbi, nid, false, false);
2921 spin_unlock(&NM_I(sbi)->nid_list_lock);
2922 }
2923 }
2924
2925 if (to_journal) {
2926 up_write(&curseg->journal_rwsem);
2927 } else {
2928 __update_nat_bits(sbi, start_nid, page);
2929 f2fs_put_page(page, 1);
2930 }
2931
2932 /* Allow dirty nats by node block allocation in write_begin */
2933 if (!set->entry_cnt) {
2934 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2935 kmem_cache_free(nat_entry_set_slab, set);
2936 }
2937 return 0;
2938 }
2939
2940 /*
2941 * This function is called during the checkpointing process.
2942 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2943 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2944 {
2945 struct f2fs_nm_info *nm_i = NM_I(sbi);
2946 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2947 struct f2fs_journal *journal = curseg->journal;
2948 struct nat_entry_set *setvec[SETVEC_SIZE];
2949 struct nat_entry_set *set, *tmp;
2950 unsigned int found;
2951 nid_t set_idx = 0;
2952 LIST_HEAD(sets);
2953 int err = 0;
2954
2955 /*
2956 * during unmount, let's flush nat_bits before checking
2957 * nat_cnt[DIRTY_NAT].
2958 */
2959 if (enabled_nat_bits(sbi, cpc)) {
2960 down_write(&nm_i->nat_tree_lock);
2961 remove_nats_in_journal(sbi);
2962 up_write(&nm_i->nat_tree_lock);
2963 }
2964
2965 if (!nm_i->nat_cnt[DIRTY_NAT])
2966 return 0;
2967
2968 down_write(&nm_i->nat_tree_lock);
2969
2970 /*
2971 * if there are no enough space in journal to store dirty nat
2972 * entries, remove all entries from journal and merge them
2973 * into nat entry set.
2974 */
2975 if (enabled_nat_bits(sbi, cpc) ||
2976 !__has_cursum_space(journal,
2977 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2978 remove_nats_in_journal(sbi);
2979
2980 while ((found = __gang_lookup_nat_set(nm_i,
2981 set_idx, SETVEC_SIZE, setvec))) {
2982 unsigned idx;
2983 set_idx = setvec[found - 1]->set + 1;
2984 for (idx = 0; idx < found; idx++)
2985 __adjust_nat_entry_set(setvec[idx], &sets,
2986 MAX_NAT_JENTRIES(journal));
2987 }
2988
2989 /* flush dirty nats in nat entry set */
2990 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2991 err = __flush_nat_entry_set(sbi, set, cpc);
2992 if (err)
2993 break;
2994 }
2995
2996 up_write(&nm_i->nat_tree_lock);
2997 /* Allow dirty nats by node block allocation in write_begin */
2998
2999 return err;
3000 }
3001
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3002 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3003 {
3004 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3005 struct f2fs_nm_info *nm_i = NM_I(sbi);
3006 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3007 unsigned int i;
3008 __u64 cp_ver = cur_cp_version(ckpt);
3009 block_t nat_bits_addr;
3010
3011 if (!enabled_nat_bits(sbi, NULL))
3012 return 0;
3013
3014 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3015 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3016 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3017 if (!nm_i->nat_bits)
3018 return -ENOMEM;
3019
3020 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3021 nm_i->nat_bits_blocks;
3022 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3023 struct page *page;
3024
3025 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3026 if (IS_ERR(page))
3027 return PTR_ERR(page);
3028
3029 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3030 page_address(page), F2FS_BLKSIZE);
3031 f2fs_put_page(page, 1);
3032 }
3033
3034 cp_ver |= (cur_cp_crc(ckpt) << 32);
3035 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3036 disable_nat_bits(sbi, true);
3037 return 0;
3038 }
3039
3040 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3041 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3042
3043 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3044 return 0;
3045 }
3046
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3047 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3048 {
3049 struct f2fs_nm_info *nm_i = NM_I(sbi);
3050 unsigned int i = 0;
3051 nid_t nid, last_nid;
3052
3053 if (!enabled_nat_bits(sbi, NULL))
3054 return;
3055
3056 for (i = 0; i < nm_i->nat_blocks; i++) {
3057 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3058 if (i >= nm_i->nat_blocks)
3059 break;
3060
3061 __set_bit_le(i, nm_i->nat_block_bitmap);
3062
3063 nid = i * NAT_ENTRY_PER_BLOCK;
3064 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3065
3066 spin_lock(&NM_I(sbi)->nid_list_lock);
3067 for (; nid < last_nid; nid++)
3068 update_free_nid_bitmap(sbi, nid, true, true);
3069 spin_unlock(&NM_I(sbi)->nid_list_lock);
3070 }
3071
3072 for (i = 0; i < nm_i->nat_blocks; i++) {
3073 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3074 if (i >= nm_i->nat_blocks)
3075 break;
3076
3077 __set_bit_le(i, nm_i->nat_block_bitmap);
3078 }
3079 }
3080
init_node_manager(struct f2fs_sb_info * sbi)3081 static int init_node_manager(struct f2fs_sb_info *sbi)
3082 {
3083 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3084 struct f2fs_nm_info *nm_i = NM_I(sbi);
3085 unsigned char *version_bitmap;
3086 unsigned int nat_segs;
3087 int err;
3088
3089 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3090
3091 /* segment_count_nat includes pair segment so divide to 2. */
3092 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3093 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3094 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3095
3096 /* not used nids: 0, node, meta, (and root counted as valid node) */
3097 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3098 F2FS_RESERVED_NODE_NUM;
3099 nm_i->nid_cnt[FREE_NID] = 0;
3100 nm_i->nid_cnt[PREALLOC_NID] = 0;
3101 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3102 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3103 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3104
3105 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3106 INIT_LIST_HEAD(&nm_i->free_nid_list);
3107 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3108 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3109 INIT_LIST_HEAD(&nm_i->nat_entries);
3110 spin_lock_init(&nm_i->nat_list_lock);
3111
3112 mutex_init(&nm_i->build_lock);
3113 spin_lock_init(&nm_i->nid_list_lock);
3114 init_rwsem(&nm_i->nat_tree_lock);
3115
3116 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3117 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3118 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3119 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3120 GFP_KERNEL);
3121 if (!nm_i->nat_bitmap)
3122 return -ENOMEM;
3123
3124 err = __get_nat_bitmaps(sbi);
3125 if (err)
3126 return err;
3127
3128 #ifdef CONFIG_F2FS_CHECK_FS
3129 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3130 GFP_KERNEL);
3131 if (!nm_i->nat_bitmap_mir)
3132 return -ENOMEM;
3133 #endif
3134
3135 return 0;
3136 }
3137
init_free_nid_cache(struct f2fs_sb_info * sbi)3138 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3139 {
3140 struct f2fs_nm_info *nm_i = NM_I(sbi);
3141 int i;
3142
3143 nm_i->free_nid_bitmap =
3144 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3145 nm_i->nat_blocks),
3146 GFP_KERNEL);
3147 if (!nm_i->free_nid_bitmap)
3148 return -ENOMEM;
3149
3150 for (i = 0; i < nm_i->nat_blocks; i++) {
3151 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3152 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3153 if (!nm_i->free_nid_bitmap[i])
3154 return -ENOMEM;
3155 }
3156
3157 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3158 GFP_KERNEL);
3159 if (!nm_i->nat_block_bitmap)
3160 return -ENOMEM;
3161
3162 nm_i->free_nid_count =
3163 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3164 nm_i->nat_blocks),
3165 GFP_KERNEL);
3166 if (!nm_i->free_nid_count)
3167 return -ENOMEM;
3168 return 0;
3169 }
3170
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3171 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3172 {
3173 int err;
3174
3175 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3176 GFP_KERNEL);
3177 if (!sbi->nm_info)
3178 return -ENOMEM;
3179
3180 err = init_node_manager(sbi);
3181 if (err)
3182 return err;
3183
3184 err = init_free_nid_cache(sbi);
3185 if (err)
3186 return err;
3187
3188 /* load free nid status from nat_bits table */
3189 load_free_nid_bitmap(sbi);
3190
3191 return f2fs_build_free_nids(sbi, true, true);
3192 }
3193
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3194 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3195 {
3196 struct f2fs_nm_info *nm_i = NM_I(sbi);
3197 struct free_nid *i, *next_i;
3198 struct nat_entry *natvec[NATVEC_SIZE];
3199 struct nat_entry_set *setvec[SETVEC_SIZE];
3200 nid_t nid = 0;
3201 unsigned int found;
3202
3203 if (!nm_i)
3204 return;
3205
3206 /* destroy free nid list */
3207 spin_lock(&nm_i->nid_list_lock);
3208 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3209 __remove_free_nid(sbi, i, FREE_NID);
3210 spin_unlock(&nm_i->nid_list_lock);
3211 kmem_cache_free(free_nid_slab, i);
3212 spin_lock(&nm_i->nid_list_lock);
3213 }
3214 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3215 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3216 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3217 spin_unlock(&nm_i->nid_list_lock);
3218
3219 /* destroy nat cache */
3220 down_write(&nm_i->nat_tree_lock);
3221 while ((found = __gang_lookup_nat_cache(nm_i,
3222 nid, NATVEC_SIZE, natvec))) {
3223 unsigned idx;
3224
3225 nid = nat_get_nid(natvec[found - 1]) + 1;
3226 for (idx = 0; idx < found; idx++) {
3227 spin_lock(&nm_i->nat_list_lock);
3228 list_del(&natvec[idx]->list);
3229 spin_unlock(&nm_i->nat_list_lock);
3230
3231 __del_from_nat_cache(nm_i, natvec[idx]);
3232 }
3233 }
3234 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3235
3236 /* destroy nat set cache */
3237 nid = 0;
3238 while ((found = __gang_lookup_nat_set(nm_i,
3239 nid, SETVEC_SIZE, setvec))) {
3240 unsigned idx;
3241
3242 nid = setvec[found - 1]->set + 1;
3243 for (idx = 0; idx < found; idx++) {
3244 /* entry_cnt is not zero, when cp_error was occurred */
3245 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3246 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3247 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3248 }
3249 }
3250 up_write(&nm_i->nat_tree_lock);
3251
3252 kvfree(nm_i->nat_block_bitmap);
3253 if (nm_i->free_nid_bitmap) {
3254 int i;
3255
3256 for (i = 0; i < nm_i->nat_blocks; i++)
3257 kvfree(nm_i->free_nid_bitmap[i]);
3258 kvfree(nm_i->free_nid_bitmap);
3259 }
3260 kvfree(nm_i->free_nid_count);
3261
3262 kvfree(nm_i->nat_bitmap);
3263 kvfree(nm_i->nat_bits);
3264 #ifdef CONFIG_F2FS_CHECK_FS
3265 kvfree(nm_i->nat_bitmap_mir);
3266 #endif
3267 sbi->nm_info = NULL;
3268 kfree(nm_i);
3269 }
3270
f2fs_create_node_manager_caches(void)3271 int __init f2fs_create_node_manager_caches(void)
3272 {
3273 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3274 sizeof(struct nat_entry));
3275 if (!nat_entry_slab)
3276 goto fail;
3277
3278 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3279 sizeof(struct free_nid));
3280 if (!free_nid_slab)
3281 goto destroy_nat_entry;
3282
3283 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3284 sizeof(struct nat_entry_set));
3285 if (!nat_entry_set_slab)
3286 goto destroy_free_nid;
3287
3288 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3289 sizeof(struct fsync_node_entry));
3290 if (!fsync_node_entry_slab)
3291 goto destroy_nat_entry_set;
3292 return 0;
3293
3294 destroy_nat_entry_set:
3295 kmem_cache_destroy(nat_entry_set_slab);
3296 destroy_free_nid:
3297 kmem_cache_destroy(free_nid_slab);
3298 destroy_nat_entry:
3299 kmem_cache_destroy(nat_entry_slab);
3300 fail:
3301 return -ENOMEM;
3302 }
3303
f2fs_destroy_node_manager_caches(void)3304 void f2fs_destroy_node_manager_caches(void)
3305 {
3306 kmem_cache_destroy(fsync_node_entry_slab);
3307 kmem_cache_destroy(nat_entry_set_slab);
3308 kmem_cache_destroy(free_nid_slab);
3309 kmem_cache_destroy(nat_entry_slab);
3310 }
3311