1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
4 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
5 * Copyright(c) 2008 Mike Christie
6 *
7 * Maintained at www.Open-FCoE.org
8 */
9
10 /*
11 * Fibre Channel exchange and sequence handling.
12 */
13
14 #include <linux/timer.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/export.h>
18 #include <linux/log2.h>
19
20 #include <scsi/fc/fc_fc2.h>
21
22 #include <scsi/libfc.h>
23 #include <scsi/fc_encode.h>
24
25 #include "fc_libfc.h"
26
27 u16 fc_cpu_mask; /* cpu mask for possible cpus */
28 EXPORT_SYMBOL(fc_cpu_mask);
29 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
30 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
31 static struct workqueue_struct *fc_exch_workqueue;
32
33 /*
34 * Structure and function definitions for managing Fibre Channel Exchanges
35 * and Sequences.
36 *
37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
38 *
39 * fc_exch_mgr holds the exchange state for an N port
40 *
41 * fc_exch holds state for one exchange and links to its active sequence.
42 *
43 * fc_seq holds the state for an individual sequence.
44 */
45
46 /**
47 * struct fc_exch_pool - Per cpu exchange pool
48 * @next_index: Next possible free exchange index
49 * @total_exches: Total allocated exchanges
50 * @lock: Exch pool lock
51 * @ex_list: List of exchanges
52 * @left: Cache of free slot in exch array
53 * @right: Cache of free slot in exch array
54 *
55 * This structure manages per cpu exchanges in array of exchange pointers.
56 * This array is allocated followed by struct fc_exch_pool memory for
57 * assigned range of exchanges to per cpu pool.
58 */
59 struct fc_exch_pool {
60 spinlock_t lock;
61 struct list_head ex_list;
62 u16 next_index;
63 u16 total_exches;
64
65 u16 left;
66 u16 right;
67 } ____cacheline_aligned_in_smp;
68
69 /**
70 * struct fc_exch_mgr - The Exchange Manager (EM).
71 * @class: Default class for new sequences
72 * @kref: Reference counter
73 * @min_xid: Minimum exchange ID
74 * @max_xid: Maximum exchange ID
75 * @ep_pool: Reserved exchange pointers
76 * @pool_max_index: Max exch array index in exch pool
77 * @pool: Per cpu exch pool
78 * @lport: Local exchange port
79 * @stats: Statistics structure
80 *
81 * This structure is the center for creating exchanges and sequences.
82 * It manages the allocation of exchange IDs.
83 */
84 struct fc_exch_mgr {
85 struct fc_exch_pool __percpu *pool;
86 mempool_t *ep_pool;
87 struct fc_lport *lport;
88 enum fc_class class;
89 struct kref kref;
90 u16 min_xid;
91 u16 max_xid;
92 u16 pool_max_index;
93
94 struct {
95 atomic_t no_free_exch;
96 atomic_t no_free_exch_xid;
97 atomic_t xid_not_found;
98 atomic_t xid_busy;
99 atomic_t seq_not_found;
100 atomic_t non_bls_resp;
101 } stats;
102 };
103
104 /**
105 * struct fc_exch_mgr_anchor - primary structure for list of EMs
106 * @ema_list: Exchange Manager Anchor list
107 * @mp: Exchange Manager associated with this anchor
108 * @match: Routine to determine if this anchor's EM should be used
109 *
110 * When walking the list of anchors the match routine will be called
111 * for each anchor to determine if that EM should be used. The last
112 * anchor in the list will always match to handle any exchanges not
113 * handled by other EMs. The non-default EMs would be added to the
114 * anchor list by HW that provides offloads.
115 */
116 struct fc_exch_mgr_anchor {
117 struct list_head ema_list;
118 struct fc_exch_mgr *mp;
119 bool (*match)(struct fc_frame *);
120 };
121
122 static void fc_exch_rrq(struct fc_exch *);
123 static void fc_seq_ls_acc(struct fc_frame *);
124 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
125 enum fc_els_rjt_explan);
126 static void fc_exch_els_rec(struct fc_frame *);
127 static void fc_exch_els_rrq(struct fc_frame *);
128
129 /*
130 * Internal implementation notes.
131 *
132 * The exchange manager is one by default in libfc but LLD may choose
133 * to have one per CPU. The sequence manager is one per exchange manager
134 * and currently never separated.
135 *
136 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
137 * assigned by the Sequence Initiator that shall be unique for a specific
138 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
139 * qualified by exchange ID, which one might think it would be.
140 * In practice this limits the number of open sequences and exchanges to 256
141 * per session. For most targets we could treat this limit as per exchange.
142 *
143 * The exchange and its sequence are freed when the last sequence is received.
144 * It's possible for the remote port to leave an exchange open without
145 * sending any sequences.
146 *
147 * Notes on reference counts:
148 *
149 * Exchanges are reference counted and exchange gets freed when the reference
150 * count becomes zero.
151 *
152 * Timeouts:
153 * Sequences are timed out for E_D_TOV and R_A_TOV.
154 *
155 * Sequence event handling:
156 *
157 * The following events may occur on initiator sequences:
158 *
159 * Send.
160 * For now, the whole thing is sent.
161 * Receive ACK
162 * This applies only to class F.
163 * The sequence is marked complete.
164 * ULP completion.
165 * The upper layer calls fc_exch_done() when done
166 * with exchange and sequence tuple.
167 * RX-inferred completion.
168 * When we receive the next sequence on the same exchange, we can
169 * retire the previous sequence ID. (XXX not implemented).
170 * Timeout.
171 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
172 * E_D_TOV causes abort and calls upper layer response handler
173 * with FC_EX_TIMEOUT error.
174 * Receive RJT
175 * XXX defer.
176 * Send ABTS
177 * On timeout.
178 *
179 * The following events may occur on recipient sequences:
180 *
181 * Receive
182 * Allocate sequence for first frame received.
183 * Hold during receive handler.
184 * Release when final frame received.
185 * Keep status of last N of these for the ELS RES command. XXX TBD.
186 * Receive ABTS
187 * Deallocate sequence
188 * Send RJT
189 * Deallocate
190 *
191 * For now, we neglect conditions where only part of a sequence was
192 * received or transmitted, or where out-of-order receipt is detected.
193 */
194
195 /*
196 * Locking notes:
197 *
198 * The EM code run in a per-CPU worker thread.
199 *
200 * To protect against concurrency between a worker thread code and timers,
201 * sequence allocation and deallocation must be locked.
202 * - exchange refcnt can be done atomicly without locks.
203 * - sequence allocation must be locked by exch lock.
204 * - If the EM pool lock and ex_lock must be taken at the same time, then the
205 * EM pool lock must be taken before the ex_lock.
206 */
207
208 /*
209 * opcode names for debugging.
210 */
211 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
212
213 /**
214 * fc_exch_name_lookup() - Lookup name by opcode
215 * @op: Opcode to be looked up
216 * @table: Opcode/name table
217 * @max_index: Index not to be exceeded
218 *
219 * This routine is used to determine a human-readable string identifying
220 * a R_CTL opcode.
221 */
fc_exch_name_lookup(unsigned int op,char ** table,unsigned int max_index)222 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
223 unsigned int max_index)
224 {
225 const char *name = NULL;
226
227 if (op < max_index)
228 name = table[op];
229 if (!name)
230 name = "unknown";
231 return name;
232 }
233
234 /**
235 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
236 * @op: The opcode to be looked up
237 */
fc_exch_rctl_name(unsigned int op)238 static const char *fc_exch_rctl_name(unsigned int op)
239 {
240 return fc_exch_name_lookup(op, fc_exch_rctl_names,
241 ARRAY_SIZE(fc_exch_rctl_names));
242 }
243
244 /**
245 * fc_exch_hold() - Increment an exchange's reference count
246 * @ep: Echange to be held
247 */
fc_exch_hold(struct fc_exch * ep)248 static inline void fc_exch_hold(struct fc_exch *ep)
249 {
250 atomic_inc(&ep->ex_refcnt);
251 }
252
253 /**
254 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
255 * and determine SOF and EOF.
256 * @ep: The exchange to that will use the header
257 * @fp: The frame whose header is to be modified
258 * @f_ctl: F_CTL bits that will be used for the frame header
259 *
260 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
261 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
262 */
fc_exch_setup_hdr(struct fc_exch * ep,struct fc_frame * fp,u32 f_ctl)263 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
264 u32 f_ctl)
265 {
266 struct fc_frame_header *fh = fc_frame_header_get(fp);
267 u16 fill;
268
269 fr_sof(fp) = ep->class;
270 if (ep->seq.cnt)
271 fr_sof(fp) = fc_sof_normal(ep->class);
272
273 if (f_ctl & FC_FC_END_SEQ) {
274 fr_eof(fp) = FC_EOF_T;
275 if (fc_sof_needs_ack(ep->class))
276 fr_eof(fp) = FC_EOF_N;
277 /*
278 * From F_CTL.
279 * The number of fill bytes to make the length a 4-byte
280 * multiple is the low order 2-bits of the f_ctl.
281 * The fill itself will have been cleared by the frame
282 * allocation.
283 * After this, the length will be even, as expected by
284 * the transport.
285 */
286 fill = fr_len(fp) & 3;
287 if (fill) {
288 fill = 4 - fill;
289 /* TODO, this may be a problem with fragmented skb */
290 skb_put(fp_skb(fp), fill);
291 hton24(fh->fh_f_ctl, f_ctl | fill);
292 }
293 } else {
294 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
295 fr_eof(fp) = FC_EOF_N;
296 }
297
298 /* Initialize remaining fh fields from fc_fill_fc_hdr */
299 fh->fh_ox_id = htons(ep->oxid);
300 fh->fh_rx_id = htons(ep->rxid);
301 fh->fh_seq_id = ep->seq.id;
302 fh->fh_seq_cnt = htons(ep->seq.cnt);
303 }
304
305 /**
306 * fc_exch_release() - Decrement an exchange's reference count
307 * @ep: Exchange to be released
308 *
309 * If the reference count reaches zero and the exchange is complete,
310 * it is freed.
311 */
fc_exch_release(struct fc_exch * ep)312 static void fc_exch_release(struct fc_exch *ep)
313 {
314 struct fc_exch_mgr *mp;
315
316 if (atomic_dec_and_test(&ep->ex_refcnt)) {
317 mp = ep->em;
318 if (ep->destructor)
319 ep->destructor(&ep->seq, ep->arg);
320 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
321 mempool_free(ep, mp->ep_pool);
322 }
323 }
324
325 /**
326 * fc_exch_timer_cancel() - cancel exch timer
327 * @ep: The exchange whose timer to be canceled
328 */
fc_exch_timer_cancel(struct fc_exch * ep)329 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
330 {
331 if (cancel_delayed_work(&ep->timeout_work)) {
332 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
333 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
334 }
335 }
336
337 /**
338 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
339 * the exchange lock held
340 * @ep: The exchange whose timer will start
341 * @timer_msec: The timeout period
342 *
343 * Used for upper level protocols to time out the exchange.
344 * The timer is cancelled when it fires or when the exchange completes.
345 */
fc_exch_timer_set_locked(struct fc_exch * ep,unsigned int timer_msec)346 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
347 unsigned int timer_msec)
348 {
349 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
350 return;
351
352 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
353
354 fc_exch_hold(ep); /* hold for timer */
355 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
356 msecs_to_jiffies(timer_msec))) {
357 FC_EXCH_DBG(ep, "Exchange already queued\n");
358 fc_exch_release(ep);
359 }
360 }
361
362 /**
363 * fc_exch_timer_set() - Lock the exchange and set the timer
364 * @ep: The exchange whose timer will start
365 * @timer_msec: The timeout period
366 */
fc_exch_timer_set(struct fc_exch * ep,unsigned int timer_msec)367 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
368 {
369 spin_lock_bh(&ep->ex_lock);
370 fc_exch_timer_set_locked(ep, timer_msec);
371 spin_unlock_bh(&ep->ex_lock);
372 }
373
374 /**
375 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
376 * @ep: The exchange that is complete
377 *
378 * Note: May sleep if invoked from outside a response handler.
379 */
fc_exch_done_locked(struct fc_exch * ep)380 static int fc_exch_done_locked(struct fc_exch *ep)
381 {
382 int rc = 1;
383
384 /*
385 * We must check for completion in case there are two threads
386 * tyring to complete this. But the rrq code will reuse the
387 * ep, and in that case we only clear the resp and set it as
388 * complete, so it can be reused by the timer to send the rrq.
389 */
390 if (ep->state & FC_EX_DONE)
391 return rc;
392 ep->esb_stat |= ESB_ST_COMPLETE;
393
394 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
395 ep->state |= FC_EX_DONE;
396 fc_exch_timer_cancel(ep);
397 rc = 0;
398 }
399 return rc;
400 }
401
402 static struct fc_exch fc_quarantine_exch;
403
404 /**
405 * fc_exch_ptr_get() - Return an exchange from an exchange pool
406 * @pool: Exchange Pool to get an exchange from
407 * @index: Index of the exchange within the pool
408 *
409 * Use the index to get an exchange from within an exchange pool. exches
410 * will point to an array of exchange pointers. The index will select
411 * the exchange within the array.
412 */
fc_exch_ptr_get(struct fc_exch_pool * pool,u16 index)413 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
414 u16 index)
415 {
416 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
417 return exches[index];
418 }
419
420 /**
421 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
422 * @pool: The pool to assign the exchange to
423 * @index: The index in the pool where the exchange will be assigned
424 * @ep: The exchange to assign to the pool
425 */
fc_exch_ptr_set(struct fc_exch_pool * pool,u16 index,struct fc_exch * ep)426 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
427 struct fc_exch *ep)
428 {
429 ((struct fc_exch **)(pool + 1))[index] = ep;
430 }
431
432 /**
433 * fc_exch_delete() - Delete an exchange
434 * @ep: The exchange to be deleted
435 */
fc_exch_delete(struct fc_exch * ep)436 static void fc_exch_delete(struct fc_exch *ep)
437 {
438 struct fc_exch_pool *pool;
439 u16 index;
440
441 pool = ep->pool;
442 spin_lock_bh(&pool->lock);
443 WARN_ON(pool->total_exches <= 0);
444 pool->total_exches--;
445
446 /* update cache of free slot */
447 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
448 if (!(ep->state & FC_EX_QUARANTINE)) {
449 if (pool->left == FC_XID_UNKNOWN)
450 pool->left = index;
451 else if (pool->right == FC_XID_UNKNOWN)
452 pool->right = index;
453 else
454 pool->next_index = index;
455 fc_exch_ptr_set(pool, index, NULL);
456 } else {
457 fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
458 }
459 list_del(&ep->ex_list);
460 spin_unlock_bh(&pool->lock);
461 fc_exch_release(ep); /* drop hold for exch in mp */
462 }
463
fc_seq_send_locked(struct fc_lport * lport,struct fc_seq * sp,struct fc_frame * fp)464 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
465 struct fc_frame *fp)
466 {
467 struct fc_exch *ep;
468 struct fc_frame_header *fh = fc_frame_header_get(fp);
469 int error = -ENXIO;
470 u32 f_ctl;
471 u8 fh_type = fh->fh_type;
472
473 ep = fc_seq_exch(sp);
474
475 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
476 fc_frame_free(fp);
477 goto out;
478 }
479
480 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
481
482 f_ctl = ntoh24(fh->fh_f_ctl);
483 fc_exch_setup_hdr(ep, fp, f_ctl);
484 fr_encaps(fp) = ep->encaps;
485
486 /*
487 * update sequence count if this frame is carrying
488 * multiple FC frames when sequence offload is enabled
489 * by LLD.
490 */
491 if (fr_max_payload(fp))
492 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
493 fr_max_payload(fp));
494 else
495 sp->cnt++;
496
497 /*
498 * Send the frame.
499 */
500 error = lport->tt.frame_send(lport, fp);
501
502 if (fh_type == FC_TYPE_BLS)
503 goto out;
504
505 /*
506 * Update the exchange and sequence flags,
507 * assuming all frames for the sequence have been sent.
508 * We can only be called to send once for each sequence.
509 */
510 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
511 if (f_ctl & FC_FC_SEQ_INIT)
512 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
513 out:
514 return error;
515 }
516
517 /**
518 * fc_seq_send() - Send a frame using existing sequence/exchange pair
519 * @lport: The local port that the exchange will be sent on
520 * @sp: The sequence to be sent
521 * @fp: The frame to be sent on the exchange
522 *
523 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
524 * or indirectly by calling libfc_function_template.frame_send().
525 */
fc_seq_send(struct fc_lport * lport,struct fc_seq * sp,struct fc_frame * fp)526 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
527 {
528 struct fc_exch *ep;
529 int error;
530 ep = fc_seq_exch(sp);
531 spin_lock_bh(&ep->ex_lock);
532 error = fc_seq_send_locked(lport, sp, fp);
533 spin_unlock_bh(&ep->ex_lock);
534 return error;
535 }
536 EXPORT_SYMBOL(fc_seq_send);
537
538 /**
539 * fc_seq_alloc() - Allocate a sequence for a given exchange
540 * @ep: The exchange to allocate a new sequence for
541 * @seq_id: The sequence ID to be used
542 *
543 * We don't support multiple originated sequences on the same exchange.
544 * By implication, any previously originated sequence on this exchange
545 * is complete, and we reallocate the same sequence.
546 */
fc_seq_alloc(struct fc_exch * ep,u8 seq_id)547 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
548 {
549 struct fc_seq *sp;
550
551 sp = &ep->seq;
552 sp->ssb_stat = 0;
553 sp->cnt = 0;
554 sp->id = seq_id;
555 return sp;
556 }
557
558 /**
559 * fc_seq_start_next_locked() - Allocate a new sequence on the same
560 * exchange as the supplied sequence
561 * @sp: The sequence/exchange to get a new sequence for
562 */
fc_seq_start_next_locked(struct fc_seq * sp)563 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
564 {
565 struct fc_exch *ep = fc_seq_exch(sp);
566
567 sp = fc_seq_alloc(ep, ep->seq_id++);
568 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
569 ep->f_ctl, sp->id);
570 return sp;
571 }
572
573 /**
574 * fc_seq_start_next() - Lock the exchange and get a new sequence
575 * for a given sequence/exchange pair
576 * @sp: The sequence/exchange to get a new exchange for
577 */
fc_seq_start_next(struct fc_seq * sp)578 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
579 {
580 struct fc_exch *ep = fc_seq_exch(sp);
581
582 spin_lock_bh(&ep->ex_lock);
583 sp = fc_seq_start_next_locked(sp);
584 spin_unlock_bh(&ep->ex_lock);
585
586 return sp;
587 }
588 EXPORT_SYMBOL(fc_seq_start_next);
589
590 /*
591 * Set the response handler for the exchange associated with a sequence.
592 *
593 * Note: May sleep if invoked from outside a response handler.
594 */
fc_seq_set_resp(struct fc_seq * sp,void (* resp)(struct fc_seq *,struct fc_frame *,void *),void * arg)595 void fc_seq_set_resp(struct fc_seq *sp,
596 void (*resp)(struct fc_seq *, struct fc_frame *, void *),
597 void *arg)
598 {
599 struct fc_exch *ep = fc_seq_exch(sp);
600 DEFINE_WAIT(wait);
601
602 spin_lock_bh(&ep->ex_lock);
603 while (ep->resp_active && ep->resp_task != current) {
604 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
605 spin_unlock_bh(&ep->ex_lock);
606
607 schedule();
608
609 spin_lock_bh(&ep->ex_lock);
610 }
611 finish_wait(&ep->resp_wq, &wait);
612 ep->resp = resp;
613 ep->arg = arg;
614 spin_unlock_bh(&ep->ex_lock);
615 }
616 EXPORT_SYMBOL(fc_seq_set_resp);
617
618 /**
619 * fc_exch_abort_locked() - Abort an exchange
620 * @ep: The exchange to be aborted
621 * @timer_msec: The period of time to wait before aborting
622 *
623 * Abort an exchange and sequence. Generally called because of a
624 * exchange timeout or an abort from the upper layer.
625 *
626 * A timer_msec can be specified for abort timeout, if non-zero
627 * timer_msec value is specified then exchange resp handler
628 * will be called with timeout error if no response to abort.
629 *
630 * Locking notes: Called with exch lock held
631 *
632 * Return value: 0 on success else error code
633 */
fc_exch_abort_locked(struct fc_exch * ep,unsigned int timer_msec)634 static int fc_exch_abort_locked(struct fc_exch *ep,
635 unsigned int timer_msec)
636 {
637 struct fc_seq *sp;
638 struct fc_frame *fp;
639 int error;
640
641 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
642 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
643 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
644 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
645 ep->esb_stat, ep->state);
646 return -ENXIO;
647 }
648
649 /*
650 * Send the abort on a new sequence if possible.
651 */
652 sp = fc_seq_start_next_locked(&ep->seq);
653 if (!sp)
654 return -ENOMEM;
655
656 if (timer_msec)
657 fc_exch_timer_set_locked(ep, timer_msec);
658
659 if (ep->sid) {
660 /*
661 * Send an abort for the sequence that timed out.
662 */
663 fp = fc_frame_alloc(ep->lp, 0);
664 if (fp) {
665 ep->esb_stat |= ESB_ST_SEQ_INIT;
666 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
667 FC_TYPE_BLS, FC_FC_END_SEQ |
668 FC_FC_SEQ_INIT, 0);
669 error = fc_seq_send_locked(ep->lp, sp, fp);
670 } else {
671 error = -ENOBUFS;
672 }
673 } else {
674 /*
675 * If not logged into the fabric, don't send ABTS but leave
676 * sequence active until next timeout.
677 */
678 error = 0;
679 }
680 ep->esb_stat |= ESB_ST_ABNORMAL;
681 return error;
682 }
683
684 /**
685 * fc_seq_exch_abort() - Abort an exchange and sequence
686 * @req_sp: The sequence to be aborted
687 * @timer_msec: The period of time to wait before aborting
688 *
689 * Generally called because of a timeout or an abort from the upper layer.
690 *
691 * Return value: 0 on success else error code
692 */
fc_seq_exch_abort(const struct fc_seq * req_sp,unsigned int timer_msec)693 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
694 {
695 struct fc_exch *ep;
696 int error;
697
698 ep = fc_seq_exch(req_sp);
699 spin_lock_bh(&ep->ex_lock);
700 error = fc_exch_abort_locked(ep, timer_msec);
701 spin_unlock_bh(&ep->ex_lock);
702 return error;
703 }
704
705 /**
706 * fc_invoke_resp() - invoke ep->resp()
707 * @ep: The exchange to be operated on
708 * @fp: The frame pointer to pass through to ->resp()
709 * @sp: The sequence pointer to pass through to ->resp()
710 *
711 * Notes:
712 * It is assumed that after initialization finished (this means the
713 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
714 * modified only via fc_seq_set_resp(). This guarantees that none of these
715 * two variables changes if ep->resp_active > 0.
716 *
717 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
718 * this function is invoked, the first spin_lock_bh() call in this function
719 * will wait until fc_seq_set_resp() has finished modifying these variables.
720 *
721 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
722 * ep->resp() won't be invoked after fc_exch_done() has returned.
723 *
724 * The response handler itself may invoke fc_exch_done(), which will clear the
725 * ep->resp pointer.
726 *
727 * Return value:
728 * Returns true if and only if ep->resp has been invoked.
729 */
fc_invoke_resp(struct fc_exch * ep,struct fc_seq * sp,struct fc_frame * fp)730 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
731 struct fc_frame *fp)
732 {
733 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
734 void *arg;
735 bool res = false;
736
737 spin_lock_bh(&ep->ex_lock);
738 ep->resp_active++;
739 if (ep->resp_task != current)
740 ep->resp_task = !ep->resp_task ? current : NULL;
741 resp = ep->resp;
742 arg = ep->arg;
743 spin_unlock_bh(&ep->ex_lock);
744
745 if (resp) {
746 resp(sp, fp, arg);
747 res = true;
748 }
749
750 spin_lock_bh(&ep->ex_lock);
751 if (--ep->resp_active == 0)
752 ep->resp_task = NULL;
753 spin_unlock_bh(&ep->ex_lock);
754
755 if (ep->resp_active == 0)
756 wake_up(&ep->resp_wq);
757
758 return res;
759 }
760
761 /**
762 * fc_exch_timeout() - Handle exchange timer expiration
763 * @work: The work_struct identifying the exchange that timed out
764 */
fc_exch_timeout(struct work_struct * work)765 static void fc_exch_timeout(struct work_struct *work)
766 {
767 struct fc_exch *ep = container_of(work, struct fc_exch,
768 timeout_work.work);
769 struct fc_seq *sp = &ep->seq;
770 u32 e_stat;
771 int rc = 1;
772
773 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
774
775 spin_lock_bh(&ep->ex_lock);
776 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
777 goto unlock;
778
779 e_stat = ep->esb_stat;
780 if (e_stat & ESB_ST_COMPLETE) {
781 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
782 spin_unlock_bh(&ep->ex_lock);
783 if (e_stat & ESB_ST_REC_QUAL)
784 fc_exch_rrq(ep);
785 goto done;
786 } else {
787 if (e_stat & ESB_ST_ABNORMAL)
788 rc = fc_exch_done_locked(ep);
789 spin_unlock_bh(&ep->ex_lock);
790 if (!rc)
791 fc_exch_delete(ep);
792 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
793 fc_seq_set_resp(sp, NULL, ep->arg);
794 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
795 goto done;
796 }
797 unlock:
798 spin_unlock_bh(&ep->ex_lock);
799 done:
800 /*
801 * This release matches the hold taken when the timer was set.
802 */
803 fc_exch_release(ep);
804 }
805
806 /**
807 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
808 * @lport: The local port that the exchange is for
809 * @mp: The exchange manager that will allocate the exchange
810 *
811 * Returns pointer to allocated fc_exch with exch lock held.
812 */
fc_exch_em_alloc(struct fc_lport * lport,struct fc_exch_mgr * mp)813 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
814 struct fc_exch_mgr *mp)
815 {
816 struct fc_exch *ep;
817 unsigned int cpu;
818 u16 index;
819 struct fc_exch_pool *pool;
820
821 /* allocate memory for exchange */
822 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
823 if (!ep) {
824 atomic_inc(&mp->stats.no_free_exch);
825 goto out;
826 }
827 memset(ep, 0, sizeof(*ep));
828
829 cpu = get_cpu();
830 pool = per_cpu_ptr(mp->pool, cpu);
831 spin_lock_bh(&pool->lock);
832 put_cpu();
833
834 /* peek cache of free slot */
835 if (pool->left != FC_XID_UNKNOWN) {
836 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
837 index = pool->left;
838 pool->left = FC_XID_UNKNOWN;
839 goto hit;
840 }
841 }
842 if (pool->right != FC_XID_UNKNOWN) {
843 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
844 index = pool->right;
845 pool->right = FC_XID_UNKNOWN;
846 goto hit;
847 }
848 }
849
850 index = pool->next_index;
851 /* allocate new exch from pool */
852 while (fc_exch_ptr_get(pool, index)) {
853 index = index == mp->pool_max_index ? 0 : index + 1;
854 if (index == pool->next_index)
855 goto err;
856 }
857 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
858 hit:
859 fc_exch_hold(ep); /* hold for exch in mp */
860 spin_lock_init(&ep->ex_lock);
861 /*
862 * Hold exch lock for caller to prevent fc_exch_reset()
863 * from releasing exch while fc_exch_alloc() caller is
864 * still working on exch.
865 */
866 spin_lock_bh(&ep->ex_lock);
867
868 fc_exch_ptr_set(pool, index, ep);
869 list_add_tail(&ep->ex_list, &pool->ex_list);
870 fc_seq_alloc(ep, ep->seq_id++);
871 pool->total_exches++;
872 spin_unlock_bh(&pool->lock);
873
874 /*
875 * update exchange
876 */
877 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
878 ep->em = mp;
879 ep->pool = pool;
880 ep->lp = lport;
881 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
882 ep->rxid = FC_XID_UNKNOWN;
883 ep->class = mp->class;
884 ep->resp_active = 0;
885 init_waitqueue_head(&ep->resp_wq);
886 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
887 out:
888 return ep;
889 err:
890 spin_unlock_bh(&pool->lock);
891 atomic_inc(&mp->stats.no_free_exch_xid);
892 mempool_free(ep, mp->ep_pool);
893 return NULL;
894 }
895
896 /**
897 * fc_exch_alloc() - Allocate an exchange from an EM on a
898 * local port's list of EMs.
899 * @lport: The local port that will own the exchange
900 * @fp: The FC frame that the exchange will be for
901 *
902 * This function walks the list of exchange manager(EM)
903 * anchors to select an EM for a new exchange allocation. The
904 * EM is selected when a NULL match function pointer is encountered
905 * or when a call to a match function returns true.
906 */
fc_exch_alloc(struct fc_lport * lport,struct fc_frame * fp)907 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
908 struct fc_frame *fp)
909 {
910 struct fc_exch_mgr_anchor *ema;
911 struct fc_exch *ep;
912
913 list_for_each_entry(ema, &lport->ema_list, ema_list) {
914 if (!ema->match || ema->match(fp)) {
915 ep = fc_exch_em_alloc(lport, ema->mp);
916 if (ep)
917 return ep;
918 }
919 }
920 return NULL;
921 }
922
923 /**
924 * fc_exch_find() - Lookup and hold an exchange
925 * @mp: The exchange manager to lookup the exchange from
926 * @xid: The XID of the exchange to look up
927 */
fc_exch_find(struct fc_exch_mgr * mp,u16 xid)928 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
929 {
930 struct fc_lport *lport = mp->lport;
931 struct fc_exch_pool *pool;
932 struct fc_exch *ep = NULL;
933 u16 cpu = xid & fc_cpu_mask;
934
935 if (xid == FC_XID_UNKNOWN)
936 return NULL;
937
938 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
939 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
940 lport->host->host_no, lport->port_id, xid, cpu);
941 return NULL;
942 }
943
944 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
945 pool = per_cpu_ptr(mp->pool, cpu);
946 spin_lock_bh(&pool->lock);
947 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
948 if (ep == &fc_quarantine_exch) {
949 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
950 ep = NULL;
951 }
952 if (ep) {
953 WARN_ON(ep->xid != xid);
954 fc_exch_hold(ep);
955 }
956 spin_unlock_bh(&pool->lock);
957 }
958 return ep;
959 }
960
961
962 /**
963 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
964 * the memory allocated for the related objects may be freed.
965 * @sp: The sequence that has completed
966 *
967 * Note: May sleep if invoked from outside a response handler.
968 */
fc_exch_done(struct fc_seq * sp)969 void fc_exch_done(struct fc_seq *sp)
970 {
971 struct fc_exch *ep = fc_seq_exch(sp);
972 int rc;
973
974 spin_lock_bh(&ep->ex_lock);
975 rc = fc_exch_done_locked(ep);
976 spin_unlock_bh(&ep->ex_lock);
977
978 fc_seq_set_resp(sp, NULL, ep->arg);
979 if (!rc)
980 fc_exch_delete(ep);
981 }
982 EXPORT_SYMBOL(fc_exch_done);
983
984 /**
985 * fc_exch_resp() - Allocate a new exchange for a response frame
986 * @lport: The local port that the exchange was for
987 * @mp: The exchange manager to allocate the exchange from
988 * @fp: The response frame
989 *
990 * Sets the responder ID in the frame header.
991 */
fc_exch_resp(struct fc_lport * lport,struct fc_exch_mgr * mp,struct fc_frame * fp)992 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
993 struct fc_exch_mgr *mp,
994 struct fc_frame *fp)
995 {
996 struct fc_exch *ep;
997 struct fc_frame_header *fh;
998
999 ep = fc_exch_alloc(lport, fp);
1000 if (ep) {
1001 ep->class = fc_frame_class(fp);
1002
1003 /*
1004 * Set EX_CTX indicating we're responding on this exchange.
1005 */
1006 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
1007 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
1008 fh = fc_frame_header_get(fp);
1009 ep->sid = ntoh24(fh->fh_d_id);
1010 ep->did = ntoh24(fh->fh_s_id);
1011 ep->oid = ep->did;
1012
1013 /*
1014 * Allocated exchange has placed the XID in the
1015 * originator field. Move it to the responder field,
1016 * and set the originator XID from the frame.
1017 */
1018 ep->rxid = ep->xid;
1019 ep->oxid = ntohs(fh->fh_ox_id);
1020 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023
1024 fc_exch_hold(ep); /* hold for caller */
1025 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
1026 }
1027 return ep;
1028 }
1029
1030 /**
1031 * fc_seq_lookup_recip() - Find a sequence where the other end
1032 * originated the sequence
1033 * @lport: The local port that the frame was sent to
1034 * @mp: The Exchange Manager to lookup the exchange from
1035 * @fp: The frame associated with the sequence we're looking for
1036 *
1037 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038 * on the ep that should be released by the caller.
1039 */
fc_seq_lookup_recip(struct fc_lport * lport,struct fc_exch_mgr * mp,struct fc_frame * fp)1040 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041 struct fc_exch_mgr *mp,
1042 struct fc_frame *fp)
1043 {
1044 struct fc_frame_header *fh = fc_frame_header_get(fp);
1045 struct fc_exch *ep = NULL;
1046 struct fc_seq *sp = NULL;
1047 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048 u32 f_ctl;
1049 u16 xid;
1050
1051 f_ctl = ntoh24(fh->fh_f_ctl);
1052 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053
1054 /*
1055 * Lookup or create the exchange if we will be creating the sequence.
1056 */
1057 if (f_ctl & FC_FC_EX_CTX) {
1058 xid = ntohs(fh->fh_ox_id); /* we originated exch */
1059 ep = fc_exch_find(mp, xid);
1060 if (!ep) {
1061 atomic_inc(&mp->stats.xid_not_found);
1062 reject = FC_RJT_OX_ID;
1063 goto out;
1064 }
1065 if (ep->rxid == FC_XID_UNKNOWN)
1066 ep->rxid = ntohs(fh->fh_rx_id);
1067 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068 reject = FC_RJT_OX_ID;
1069 goto rel;
1070 }
1071 } else {
1072 xid = ntohs(fh->fh_rx_id); /* we are the responder */
1073
1074 /*
1075 * Special case for MDS issuing an ELS TEST with a
1076 * bad rxid of 0.
1077 * XXX take this out once we do the proper reject.
1078 */
1079 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080 fc_frame_payload_op(fp) == ELS_TEST) {
1081 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082 xid = FC_XID_UNKNOWN;
1083 }
1084
1085 /*
1086 * new sequence - find the exchange
1087 */
1088 ep = fc_exch_find(mp, xid);
1089 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090 if (ep) {
1091 atomic_inc(&mp->stats.xid_busy);
1092 reject = FC_RJT_RX_ID;
1093 goto rel;
1094 }
1095 ep = fc_exch_resp(lport, mp, fp);
1096 if (!ep) {
1097 reject = FC_RJT_EXCH_EST; /* XXX */
1098 goto out;
1099 }
1100 xid = ep->xid; /* get our XID */
1101 } else if (!ep) {
1102 atomic_inc(&mp->stats.xid_not_found);
1103 reject = FC_RJT_RX_ID; /* XID not found */
1104 goto out;
1105 }
1106 }
1107
1108 spin_lock_bh(&ep->ex_lock);
1109 /*
1110 * At this point, we have the exchange held.
1111 * Find or create the sequence.
1112 */
1113 if (fc_sof_is_init(fr_sof(fp))) {
1114 sp = &ep->seq;
1115 sp->ssb_stat |= SSB_ST_RESP;
1116 sp->id = fh->fh_seq_id;
1117 } else {
1118 sp = &ep->seq;
1119 if (sp->id != fh->fh_seq_id) {
1120 atomic_inc(&mp->stats.seq_not_found);
1121 if (f_ctl & FC_FC_END_SEQ) {
1122 /*
1123 * Update sequence_id based on incoming last
1124 * frame of sequence exchange. This is needed
1125 * for FC target where DDP has been used
1126 * on target where, stack is indicated only
1127 * about last frame's (payload _header) header.
1128 * Whereas "seq_id" which is part of
1129 * frame_header is allocated by initiator
1130 * which is totally different from "seq_id"
1131 * allocated when XFER_RDY was sent by target.
1132 * To avoid false -ve which results into not
1133 * sending RSP, hence write request on other
1134 * end never finishes.
1135 */
1136 sp->ssb_stat |= SSB_ST_RESP;
1137 sp->id = fh->fh_seq_id;
1138 } else {
1139 spin_unlock_bh(&ep->ex_lock);
1140
1141 /* sequence/exch should exist */
1142 reject = FC_RJT_SEQ_ID;
1143 goto rel;
1144 }
1145 }
1146 }
1147 WARN_ON(ep != fc_seq_exch(sp));
1148
1149 if (f_ctl & FC_FC_SEQ_INIT)
1150 ep->esb_stat |= ESB_ST_SEQ_INIT;
1151 spin_unlock_bh(&ep->ex_lock);
1152
1153 fr_seq(fp) = sp;
1154 out:
1155 return reject;
1156 rel:
1157 fc_exch_done(&ep->seq);
1158 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1159 return reject;
1160 }
1161
1162 /**
1163 * fc_seq_lookup_orig() - Find a sequence where this end
1164 * originated the sequence
1165 * @mp: The Exchange Manager to lookup the exchange from
1166 * @fp: The frame associated with the sequence we're looking for
1167 *
1168 * Does not hold the sequence for the caller.
1169 */
fc_seq_lookup_orig(struct fc_exch_mgr * mp,struct fc_frame * fp)1170 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171 struct fc_frame *fp)
1172 {
1173 struct fc_frame_header *fh = fc_frame_header_get(fp);
1174 struct fc_exch *ep;
1175 struct fc_seq *sp = NULL;
1176 u32 f_ctl;
1177 u16 xid;
1178
1179 f_ctl = ntoh24(fh->fh_f_ctl);
1180 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182 ep = fc_exch_find(mp, xid);
1183 if (!ep)
1184 return NULL;
1185 if (ep->seq.id == fh->fh_seq_id) {
1186 /*
1187 * Save the RX_ID if we didn't previously know it.
1188 */
1189 sp = &ep->seq;
1190 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191 ep->rxid == FC_XID_UNKNOWN) {
1192 ep->rxid = ntohs(fh->fh_rx_id);
1193 }
1194 }
1195 fc_exch_release(ep);
1196 return sp;
1197 }
1198
1199 /**
1200 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201 * @ep: The exchange to set the addresses for
1202 * @orig_id: The originator's ID
1203 * @resp_id: The responder's ID
1204 *
1205 * Note this must be done before the first sequence of the exchange is sent.
1206 */
fc_exch_set_addr(struct fc_exch * ep,u32 orig_id,u32 resp_id)1207 static void fc_exch_set_addr(struct fc_exch *ep,
1208 u32 orig_id, u32 resp_id)
1209 {
1210 ep->oid = orig_id;
1211 if (ep->esb_stat & ESB_ST_RESP) {
1212 ep->sid = resp_id;
1213 ep->did = orig_id;
1214 } else {
1215 ep->sid = orig_id;
1216 ep->did = resp_id;
1217 }
1218 }
1219
1220 /**
1221 * fc_seq_els_rsp_send() - Send an ELS response using information from
1222 * the existing sequence/exchange.
1223 * @fp: The received frame
1224 * @els_cmd: The ELS command to be sent
1225 * @els_data: The ELS data to be sent
1226 *
1227 * The received frame is not freed.
1228 */
fc_seq_els_rsp_send(struct fc_frame * fp,enum fc_els_cmd els_cmd,struct fc_seq_els_data * els_data)1229 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230 struct fc_seq_els_data *els_data)
1231 {
1232 switch (els_cmd) {
1233 case ELS_LS_RJT:
1234 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235 break;
1236 case ELS_LS_ACC:
1237 fc_seq_ls_acc(fp);
1238 break;
1239 case ELS_RRQ:
1240 fc_exch_els_rrq(fp);
1241 break;
1242 case ELS_REC:
1243 fc_exch_els_rec(fp);
1244 break;
1245 default:
1246 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247 }
1248 }
1249 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250
1251 /**
1252 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253 * @sp: The sequence that is to be sent
1254 * @fp: The frame that will be sent on the sequence
1255 * @rctl: The R_CTL information to be sent
1256 * @fh_type: The frame header type
1257 */
fc_seq_send_last(struct fc_seq * sp,struct fc_frame * fp,enum fc_rctl rctl,enum fc_fh_type fh_type)1258 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259 enum fc_rctl rctl, enum fc_fh_type fh_type)
1260 {
1261 u32 f_ctl;
1262 struct fc_exch *ep = fc_seq_exch(sp);
1263
1264 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265 f_ctl |= ep->f_ctl;
1266 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267 fc_seq_send_locked(ep->lp, sp, fp);
1268 }
1269
1270 /**
1271 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272 * @sp: The sequence to send the ACK on
1273 * @rx_fp: The received frame that is being acknoledged
1274 *
1275 * Send ACK_1 (or equiv.) indicating we received something.
1276 */
fc_seq_send_ack(struct fc_seq * sp,const struct fc_frame * rx_fp)1277 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278 {
1279 struct fc_frame *fp;
1280 struct fc_frame_header *rx_fh;
1281 struct fc_frame_header *fh;
1282 struct fc_exch *ep = fc_seq_exch(sp);
1283 struct fc_lport *lport = ep->lp;
1284 unsigned int f_ctl;
1285
1286 /*
1287 * Don't send ACKs for class 3.
1288 */
1289 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290 fp = fc_frame_alloc(lport, 0);
1291 if (!fp) {
1292 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293 return;
1294 }
1295
1296 fh = fc_frame_header_get(fp);
1297 fh->fh_r_ctl = FC_RCTL_ACK_1;
1298 fh->fh_type = FC_TYPE_BLS;
1299
1300 /*
1301 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304 * Last ACK uses bits 7-6 (continue sequence),
1305 * bits 5-4 are meaningful (what kind of ACK to use).
1306 */
1307 rx_fh = fc_frame_header_get(rx_fp);
1308 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314 hton24(fh->fh_f_ctl, f_ctl);
1315
1316 fc_exch_setup_hdr(ep, fp, f_ctl);
1317 fh->fh_seq_id = rx_fh->fh_seq_id;
1318 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319 fh->fh_parm_offset = htonl(1); /* ack single frame */
1320
1321 fr_sof(fp) = fr_sof(rx_fp);
1322 if (f_ctl & FC_FC_END_SEQ)
1323 fr_eof(fp) = FC_EOF_T;
1324 else
1325 fr_eof(fp) = FC_EOF_N;
1326
1327 lport->tt.frame_send(lport, fp);
1328 }
1329 }
1330
1331 /**
1332 * fc_exch_send_ba_rjt() - Send BLS Reject
1333 * @rx_fp: The frame being rejected
1334 * @reason: The reason the frame is being rejected
1335 * @explan: The explanation for the rejection
1336 *
1337 * This is for rejecting BA_ABTS only.
1338 */
fc_exch_send_ba_rjt(struct fc_frame * rx_fp,enum fc_ba_rjt_reason reason,enum fc_ba_rjt_explan explan)1339 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340 enum fc_ba_rjt_reason reason,
1341 enum fc_ba_rjt_explan explan)
1342 {
1343 struct fc_frame *fp;
1344 struct fc_frame_header *rx_fh;
1345 struct fc_frame_header *fh;
1346 struct fc_ba_rjt *rp;
1347 struct fc_seq *sp;
1348 struct fc_lport *lport;
1349 unsigned int f_ctl;
1350
1351 lport = fr_dev(rx_fp);
1352 sp = fr_seq(rx_fp);
1353 fp = fc_frame_alloc(lport, sizeof(*rp));
1354 if (!fp) {
1355 FC_EXCH_DBG(fc_seq_exch(sp),
1356 "Drop BA_RJT request, out of memory\n");
1357 return;
1358 }
1359 fh = fc_frame_header_get(fp);
1360 rx_fh = fc_frame_header_get(rx_fp);
1361
1362 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363
1364 rp = fc_frame_payload_get(fp, sizeof(*rp));
1365 rp->br_reason = reason;
1366 rp->br_explan = explan;
1367
1368 /*
1369 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370 */
1371 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373 fh->fh_ox_id = rx_fh->fh_ox_id;
1374 fh->fh_rx_id = rx_fh->fh_rx_id;
1375 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377 fh->fh_type = FC_TYPE_BLS;
1378
1379 /*
1380 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383 * Last ACK uses bits 7-6 (continue sequence),
1384 * bits 5-4 are meaningful (what kind of ACK to use).
1385 * Always set LAST_SEQ, END_SEQ.
1386 */
1387 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393 f_ctl &= ~FC_FC_FIRST_SEQ;
1394 hton24(fh->fh_f_ctl, f_ctl);
1395
1396 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397 fr_eof(fp) = FC_EOF_T;
1398 if (fc_sof_needs_ack(fr_sof(fp)))
1399 fr_eof(fp) = FC_EOF_N;
1400
1401 lport->tt.frame_send(lport, fp);
1402 }
1403
1404 /**
1405 * fc_exch_recv_abts() - Handle an incoming ABTS
1406 * @ep: The exchange the abort was on
1407 * @rx_fp: The ABTS frame
1408 *
1409 * This would be for target mode usually, but could be due to lost
1410 * FCP transfer ready, confirm or RRQ. We always handle this as an
1411 * exchange abort, ignoring the parameter.
1412 */
fc_exch_recv_abts(struct fc_exch * ep,struct fc_frame * rx_fp)1413 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414 {
1415 struct fc_frame *fp;
1416 struct fc_ba_acc *ap;
1417 struct fc_frame_header *fh;
1418 struct fc_seq *sp;
1419
1420 if (!ep)
1421 goto reject;
1422
1423 FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425 if (!fp) {
1426 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427 goto free;
1428 }
1429
1430 spin_lock_bh(&ep->ex_lock);
1431 if (ep->esb_stat & ESB_ST_COMPLETE) {
1432 spin_unlock_bh(&ep->ex_lock);
1433 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434 fc_frame_free(fp);
1435 goto reject;
1436 }
1437 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438 ep->esb_stat |= ESB_ST_REC_QUAL;
1439 fc_exch_hold(ep); /* hold for REC_QUAL */
1440 }
1441 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442 fh = fc_frame_header_get(fp);
1443 ap = fc_frame_payload_get(fp, sizeof(*ap));
1444 memset(ap, 0, sizeof(*ap));
1445 sp = &ep->seq;
1446 ap->ba_high_seq_cnt = htons(0xffff);
1447 if (sp->ssb_stat & SSB_ST_RESP) {
1448 ap->ba_seq_id = sp->id;
1449 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451 ap->ba_low_seq_cnt = htons(sp->cnt);
1452 }
1453 sp = fc_seq_start_next_locked(sp);
1454 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455 ep->esb_stat |= ESB_ST_ABNORMAL;
1456 spin_unlock_bh(&ep->ex_lock);
1457
1458 free:
1459 fc_frame_free(rx_fp);
1460 return;
1461
1462 reject:
1463 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464 goto free;
1465 }
1466
1467 /**
1468 * fc_seq_assign() - Assign exchange and sequence for incoming request
1469 * @lport: The local port that received the request
1470 * @fp: The request frame
1471 *
1472 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473 * A reference will be held on the exchange/sequence for the caller, which
1474 * must call fc_seq_release().
1475 */
fc_seq_assign(struct fc_lport * lport,struct fc_frame * fp)1476 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477 {
1478 struct fc_exch_mgr_anchor *ema;
1479
1480 WARN_ON(lport != fr_dev(fp));
1481 WARN_ON(fr_seq(fp));
1482 fr_seq(fp) = NULL;
1483
1484 list_for_each_entry(ema, &lport->ema_list, ema_list)
1485 if ((!ema->match || ema->match(fp)) &&
1486 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487 break;
1488 return fr_seq(fp);
1489 }
1490 EXPORT_SYMBOL(fc_seq_assign);
1491
1492 /**
1493 * fc_seq_release() - Release the hold
1494 * @sp: The sequence.
1495 */
fc_seq_release(struct fc_seq * sp)1496 void fc_seq_release(struct fc_seq *sp)
1497 {
1498 fc_exch_release(fc_seq_exch(sp));
1499 }
1500 EXPORT_SYMBOL(fc_seq_release);
1501
1502 /**
1503 * fc_exch_recv_req() - Handler for an incoming request
1504 * @lport: The local port that received the request
1505 * @mp: The EM that the exchange is on
1506 * @fp: The request frame
1507 *
1508 * This is used when the other end is originating the exchange
1509 * and the sequence.
1510 */
fc_exch_recv_req(struct fc_lport * lport,struct fc_exch_mgr * mp,struct fc_frame * fp)1511 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512 struct fc_frame *fp)
1513 {
1514 struct fc_frame_header *fh = fc_frame_header_get(fp);
1515 struct fc_seq *sp = NULL;
1516 struct fc_exch *ep = NULL;
1517 enum fc_pf_rjt_reason reject;
1518
1519 /* We can have the wrong fc_lport at this point with NPIV, which is a
1520 * problem now that we know a new exchange needs to be allocated
1521 */
1522 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523 if (!lport) {
1524 fc_frame_free(fp);
1525 return;
1526 }
1527 fr_dev(fp) = lport;
1528
1529 BUG_ON(fr_seq(fp)); /* XXX remove later */
1530
1531 /*
1532 * If the RX_ID is 0xffff, don't allocate an exchange.
1533 * The upper-level protocol may request one later, if needed.
1534 */
1535 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536 return fc_lport_recv(lport, fp);
1537
1538 reject = fc_seq_lookup_recip(lport, mp, fp);
1539 if (reject == FC_RJT_NONE) {
1540 sp = fr_seq(fp); /* sequence will be held */
1541 ep = fc_seq_exch(sp);
1542 fc_seq_send_ack(sp, fp);
1543 ep->encaps = fr_encaps(fp);
1544
1545 /*
1546 * Call the receive function.
1547 *
1548 * The receive function may allocate a new sequence
1549 * over the old one, so we shouldn't change the
1550 * sequence after this.
1551 *
1552 * The frame will be freed by the receive function.
1553 * If new exch resp handler is valid then call that
1554 * first.
1555 */
1556 if (!fc_invoke_resp(ep, sp, fp))
1557 fc_lport_recv(lport, fp);
1558 fc_exch_release(ep); /* release from lookup */
1559 } else {
1560 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561 reject);
1562 fc_frame_free(fp);
1563 }
1564 }
1565
1566 /**
1567 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568 * end is the originator of the sequence that is a
1569 * response to our initial exchange
1570 * @mp: The EM that the exchange is on
1571 * @fp: The response frame
1572 */
fc_exch_recv_seq_resp(struct fc_exch_mgr * mp,struct fc_frame * fp)1573 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574 {
1575 struct fc_frame_header *fh = fc_frame_header_get(fp);
1576 struct fc_seq *sp;
1577 struct fc_exch *ep;
1578 enum fc_sof sof;
1579 u32 f_ctl;
1580 int rc;
1581
1582 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583 if (!ep) {
1584 atomic_inc(&mp->stats.xid_not_found);
1585 goto out;
1586 }
1587 if (ep->esb_stat & ESB_ST_COMPLETE) {
1588 atomic_inc(&mp->stats.xid_not_found);
1589 goto rel;
1590 }
1591 if (ep->rxid == FC_XID_UNKNOWN)
1592 ep->rxid = ntohs(fh->fh_rx_id);
1593 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594 atomic_inc(&mp->stats.xid_not_found);
1595 goto rel;
1596 }
1597 if (ep->did != ntoh24(fh->fh_s_id) &&
1598 ep->did != FC_FID_FLOGI) {
1599 atomic_inc(&mp->stats.xid_not_found);
1600 goto rel;
1601 }
1602 sof = fr_sof(fp);
1603 sp = &ep->seq;
1604 if (fc_sof_is_init(sof)) {
1605 sp->ssb_stat |= SSB_ST_RESP;
1606 sp->id = fh->fh_seq_id;
1607 }
1608
1609 f_ctl = ntoh24(fh->fh_f_ctl);
1610 fr_seq(fp) = sp;
1611
1612 spin_lock_bh(&ep->ex_lock);
1613 if (f_ctl & FC_FC_SEQ_INIT)
1614 ep->esb_stat |= ESB_ST_SEQ_INIT;
1615 spin_unlock_bh(&ep->ex_lock);
1616
1617 if (fc_sof_needs_ack(sof))
1618 fc_seq_send_ack(sp, fp);
1619
1620 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623 spin_lock_bh(&ep->ex_lock);
1624 rc = fc_exch_done_locked(ep);
1625 WARN_ON(fc_seq_exch(sp) != ep);
1626 spin_unlock_bh(&ep->ex_lock);
1627 if (!rc) {
1628 fc_exch_delete(ep);
1629 } else {
1630 FC_EXCH_DBG(ep, "ep is completed already,"
1631 "hence skip calling the resp\n");
1632 goto skip_resp;
1633 }
1634 }
1635
1636 /*
1637 * Call the receive function.
1638 * The sequence is held (has a refcnt) for us,
1639 * but not for the receive function.
1640 *
1641 * The receive function may allocate a new sequence
1642 * over the old one, so we shouldn't change the
1643 * sequence after this.
1644 *
1645 * The frame will be freed by the receive function.
1646 * If new exch resp handler is valid then call that
1647 * first.
1648 */
1649 if (!fc_invoke_resp(ep, sp, fp))
1650 fc_frame_free(fp);
1651
1652 skip_resp:
1653 fc_exch_release(ep);
1654 return;
1655 rel:
1656 fc_exch_release(ep);
1657 out:
1658 fc_frame_free(fp);
1659 }
1660
1661 /**
1662 * fc_exch_recv_resp() - Handler for a sequence where other end is
1663 * responding to our sequence
1664 * @mp: The EM that the exchange is on
1665 * @fp: The response frame
1666 */
fc_exch_recv_resp(struct fc_exch_mgr * mp,struct fc_frame * fp)1667 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1668 {
1669 struct fc_seq *sp;
1670
1671 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1672
1673 if (!sp)
1674 atomic_inc(&mp->stats.xid_not_found);
1675 else
1676 atomic_inc(&mp->stats.non_bls_resp);
1677
1678 fc_frame_free(fp);
1679 }
1680
1681 /**
1682 * fc_exch_abts_resp() - Handler for a response to an ABT
1683 * @ep: The exchange that the frame is on
1684 * @fp: The response frame
1685 *
1686 * This response would be to an ABTS cancelling an exchange or sequence.
1687 * The response can be either BA_ACC or BA_RJT
1688 */
fc_exch_abts_resp(struct fc_exch * ep,struct fc_frame * fp)1689 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1690 {
1691 struct fc_frame_header *fh;
1692 struct fc_ba_acc *ap;
1693 struct fc_seq *sp;
1694 u16 low;
1695 u16 high;
1696 int rc = 1, has_rec = 0;
1697
1698 fh = fc_frame_header_get(fp);
1699 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1700 fc_exch_rctl_name(fh->fh_r_ctl));
1701
1702 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1703 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1704 fc_exch_release(ep); /* release from pending timer hold */
1705 }
1706
1707 spin_lock_bh(&ep->ex_lock);
1708 switch (fh->fh_r_ctl) {
1709 case FC_RCTL_BA_ACC:
1710 ap = fc_frame_payload_get(fp, sizeof(*ap));
1711 if (!ap)
1712 break;
1713
1714 /*
1715 * Decide whether to establish a Recovery Qualifier.
1716 * We do this if there is a non-empty SEQ_CNT range and
1717 * SEQ_ID is the same as the one we aborted.
1718 */
1719 low = ntohs(ap->ba_low_seq_cnt);
1720 high = ntohs(ap->ba_high_seq_cnt);
1721 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1722 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1723 ap->ba_seq_id == ep->seq_id) && low != high) {
1724 ep->esb_stat |= ESB_ST_REC_QUAL;
1725 fc_exch_hold(ep); /* hold for recovery qualifier */
1726 has_rec = 1;
1727 }
1728 break;
1729 case FC_RCTL_BA_RJT:
1730 break;
1731 default:
1732 break;
1733 }
1734
1735 /* do we need to do some other checks here. Can we reuse more of
1736 * fc_exch_recv_seq_resp
1737 */
1738 sp = &ep->seq;
1739 /*
1740 * do we want to check END_SEQ as well as LAST_SEQ here?
1741 */
1742 if (ep->fh_type != FC_TYPE_FCP &&
1743 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1744 rc = fc_exch_done_locked(ep);
1745 spin_unlock_bh(&ep->ex_lock);
1746
1747 fc_exch_hold(ep);
1748 if (!rc)
1749 fc_exch_delete(ep);
1750 if (!fc_invoke_resp(ep, sp, fp))
1751 fc_frame_free(fp);
1752 if (has_rec)
1753 fc_exch_timer_set(ep, ep->r_a_tov);
1754 fc_exch_release(ep);
1755 }
1756
1757 /**
1758 * fc_exch_recv_bls() - Handler for a BLS sequence
1759 * @mp: The EM that the exchange is on
1760 * @fp: The request frame
1761 *
1762 * The BLS frame is always a sequence initiated by the remote side.
1763 * We may be either the originator or recipient of the exchange.
1764 */
fc_exch_recv_bls(struct fc_exch_mgr * mp,struct fc_frame * fp)1765 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1766 {
1767 struct fc_frame_header *fh;
1768 struct fc_exch *ep;
1769 u32 f_ctl;
1770
1771 fh = fc_frame_header_get(fp);
1772 f_ctl = ntoh24(fh->fh_f_ctl);
1773 fr_seq(fp) = NULL;
1774
1775 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1776 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1777 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1778 spin_lock_bh(&ep->ex_lock);
1779 ep->esb_stat |= ESB_ST_SEQ_INIT;
1780 spin_unlock_bh(&ep->ex_lock);
1781 }
1782 if (f_ctl & FC_FC_SEQ_CTX) {
1783 /*
1784 * A response to a sequence we initiated.
1785 * This should only be ACKs for class 2 or F.
1786 */
1787 switch (fh->fh_r_ctl) {
1788 case FC_RCTL_ACK_1:
1789 case FC_RCTL_ACK_0:
1790 break;
1791 default:
1792 if (ep)
1793 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1794 fh->fh_r_ctl,
1795 fc_exch_rctl_name(fh->fh_r_ctl));
1796 break;
1797 }
1798 fc_frame_free(fp);
1799 } else {
1800 switch (fh->fh_r_ctl) {
1801 case FC_RCTL_BA_RJT:
1802 case FC_RCTL_BA_ACC:
1803 if (ep)
1804 fc_exch_abts_resp(ep, fp);
1805 else
1806 fc_frame_free(fp);
1807 break;
1808 case FC_RCTL_BA_ABTS:
1809 if (ep)
1810 fc_exch_recv_abts(ep, fp);
1811 else
1812 fc_frame_free(fp);
1813 break;
1814 default: /* ignore junk */
1815 fc_frame_free(fp);
1816 break;
1817 }
1818 }
1819 if (ep)
1820 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1821 }
1822
1823 /**
1824 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1825 * @rx_fp: The received frame, not freed here.
1826 *
1827 * If this fails due to allocation or transmit congestion, assume the
1828 * originator will repeat the sequence.
1829 */
fc_seq_ls_acc(struct fc_frame * rx_fp)1830 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1831 {
1832 struct fc_lport *lport;
1833 struct fc_els_ls_acc *acc;
1834 struct fc_frame *fp;
1835 struct fc_seq *sp;
1836
1837 lport = fr_dev(rx_fp);
1838 sp = fr_seq(rx_fp);
1839 fp = fc_frame_alloc(lport, sizeof(*acc));
1840 if (!fp) {
1841 FC_EXCH_DBG(fc_seq_exch(sp),
1842 "exch: drop LS_ACC, out of memory\n");
1843 return;
1844 }
1845 acc = fc_frame_payload_get(fp, sizeof(*acc));
1846 memset(acc, 0, sizeof(*acc));
1847 acc->la_cmd = ELS_LS_ACC;
1848 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1849 lport->tt.frame_send(lport, fp);
1850 }
1851
1852 /**
1853 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1854 * @rx_fp: The received frame, not freed here.
1855 * @reason: The reason the sequence is being rejected
1856 * @explan: The explanation for the rejection
1857 *
1858 * If this fails due to allocation or transmit congestion, assume the
1859 * originator will repeat the sequence.
1860 */
fc_seq_ls_rjt(struct fc_frame * rx_fp,enum fc_els_rjt_reason reason,enum fc_els_rjt_explan explan)1861 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1862 enum fc_els_rjt_explan explan)
1863 {
1864 struct fc_lport *lport;
1865 struct fc_els_ls_rjt *rjt;
1866 struct fc_frame *fp;
1867 struct fc_seq *sp;
1868
1869 lport = fr_dev(rx_fp);
1870 sp = fr_seq(rx_fp);
1871 fp = fc_frame_alloc(lport, sizeof(*rjt));
1872 if (!fp) {
1873 FC_EXCH_DBG(fc_seq_exch(sp),
1874 "exch: drop LS_ACC, out of memory\n");
1875 return;
1876 }
1877 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1878 memset(rjt, 0, sizeof(*rjt));
1879 rjt->er_cmd = ELS_LS_RJT;
1880 rjt->er_reason = reason;
1881 rjt->er_explan = explan;
1882 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1883 lport->tt.frame_send(lport, fp);
1884 }
1885
1886 /**
1887 * fc_exch_reset() - Reset an exchange
1888 * @ep: The exchange to be reset
1889 *
1890 * Note: May sleep if invoked from outside a response handler.
1891 */
fc_exch_reset(struct fc_exch * ep)1892 static void fc_exch_reset(struct fc_exch *ep)
1893 {
1894 struct fc_seq *sp;
1895 int rc = 1;
1896
1897 spin_lock_bh(&ep->ex_lock);
1898 ep->state |= FC_EX_RST_CLEANUP;
1899 fc_exch_timer_cancel(ep);
1900 if (ep->esb_stat & ESB_ST_REC_QUAL)
1901 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1902 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1903 sp = &ep->seq;
1904 rc = fc_exch_done_locked(ep);
1905 spin_unlock_bh(&ep->ex_lock);
1906
1907 fc_exch_hold(ep);
1908
1909 if (!rc) {
1910 fc_exch_delete(ep);
1911 } else {
1912 FC_EXCH_DBG(ep, "ep is completed already,"
1913 "hence skip calling the resp\n");
1914 goto skip_resp;
1915 }
1916
1917 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1918 skip_resp:
1919 fc_seq_set_resp(sp, NULL, ep->arg);
1920 fc_exch_release(ep);
1921 }
1922
1923 /**
1924 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1925 * @lport: The local port that the exchange pool is on
1926 * @pool: The exchange pool to be reset
1927 * @sid: The source ID
1928 * @did: The destination ID
1929 *
1930 * Resets a per cpu exches pool, releasing all of its sequences
1931 * and exchanges. If sid is non-zero then reset only exchanges
1932 * we sourced from the local port's FID. If did is non-zero then
1933 * only reset exchanges destined for the local port's FID.
1934 */
fc_exch_pool_reset(struct fc_lport * lport,struct fc_exch_pool * pool,u32 sid,u32 did)1935 static void fc_exch_pool_reset(struct fc_lport *lport,
1936 struct fc_exch_pool *pool,
1937 u32 sid, u32 did)
1938 {
1939 struct fc_exch *ep;
1940 struct fc_exch *next;
1941
1942 spin_lock_bh(&pool->lock);
1943 restart:
1944 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1945 if ((lport == ep->lp) &&
1946 (sid == 0 || sid == ep->sid) &&
1947 (did == 0 || did == ep->did)) {
1948 fc_exch_hold(ep);
1949 spin_unlock_bh(&pool->lock);
1950
1951 fc_exch_reset(ep);
1952
1953 fc_exch_release(ep);
1954 spin_lock_bh(&pool->lock);
1955
1956 /*
1957 * must restart loop incase while lock
1958 * was down multiple eps were released.
1959 */
1960 goto restart;
1961 }
1962 }
1963 pool->next_index = 0;
1964 pool->left = FC_XID_UNKNOWN;
1965 pool->right = FC_XID_UNKNOWN;
1966 spin_unlock_bh(&pool->lock);
1967 }
1968
1969 /**
1970 * fc_exch_mgr_reset() - Reset all EMs of a local port
1971 * @lport: The local port whose EMs are to be reset
1972 * @sid: The source ID
1973 * @did: The destination ID
1974 *
1975 * Reset all EMs associated with a given local port. Release all
1976 * sequences and exchanges. If sid is non-zero then reset only the
1977 * exchanges sent from the local port's FID. If did is non-zero then
1978 * reset only exchanges destined for the local port's FID.
1979 */
fc_exch_mgr_reset(struct fc_lport * lport,u32 sid,u32 did)1980 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1981 {
1982 struct fc_exch_mgr_anchor *ema;
1983 unsigned int cpu;
1984
1985 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1986 for_each_possible_cpu(cpu)
1987 fc_exch_pool_reset(lport,
1988 per_cpu_ptr(ema->mp->pool, cpu),
1989 sid, did);
1990 }
1991 }
1992 EXPORT_SYMBOL(fc_exch_mgr_reset);
1993
1994 /**
1995 * fc_exch_lookup() - find an exchange
1996 * @lport: The local port
1997 * @xid: The exchange ID
1998 *
1999 * Returns exchange pointer with hold for caller, or NULL if not found.
2000 */
fc_exch_lookup(struct fc_lport * lport,u32 xid)2001 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
2002 {
2003 struct fc_exch_mgr_anchor *ema;
2004
2005 list_for_each_entry(ema, &lport->ema_list, ema_list)
2006 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2007 return fc_exch_find(ema->mp, xid);
2008 return NULL;
2009 }
2010
2011 /**
2012 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2013 * @rfp: The REC frame, not freed here.
2014 *
2015 * Note that the requesting port may be different than the S_ID in the request.
2016 */
fc_exch_els_rec(struct fc_frame * rfp)2017 static void fc_exch_els_rec(struct fc_frame *rfp)
2018 {
2019 struct fc_lport *lport;
2020 struct fc_frame *fp;
2021 struct fc_exch *ep;
2022 struct fc_els_rec *rp;
2023 struct fc_els_rec_acc *acc;
2024 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2025 enum fc_els_rjt_explan explan;
2026 u32 sid;
2027 u16 xid, rxid, oxid;
2028
2029 lport = fr_dev(rfp);
2030 rp = fc_frame_payload_get(rfp, sizeof(*rp));
2031 explan = ELS_EXPL_INV_LEN;
2032 if (!rp)
2033 goto reject;
2034 sid = ntoh24(rp->rec_s_id);
2035 rxid = ntohs(rp->rec_rx_id);
2036 oxid = ntohs(rp->rec_ox_id);
2037
2038 explan = ELS_EXPL_OXID_RXID;
2039 if (sid == fc_host_port_id(lport->host))
2040 xid = oxid;
2041 else
2042 xid = rxid;
2043 if (xid == FC_XID_UNKNOWN) {
2044 FC_LPORT_DBG(lport,
2045 "REC request from %x: invalid rxid %x oxid %x\n",
2046 sid, rxid, oxid);
2047 goto reject;
2048 }
2049 ep = fc_exch_lookup(lport, xid);
2050 if (!ep) {
2051 FC_LPORT_DBG(lport,
2052 "REC request from %x: rxid %x oxid %x not found\n",
2053 sid, rxid, oxid);
2054 goto reject;
2055 }
2056 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2057 sid, rxid, oxid);
2058 if (ep->oid != sid || oxid != ep->oxid)
2059 goto rel;
2060 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2061 goto rel;
2062 fp = fc_frame_alloc(lport, sizeof(*acc));
2063 if (!fp) {
2064 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2065 goto out;
2066 }
2067
2068 acc = fc_frame_payload_get(fp, sizeof(*acc));
2069 memset(acc, 0, sizeof(*acc));
2070 acc->reca_cmd = ELS_LS_ACC;
2071 acc->reca_ox_id = rp->rec_ox_id;
2072 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2073 acc->reca_rx_id = htons(ep->rxid);
2074 if (ep->sid == ep->oid)
2075 hton24(acc->reca_rfid, ep->did);
2076 else
2077 hton24(acc->reca_rfid, ep->sid);
2078 acc->reca_fc4value = htonl(ep->seq.rec_data);
2079 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2080 ESB_ST_SEQ_INIT |
2081 ESB_ST_COMPLETE));
2082 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2083 lport->tt.frame_send(lport, fp);
2084 out:
2085 fc_exch_release(ep);
2086 return;
2087
2088 rel:
2089 fc_exch_release(ep);
2090 reject:
2091 fc_seq_ls_rjt(rfp, reason, explan);
2092 }
2093
2094 /**
2095 * fc_exch_rrq_resp() - Handler for RRQ responses
2096 * @sp: The sequence that the RRQ is on
2097 * @fp: The RRQ frame
2098 * @arg: The exchange that the RRQ is on
2099 *
2100 * TODO: fix error handler.
2101 */
fc_exch_rrq_resp(struct fc_seq * sp,struct fc_frame * fp,void * arg)2102 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2103 {
2104 struct fc_exch *aborted_ep = arg;
2105 unsigned int op;
2106
2107 if (IS_ERR(fp)) {
2108 int err = PTR_ERR(fp);
2109
2110 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2111 goto cleanup;
2112 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2113 "frame error %d\n", err);
2114 return;
2115 }
2116
2117 op = fc_frame_payload_op(fp);
2118 fc_frame_free(fp);
2119
2120 switch (op) {
2121 case ELS_LS_RJT:
2122 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2123 fallthrough;
2124 case ELS_LS_ACC:
2125 goto cleanup;
2126 default:
2127 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2128 op);
2129 return;
2130 }
2131
2132 cleanup:
2133 fc_exch_done(&aborted_ep->seq);
2134 /* drop hold for rec qual */
2135 fc_exch_release(aborted_ep);
2136 }
2137
2138
2139 /**
2140 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2141 * @lport: The local port to send the frame on
2142 * @fp: The frame to be sent
2143 * @resp: The response handler for this request
2144 * @destructor: The destructor for the exchange
2145 * @arg: The argument to be passed to the response handler
2146 * @timer_msec: The timeout period for the exchange
2147 *
2148 * The exchange response handler is set in this routine to resp()
2149 * function pointer. It can be called in two scenarios: if a timeout
2150 * occurs or if a response frame is received for the exchange. The
2151 * fc_frame pointer in response handler will also indicate timeout
2152 * as error using IS_ERR related macros.
2153 *
2154 * The exchange destructor handler is also set in this routine.
2155 * The destructor handler is invoked by EM layer when exchange
2156 * is about to free, this can be used by caller to free its
2157 * resources along with exchange free.
2158 *
2159 * The arg is passed back to resp and destructor handler.
2160 *
2161 * The timeout value (in msec) for an exchange is set if non zero
2162 * timer_msec argument is specified. The timer is canceled when
2163 * it fires or when the exchange is done. The exchange timeout handler
2164 * is registered by EM layer.
2165 *
2166 * The frame pointer with some of the header's fields must be
2167 * filled before calling this routine, those fields are:
2168 *
2169 * - routing control
2170 * - FC port did
2171 * - FC port sid
2172 * - FC header type
2173 * - frame control
2174 * - parameter or relative offset
2175 */
fc_exch_seq_send(struct fc_lport * lport,struct fc_frame * fp,void (* resp)(struct fc_seq *,struct fc_frame * fp,void * arg),void (* destructor)(struct fc_seq *,void *),void * arg,u32 timer_msec)2176 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2177 struct fc_frame *fp,
2178 void (*resp)(struct fc_seq *,
2179 struct fc_frame *fp,
2180 void *arg),
2181 void (*destructor)(struct fc_seq *, void *),
2182 void *arg, u32 timer_msec)
2183 {
2184 struct fc_exch *ep;
2185 struct fc_seq *sp = NULL;
2186 struct fc_frame_header *fh;
2187 struct fc_fcp_pkt *fsp = NULL;
2188 int rc = 1;
2189
2190 ep = fc_exch_alloc(lport, fp);
2191 if (!ep) {
2192 fc_frame_free(fp);
2193 return NULL;
2194 }
2195 ep->esb_stat |= ESB_ST_SEQ_INIT;
2196 fh = fc_frame_header_get(fp);
2197 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2198 ep->resp = resp;
2199 ep->destructor = destructor;
2200 ep->arg = arg;
2201 ep->r_a_tov = lport->r_a_tov;
2202 ep->lp = lport;
2203 sp = &ep->seq;
2204
2205 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2206 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2207 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2208 sp->cnt++;
2209
2210 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2211 fsp = fr_fsp(fp);
2212 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2213 }
2214
2215 if (unlikely(lport->tt.frame_send(lport, fp)))
2216 goto err;
2217
2218 if (timer_msec)
2219 fc_exch_timer_set_locked(ep, timer_msec);
2220 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2221
2222 if (ep->f_ctl & FC_FC_SEQ_INIT)
2223 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2224 spin_unlock_bh(&ep->ex_lock);
2225 return sp;
2226 err:
2227 if (fsp)
2228 fc_fcp_ddp_done(fsp);
2229 rc = fc_exch_done_locked(ep);
2230 spin_unlock_bh(&ep->ex_lock);
2231 if (!rc)
2232 fc_exch_delete(ep);
2233 return NULL;
2234 }
2235 EXPORT_SYMBOL(fc_exch_seq_send);
2236
2237 /**
2238 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2239 * @ep: The exchange to send the RRQ on
2240 *
2241 * This tells the remote port to stop blocking the use of
2242 * the exchange and the seq_cnt range.
2243 */
fc_exch_rrq(struct fc_exch * ep)2244 static void fc_exch_rrq(struct fc_exch *ep)
2245 {
2246 struct fc_lport *lport;
2247 struct fc_els_rrq *rrq;
2248 struct fc_frame *fp;
2249 u32 did;
2250
2251 lport = ep->lp;
2252
2253 fp = fc_frame_alloc(lport, sizeof(*rrq));
2254 if (!fp)
2255 goto retry;
2256
2257 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2258 memset(rrq, 0, sizeof(*rrq));
2259 rrq->rrq_cmd = ELS_RRQ;
2260 hton24(rrq->rrq_s_id, ep->sid);
2261 rrq->rrq_ox_id = htons(ep->oxid);
2262 rrq->rrq_rx_id = htons(ep->rxid);
2263
2264 did = ep->did;
2265 if (ep->esb_stat & ESB_ST_RESP)
2266 did = ep->sid;
2267
2268 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2269 lport->port_id, FC_TYPE_ELS,
2270 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2271
2272 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2273 lport->e_d_tov))
2274 return;
2275
2276 retry:
2277 FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2278 spin_lock_bh(&ep->ex_lock);
2279 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2280 spin_unlock_bh(&ep->ex_lock);
2281 /* drop hold for rec qual */
2282 fc_exch_release(ep);
2283 return;
2284 }
2285 ep->esb_stat |= ESB_ST_REC_QUAL;
2286 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2287 spin_unlock_bh(&ep->ex_lock);
2288 }
2289
2290 /**
2291 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2292 * @fp: The RRQ frame, not freed here.
2293 */
fc_exch_els_rrq(struct fc_frame * fp)2294 static void fc_exch_els_rrq(struct fc_frame *fp)
2295 {
2296 struct fc_lport *lport;
2297 struct fc_exch *ep = NULL; /* request or subject exchange */
2298 struct fc_els_rrq *rp;
2299 u32 sid;
2300 u16 xid;
2301 enum fc_els_rjt_explan explan;
2302
2303 lport = fr_dev(fp);
2304 rp = fc_frame_payload_get(fp, sizeof(*rp));
2305 explan = ELS_EXPL_INV_LEN;
2306 if (!rp)
2307 goto reject;
2308
2309 /*
2310 * lookup subject exchange.
2311 */
2312 sid = ntoh24(rp->rrq_s_id); /* subject source */
2313 xid = fc_host_port_id(lport->host) == sid ?
2314 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2315 ep = fc_exch_lookup(lport, xid);
2316 explan = ELS_EXPL_OXID_RXID;
2317 if (!ep)
2318 goto reject;
2319 spin_lock_bh(&ep->ex_lock);
2320 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2321 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2322 if (ep->oxid != ntohs(rp->rrq_ox_id))
2323 goto unlock_reject;
2324 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2325 ep->rxid != FC_XID_UNKNOWN)
2326 goto unlock_reject;
2327 explan = ELS_EXPL_SID;
2328 if (ep->sid != sid)
2329 goto unlock_reject;
2330
2331 /*
2332 * Clear Recovery Qualifier state, and cancel timer if complete.
2333 */
2334 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2335 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2336 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2337 }
2338 if (ep->esb_stat & ESB_ST_COMPLETE)
2339 fc_exch_timer_cancel(ep);
2340
2341 spin_unlock_bh(&ep->ex_lock);
2342
2343 /*
2344 * Send LS_ACC.
2345 */
2346 fc_seq_ls_acc(fp);
2347 goto out;
2348
2349 unlock_reject:
2350 spin_unlock_bh(&ep->ex_lock);
2351 reject:
2352 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2353 out:
2354 if (ep)
2355 fc_exch_release(ep); /* drop hold from fc_exch_find */
2356 }
2357
2358 /**
2359 * fc_exch_update_stats() - update exches stats to lport
2360 * @lport: The local port to update exchange manager stats
2361 */
fc_exch_update_stats(struct fc_lport * lport)2362 void fc_exch_update_stats(struct fc_lport *lport)
2363 {
2364 struct fc_host_statistics *st;
2365 struct fc_exch_mgr_anchor *ema;
2366 struct fc_exch_mgr *mp;
2367
2368 st = &lport->host_stats;
2369
2370 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2371 mp = ema->mp;
2372 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2373 st->fc_no_free_exch_xid +=
2374 atomic_read(&mp->stats.no_free_exch_xid);
2375 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2376 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2377 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2378 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2379 }
2380 }
2381 EXPORT_SYMBOL(fc_exch_update_stats);
2382
2383 /**
2384 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2385 * @lport: The local port to add the exchange manager to
2386 * @mp: The exchange manager to be added to the local port
2387 * @match: The match routine that indicates when this EM should be used
2388 */
fc_exch_mgr_add(struct fc_lport * lport,struct fc_exch_mgr * mp,bool (* match)(struct fc_frame *))2389 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2390 struct fc_exch_mgr *mp,
2391 bool (*match)(struct fc_frame *))
2392 {
2393 struct fc_exch_mgr_anchor *ema;
2394
2395 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2396 if (!ema)
2397 return ema;
2398
2399 ema->mp = mp;
2400 ema->match = match;
2401 /* add EM anchor to EM anchors list */
2402 list_add_tail(&ema->ema_list, &lport->ema_list);
2403 kref_get(&mp->kref);
2404 return ema;
2405 }
2406 EXPORT_SYMBOL(fc_exch_mgr_add);
2407
2408 /**
2409 * fc_exch_mgr_destroy() - Destroy an exchange manager
2410 * @kref: The reference to the EM to be destroyed
2411 */
fc_exch_mgr_destroy(struct kref * kref)2412 static void fc_exch_mgr_destroy(struct kref *kref)
2413 {
2414 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2415
2416 mempool_destroy(mp->ep_pool);
2417 free_percpu(mp->pool);
2418 kfree(mp);
2419 }
2420
2421 /**
2422 * fc_exch_mgr_del() - Delete an EM from a local port's list
2423 * @ema: The exchange manager anchor identifying the EM to be deleted
2424 */
fc_exch_mgr_del(struct fc_exch_mgr_anchor * ema)2425 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2426 {
2427 /* remove EM anchor from EM anchors list */
2428 list_del(&ema->ema_list);
2429 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2430 kfree(ema);
2431 }
2432 EXPORT_SYMBOL(fc_exch_mgr_del);
2433
2434 /**
2435 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2436 * @src: Source lport to clone exchange managers from
2437 * @dst: New lport that takes references to all the exchange managers
2438 */
fc_exch_mgr_list_clone(struct fc_lport * src,struct fc_lport * dst)2439 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2440 {
2441 struct fc_exch_mgr_anchor *ema, *tmp;
2442
2443 list_for_each_entry(ema, &src->ema_list, ema_list) {
2444 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2445 goto err;
2446 }
2447 return 0;
2448 err:
2449 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2450 fc_exch_mgr_del(ema);
2451 return -ENOMEM;
2452 }
2453 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2454
2455 /**
2456 * fc_exch_mgr_alloc() - Allocate an exchange manager
2457 * @lport: The local port that the new EM will be associated with
2458 * @class: The default FC class for new exchanges
2459 * @min_xid: The minimum XID for exchanges from the new EM
2460 * @max_xid: The maximum XID for exchanges from the new EM
2461 * @match: The match routine for the new EM
2462 */
fc_exch_mgr_alloc(struct fc_lport * lport,enum fc_class class,u16 min_xid,u16 max_xid,bool (* match)(struct fc_frame *))2463 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2464 enum fc_class class,
2465 u16 min_xid, u16 max_xid,
2466 bool (*match)(struct fc_frame *))
2467 {
2468 struct fc_exch_mgr *mp;
2469 u16 pool_exch_range;
2470 size_t pool_size;
2471 unsigned int cpu;
2472 struct fc_exch_pool *pool;
2473
2474 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2475 (min_xid & fc_cpu_mask) != 0) {
2476 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2477 min_xid, max_xid);
2478 return NULL;
2479 }
2480
2481 /*
2482 * allocate memory for EM
2483 */
2484 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2485 if (!mp)
2486 return NULL;
2487
2488 mp->class = class;
2489 mp->lport = lport;
2490 /* adjust em exch xid range for offload */
2491 mp->min_xid = min_xid;
2492
2493 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2494 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2495 sizeof(struct fc_exch *);
2496 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2497 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2498 min_xid - 1;
2499 } else {
2500 mp->max_xid = max_xid;
2501 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2502 (fc_cpu_mask + 1);
2503 }
2504
2505 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2506 if (!mp->ep_pool)
2507 goto free_mp;
2508
2509 /*
2510 * Setup per cpu exch pool with entire exchange id range equally
2511 * divided across all cpus. The exch pointers array memory is
2512 * allocated for exch range per pool.
2513 */
2514 mp->pool_max_index = pool_exch_range - 1;
2515
2516 /*
2517 * Allocate and initialize per cpu exch pool
2518 */
2519 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2520 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2521 if (!mp->pool)
2522 goto free_mempool;
2523 for_each_possible_cpu(cpu) {
2524 pool = per_cpu_ptr(mp->pool, cpu);
2525 pool->next_index = 0;
2526 pool->left = FC_XID_UNKNOWN;
2527 pool->right = FC_XID_UNKNOWN;
2528 spin_lock_init(&pool->lock);
2529 INIT_LIST_HEAD(&pool->ex_list);
2530 }
2531
2532 kref_init(&mp->kref);
2533 if (!fc_exch_mgr_add(lport, mp, match)) {
2534 free_percpu(mp->pool);
2535 goto free_mempool;
2536 }
2537
2538 /*
2539 * Above kref_init() sets mp->kref to 1 and then
2540 * call to fc_exch_mgr_add incremented mp->kref again,
2541 * so adjust that extra increment.
2542 */
2543 kref_put(&mp->kref, fc_exch_mgr_destroy);
2544 return mp;
2545
2546 free_mempool:
2547 mempool_destroy(mp->ep_pool);
2548 free_mp:
2549 kfree(mp);
2550 return NULL;
2551 }
2552 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2553
2554 /**
2555 * fc_exch_mgr_free() - Free all exchange managers on a local port
2556 * @lport: The local port whose EMs are to be freed
2557 */
fc_exch_mgr_free(struct fc_lport * lport)2558 void fc_exch_mgr_free(struct fc_lport *lport)
2559 {
2560 struct fc_exch_mgr_anchor *ema, *next;
2561
2562 flush_workqueue(fc_exch_workqueue);
2563 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2564 fc_exch_mgr_del(ema);
2565 }
2566 EXPORT_SYMBOL(fc_exch_mgr_free);
2567
2568 /**
2569 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2570 * upon 'xid'.
2571 * @f_ctl: f_ctl
2572 * @lport: The local port the frame was received on
2573 * @fh: The received frame header
2574 */
fc_find_ema(u32 f_ctl,struct fc_lport * lport,struct fc_frame_header * fh)2575 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2576 struct fc_lport *lport,
2577 struct fc_frame_header *fh)
2578 {
2579 struct fc_exch_mgr_anchor *ema;
2580 u16 xid;
2581
2582 if (f_ctl & FC_FC_EX_CTX)
2583 xid = ntohs(fh->fh_ox_id);
2584 else {
2585 xid = ntohs(fh->fh_rx_id);
2586 if (xid == FC_XID_UNKNOWN)
2587 return list_entry(lport->ema_list.prev,
2588 typeof(*ema), ema_list);
2589 }
2590
2591 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2592 if ((xid >= ema->mp->min_xid) &&
2593 (xid <= ema->mp->max_xid))
2594 return ema;
2595 }
2596 return NULL;
2597 }
2598 /**
2599 * fc_exch_recv() - Handler for received frames
2600 * @lport: The local port the frame was received on
2601 * @fp: The received frame
2602 */
fc_exch_recv(struct fc_lport * lport,struct fc_frame * fp)2603 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2604 {
2605 struct fc_frame_header *fh = fc_frame_header_get(fp);
2606 struct fc_exch_mgr_anchor *ema;
2607 u32 f_ctl;
2608
2609 /* lport lock ? */
2610 if (!lport || lport->state == LPORT_ST_DISABLED) {
2611 FC_LIBFC_DBG("Receiving frames for an lport that "
2612 "has not been initialized correctly\n");
2613 fc_frame_free(fp);
2614 return;
2615 }
2616
2617 f_ctl = ntoh24(fh->fh_f_ctl);
2618 ema = fc_find_ema(f_ctl, lport, fh);
2619 if (!ema) {
2620 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2621 "fc_ctl <0x%x>, xid <0x%x>\n",
2622 f_ctl,
2623 (f_ctl & FC_FC_EX_CTX) ?
2624 ntohs(fh->fh_ox_id) :
2625 ntohs(fh->fh_rx_id));
2626 fc_frame_free(fp);
2627 return;
2628 }
2629
2630 /*
2631 * If frame is marked invalid, just drop it.
2632 */
2633 switch (fr_eof(fp)) {
2634 case FC_EOF_T:
2635 if (f_ctl & FC_FC_END_SEQ)
2636 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2637 fallthrough;
2638 case FC_EOF_N:
2639 if (fh->fh_type == FC_TYPE_BLS)
2640 fc_exch_recv_bls(ema->mp, fp);
2641 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2642 FC_FC_EX_CTX)
2643 fc_exch_recv_seq_resp(ema->mp, fp);
2644 else if (f_ctl & FC_FC_SEQ_CTX)
2645 fc_exch_recv_resp(ema->mp, fp);
2646 else /* no EX_CTX and no SEQ_CTX */
2647 fc_exch_recv_req(lport, ema->mp, fp);
2648 break;
2649 default:
2650 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2651 fr_eof(fp));
2652 fc_frame_free(fp);
2653 }
2654 }
2655 EXPORT_SYMBOL(fc_exch_recv);
2656
2657 /**
2658 * fc_exch_init() - Initialize the exchange layer for a local port
2659 * @lport: The local port to initialize the exchange layer for
2660 */
fc_exch_init(struct fc_lport * lport)2661 int fc_exch_init(struct fc_lport *lport)
2662 {
2663 if (!lport->tt.exch_mgr_reset)
2664 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2665
2666 return 0;
2667 }
2668 EXPORT_SYMBOL(fc_exch_init);
2669
2670 /**
2671 * fc_setup_exch_mgr() - Setup an exchange manager
2672 */
fc_setup_exch_mgr(void)2673 int fc_setup_exch_mgr(void)
2674 {
2675 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2676 0, SLAB_HWCACHE_ALIGN, NULL);
2677 if (!fc_em_cachep)
2678 return -ENOMEM;
2679
2680 /*
2681 * Initialize fc_cpu_mask and fc_cpu_order. The
2682 * fc_cpu_mask is set for nr_cpu_ids rounded up
2683 * to order of 2's * power and order is stored
2684 * in fc_cpu_order as this is later required in
2685 * mapping between an exch id and exch array index
2686 * in per cpu exch pool.
2687 *
2688 * This round up is required to align fc_cpu_mask
2689 * to exchange id's lower bits such that all incoming
2690 * frames of an exchange gets delivered to the same
2691 * cpu on which exchange originated by simple bitwise
2692 * AND operation between fc_cpu_mask and exchange id.
2693 */
2694 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2695 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2696
2697 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2698 if (!fc_exch_workqueue)
2699 goto err;
2700 return 0;
2701 err:
2702 kmem_cache_destroy(fc_em_cachep);
2703 return -ENOMEM;
2704 }
2705
2706 /**
2707 * fc_destroy_exch_mgr() - Destroy an exchange manager
2708 */
fc_destroy_exch_mgr(void)2709 void fc_destroy_exch_mgr(void)
2710 {
2711 destroy_workqueue(fc_exch_workqueue);
2712 kmem_cache_destroy(fc_em_cachep);
2713 }
2714