1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[16];
75 short *interfaces_nums;
76
77 struct usb_function function;
78 };
79
80
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125
126 int status; /* P: epfile->mutex */
127 };
128
129 struct ffs_epfile {
130 /* Protects ep->ep and ep->req. */
131 struct mutex mutex;
132
133 struct ffs_data *ffs;
134 struct ffs_ep *ep; /* P: ffs->eps_lock */
135
136 struct dentry *dentry;
137
138 /*
139 * Buffer for holding data from partial reads which may happen since
140 * we’re rounding user read requests to a multiple of a max packet size.
141 *
142 * The pointer is initialised with NULL value and may be set by
143 * __ffs_epfile_read_data function to point to a temporary buffer.
144 *
145 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 * data from said buffer and eventually free it. Importantly, while the
147 * function is using the buffer, it sets the pointer to NULL. This is
148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 * can never run concurrently (they are synchronised by epfile->mutex)
150 * so the latter will not assign a new value to the pointer.
151 *
152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
154 * value is crux of the synchronisation between ffs_func_eps_disable and
155 * __ffs_epfile_read_data.
156 *
157 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 * pointer back to its old value (as described above), but seeing as the
159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 * the buffer.
161 *
162 * == State transitions ==
163 *
164 * • ptr == NULL: (initial state)
165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 * ◦ __ffs_epfile_read_buffered: nop
167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 * ◦ reading finishes: n/a, not in ‘and reading’ state
169 * • ptr == DROP:
170 * ◦ __ffs_epfile_read_buffer_free: nop
171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 * ◦ reading finishes: n/a, not in ‘and reading’ state
174 * • ptr == buf:
175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
178 * is always called first
179 * ◦ reading finishes: n/a, not in ‘and reading’ state
180 * • ptr == NULL and reading:
181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
183 * ◦ __ffs_epfile_read_data: n/a, mutex is held
184 * ◦ reading finishes and …
185 * … all data read: free buf, go to ptr == NULL
186 * … otherwise: go to ptr == buf and reading
187 * • ptr == DROP and reading:
188 * ◦ __ffs_epfile_read_buffer_free: nop
189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
190 * ◦ __ffs_epfile_read_data: n/a, mutex is held
191 * ◦ reading finishes: free buf, go to ptr == DROP
192 */
193 struct ffs_buffer *read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195
196 char name[5];
197
198 unsigned char in; /* P: ffs->eps_lock */
199 unsigned char isoc; /* P: ffs->eps_lock */
200
201 unsigned char _pad;
202 };
203
204 struct ffs_buffer {
205 size_t length;
206 char *data;
207 char storage[];
208 };
209
210 /* ffs_io_data structure ***************************************************/
211
212 struct ffs_io_data {
213 bool aio;
214 bool read;
215
216 struct kiocb *kiocb;
217 struct iov_iter data;
218 const void *to_free;
219 char *buf;
220
221 struct mm_struct *mm;
222 struct work_struct work;
223
224 struct usb_ep *ep;
225 struct usb_request *req;
226 struct sg_table sgt;
227 bool use_sg;
228
229 struct ffs_data *ffs;
230 };
231
232 struct ffs_desc_helper {
233 struct ffs_data *ffs;
234 unsigned interfaces_count;
235 unsigned eps_count;
236 };
237
238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 const struct file_operations *fops);
244
245 /* Devices management *******************************************************/
246
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
254 static void ffs_release_dev(struct ffs_dev *ffs_dev);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257
258 /* Misc helper functions ****************************************************/
259
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 __attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 __attribute__((warn_unused_result, nonnull));
264
265
266 /* Control file aka ep0 *****************************************************/
267
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 struct ffs_data *ffs = req->context;
271
272 complete(&ffs->ep0req_completion);
273 }
274
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 __releases(&ffs->ev.waitq.lock)
277 {
278 struct usb_request *req = ffs->ep0req;
279 int ret;
280
281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
282
283 spin_unlock_irq(&ffs->ev.waitq.lock);
284
285 req->buf = data;
286 req->length = len;
287
288 /*
289 * UDC layer requires to provide a buffer even for ZLP, but should
290 * not use it at all. Let's provide some poisoned pointer to catch
291 * possible bug in the driver.
292 */
293 if (req->buf == NULL)
294 req->buf = (void *)0xDEADBABE;
295
296 reinit_completion(&ffs->ep0req_completion);
297
298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 if (unlikely(ret < 0))
300 return ret;
301
302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 if (unlikely(ret)) {
304 usb_ep_dequeue(ffs->gadget->ep0, req);
305 return -EINTR;
306 }
307
308 ffs->setup_state = FFS_NO_SETUP;
309 return req->status ? req->status : req->actual;
310 }
311
__ffs_ep0_stall(struct ffs_data * ffs)312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 if (ffs->ev.can_stall) {
315 pr_vdebug("ep0 stall\n");
316 usb_ep_set_halt(ffs->gadget->ep0);
317 ffs->setup_state = FFS_NO_SETUP;
318 return -EL2HLT;
319 } else {
320 pr_debug("bogus ep0 stall!\n");
321 return -ESRCH;
322 }
323 }
324
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 size_t len, loff_t *ptr)
327 {
328 struct ffs_data *ffs = file->private_data;
329 ssize_t ret;
330 char *data;
331
332 ENTER();
333
334 /* Fast check if setup was canceled */
335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 return -EIDRM;
337
338 /* Acquire mutex */
339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 if (unlikely(ret < 0))
341 return ret;
342
343 /* Check state */
344 switch (ffs->state) {
345 case FFS_READ_DESCRIPTORS:
346 case FFS_READ_STRINGS:
347 /* Copy data */
348 if (unlikely(len < 16)) {
349 ret = -EINVAL;
350 break;
351 }
352
353 data = ffs_prepare_buffer(buf, len);
354 if (IS_ERR(data)) {
355 ret = PTR_ERR(data);
356 break;
357 }
358
359 /* Handle data */
360 if (ffs->state == FFS_READ_DESCRIPTORS) {
361 pr_info("read descriptors\n");
362 ret = __ffs_data_got_descs(ffs, data, len);
363 if (unlikely(ret < 0))
364 break;
365
366 ffs->state = FFS_READ_STRINGS;
367 ret = len;
368 } else {
369 pr_info("read strings\n");
370 ret = __ffs_data_got_strings(ffs, data, len);
371 if (unlikely(ret < 0))
372 break;
373
374 ret = ffs_epfiles_create(ffs);
375 if (unlikely(ret)) {
376 ffs->state = FFS_CLOSING;
377 break;
378 }
379
380 ffs->state = FFS_ACTIVE;
381 mutex_unlock(&ffs->mutex);
382
383 ret = ffs_ready(ffs);
384 if (unlikely(ret < 0)) {
385 ffs->state = FFS_CLOSING;
386 return ret;
387 }
388
389 return len;
390 }
391 break;
392
393 case FFS_ACTIVE:
394 data = NULL;
395 /*
396 * We're called from user space, we can use _irq
397 * rather then _irqsave
398 */
399 spin_lock_irq(&ffs->ev.waitq.lock);
400 switch (ffs_setup_state_clear_cancelled(ffs)) {
401 case FFS_SETUP_CANCELLED:
402 ret = -EIDRM;
403 goto done_spin;
404
405 case FFS_NO_SETUP:
406 ret = -ESRCH;
407 goto done_spin;
408
409 case FFS_SETUP_PENDING:
410 break;
411 }
412
413 /* FFS_SETUP_PENDING */
414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 spin_unlock_irq(&ffs->ev.waitq.lock);
416 ret = __ffs_ep0_stall(ffs);
417 break;
418 }
419
420 /* FFS_SETUP_PENDING and not stall */
421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422
423 spin_unlock_irq(&ffs->ev.waitq.lock);
424
425 data = ffs_prepare_buffer(buf, len);
426 if (IS_ERR(data)) {
427 ret = PTR_ERR(data);
428 break;
429 }
430
431 spin_lock_irq(&ffs->ev.waitq.lock);
432
433 /*
434 * We are guaranteed to be still in FFS_ACTIVE state
435 * but the state of setup could have changed from
436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 * to check for that. If that happened we copied data
438 * from user space in vain but it's unlikely.
439 *
440 * For sure we are not in FFS_NO_SETUP since this is
441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 * transition can be performed and it's protected by
443 * mutex.
444 */
445 if (ffs_setup_state_clear_cancelled(ffs) ==
446 FFS_SETUP_CANCELLED) {
447 ret = -EIDRM;
448 done_spin:
449 spin_unlock_irq(&ffs->ev.waitq.lock);
450 } else {
451 /* unlocks spinlock */
452 ret = __ffs_ep0_queue_wait(ffs, data, len);
453 }
454 kfree(data);
455 break;
456
457 default:
458 ret = -EBADFD;
459 break;
460 }
461
462 mutex_unlock(&ffs->mutex);
463 return ret;
464 }
465
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 size_t n)
469 __releases(&ffs->ev.waitq.lock)
470 {
471 /*
472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 * size of ffs->ev.types array (which is four) so that's how much space
474 * we reserve.
475 */
476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 const size_t size = n * sizeof *events;
478 unsigned i = 0;
479
480 memset(events, 0, size);
481
482 do {
483 events[i].type = ffs->ev.types[i];
484 if (events[i].type == FUNCTIONFS_SETUP) {
485 events[i].u.setup = ffs->ev.setup;
486 ffs->setup_state = FFS_SETUP_PENDING;
487 }
488 } while (++i < n);
489
490 ffs->ev.count -= n;
491 if (ffs->ev.count)
492 memmove(ffs->ev.types, ffs->ev.types + n,
493 ffs->ev.count * sizeof *ffs->ev.types);
494
495 spin_unlock_irq(&ffs->ev.waitq.lock);
496 mutex_unlock(&ffs->mutex);
497
498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 size_t len, loff_t *ptr)
503 {
504 struct ffs_data *ffs = file->private_data;
505 char *data = NULL;
506 size_t n;
507 int ret;
508
509 ENTER();
510
511 /* Fast check if setup was canceled */
512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 return -EIDRM;
514
515 /* Acquire mutex */
516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 if (unlikely(ret < 0))
518 return ret;
519
520 /* Check state */
521 if (ffs->state != FFS_ACTIVE) {
522 ret = -EBADFD;
523 goto done_mutex;
524 }
525
526 /*
527 * We're called from user space, we can use _irq rather then
528 * _irqsave
529 */
530 spin_lock_irq(&ffs->ev.waitq.lock);
531
532 switch (ffs_setup_state_clear_cancelled(ffs)) {
533 case FFS_SETUP_CANCELLED:
534 ret = -EIDRM;
535 break;
536
537 case FFS_NO_SETUP:
538 n = len / sizeof(struct usb_functionfs_event);
539 if (unlikely(!n)) {
540 ret = -EINVAL;
541 break;
542 }
543
544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 ret = -EAGAIN;
546 break;
547 }
548
549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 ffs->ev.count)) {
551 ret = -EINTR;
552 break;
553 }
554
555 /* unlocks spinlock */
556 return __ffs_ep0_read_events(ffs, buf,
557 min(n, (size_t)ffs->ev.count));
558
559 case FFS_SETUP_PENDING:
560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 spin_unlock_irq(&ffs->ev.waitq.lock);
562 ret = __ffs_ep0_stall(ffs);
563 goto done_mutex;
564 }
565
566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567
568 spin_unlock_irq(&ffs->ev.waitq.lock);
569
570 if (likely(len)) {
571 data = kmalloc(len, GFP_KERNEL);
572 if (unlikely(!data)) {
573 ret = -ENOMEM;
574 goto done_mutex;
575 }
576 }
577
578 spin_lock_irq(&ffs->ev.waitq.lock);
579
580 /* See ffs_ep0_write() */
581 if (ffs_setup_state_clear_cancelled(ffs) ==
582 FFS_SETUP_CANCELLED) {
583 ret = -EIDRM;
584 break;
585 }
586
587 /* unlocks spinlock */
588 ret = __ffs_ep0_queue_wait(ffs, data, len);
589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 ret = -EFAULT;
591 goto done_mutex;
592
593 default:
594 ret = -EBADFD;
595 break;
596 }
597
598 spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 mutex_unlock(&ffs->mutex);
601 kfree(data);
602 return ret;
603 }
604
ffs_ep0_open(struct inode * inode,struct file * file)605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 struct ffs_data *ffs = inode->i_private;
608
609 ENTER();
610
611 if (unlikely(ffs->state == FFS_CLOSING))
612 return -EBUSY;
613
614 file->private_data = ffs;
615 ffs_data_opened(ffs);
616
617 return stream_open(inode, file);
618 }
619
ffs_ep0_release(struct inode * inode,struct file * file)620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 struct ffs_data *ffs = file->private_data;
623
624 ENTER();
625
626 ffs_data_closed(ffs);
627
628 return 0;
629 }
630
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 struct ffs_data *ffs = file->private_data;
634 struct usb_gadget *gadget = ffs->gadget;
635 long ret;
636
637 ENTER();
638
639 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 struct ffs_function *func = ffs->func;
641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 } else if (gadget && gadget->ops->ioctl) {
643 ret = gadget->ops->ioctl(gadget, code, value);
644 } else {
645 ret = -ENOTTY;
646 }
647
648 return ret;
649 }
650
ffs_ep0_poll(struct file * file,poll_table * wait)651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 struct ffs_data *ffs = file->private_data;
654 __poll_t mask = EPOLLWRNORM;
655 int ret;
656
657 poll_wait(file, &ffs->ev.waitq, wait);
658
659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 if (unlikely(ret < 0))
661 return mask;
662
663 switch (ffs->state) {
664 case FFS_READ_DESCRIPTORS:
665 case FFS_READ_STRINGS:
666 mask |= EPOLLOUT;
667 break;
668
669 case FFS_ACTIVE:
670 switch (ffs->setup_state) {
671 case FFS_NO_SETUP:
672 if (ffs->ev.count)
673 mask |= EPOLLIN;
674 break;
675
676 case FFS_SETUP_PENDING:
677 case FFS_SETUP_CANCELLED:
678 mask |= (EPOLLIN | EPOLLOUT);
679 break;
680 }
681 case FFS_CLOSING:
682 break;
683 case FFS_DEACTIVATED:
684 break;
685 }
686
687 mutex_unlock(&ffs->mutex);
688
689 return mask;
690 }
691
692 static const struct file_operations ffs_ep0_operations = {
693 .llseek = no_llseek,
694
695 .open = ffs_ep0_open,
696 .write = ffs_ep0_write,
697 .read = ffs_ep0_read,
698 .release = ffs_ep0_release,
699 .unlocked_ioctl = ffs_ep0_ioctl,
700 .poll = ffs_ep0_poll,
701 };
702
703
704 /* "Normal" endpoints operations ********************************************/
705
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 ENTER();
709 if (likely(req->context)) {
710 struct ffs_ep *ep = _ep->driver_data;
711 ep->status = req->status ? req->status : req->actual;
712 complete(req->context);
713 }
714 }
715
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 ssize_t ret = copy_to_iter(data, data_len, iter);
719 if (likely(ret == data_len))
720 return ret;
721
722 if (unlikely(iov_iter_count(iter)))
723 return -EFAULT;
724
725 /*
726 * Dear user space developer!
727 *
728 * TL;DR: To stop getting below error message in your kernel log, change
729 * user space code using functionfs to align read buffers to a max
730 * packet size.
731 *
732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 * packet size. When unaligned buffer is passed to functionfs, it
734 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 *
736 * Unfortunately, this means that host may send more data than was
737 * requested in read(2) system call. f_fs doesn’t know what to do with
738 * that excess data so it simply drops it.
739 *
740 * Was the buffer aligned in the first place, no such problem would
741 * happen.
742 *
743 * Data may be dropped only in AIO reads. Synchronous reads are handled
744 * by splitting a request into multiple parts. This splitting may still
745 * be a problem though so it’s likely best to align the buffer
746 * regardless of it being AIO or not..
747 *
748 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
750 * affected.
751 */
752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 "Align read buffer size to max packet size to avoid the problem.\n",
754 data_len, ret);
755
756 return ret;
757 }
758
759 /*
760 * allocate a virtually contiguous buffer and create a scatterlist describing it
761 * @sg_table - pointer to a place to be filled with sg_table contents
762 * @size - required buffer size
763 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 struct page **pages;
767 void *vaddr, *ptr;
768 unsigned int n_pages;
769 int i;
770
771 vaddr = vmalloc(sz);
772 if (!vaddr)
773 return NULL;
774
775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 if (!pages) {
778 vfree(vaddr);
779
780 return NULL;
781 }
782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 pages[i] = vmalloc_to_page(ptr);
784
785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 kvfree(pages);
787 vfree(vaddr);
788
789 return NULL;
790 }
791 kvfree(pages);
792
793 return vaddr;
794 }
795
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 size_t data_len)
798 {
799 if (io_data->use_sg)
800 return ffs_build_sg_list(&io_data->sgt, data_len);
801
802 return kmalloc(data_len, GFP_KERNEL);
803 }
804
ffs_free_buffer(struct ffs_io_data * io_data)805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 if (!io_data->buf)
808 return;
809
810 if (io_data->use_sg) {
811 sg_free_table(&io_data->sgt);
812 vfree(io_data->buf);
813 } else {
814 kfree(io_data->buf);
815 }
816 }
817
ffs_user_copy_worker(struct work_struct * work)818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 work);
822 int ret = io_data->req->status ? io_data->req->status :
823 io_data->req->actual;
824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825
826 if (io_data->read && ret > 0) {
827 kthread_use_mm(io_data->mm);
828 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
829 kthread_unuse_mm(io_data->mm);
830 }
831
832 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
833
834 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
835 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
836
837 usb_ep_free_request(io_data->ep, io_data->req);
838
839 if (io_data->read)
840 kfree(io_data->to_free);
841 ffs_free_buffer(io_data);
842 kfree(io_data);
843 }
844
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)845 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
846 struct usb_request *req)
847 {
848 struct ffs_io_data *io_data = req->context;
849 struct ffs_data *ffs = io_data->ffs;
850
851 ENTER();
852
853 INIT_WORK(&io_data->work, ffs_user_copy_worker);
854 queue_work(ffs->io_completion_wq, &io_data->work);
855 }
856
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)857 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
858 {
859 /*
860 * See comment in struct ffs_epfile for full read_buffer pointer
861 * synchronisation story.
862 */
863 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
864 if (buf && buf != READ_BUFFER_DROP)
865 kfree(buf);
866 }
867
868 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)869 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
870 struct iov_iter *iter)
871 {
872 /*
873 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
874 * the buffer while we are using it. See comment in struct ffs_epfile
875 * for full read_buffer pointer synchronisation story.
876 */
877 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
878 ssize_t ret;
879 if (!buf || buf == READ_BUFFER_DROP)
880 return 0;
881
882 ret = copy_to_iter(buf->data, buf->length, iter);
883 if (buf->length == ret) {
884 kfree(buf);
885 return ret;
886 }
887
888 if (unlikely(iov_iter_count(iter))) {
889 ret = -EFAULT;
890 } else {
891 buf->length -= ret;
892 buf->data += ret;
893 }
894
895 if (cmpxchg(&epfile->read_buffer, NULL, buf))
896 kfree(buf);
897
898 return ret;
899 }
900
901 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)902 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
903 void *data, int data_len,
904 struct iov_iter *iter)
905 {
906 struct ffs_buffer *buf;
907
908 ssize_t ret = copy_to_iter(data, data_len, iter);
909 if (likely(data_len == ret))
910 return ret;
911
912 if (unlikely(iov_iter_count(iter)))
913 return -EFAULT;
914
915 /* See ffs_copy_to_iter for more context. */
916 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
917 data_len, ret);
918
919 data_len -= ret;
920 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
921 if (!buf)
922 return -ENOMEM;
923 buf->length = data_len;
924 buf->data = buf->storage;
925 memcpy(buf->storage, data + ret, data_len);
926
927 /*
928 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
929 * ffs_func_eps_disable has been called in the meanwhile). See comment
930 * in struct ffs_epfile for full read_buffer pointer synchronisation
931 * story.
932 */
933 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
934 kfree(buf);
935
936 return ret;
937 }
938
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)939 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
940 {
941 struct ffs_epfile *epfile = file->private_data;
942 struct usb_request *req;
943 struct ffs_ep *ep;
944 char *data = NULL;
945 ssize_t ret, data_len = -EINVAL;
946 int halt;
947
948 /* Are we still active? */
949 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
950 return -ENODEV;
951
952 /* Wait for endpoint to be enabled */
953 ep = epfile->ep;
954 if (!ep) {
955 if (file->f_flags & O_NONBLOCK)
956 return -EAGAIN;
957
958 ret = wait_event_interruptible(
959 epfile->ffs->wait, (ep = epfile->ep));
960 if (ret)
961 return -EINTR;
962 }
963
964 /* Do we halt? */
965 halt = (!io_data->read == !epfile->in);
966 if (halt && epfile->isoc)
967 return -EINVAL;
968
969 /* We will be using request and read_buffer */
970 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
971 if (unlikely(ret))
972 goto error;
973
974 /* Allocate & copy */
975 if (!halt) {
976 struct usb_gadget *gadget;
977
978 /*
979 * Do we have buffered data from previous partial read? Check
980 * that for synchronous case only because we do not have
981 * facility to ‘wake up’ a pending asynchronous read and push
982 * buffered data to it which we would need to make things behave
983 * consistently.
984 */
985 if (!io_data->aio && io_data->read) {
986 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
987 if (ret)
988 goto error_mutex;
989 }
990
991 /*
992 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
993 * before the waiting completes, so do not assign to 'gadget'
994 * earlier
995 */
996 gadget = epfile->ffs->gadget;
997
998 spin_lock_irq(&epfile->ffs->eps_lock);
999 /* In the meantime, endpoint got disabled or changed. */
1000 if (epfile->ep != ep) {
1001 ret = -ESHUTDOWN;
1002 goto error_lock;
1003 }
1004 data_len = iov_iter_count(&io_data->data);
1005 /*
1006 * Controller may require buffer size to be aligned to
1007 * maxpacketsize of an out endpoint.
1008 */
1009 if (io_data->read)
1010 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1011
1012 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1013 spin_unlock_irq(&epfile->ffs->eps_lock);
1014
1015 data = ffs_alloc_buffer(io_data, data_len);
1016 if (unlikely(!data)) {
1017 ret = -ENOMEM;
1018 goto error_mutex;
1019 }
1020 if (!io_data->read &&
1021 !copy_from_iter_full(data, data_len, &io_data->data)) {
1022 ret = -EFAULT;
1023 goto error_mutex;
1024 }
1025 }
1026
1027 spin_lock_irq(&epfile->ffs->eps_lock);
1028
1029 if (epfile->ep != ep) {
1030 /* In the meantime, endpoint got disabled or changed. */
1031 ret = -ESHUTDOWN;
1032 } else if (halt) {
1033 ret = usb_ep_set_halt(ep->ep);
1034 if (!ret)
1035 ret = -EBADMSG;
1036 } else if (unlikely(data_len == -EINVAL)) {
1037 /*
1038 * Sanity Check: even though data_len can't be used
1039 * uninitialized at the time I write this comment, some
1040 * compilers complain about this situation.
1041 * In order to keep the code clean from warnings, data_len is
1042 * being initialized to -EINVAL during its declaration, which
1043 * means we can't rely on compiler anymore to warn no future
1044 * changes won't result in data_len being used uninitialized.
1045 * For such reason, we're adding this redundant sanity check
1046 * here.
1047 */
1048 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1049 ret = -EINVAL;
1050 } else if (!io_data->aio) {
1051 DECLARE_COMPLETION_ONSTACK(done);
1052 bool interrupted = false;
1053
1054 req = ep->req;
1055 if (io_data->use_sg) {
1056 req->buf = NULL;
1057 req->sg = io_data->sgt.sgl;
1058 req->num_sgs = io_data->sgt.nents;
1059 } else {
1060 req->buf = data;
1061 req->num_sgs = 0;
1062 }
1063 req->length = data_len;
1064
1065 io_data->buf = data;
1066
1067 req->context = &done;
1068 req->complete = ffs_epfile_io_complete;
1069
1070 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1071 if (unlikely(ret < 0))
1072 goto error_lock;
1073
1074 spin_unlock_irq(&epfile->ffs->eps_lock);
1075
1076 if (unlikely(wait_for_completion_interruptible(&done))) {
1077 /*
1078 * To avoid race condition with ffs_epfile_io_complete,
1079 * dequeue the request first then check
1080 * status. usb_ep_dequeue API should guarantee no race
1081 * condition with req->complete callback.
1082 */
1083 usb_ep_dequeue(ep->ep, req);
1084 wait_for_completion(&done);
1085 interrupted = ep->status < 0;
1086 }
1087
1088 if (interrupted)
1089 ret = -EINTR;
1090 else if (io_data->read && ep->status > 0)
1091 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092 &io_data->data);
1093 else
1094 ret = ep->status;
1095 goto error_mutex;
1096 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097 ret = -ENOMEM;
1098 } else {
1099 if (io_data->use_sg) {
1100 req->buf = NULL;
1101 req->sg = io_data->sgt.sgl;
1102 req->num_sgs = io_data->sgt.nents;
1103 } else {
1104 req->buf = data;
1105 req->num_sgs = 0;
1106 }
1107 req->length = data_len;
1108
1109 io_data->buf = data;
1110 io_data->ep = ep->ep;
1111 io_data->req = req;
1112 io_data->ffs = epfile->ffs;
1113
1114 req->context = io_data;
1115 req->complete = ffs_epfile_async_io_complete;
1116
1117 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118 if (unlikely(ret)) {
1119 io_data->req = NULL;
1120 usb_ep_free_request(ep->ep, req);
1121 goto error_lock;
1122 }
1123
1124 ret = -EIOCBQUEUED;
1125 /*
1126 * Do not kfree the buffer in this function. It will be freed
1127 * by ffs_user_copy_worker.
1128 */
1129 data = NULL;
1130 }
1131
1132 error_lock:
1133 spin_unlock_irq(&epfile->ffs->eps_lock);
1134 error_mutex:
1135 mutex_unlock(&epfile->mutex);
1136 error:
1137 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1138 ffs_free_buffer(io_data);
1139 return ret;
1140 }
1141
1142 static int
ffs_epfile_open(struct inode * inode,struct file * file)1143 ffs_epfile_open(struct inode *inode, struct file *file)
1144 {
1145 struct ffs_epfile *epfile = inode->i_private;
1146
1147 ENTER();
1148
1149 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1150 return -ENODEV;
1151
1152 file->private_data = epfile;
1153 ffs_data_opened(epfile->ffs);
1154
1155 return stream_open(inode, file);
1156 }
1157
ffs_aio_cancel(struct kiocb * kiocb)1158 static int ffs_aio_cancel(struct kiocb *kiocb)
1159 {
1160 struct ffs_io_data *io_data = kiocb->private;
1161 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1162 unsigned long flags;
1163 int value;
1164
1165 ENTER();
1166
1167 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1168
1169 if (likely(io_data && io_data->ep && io_data->req))
1170 value = usb_ep_dequeue(io_data->ep, io_data->req);
1171 else
1172 value = -EINVAL;
1173
1174 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175
1176 return value;
1177 }
1178
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180 {
1181 struct ffs_io_data io_data, *p = &io_data;
1182 ssize_t res;
1183
1184 ENTER();
1185
1186 if (!is_sync_kiocb(kiocb)) {
1187 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188 if (unlikely(!p))
1189 return -ENOMEM;
1190 p->aio = true;
1191 } else {
1192 memset(p, 0, sizeof(*p));
1193 p->aio = false;
1194 }
1195
1196 p->read = false;
1197 p->kiocb = kiocb;
1198 p->data = *from;
1199 p->mm = current->mm;
1200
1201 kiocb->private = p;
1202
1203 if (p->aio)
1204 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205
1206 res = ffs_epfile_io(kiocb->ki_filp, p);
1207 if (res == -EIOCBQUEUED)
1208 return res;
1209 if (p->aio)
1210 kfree(p);
1211 else
1212 *from = p->data;
1213 return res;
1214 }
1215
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1216 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217 {
1218 struct ffs_io_data io_data, *p = &io_data;
1219 ssize_t res;
1220
1221 ENTER();
1222
1223 if (!is_sync_kiocb(kiocb)) {
1224 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225 if (unlikely(!p))
1226 return -ENOMEM;
1227 p->aio = true;
1228 } else {
1229 memset(p, 0, sizeof(*p));
1230 p->aio = false;
1231 }
1232
1233 p->read = true;
1234 p->kiocb = kiocb;
1235 if (p->aio) {
1236 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237 if (!p->to_free) {
1238 kfree(p);
1239 return -ENOMEM;
1240 }
1241 } else {
1242 p->data = *to;
1243 p->to_free = NULL;
1244 }
1245 p->mm = current->mm;
1246
1247 kiocb->private = p;
1248
1249 if (p->aio)
1250 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251
1252 res = ffs_epfile_io(kiocb->ki_filp, p);
1253 if (res == -EIOCBQUEUED)
1254 return res;
1255
1256 if (p->aio) {
1257 kfree(p->to_free);
1258 kfree(p);
1259 } else {
1260 *to = p->data;
1261 }
1262 return res;
1263 }
1264
1265 static int
ffs_epfile_release(struct inode * inode,struct file * file)1266 ffs_epfile_release(struct inode *inode, struct file *file)
1267 {
1268 struct ffs_epfile *epfile = inode->i_private;
1269
1270 ENTER();
1271
1272 __ffs_epfile_read_buffer_free(epfile);
1273 ffs_data_closed(epfile->ffs);
1274
1275 return 0;
1276 }
1277
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1278 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279 unsigned long value)
1280 {
1281 struct ffs_epfile *epfile = file->private_data;
1282 struct ffs_ep *ep;
1283 int ret;
1284
1285 ENTER();
1286
1287 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288 return -ENODEV;
1289
1290 /* Wait for endpoint to be enabled */
1291 ep = epfile->ep;
1292 if (!ep) {
1293 if (file->f_flags & O_NONBLOCK)
1294 return -EAGAIN;
1295
1296 ret = wait_event_interruptible(
1297 epfile->ffs->wait, (ep = epfile->ep));
1298 if (ret)
1299 return -EINTR;
1300 }
1301
1302 spin_lock_irq(&epfile->ffs->eps_lock);
1303
1304 /* In the meantime, endpoint got disabled or changed. */
1305 if (epfile->ep != ep) {
1306 spin_unlock_irq(&epfile->ffs->eps_lock);
1307 return -ESHUTDOWN;
1308 }
1309
1310 switch (code) {
1311 case FUNCTIONFS_FIFO_STATUS:
1312 ret = usb_ep_fifo_status(epfile->ep->ep);
1313 break;
1314 case FUNCTIONFS_FIFO_FLUSH:
1315 usb_ep_fifo_flush(epfile->ep->ep);
1316 ret = 0;
1317 break;
1318 case FUNCTIONFS_CLEAR_HALT:
1319 ret = usb_ep_clear_halt(epfile->ep->ep);
1320 break;
1321 case FUNCTIONFS_ENDPOINT_REVMAP:
1322 ret = epfile->ep->num;
1323 break;
1324 case FUNCTIONFS_ENDPOINT_DESC:
1325 {
1326 int desc_idx;
1327 struct usb_endpoint_descriptor desc1, *desc;
1328
1329 switch (epfile->ffs->gadget->speed) {
1330 case USB_SPEED_SUPER:
1331 case USB_SPEED_SUPER_PLUS:
1332 desc_idx = 2;
1333 break;
1334 case USB_SPEED_HIGH:
1335 desc_idx = 1;
1336 break;
1337 default:
1338 desc_idx = 0;
1339 }
1340
1341 desc = epfile->ep->descs[desc_idx];
1342 memcpy(&desc1, desc, desc->bLength);
1343
1344 spin_unlock_irq(&epfile->ffs->eps_lock);
1345 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1346 if (ret)
1347 ret = -EFAULT;
1348 return ret;
1349 }
1350 default:
1351 ret = -ENOTTY;
1352 }
1353 spin_unlock_irq(&epfile->ffs->eps_lock);
1354
1355 return ret;
1356 }
1357
1358 static const struct file_operations ffs_epfile_operations = {
1359 .llseek = no_llseek,
1360
1361 .open = ffs_epfile_open,
1362 .write_iter = ffs_epfile_write_iter,
1363 .read_iter = ffs_epfile_read_iter,
1364 .release = ffs_epfile_release,
1365 .unlocked_ioctl = ffs_epfile_ioctl,
1366 .compat_ioctl = compat_ptr_ioctl,
1367 };
1368
1369
1370 /* File system and super block operations ***********************************/
1371
1372 /*
1373 * Mounting the file system creates a controller file, used first for
1374 * function configuration then later for event monitoring.
1375 */
1376
1377 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1378 ffs_sb_make_inode(struct super_block *sb, void *data,
1379 const struct file_operations *fops,
1380 const struct inode_operations *iops,
1381 struct ffs_file_perms *perms)
1382 {
1383 struct inode *inode;
1384
1385 ENTER();
1386
1387 inode = new_inode(sb);
1388
1389 if (likely(inode)) {
1390 struct timespec64 ts = current_time(inode);
1391
1392 inode->i_ino = get_next_ino();
1393 inode->i_mode = perms->mode;
1394 inode->i_uid = perms->uid;
1395 inode->i_gid = perms->gid;
1396 inode->i_atime = ts;
1397 inode->i_mtime = ts;
1398 inode->i_ctime = ts;
1399 inode->i_private = data;
1400 if (fops)
1401 inode->i_fop = fops;
1402 if (iops)
1403 inode->i_op = iops;
1404 }
1405
1406 return inode;
1407 }
1408
1409 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1410 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1411 const char *name, void *data,
1412 const struct file_operations *fops)
1413 {
1414 struct ffs_data *ffs = sb->s_fs_info;
1415 struct dentry *dentry;
1416 struct inode *inode;
1417
1418 ENTER();
1419
1420 dentry = d_alloc_name(sb->s_root, name);
1421 if (unlikely(!dentry))
1422 return NULL;
1423
1424 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1425 if (unlikely(!inode)) {
1426 dput(dentry);
1427 return NULL;
1428 }
1429
1430 d_add(dentry, inode);
1431 return dentry;
1432 }
1433
1434 /* Super block */
1435 static const struct super_operations ffs_sb_operations = {
1436 .statfs = simple_statfs,
1437 .drop_inode = generic_delete_inode,
1438 };
1439
1440 struct ffs_sb_fill_data {
1441 struct ffs_file_perms perms;
1442 umode_t root_mode;
1443 const char *dev_name;
1444 bool no_disconnect;
1445 struct ffs_data *ffs_data;
1446 };
1447
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1448 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1449 {
1450 struct ffs_sb_fill_data *data = fc->fs_private;
1451 struct inode *inode;
1452 struct ffs_data *ffs = data->ffs_data;
1453
1454 ENTER();
1455
1456 ffs->sb = sb;
1457 data->ffs_data = NULL;
1458 sb->s_fs_info = ffs;
1459 sb->s_blocksize = PAGE_SIZE;
1460 sb->s_blocksize_bits = PAGE_SHIFT;
1461 sb->s_magic = FUNCTIONFS_MAGIC;
1462 sb->s_op = &ffs_sb_operations;
1463 sb->s_time_gran = 1;
1464
1465 /* Root inode */
1466 data->perms.mode = data->root_mode;
1467 inode = ffs_sb_make_inode(sb, NULL,
1468 &simple_dir_operations,
1469 &simple_dir_inode_operations,
1470 &data->perms);
1471 sb->s_root = d_make_root(inode);
1472 if (unlikely(!sb->s_root))
1473 return -ENOMEM;
1474
1475 /* EP0 file */
1476 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1477 &ffs_ep0_operations)))
1478 return -ENOMEM;
1479
1480 return 0;
1481 }
1482
1483 enum {
1484 Opt_no_disconnect,
1485 Opt_rmode,
1486 Opt_fmode,
1487 Opt_mode,
1488 Opt_uid,
1489 Opt_gid,
1490 };
1491
1492 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1493 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1494 fsparam_u32 ("rmode", Opt_rmode),
1495 fsparam_u32 ("fmode", Opt_fmode),
1496 fsparam_u32 ("mode", Opt_mode),
1497 fsparam_u32 ("uid", Opt_uid),
1498 fsparam_u32 ("gid", Opt_gid),
1499 {}
1500 };
1501
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1502 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1503 {
1504 struct ffs_sb_fill_data *data = fc->fs_private;
1505 struct fs_parse_result result;
1506 int opt;
1507
1508 ENTER();
1509
1510 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1511 if (opt < 0)
1512 return opt;
1513
1514 switch (opt) {
1515 case Opt_no_disconnect:
1516 data->no_disconnect = result.boolean;
1517 break;
1518 case Opt_rmode:
1519 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1520 break;
1521 case Opt_fmode:
1522 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1523 break;
1524 case Opt_mode:
1525 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1526 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1527 break;
1528
1529 case Opt_uid:
1530 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1531 if (!uid_valid(data->perms.uid))
1532 goto unmapped_value;
1533 break;
1534 case Opt_gid:
1535 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1536 if (!gid_valid(data->perms.gid))
1537 goto unmapped_value;
1538 break;
1539
1540 default:
1541 return -ENOPARAM;
1542 }
1543
1544 return 0;
1545
1546 unmapped_value:
1547 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1548 }
1549
1550 /*
1551 * Set up the superblock for a mount.
1552 */
ffs_fs_get_tree(struct fs_context * fc)1553 static int ffs_fs_get_tree(struct fs_context *fc)
1554 {
1555 struct ffs_sb_fill_data *ctx = fc->fs_private;
1556 struct ffs_data *ffs;
1557 int ret;
1558
1559 ENTER();
1560
1561 if (!fc->source)
1562 return invalf(fc, "No source specified");
1563
1564 ffs = ffs_data_new(fc->source);
1565 if (unlikely(!ffs))
1566 return -ENOMEM;
1567 ffs->file_perms = ctx->perms;
1568 ffs->no_disconnect = ctx->no_disconnect;
1569
1570 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1571 if (unlikely(!ffs->dev_name)) {
1572 ffs_data_put(ffs);
1573 return -ENOMEM;
1574 }
1575
1576 ret = ffs_acquire_dev(ffs->dev_name, ffs);
1577 if (ret) {
1578 ffs_data_put(ffs);
1579 return ret;
1580 }
1581
1582 ctx->ffs_data = ffs;
1583 return get_tree_nodev(fc, ffs_sb_fill);
1584 }
1585
ffs_fs_free_fc(struct fs_context * fc)1586 static void ffs_fs_free_fc(struct fs_context *fc)
1587 {
1588 struct ffs_sb_fill_data *ctx = fc->fs_private;
1589
1590 if (ctx) {
1591 if (ctx->ffs_data) {
1592 ffs_data_put(ctx->ffs_data);
1593 }
1594
1595 kfree(ctx);
1596 }
1597 }
1598
1599 static const struct fs_context_operations ffs_fs_context_ops = {
1600 .free = ffs_fs_free_fc,
1601 .parse_param = ffs_fs_parse_param,
1602 .get_tree = ffs_fs_get_tree,
1603 };
1604
ffs_fs_init_fs_context(struct fs_context * fc)1605 static int ffs_fs_init_fs_context(struct fs_context *fc)
1606 {
1607 struct ffs_sb_fill_data *ctx;
1608
1609 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1610 if (!ctx)
1611 return -ENOMEM;
1612
1613 ctx->perms.mode = S_IFREG | 0600;
1614 ctx->perms.uid = GLOBAL_ROOT_UID;
1615 ctx->perms.gid = GLOBAL_ROOT_GID;
1616 ctx->root_mode = S_IFDIR | 0500;
1617 ctx->no_disconnect = false;
1618
1619 fc->fs_private = ctx;
1620 fc->ops = &ffs_fs_context_ops;
1621 return 0;
1622 }
1623
1624 static void
ffs_fs_kill_sb(struct super_block * sb)1625 ffs_fs_kill_sb(struct super_block *sb)
1626 {
1627 ENTER();
1628
1629 kill_litter_super(sb);
1630 if (sb->s_fs_info)
1631 ffs_data_closed(sb->s_fs_info);
1632 }
1633
1634 static struct file_system_type ffs_fs_type = {
1635 .owner = THIS_MODULE,
1636 .name = "functionfs",
1637 .init_fs_context = ffs_fs_init_fs_context,
1638 .parameters = ffs_fs_fs_parameters,
1639 .kill_sb = ffs_fs_kill_sb,
1640 };
1641 MODULE_ALIAS_FS("functionfs");
1642
1643
1644 /* Driver's main init/cleanup functions *************************************/
1645
functionfs_init(void)1646 static int functionfs_init(void)
1647 {
1648 int ret;
1649
1650 ENTER();
1651
1652 ret = register_filesystem(&ffs_fs_type);
1653 if (likely(!ret))
1654 pr_info("file system registered\n");
1655 else
1656 pr_err("failed registering file system (%d)\n", ret);
1657
1658 return ret;
1659 }
1660
functionfs_cleanup(void)1661 static void functionfs_cleanup(void)
1662 {
1663 ENTER();
1664
1665 pr_info("unloading\n");
1666 unregister_filesystem(&ffs_fs_type);
1667 }
1668
1669
1670 /* ffs_data and ffs_function construction and destruction code **************/
1671
1672 static void ffs_data_clear(struct ffs_data *ffs);
1673 static void ffs_data_reset(struct ffs_data *ffs);
1674
ffs_data_get(struct ffs_data * ffs)1675 static void ffs_data_get(struct ffs_data *ffs)
1676 {
1677 ENTER();
1678
1679 refcount_inc(&ffs->ref);
1680 }
1681
ffs_data_opened(struct ffs_data * ffs)1682 static void ffs_data_opened(struct ffs_data *ffs)
1683 {
1684 ENTER();
1685
1686 refcount_inc(&ffs->ref);
1687 if (atomic_add_return(1, &ffs->opened) == 1 &&
1688 ffs->state == FFS_DEACTIVATED) {
1689 ffs->state = FFS_CLOSING;
1690 ffs_data_reset(ffs);
1691 }
1692 }
1693
ffs_data_put(struct ffs_data * ffs)1694 static void ffs_data_put(struct ffs_data *ffs)
1695 {
1696 ENTER();
1697
1698 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1699 pr_info("%s(): freeing\n", __func__);
1700 ffs_data_clear(ffs);
1701 ffs_release_dev(ffs->private_data);
1702 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1703 swait_active(&ffs->ep0req_completion.wait) ||
1704 waitqueue_active(&ffs->wait));
1705 destroy_workqueue(ffs->io_completion_wq);
1706 kfree(ffs->dev_name);
1707 kfree(ffs);
1708 }
1709 }
1710
ffs_data_closed(struct ffs_data * ffs)1711 static void ffs_data_closed(struct ffs_data *ffs)
1712 {
1713 ENTER();
1714
1715 if (atomic_dec_and_test(&ffs->opened)) {
1716 if (ffs->no_disconnect) {
1717 ffs->state = FFS_DEACTIVATED;
1718 if (ffs->epfiles) {
1719 ffs_epfiles_destroy(ffs->epfiles,
1720 ffs->eps_count);
1721 ffs->epfiles = NULL;
1722 }
1723 if (ffs->setup_state == FFS_SETUP_PENDING)
1724 __ffs_ep0_stall(ffs);
1725 } else {
1726 ffs->state = FFS_CLOSING;
1727 ffs_data_reset(ffs);
1728 }
1729 }
1730 if (atomic_read(&ffs->opened) < 0) {
1731 ffs->state = FFS_CLOSING;
1732 ffs_data_reset(ffs);
1733 }
1734
1735 ffs_data_put(ffs);
1736 }
1737
ffs_data_new(const char * dev_name)1738 static struct ffs_data *ffs_data_new(const char *dev_name)
1739 {
1740 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1741 if (unlikely(!ffs))
1742 return NULL;
1743
1744 ENTER();
1745
1746 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1747 if (!ffs->io_completion_wq) {
1748 kfree(ffs);
1749 return NULL;
1750 }
1751
1752 refcount_set(&ffs->ref, 1);
1753 atomic_set(&ffs->opened, 0);
1754 ffs->state = FFS_READ_DESCRIPTORS;
1755 mutex_init(&ffs->mutex);
1756 spin_lock_init(&ffs->eps_lock);
1757 init_waitqueue_head(&ffs->ev.waitq);
1758 init_waitqueue_head(&ffs->wait);
1759 init_completion(&ffs->ep0req_completion);
1760
1761 /* XXX REVISIT need to update it in some places, or do we? */
1762 ffs->ev.can_stall = 1;
1763
1764 return ffs;
1765 }
1766
ffs_data_clear(struct ffs_data * ffs)1767 static void ffs_data_clear(struct ffs_data *ffs)
1768 {
1769 ENTER();
1770
1771 ffs_closed(ffs);
1772
1773 BUG_ON(ffs->gadget);
1774
1775 if (ffs->epfiles) {
1776 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1777 ffs->epfiles = NULL;
1778 }
1779
1780 if (ffs->ffs_eventfd) {
1781 eventfd_ctx_put(ffs->ffs_eventfd);
1782 ffs->ffs_eventfd = NULL;
1783 }
1784
1785 kfree(ffs->raw_descs_data);
1786 kfree(ffs->raw_strings);
1787 kfree(ffs->stringtabs);
1788 }
1789
ffs_data_reset(struct ffs_data * ffs)1790 static void ffs_data_reset(struct ffs_data *ffs)
1791 {
1792 ENTER();
1793
1794 ffs_data_clear(ffs);
1795
1796 ffs->raw_descs_data = NULL;
1797 ffs->raw_descs = NULL;
1798 ffs->raw_strings = NULL;
1799 ffs->stringtabs = NULL;
1800
1801 ffs->raw_descs_length = 0;
1802 ffs->fs_descs_count = 0;
1803 ffs->hs_descs_count = 0;
1804 ffs->ss_descs_count = 0;
1805
1806 ffs->strings_count = 0;
1807 ffs->interfaces_count = 0;
1808 ffs->eps_count = 0;
1809
1810 ffs->ev.count = 0;
1811
1812 ffs->state = FFS_READ_DESCRIPTORS;
1813 ffs->setup_state = FFS_NO_SETUP;
1814 ffs->flags = 0;
1815
1816 ffs->ms_os_descs_ext_prop_count = 0;
1817 ffs->ms_os_descs_ext_prop_name_len = 0;
1818 ffs->ms_os_descs_ext_prop_data_len = 0;
1819 }
1820
1821
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1822 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1823 {
1824 struct usb_gadget_strings **lang;
1825 int first_id;
1826
1827 ENTER();
1828
1829 if (WARN_ON(ffs->state != FFS_ACTIVE
1830 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1831 return -EBADFD;
1832
1833 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1834 if (unlikely(first_id < 0))
1835 return first_id;
1836
1837 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1838 if (unlikely(!ffs->ep0req))
1839 return -ENOMEM;
1840 ffs->ep0req->complete = ffs_ep0_complete;
1841 ffs->ep0req->context = ffs;
1842
1843 lang = ffs->stringtabs;
1844 if (lang) {
1845 for (; *lang; ++lang) {
1846 struct usb_string *str = (*lang)->strings;
1847 int id = first_id;
1848 for (; str->s; ++id, ++str)
1849 str->id = id;
1850 }
1851 }
1852
1853 ffs->gadget = cdev->gadget;
1854 ffs_data_get(ffs);
1855 return 0;
1856 }
1857
functionfs_unbind(struct ffs_data * ffs)1858 static void functionfs_unbind(struct ffs_data *ffs)
1859 {
1860 ENTER();
1861
1862 if (!WARN_ON(!ffs->gadget)) {
1863 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1864 ffs->ep0req = NULL;
1865 ffs->gadget = NULL;
1866 clear_bit(FFS_FL_BOUND, &ffs->flags);
1867 ffs_data_put(ffs);
1868 }
1869 }
1870
ffs_epfiles_create(struct ffs_data * ffs)1871 static int ffs_epfiles_create(struct ffs_data *ffs)
1872 {
1873 struct ffs_epfile *epfile, *epfiles;
1874 unsigned i, count;
1875
1876 ENTER();
1877
1878 count = ffs->eps_count;
1879 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1880 if (!epfiles)
1881 return -ENOMEM;
1882
1883 epfile = epfiles;
1884 for (i = 1; i <= count; ++i, ++epfile) {
1885 epfile->ffs = ffs;
1886 mutex_init(&epfile->mutex);
1887 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1888 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1889 else
1890 sprintf(epfile->name, "ep%u", i);
1891 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1892 epfile,
1893 &ffs_epfile_operations);
1894 if (unlikely(!epfile->dentry)) {
1895 ffs_epfiles_destroy(epfiles, i - 1);
1896 return -ENOMEM;
1897 }
1898 }
1899
1900 ffs->epfiles = epfiles;
1901 return 0;
1902 }
1903
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1904 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1905 {
1906 struct ffs_epfile *epfile = epfiles;
1907
1908 ENTER();
1909
1910 for (; count; --count, ++epfile) {
1911 BUG_ON(mutex_is_locked(&epfile->mutex));
1912 if (epfile->dentry) {
1913 d_delete(epfile->dentry);
1914 dput(epfile->dentry);
1915 epfile->dentry = NULL;
1916 }
1917 }
1918
1919 kfree(epfiles);
1920 }
1921
ffs_func_eps_disable(struct ffs_function * func)1922 static void ffs_func_eps_disable(struct ffs_function *func)
1923 {
1924 struct ffs_ep *ep = func->eps;
1925 struct ffs_epfile *epfile = func->ffs->epfiles;
1926 unsigned count = func->ffs->eps_count;
1927 unsigned long flags;
1928
1929 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1930 while (count--) {
1931 /* pending requests get nuked */
1932 if (likely(ep->ep))
1933 usb_ep_disable(ep->ep);
1934 ++ep;
1935
1936 if (epfile) {
1937 epfile->ep = NULL;
1938 __ffs_epfile_read_buffer_free(epfile);
1939 ++epfile;
1940 }
1941 }
1942 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1943 }
1944
ffs_func_eps_enable(struct ffs_function * func)1945 static int ffs_func_eps_enable(struct ffs_function *func)
1946 {
1947 struct ffs_data *ffs = func->ffs;
1948 struct ffs_ep *ep = func->eps;
1949 struct ffs_epfile *epfile = ffs->epfiles;
1950 unsigned count = ffs->eps_count;
1951 unsigned long flags;
1952 int ret = 0;
1953
1954 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1955 while(count--) {
1956 ep->ep->driver_data = ep;
1957
1958 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1959 if (ret) {
1960 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1961 __func__, ep->ep->name, ret);
1962 break;
1963 }
1964
1965 ret = usb_ep_enable(ep->ep);
1966 if (likely(!ret)) {
1967 epfile->ep = ep;
1968 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1969 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1970 } else {
1971 break;
1972 }
1973
1974 ++ep;
1975 ++epfile;
1976 }
1977
1978 wake_up_interruptible(&ffs->wait);
1979 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1980
1981 return ret;
1982 }
1983
1984
1985 /* Parsing and building descriptors and strings *****************************/
1986
1987 /*
1988 * This validates if data pointed by data is a valid USB descriptor as
1989 * well as record how many interfaces, endpoints and strings are
1990 * required by given configuration. Returns address after the
1991 * descriptor or NULL if data is invalid.
1992 */
1993
1994 enum ffs_entity_type {
1995 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1996 };
1997
1998 enum ffs_os_desc_type {
1999 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2000 };
2001
2002 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2003 u8 *valuep,
2004 struct usb_descriptor_header *desc,
2005 void *priv);
2006
2007 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2008 struct usb_os_desc_header *h, void *data,
2009 unsigned len, void *priv);
2010
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2011 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2012 ffs_entity_callback entity,
2013 void *priv, int *current_class)
2014 {
2015 struct usb_descriptor_header *_ds = (void *)data;
2016 u8 length;
2017 int ret;
2018
2019 ENTER();
2020
2021 /* At least two bytes are required: length and type */
2022 if (len < 2) {
2023 pr_vdebug("descriptor too short\n");
2024 return -EINVAL;
2025 }
2026
2027 /* If we have at least as many bytes as the descriptor takes? */
2028 length = _ds->bLength;
2029 if (len < length) {
2030 pr_vdebug("descriptor longer then available data\n");
2031 return -EINVAL;
2032 }
2033
2034 #define __entity_check_INTERFACE(val) 1
2035 #define __entity_check_STRING(val) (val)
2036 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2037 #define __entity(type, val) do { \
2038 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2039 if (unlikely(!__entity_check_ ##type(val))) { \
2040 pr_vdebug("invalid entity's value\n"); \
2041 return -EINVAL; \
2042 } \
2043 ret = entity(FFS_ ##type, &val, _ds, priv); \
2044 if (unlikely(ret < 0)) { \
2045 pr_debug("entity " #type "(%02x); ret = %d\n", \
2046 (val), ret); \
2047 return ret; \
2048 } \
2049 } while (0)
2050
2051 /* Parse descriptor depending on type. */
2052 switch (_ds->bDescriptorType) {
2053 case USB_DT_DEVICE:
2054 case USB_DT_CONFIG:
2055 case USB_DT_STRING:
2056 case USB_DT_DEVICE_QUALIFIER:
2057 /* function can't have any of those */
2058 pr_vdebug("descriptor reserved for gadget: %d\n",
2059 _ds->bDescriptorType);
2060 return -EINVAL;
2061
2062 case USB_DT_INTERFACE: {
2063 struct usb_interface_descriptor *ds = (void *)_ds;
2064 pr_vdebug("interface descriptor\n");
2065 if (length != sizeof *ds)
2066 goto inv_length;
2067
2068 __entity(INTERFACE, ds->bInterfaceNumber);
2069 if (ds->iInterface)
2070 __entity(STRING, ds->iInterface);
2071 *current_class = ds->bInterfaceClass;
2072 }
2073 break;
2074
2075 case USB_DT_ENDPOINT: {
2076 struct usb_endpoint_descriptor *ds = (void *)_ds;
2077 pr_vdebug("endpoint descriptor\n");
2078 if (length != USB_DT_ENDPOINT_SIZE &&
2079 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2080 goto inv_length;
2081 __entity(ENDPOINT, ds->bEndpointAddress);
2082 }
2083 break;
2084
2085 case USB_TYPE_CLASS | 0x01:
2086 if (*current_class == USB_INTERFACE_CLASS_HID) {
2087 pr_vdebug("hid descriptor\n");
2088 if (length != sizeof(struct hid_descriptor))
2089 goto inv_length;
2090 break;
2091 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2092 pr_vdebug("ccid descriptor\n");
2093 if (length != sizeof(struct ccid_descriptor))
2094 goto inv_length;
2095 break;
2096 } else {
2097 pr_vdebug("unknown descriptor: %d for class %d\n",
2098 _ds->bDescriptorType, *current_class);
2099 return -EINVAL;
2100 }
2101
2102 case USB_DT_OTG:
2103 if (length != sizeof(struct usb_otg_descriptor))
2104 goto inv_length;
2105 break;
2106
2107 case USB_DT_INTERFACE_ASSOCIATION: {
2108 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2109 pr_vdebug("interface association descriptor\n");
2110 if (length != sizeof *ds)
2111 goto inv_length;
2112 if (ds->iFunction)
2113 __entity(STRING, ds->iFunction);
2114 }
2115 break;
2116
2117 case USB_DT_SS_ENDPOINT_COMP:
2118 pr_vdebug("EP SS companion descriptor\n");
2119 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2120 goto inv_length;
2121 break;
2122
2123 case USB_DT_OTHER_SPEED_CONFIG:
2124 case USB_DT_INTERFACE_POWER:
2125 case USB_DT_DEBUG:
2126 case USB_DT_SECURITY:
2127 case USB_DT_CS_RADIO_CONTROL:
2128 /* TODO */
2129 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2130 return -EINVAL;
2131
2132 default:
2133 /* We should never be here */
2134 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2135 return -EINVAL;
2136
2137 inv_length:
2138 pr_vdebug("invalid length: %d (descriptor %d)\n",
2139 _ds->bLength, _ds->bDescriptorType);
2140 return -EINVAL;
2141 }
2142
2143 #undef __entity
2144 #undef __entity_check_DESCRIPTOR
2145 #undef __entity_check_INTERFACE
2146 #undef __entity_check_STRING
2147 #undef __entity_check_ENDPOINT
2148
2149 return length;
2150 }
2151
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2152 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2153 ffs_entity_callback entity, void *priv)
2154 {
2155 const unsigned _len = len;
2156 unsigned long num = 0;
2157 int current_class = -1;
2158
2159 ENTER();
2160
2161 for (;;) {
2162 int ret;
2163
2164 if (num == count)
2165 data = NULL;
2166
2167 /* Record "descriptor" entity */
2168 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2169 if (unlikely(ret < 0)) {
2170 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2171 num, ret);
2172 return ret;
2173 }
2174
2175 if (!data)
2176 return _len - len;
2177
2178 ret = ffs_do_single_desc(data, len, entity, priv,
2179 ¤t_class);
2180 if (unlikely(ret < 0)) {
2181 pr_debug("%s returns %d\n", __func__, ret);
2182 return ret;
2183 }
2184
2185 len -= ret;
2186 data += ret;
2187 ++num;
2188 }
2189 }
2190
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2191 static int __ffs_data_do_entity(enum ffs_entity_type type,
2192 u8 *valuep, struct usb_descriptor_header *desc,
2193 void *priv)
2194 {
2195 struct ffs_desc_helper *helper = priv;
2196 struct usb_endpoint_descriptor *d;
2197
2198 ENTER();
2199
2200 switch (type) {
2201 case FFS_DESCRIPTOR:
2202 break;
2203
2204 case FFS_INTERFACE:
2205 /*
2206 * Interfaces are indexed from zero so if we
2207 * encountered interface "n" then there are at least
2208 * "n+1" interfaces.
2209 */
2210 if (*valuep >= helper->interfaces_count)
2211 helper->interfaces_count = *valuep + 1;
2212 break;
2213
2214 case FFS_STRING:
2215 /*
2216 * Strings are indexed from 1 (0 is reserved
2217 * for languages list)
2218 */
2219 if (*valuep > helper->ffs->strings_count)
2220 helper->ffs->strings_count = *valuep;
2221 break;
2222
2223 case FFS_ENDPOINT:
2224 d = (void *)desc;
2225 helper->eps_count++;
2226 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2227 return -EINVAL;
2228 /* Check if descriptors for any speed were already parsed */
2229 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2230 helper->ffs->eps_addrmap[helper->eps_count] =
2231 d->bEndpointAddress;
2232 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2233 d->bEndpointAddress)
2234 return -EINVAL;
2235 break;
2236 }
2237
2238 return 0;
2239 }
2240
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2241 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2242 struct usb_os_desc_header *desc)
2243 {
2244 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2245 u16 w_index = le16_to_cpu(desc->wIndex);
2246
2247 if (bcd_version != 1) {
2248 pr_vdebug("unsupported os descriptors version: %d",
2249 bcd_version);
2250 return -EINVAL;
2251 }
2252 switch (w_index) {
2253 case 0x4:
2254 *next_type = FFS_OS_DESC_EXT_COMPAT;
2255 break;
2256 case 0x5:
2257 *next_type = FFS_OS_DESC_EXT_PROP;
2258 break;
2259 default:
2260 pr_vdebug("unsupported os descriptor type: %d", w_index);
2261 return -EINVAL;
2262 }
2263
2264 return sizeof(*desc);
2265 }
2266
2267 /*
2268 * Process all extended compatibility/extended property descriptors
2269 * of a feature descriptor
2270 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2271 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2272 enum ffs_os_desc_type type,
2273 u16 feature_count,
2274 ffs_os_desc_callback entity,
2275 void *priv,
2276 struct usb_os_desc_header *h)
2277 {
2278 int ret;
2279 const unsigned _len = len;
2280
2281 ENTER();
2282
2283 /* loop over all ext compat/ext prop descriptors */
2284 while (feature_count--) {
2285 ret = entity(type, h, data, len, priv);
2286 if (unlikely(ret < 0)) {
2287 pr_debug("bad OS descriptor, type: %d\n", type);
2288 return ret;
2289 }
2290 data += ret;
2291 len -= ret;
2292 }
2293 return _len - len;
2294 }
2295
2296 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2297 static int __must_check ffs_do_os_descs(unsigned count,
2298 char *data, unsigned len,
2299 ffs_os_desc_callback entity, void *priv)
2300 {
2301 const unsigned _len = len;
2302 unsigned long num = 0;
2303
2304 ENTER();
2305
2306 for (num = 0; num < count; ++num) {
2307 int ret;
2308 enum ffs_os_desc_type type;
2309 u16 feature_count;
2310 struct usb_os_desc_header *desc = (void *)data;
2311
2312 if (len < sizeof(*desc))
2313 return -EINVAL;
2314
2315 /*
2316 * Record "descriptor" entity.
2317 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2318 * Move the data pointer to the beginning of extended
2319 * compatibilities proper or extended properties proper
2320 * portions of the data
2321 */
2322 if (le32_to_cpu(desc->dwLength) > len)
2323 return -EINVAL;
2324
2325 ret = __ffs_do_os_desc_header(&type, desc);
2326 if (unlikely(ret < 0)) {
2327 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2328 num, ret);
2329 return ret;
2330 }
2331 /*
2332 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2333 */
2334 feature_count = le16_to_cpu(desc->wCount);
2335 if (type == FFS_OS_DESC_EXT_COMPAT &&
2336 (feature_count > 255 || desc->Reserved))
2337 return -EINVAL;
2338 len -= ret;
2339 data += ret;
2340
2341 /*
2342 * Process all function/property descriptors
2343 * of this Feature Descriptor
2344 */
2345 ret = ffs_do_single_os_desc(data, len, type,
2346 feature_count, entity, priv, desc);
2347 if (unlikely(ret < 0)) {
2348 pr_debug("%s returns %d\n", __func__, ret);
2349 return ret;
2350 }
2351
2352 len -= ret;
2353 data += ret;
2354 }
2355 return _len - len;
2356 }
2357
2358 /*
2359 * Validate contents of the buffer from userspace related to OS descriptors.
2360 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2361 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2362 struct usb_os_desc_header *h, void *data,
2363 unsigned len, void *priv)
2364 {
2365 struct ffs_data *ffs = priv;
2366 u8 length;
2367
2368 ENTER();
2369
2370 switch (type) {
2371 case FFS_OS_DESC_EXT_COMPAT: {
2372 struct usb_ext_compat_desc *d = data;
2373 int i;
2374
2375 if (len < sizeof(*d) ||
2376 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2377 return -EINVAL;
2378 if (d->Reserved1 != 1) {
2379 /*
2380 * According to the spec, Reserved1 must be set to 1
2381 * but older kernels incorrectly rejected non-zero
2382 * values. We fix it here to avoid returning EINVAL
2383 * in response to values we used to accept.
2384 */
2385 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2386 d->Reserved1 = 1;
2387 }
2388 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2389 if (d->Reserved2[i])
2390 return -EINVAL;
2391
2392 length = sizeof(struct usb_ext_compat_desc);
2393 }
2394 break;
2395 case FFS_OS_DESC_EXT_PROP: {
2396 struct usb_ext_prop_desc *d = data;
2397 u32 type, pdl;
2398 u16 pnl;
2399
2400 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2401 return -EINVAL;
2402 length = le32_to_cpu(d->dwSize);
2403 if (len < length)
2404 return -EINVAL;
2405 type = le32_to_cpu(d->dwPropertyDataType);
2406 if (type < USB_EXT_PROP_UNICODE ||
2407 type > USB_EXT_PROP_UNICODE_MULTI) {
2408 pr_vdebug("unsupported os descriptor property type: %d",
2409 type);
2410 return -EINVAL;
2411 }
2412 pnl = le16_to_cpu(d->wPropertyNameLength);
2413 if (length < 14 + pnl) {
2414 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2415 length, pnl, type);
2416 return -EINVAL;
2417 }
2418 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2419 if (length != 14 + pnl + pdl) {
2420 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2421 length, pnl, pdl, type);
2422 return -EINVAL;
2423 }
2424 ++ffs->ms_os_descs_ext_prop_count;
2425 /* property name reported to the host as "WCHAR"s */
2426 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2427 ffs->ms_os_descs_ext_prop_data_len += pdl;
2428 }
2429 break;
2430 default:
2431 pr_vdebug("unknown descriptor: %d\n", type);
2432 return -EINVAL;
2433 }
2434 return length;
2435 }
2436
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2437 static int __ffs_data_got_descs(struct ffs_data *ffs,
2438 char *const _data, size_t len)
2439 {
2440 char *data = _data, *raw_descs;
2441 unsigned os_descs_count = 0, counts[3], flags;
2442 int ret = -EINVAL, i;
2443 struct ffs_desc_helper helper;
2444
2445 ENTER();
2446
2447 if (get_unaligned_le32(data + 4) != len)
2448 goto error;
2449
2450 switch (get_unaligned_le32(data)) {
2451 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2452 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2453 data += 8;
2454 len -= 8;
2455 break;
2456 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2457 flags = get_unaligned_le32(data + 8);
2458 ffs->user_flags = flags;
2459 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2460 FUNCTIONFS_HAS_HS_DESC |
2461 FUNCTIONFS_HAS_SS_DESC |
2462 FUNCTIONFS_HAS_MS_OS_DESC |
2463 FUNCTIONFS_VIRTUAL_ADDR |
2464 FUNCTIONFS_EVENTFD |
2465 FUNCTIONFS_ALL_CTRL_RECIP |
2466 FUNCTIONFS_CONFIG0_SETUP)) {
2467 ret = -ENOSYS;
2468 goto error;
2469 }
2470 data += 12;
2471 len -= 12;
2472 break;
2473 default:
2474 goto error;
2475 }
2476
2477 if (flags & FUNCTIONFS_EVENTFD) {
2478 if (len < 4)
2479 goto error;
2480 ffs->ffs_eventfd =
2481 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2482 if (IS_ERR(ffs->ffs_eventfd)) {
2483 ret = PTR_ERR(ffs->ffs_eventfd);
2484 ffs->ffs_eventfd = NULL;
2485 goto error;
2486 }
2487 data += 4;
2488 len -= 4;
2489 }
2490
2491 /* Read fs_count, hs_count and ss_count (if present) */
2492 for (i = 0; i < 3; ++i) {
2493 if (!(flags & (1 << i))) {
2494 counts[i] = 0;
2495 } else if (len < 4) {
2496 goto error;
2497 } else {
2498 counts[i] = get_unaligned_le32(data);
2499 data += 4;
2500 len -= 4;
2501 }
2502 }
2503 if (flags & (1 << i)) {
2504 if (len < 4) {
2505 goto error;
2506 }
2507 os_descs_count = get_unaligned_le32(data);
2508 data += 4;
2509 len -= 4;
2510 }
2511
2512 /* Read descriptors */
2513 raw_descs = data;
2514 helper.ffs = ffs;
2515 for (i = 0; i < 3; ++i) {
2516 if (!counts[i])
2517 continue;
2518 helper.interfaces_count = 0;
2519 helper.eps_count = 0;
2520 ret = ffs_do_descs(counts[i], data, len,
2521 __ffs_data_do_entity, &helper);
2522 if (ret < 0)
2523 goto error;
2524 if (!ffs->eps_count && !ffs->interfaces_count) {
2525 ffs->eps_count = helper.eps_count;
2526 ffs->interfaces_count = helper.interfaces_count;
2527 } else {
2528 if (ffs->eps_count != helper.eps_count) {
2529 ret = -EINVAL;
2530 goto error;
2531 }
2532 if (ffs->interfaces_count != helper.interfaces_count) {
2533 ret = -EINVAL;
2534 goto error;
2535 }
2536 }
2537 data += ret;
2538 len -= ret;
2539 }
2540 if (os_descs_count) {
2541 ret = ffs_do_os_descs(os_descs_count, data, len,
2542 __ffs_data_do_os_desc, ffs);
2543 if (ret < 0)
2544 goto error;
2545 data += ret;
2546 len -= ret;
2547 }
2548
2549 if (raw_descs == data || len) {
2550 ret = -EINVAL;
2551 goto error;
2552 }
2553
2554 ffs->raw_descs_data = _data;
2555 ffs->raw_descs = raw_descs;
2556 ffs->raw_descs_length = data - raw_descs;
2557 ffs->fs_descs_count = counts[0];
2558 ffs->hs_descs_count = counts[1];
2559 ffs->ss_descs_count = counts[2];
2560 ffs->ms_os_descs_count = os_descs_count;
2561
2562 return 0;
2563
2564 error:
2565 kfree(_data);
2566 return ret;
2567 }
2568
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2569 static int __ffs_data_got_strings(struct ffs_data *ffs,
2570 char *const _data, size_t len)
2571 {
2572 u32 str_count, needed_count, lang_count;
2573 struct usb_gadget_strings **stringtabs, *t;
2574 const char *data = _data;
2575 struct usb_string *s;
2576
2577 ENTER();
2578
2579 if (unlikely(len < 16 ||
2580 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2581 get_unaligned_le32(data + 4) != len))
2582 goto error;
2583 str_count = get_unaligned_le32(data + 8);
2584 lang_count = get_unaligned_le32(data + 12);
2585
2586 /* if one is zero the other must be zero */
2587 if (unlikely(!str_count != !lang_count))
2588 goto error;
2589
2590 /* Do we have at least as many strings as descriptors need? */
2591 needed_count = ffs->strings_count;
2592 if (unlikely(str_count < needed_count))
2593 goto error;
2594
2595 /*
2596 * If we don't need any strings just return and free all
2597 * memory.
2598 */
2599 if (!needed_count) {
2600 kfree(_data);
2601 return 0;
2602 }
2603
2604 /* Allocate everything in one chunk so there's less maintenance. */
2605 {
2606 unsigned i = 0;
2607 vla_group(d);
2608 vla_item(d, struct usb_gadget_strings *, stringtabs,
2609 lang_count + 1);
2610 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2611 vla_item(d, struct usb_string, strings,
2612 lang_count*(needed_count+1));
2613
2614 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2615
2616 if (unlikely(!vlabuf)) {
2617 kfree(_data);
2618 return -ENOMEM;
2619 }
2620
2621 /* Initialize the VLA pointers */
2622 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2623 t = vla_ptr(vlabuf, d, stringtab);
2624 i = lang_count;
2625 do {
2626 *stringtabs++ = t++;
2627 } while (--i);
2628 *stringtabs = NULL;
2629
2630 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2631 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2632 t = vla_ptr(vlabuf, d, stringtab);
2633 s = vla_ptr(vlabuf, d, strings);
2634 }
2635
2636 /* For each language */
2637 data += 16;
2638 len -= 16;
2639
2640 do { /* lang_count > 0 so we can use do-while */
2641 unsigned needed = needed_count;
2642 u32 str_per_lang = str_count;
2643
2644 if (unlikely(len < 3))
2645 goto error_free;
2646 t->language = get_unaligned_le16(data);
2647 t->strings = s;
2648 ++t;
2649
2650 data += 2;
2651 len -= 2;
2652
2653 /* For each string */
2654 do { /* str_count > 0 so we can use do-while */
2655 size_t length = strnlen(data, len);
2656
2657 if (unlikely(length == len))
2658 goto error_free;
2659
2660 /*
2661 * User may provide more strings then we need,
2662 * if that's the case we simply ignore the
2663 * rest
2664 */
2665 if (likely(needed)) {
2666 /*
2667 * s->id will be set while adding
2668 * function to configuration so for
2669 * now just leave garbage here.
2670 */
2671 s->s = data;
2672 --needed;
2673 ++s;
2674 }
2675
2676 data += length + 1;
2677 len -= length + 1;
2678 } while (--str_per_lang);
2679
2680 s->id = 0; /* terminator */
2681 s->s = NULL;
2682 ++s;
2683
2684 } while (--lang_count);
2685
2686 /* Some garbage left? */
2687 if (unlikely(len))
2688 goto error_free;
2689
2690 /* Done! */
2691 ffs->stringtabs = stringtabs;
2692 ffs->raw_strings = _data;
2693
2694 return 0;
2695
2696 error_free:
2697 kfree(stringtabs);
2698 error:
2699 kfree(_data);
2700 return -EINVAL;
2701 }
2702
2703
2704 /* Events handling and management *******************************************/
2705
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2706 static void __ffs_event_add(struct ffs_data *ffs,
2707 enum usb_functionfs_event_type type)
2708 {
2709 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2710 int neg = 0;
2711
2712 /*
2713 * Abort any unhandled setup
2714 *
2715 * We do not need to worry about some cmpxchg() changing value
2716 * of ffs->setup_state without holding the lock because when
2717 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2718 * the source does nothing.
2719 */
2720 if (ffs->setup_state == FFS_SETUP_PENDING)
2721 ffs->setup_state = FFS_SETUP_CANCELLED;
2722
2723 /*
2724 * Logic of this function guarantees that there are at most four pending
2725 * evens on ffs->ev.types queue. This is important because the queue
2726 * has space for four elements only and __ffs_ep0_read_events function
2727 * depends on that limit as well. If more event types are added, those
2728 * limits have to be revisited or guaranteed to still hold.
2729 */
2730 switch (type) {
2731 case FUNCTIONFS_RESUME:
2732 rem_type2 = FUNCTIONFS_SUSPEND;
2733 fallthrough;
2734 case FUNCTIONFS_SUSPEND:
2735 case FUNCTIONFS_SETUP:
2736 rem_type1 = type;
2737 /* Discard all similar events */
2738 break;
2739
2740 case FUNCTIONFS_BIND:
2741 case FUNCTIONFS_UNBIND:
2742 case FUNCTIONFS_DISABLE:
2743 case FUNCTIONFS_ENABLE:
2744 /* Discard everything other then power management. */
2745 rem_type1 = FUNCTIONFS_SUSPEND;
2746 rem_type2 = FUNCTIONFS_RESUME;
2747 neg = 1;
2748 break;
2749
2750 default:
2751 WARN(1, "%d: unknown event, this should not happen\n", type);
2752 return;
2753 }
2754
2755 {
2756 u8 *ev = ffs->ev.types, *out = ev;
2757 unsigned n = ffs->ev.count;
2758 for (; n; --n, ++ev)
2759 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2760 *out++ = *ev;
2761 else
2762 pr_vdebug("purging event %d\n", *ev);
2763 ffs->ev.count = out - ffs->ev.types;
2764 }
2765
2766 pr_vdebug("adding event %d\n", type);
2767 ffs->ev.types[ffs->ev.count++] = type;
2768 wake_up_locked(&ffs->ev.waitq);
2769 if (ffs->ffs_eventfd)
2770 eventfd_signal(ffs->ffs_eventfd, 1);
2771 }
2772
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2773 static void ffs_event_add(struct ffs_data *ffs,
2774 enum usb_functionfs_event_type type)
2775 {
2776 unsigned long flags;
2777 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2778 __ffs_event_add(ffs, type);
2779 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2780 }
2781
2782 /* Bind/unbind USB function hooks *******************************************/
2783
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2784 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2785 {
2786 int i;
2787
2788 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2789 if (ffs->eps_addrmap[i] == endpoint_address)
2790 return i;
2791 return -ENOENT;
2792 }
2793
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2794 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2795 struct usb_descriptor_header *desc,
2796 void *priv)
2797 {
2798 struct usb_endpoint_descriptor *ds = (void *)desc;
2799 struct ffs_function *func = priv;
2800 struct ffs_ep *ffs_ep;
2801 unsigned ep_desc_id;
2802 int idx;
2803 static const char *speed_names[] = { "full", "high", "super" };
2804
2805 if (type != FFS_DESCRIPTOR)
2806 return 0;
2807
2808 /*
2809 * If ss_descriptors is not NULL, we are reading super speed
2810 * descriptors; if hs_descriptors is not NULL, we are reading high
2811 * speed descriptors; otherwise, we are reading full speed
2812 * descriptors.
2813 */
2814 if (func->function.ss_descriptors) {
2815 ep_desc_id = 2;
2816 func->function.ss_descriptors[(long)valuep] = desc;
2817 } else if (func->function.hs_descriptors) {
2818 ep_desc_id = 1;
2819 func->function.hs_descriptors[(long)valuep] = desc;
2820 } else {
2821 ep_desc_id = 0;
2822 func->function.fs_descriptors[(long)valuep] = desc;
2823 }
2824
2825 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2826 return 0;
2827
2828 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2829 if (idx < 0)
2830 return idx;
2831
2832 ffs_ep = func->eps + idx;
2833
2834 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2835 pr_err("two %sspeed descriptors for EP %d\n",
2836 speed_names[ep_desc_id],
2837 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2838 return -EINVAL;
2839 }
2840 ffs_ep->descs[ep_desc_id] = ds;
2841
2842 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2843 if (ffs_ep->ep) {
2844 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2845 if (!ds->wMaxPacketSize)
2846 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2847 } else {
2848 struct usb_request *req;
2849 struct usb_ep *ep;
2850 u8 bEndpointAddress;
2851 u16 wMaxPacketSize;
2852
2853 /*
2854 * We back up bEndpointAddress because autoconfig overwrites
2855 * it with physical endpoint address.
2856 */
2857 bEndpointAddress = ds->bEndpointAddress;
2858 /*
2859 * We back up wMaxPacketSize because autoconfig treats
2860 * endpoint descriptors as if they were full speed.
2861 */
2862 wMaxPacketSize = ds->wMaxPacketSize;
2863 pr_vdebug("autoconfig\n");
2864 ep = usb_ep_autoconfig(func->gadget, ds);
2865 if (unlikely(!ep))
2866 return -ENOTSUPP;
2867 ep->driver_data = func->eps + idx;
2868
2869 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2870 if (unlikely(!req))
2871 return -ENOMEM;
2872
2873 ffs_ep->ep = ep;
2874 ffs_ep->req = req;
2875 func->eps_revmap[ds->bEndpointAddress &
2876 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2877 /*
2878 * If we use virtual address mapping, we restore
2879 * original bEndpointAddress value.
2880 */
2881 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2882 ds->bEndpointAddress = bEndpointAddress;
2883 /*
2884 * Restore wMaxPacketSize which was potentially
2885 * overwritten by autoconfig.
2886 */
2887 ds->wMaxPacketSize = wMaxPacketSize;
2888 }
2889 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2890
2891 return 0;
2892 }
2893
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2894 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2895 struct usb_descriptor_header *desc,
2896 void *priv)
2897 {
2898 struct ffs_function *func = priv;
2899 unsigned idx;
2900 u8 newValue;
2901
2902 switch (type) {
2903 default:
2904 case FFS_DESCRIPTOR:
2905 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2906 return 0;
2907
2908 case FFS_INTERFACE:
2909 idx = *valuep;
2910 if (func->interfaces_nums[idx] < 0) {
2911 int id = usb_interface_id(func->conf, &func->function);
2912 if (unlikely(id < 0))
2913 return id;
2914 func->interfaces_nums[idx] = id;
2915 }
2916 newValue = func->interfaces_nums[idx];
2917 break;
2918
2919 case FFS_STRING:
2920 /* String' IDs are allocated when fsf_data is bound to cdev */
2921 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2922 break;
2923
2924 case FFS_ENDPOINT:
2925 /*
2926 * USB_DT_ENDPOINT are handled in
2927 * __ffs_func_bind_do_descs().
2928 */
2929 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2930 return 0;
2931
2932 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2933 if (unlikely(!func->eps[idx].ep))
2934 return -EINVAL;
2935
2936 {
2937 struct usb_endpoint_descriptor **descs;
2938 descs = func->eps[idx].descs;
2939 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2940 }
2941 break;
2942 }
2943
2944 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2945 *valuep = newValue;
2946 return 0;
2947 }
2948
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2949 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2950 struct usb_os_desc_header *h, void *data,
2951 unsigned len, void *priv)
2952 {
2953 struct ffs_function *func = priv;
2954 u8 length = 0;
2955
2956 switch (type) {
2957 case FFS_OS_DESC_EXT_COMPAT: {
2958 struct usb_ext_compat_desc *desc = data;
2959 struct usb_os_desc_table *t;
2960
2961 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2962 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2963 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2964 ARRAY_SIZE(desc->CompatibleID) +
2965 ARRAY_SIZE(desc->SubCompatibleID));
2966 length = sizeof(*desc);
2967 }
2968 break;
2969 case FFS_OS_DESC_EXT_PROP: {
2970 struct usb_ext_prop_desc *desc = data;
2971 struct usb_os_desc_table *t;
2972 struct usb_os_desc_ext_prop *ext_prop;
2973 char *ext_prop_name;
2974 char *ext_prop_data;
2975
2976 t = &func->function.os_desc_table[h->interface];
2977 t->if_id = func->interfaces_nums[h->interface];
2978
2979 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2980 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2981
2982 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2983 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2984 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2985 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2986 length = ext_prop->name_len + ext_prop->data_len + 14;
2987
2988 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2989 func->ffs->ms_os_descs_ext_prop_name_avail +=
2990 ext_prop->name_len;
2991
2992 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2993 func->ffs->ms_os_descs_ext_prop_data_avail +=
2994 ext_prop->data_len;
2995 memcpy(ext_prop_data,
2996 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2997 ext_prop->data_len);
2998 /* unicode data reported to the host as "WCHAR"s */
2999 switch (ext_prop->type) {
3000 case USB_EXT_PROP_UNICODE:
3001 case USB_EXT_PROP_UNICODE_ENV:
3002 case USB_EXT_PROP_UNICODE_LINK:
3003 case USB_EXT_PROP_UNICODE_MULTI:
3004 ext_prop->data_len *= 2;
3005 break;
3006 }
3007 ext_prop->data = ext_prop_data;
3008
3009 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3010 ext_prop->name_len);
3011 /* property name reported to the host as "WCHAR"s */
3012 ext_prop->name_len *= 2;
3013 ext_prop->name = ext_prop_name;
3014
3015 t->os_desc->ext_prop_len +=
3016 ext_prop->name_len + ext_prop->data_len + 14;
3017 ++t->os_desc->ext_prop_count;
3018 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3019 }
3020 break;
3021 default:
3022 pr_vdebug("unknown descriptor: %d\n", type);
3023 }
3024
3025 return length;
3026 }
3027
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3028 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3029 struct usb_configuration *c)
3030 {
3031 struct ffs_function *func = ffs_func_from_usb(f);
3032 struct f_fs_opts *ffs_opts =
3033 container_of(f->fi, struct f_fs_opts, func_inst);
3034 struct ffs_data *ffs_data;
3035 int ret;
3036
3037 ENTER();
3038
3039 /*
3040 * Legacy gadget triggers binding in functionfs_ready_callback,
3041 * which already uses locking; taking the same lock here would
3042 * cause a deadlock.
3043 *
3044 * Configfs-enabled gadgets however do need ffs_dev_lock.
3045 */
3046 if (!ffs_opts->no_configfs)
3047 ffs_dev_lock();
3048 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3049 ffs_data = ffs_opts->dev->ffs_data;
3050 if (!ffs_opts->no_configfs)
3051 ffs_dev_unlock();
3052 if (ret)
3053 return ERR_PTR(ret);
3054
3055 func->ffs = ffs_data;
3056 func->conf = c;
3057 func->gadget = c->cdev->gadget;
3058
3059 /*
3060 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3061 * configurations are bound in sequence with list_for_each_entry,
3062 * in each configuration its functions are bound in sequence
3063 * with list_for_each_entry, so we assume no race condition
3064 * with regard to ffs_opts->bound access
3065 */
3066 if (!ffs_opts->refcnt) {
3067 ret = functionfs_bind(func->ffs, c->cdev);
3068 if (ret)
3069 return ERR_PTR(ret);
3070 }
3071 ffs_opts->refcnt++;
3072 func->function.strings = func->ffs->stringtabs;
3073
3074 return ffs_opts;
3075 }
3076
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3077 static int _ffs_func_bind(struct usb_configuration *c,
3078 struct usb_function *f)
3079 {
3080 struct ffs_function *func = ffs_func_from_usb(f);
3081 struct ffs_data *ffs = func->ffs;
3082
3083 const int full = !!func->ffs->fs_descs_count;
3084 const int high = !!func->ffs->hs_descs_count;
3085 const int super = !!func->ffs->ss_descs_count;
3086
3087 int fs_len, hs_len, ss_len, ret, i;
3088 struct ffs_ep *eps_ptr;
3089
3090 /* Make it a single chunk, less management later on */
3091 vla_group(d);
3092 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3093 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3094 full ? ffs->fs_descs_count + 1 : 0);
3095 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3096 high ? ffs->hs_descs_count + 1 : 0);
3097 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3098 super ? ffs->ss_descs_count + 1 : 0);
3099 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3100 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3101 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3102 vla_item_with_sz(d, char[16], ext_compat,
3103 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3104 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3105 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3106 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3107 ffs->ms_os_descs_ext_prop_count);
3108 vla_item_with_sz(d, char, ext_prop_name,
3109 ffs->ms_os_descs_ext_prop_name_len);
3110 vla_item_with_sz(d, char, ext_prop_data,
3111 ffs->ms_os_descs_ext_prop_data_len);
3112 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3113 char *vlabuf;
3114
3115 ENTER();
3116
3117 /* Has descriptors only for speeds gadget does not support */
3118 if (unlikely(!(full | high | super)))
3119 return -ENOTSUPP;
3120
3121 /* Allocate a single chunk, less management later on */
3122 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3123 if (unlikely(!vlabuf))
3124 return -ENOMEM;
3125
3126 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3127 ffs->ms_os_descs_ext_prop_name_avail =
3128 vla_ptr(vlabuf, d, ext_prop_name);
3129 ffs->ms_os_descs_ext_prop_data_avail =
3130 vla_ptr(vlabuf, d, ext_prop_data);
3131
3132 /* Copy descriptors */
3133 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3134 ffs->raw_descs_length);
3135
3136 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3137 eps_ptr = vla_ptr(vlabuf, d, eps);
3138 for (i = 0; i < ffs->eps_count; i++)
3139 eps_ptr[i].num = -1;
3140
3141 /* Save pointers
3142 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3143 */
3144 func->eps = vla_ptr(vlabuf, d, eps);
3145 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3146
3147 /*
3148 * Go through all the endpoint descriptors and allocate
3149 * endpoints first, so that later we can rewrite the endpoint
3150 * numbers without worrying that it may be described later on.
3151 */
3152 if (likely(full)) {
3153 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3154 fs_len = ffs_do_descs(ffs->fs_descs_count,
3155 vla_ptr(vlabuf, d, raw_descs),
3156 d_raw_descs__sz,
3157 __ffs_func_bind_do_descs, func);
3158 if (unlikely(fs_len < 0)) {
3159 ret = fs_len;
3160 goto error;
3161 }
3162 } else {
3163 fs_len = 0;
3164 }
3165
3166 if (likely(high)) {
3167 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3168 hs_len = ffs_do_descs(ffs->hs_descs_count,
3169 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3170 d_raw_descs__sz - fs_len,
3171 __ffs_func_bind_do_descs, func);
3172 if (unlikely(hs_len < 0)) {
3173 ret = hs_len;
3174 goto error;
3175 }
3176 } else {
3177 hs_len = 0;
3178 }
3179
3180 if (likely(super)) {
3181 func->function.ss_descriptors = func->function.ssp_descriptors =
3182 vla_ptr(vlabuf, d, ss_descs);
3183 ss_len = ffs_do_descs(ffs->ss_descs_count,
3184 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3185 d_raw_descs__sz - fs_len - hs_len,
3186 __ffs_func_bind_do_descs, func);
3187 if (unlikely(ss_len < 0)) {
3188 ret = ss_len;
3189 goto error;
3190 }
3191 } else {
3192 ss_len = 0;
3193 }
3194
3195 /*
3196 * Now handle interface numbers allocation and interface and
3197 * endpoint numbers rewriting. We can do that in one go
3198 * now.
3199 */
3200 ret = ffs_do_descs(ffs->fs_descs_count +
3201 (high ? ffs->hs_descs_count : 0) +
3202 (super ? ffs->ss_descs_count : 0),
3203 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3204 __ffs_func_bind_do_nums, func);
3205 if (unlikely(ret < 0))
3206 goto error;
3207
3208 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3209 if (c->cdev->use_os_string) {
3210 for (i = 0; i < ffs->interfaces_count; ++i) {
3211 struct usb_os_desc *desc;
3212
3213 desc = func->function.os_desc_table[i].os_desc =
3214 vla_ptr(vlabuf, d, os_desc) +
3215 i * sizeof(struct usb_os_desc);
3216 desc->ext_compat_id =
3217 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3218 INIT_LIST_HEAD(&desc->ext_prop);
3219 }
3220 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3221 vla_ptr(vlabuf, d, raw_descs) +
3222 fs_len + hs_len + ss_len,
3223 d_raw_descs__sz - fs_len - hs_len -
3224 ss_len,
3225 __ffs_func_bind_do_os_desc, func);
3226 if (unlikely(ret < 0))
3227 goto error;
3228 }
3229 func->function.os_desc_n =
3230 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3231
3232 /* And we're done */
3233 ffs_event_add(ffs, FUNCTIONFS_BIND);
3234 return 0;
3235
3236 error:
3237 /* XXX Do we need to release all claimed endpoints here? */
3238 return ret;
3239 }
3240
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3241 static int ffs_func_bind(struct usb_configuration *c,
3242 struct usb_function *f)
3243 {
3244 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3245 struct ffs_function *func = ffs_func_from_usb(f);
3246 int ret;
3247
3248 if (IS_ERR(ffs_opts))
3249 return PTR_ERR(ffs_opts);
3250
3251 ret = _ffs_func_bind(c, f);
3252 if (ret && !--ffs_opts->refcnt)
3253 functionfs_unbind(func->ffs);
3254
3255 return ret;
3256 }
3257
3258
3259 /* Other USB function hooks *************************************************/
3260
ffs_reset_work(struct work_struct * work)3261 static void ffs_reset_work(struct work_struct *work)
3262 {
3263 struct ffs_data *ffs = container_of(work,
3264 struct ffs_data, reset_work);
3265 ffs_data_reset(ffs);
3266 }
3267
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3268 static int ffs_func_set_alt(struct usb_function *f,
3269 unsigned interface, unsigned alt)
3270 {
3271 struct ffs_function *func = ffs_func_from_usb(f);
3272 struct ffs_data *ffs = func->ffs;
3273 int ret = 0, intf;
3274
3275 if (alt != (unsigned)-1) {
3276 intf = ffs_func_revmap_intf(func, interface);
3277 if (unlikely(intf < 0))
3278 return intf;
3279 }
3280
3281 if (ffs->func)
3282 ffs_func_eps_disable(ffs->func);
3283
3284 if (ffs->state == FFS_DEACTIVATED) {
3285 ffs->state = FFS_CLOSING;
3286 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3287 schedule_work(&ffs->reset_work);
3288 return -ENODEV;
3289 }
3290
3291 if (ffs->state != FFS_ACTIVE)
3292 return -ENODEV;
3293
3294 if (alt == (unsigned)-1) {
3295 ffs->func = NULL;
3296 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3297 return 0;
3298 }
3299
3300 ffs->func = func;
3301 ret = ffs_func_eps_enable(func);
3302 if (likely(ret >= 0))
3303 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3304 return ret;
3305 }
3306
ffs_func_disable(struct usb_function * f)3307 static void ffs_func_disable(struct usb_function *f)
3308 {
3309 ffs_func_set_alt(f, 0, (unsigned)-1);
3310 }
3311
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3312 static int ffs_func_setup(struct usb_function *f,
3313 const struct usb_ctrlrequest *creq)
3314 {
3315 struct ffs_function *func = ffs_func_from_usb(f);
3316 struct ffs_data *ffs = func->ffs;
3317 unsigned long flags;
3318 int ret;
3319
3320 ENTER();
3321
3322 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3323 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3324 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3325 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3326 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3327
3328 /*
3329 * Most requests directed to interface go through here
3330 * (notable exceptions are set/get interface) so we need to
3331 * handle them. All other either handled by composite or
3332 * passed to usb_configuration->setup() (if one is set). No
3333 * matter, we will handle requests directed to endpoint here
3334 * as well (as it's straightforward). Other request recipient
3335 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3336 * is being used.
3337 */
3338 if (ffs->state != FFS_ACTIVE)
3339 return -ENODEV;
3340
3341 switch (creq->bRequestType & USB_RECIP_MASK) {
3342 case USB_RECIP_INTERFACE:
3343 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3344 if (unlikely(ret < 0))
3345 return ret;
3346 break;
3347
3348 case USB_RECIP_ENDPOINT:
3349 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3350 if (unlikely(ret < 0))
3351 return ret;
3352 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3353 ret = func->ffs->eps_addrmap[ret];
3354 break;
3355
3356 default:
3357 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3358 ret = le16_to_cpu(creq->wIndex);
3359 else
3360 return -EOPNOTSUPP;
3361 }
3362
3363 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3364 ffs->ev.setup = *creq;
3365 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3366 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3367 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3368
3369 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3370 }
3371
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3372 static bool ffs_func_req_match(struct usb_function *f,
3373 const struct usb_ctrlrequest *creq,
3374 bool config0)
3375 {
3376 struct ffs_function *func = ffs_func_from_usb(f);
3377
3378 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3379 return false;
3380
3381 switch (creq->bRequestType & USB_RECIP_MASK) {
3382 case USB_RECIP_INTERFACE:
3383 return (ffs_func_revmap_intf(func,
3384 le16_to_cpu(creq->wIndex)) >= 0);
3385 case USB_RECIP_ENDPOINT:
3386 return (ffs_func_revmap_ep(func,
3387 le16_to_cpu(creq->wIndex)) >= 0);
3388 default:
3389 return (bool) (func->ffs->user_flags &
3390 FUNCTIONFS_ALL_CTRL_RECIP);
3391 }
3392 }
3393
ffs_func_suspend(struct usb_function * f)3394 static void ffs_func_suspend(struct usb_function *f)
3395 {
3396 ENTER();
3397 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3398 }
3399
ffs_func_resume(struct usb_function * f)3400 static void ffs_func_resume(struct usb_function *f)
3401 {
3402 ENTER();
3403 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3404 }
3405
3406
3407 /* Endpoint and interface numbers reverse mapping ***************************/
3408
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3409 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3410 {
3411 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3412 return num ? num : -EDOM;
3413 }
3414
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3415 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3416 {
3417 short *nums = func->interfaces_nums;
3418 unsigned count = func->ffs->interfaces_count;
3419
3420 for (; count; --count, ++nums) {
3421 if (*nums >= 0 && *nums == intf)
3422 return nums - func->interfaces_nums;
3423 }
3424
3425 return -EDOM;
3426 }
3427
3428
3429 /* Devices management *******************************************************/
3430
3431 static LIST_HEAD(ffs_devices);
3432
_ffs_do_find_dev(const char * name)3433 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3434 {
3435 struct ffs_dev *dev;
3436
3437 if (!name)
3438 return NULL;
3439
3440 list_for_each_entry(dev, &ffs_devices, entry) {
3441 if (strcmp(dev->name, name) == 0)
3442 return dev;
3443 }
3444
3445 return NULL;
3446 }
3447
3448 /*
3449 * ffs_lock must be taken by the caller of this function
3450 */
_ffs_get_single_dev(void)3451 static struct ffs_dev *_ffs_get_single_dev(void)
3452 {
3453 struct ffs_dev *dev;
3454
3455 if (list_is_singular(&ffs_devices)) {
3456 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3457 if (dev->single)
3458 return dev;
3459 }
3460
3461 return NULL;
3462 }
3463
3464 /*
3465 * ffs_lock must be taken by the caller of this function
3466 */
_ffs_find_dev(const char * name)3467 static struct ffs_dev *_ffs_find_dev(const char *name)
3468 {
3469 struct ffs_dev *dev;
3470
3471 dev = _ffs_get_single_dev();
3472 if (dev)
3473 return dev;
3474
3475 return _ffs_do_find_dev(name);
3476 }
3477
3478 /* Configfs support *********************************************************/
3479
to_ffs_opts(struct config_item * item)3480 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3481 {
3482 return container_of(to_config_group(item), struct f_fs_opts,
3483 func_inst.group);
3484 }
3485
ffs_attr_release(struct config_item * item)3486 static void ffs_attr_release(struct config_item *item)
3487 {
3488 struct f_fs_opts *opts = to_ffs_opts(item);
3489
3490 usb_put_function_instance(&opts->func_inst);
3491 }
3492
3493 static struct configfs_item_operations ffs_item_ops = {
3494 .release = ffs_attr_release,
3495 };
3496
3497 static const struct config_item_type ffs_func_type = {
3498 .ct_item_ops = &ffs_item_ops,
3499 .ct_owner = THIS_MODULE,
3500 };
3501
3502
3503 /* Function registration interface ******************************************/
3504
ffs_free_inst(struct usb_function_instance * f)3505 static void ffs_free_inst(struct usb_function_instance *f)
3506 {
3507 struct f_fs_opts *opts;
3508
3509 opts = to_f_fs_opts(f);
3510 ffs_release_dev(opts->dev);
3511 ffs_dev_lock();
3512 _ffs_free_dev(opts->dev);
3513 ffs_dev_unlock();
3514 kfree(opts);
3515 }
3516
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3517 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3518 {
3519 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3520 return -ENAMETOOLONG;
3521 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3522 }
3523
ffs_alloc_inst(void)3524 static struct usb_function_instance *ffs_alloc_inst(void)
3525 {
3526 struct f_fs_opts *opts;
3527 struct ffs_dev *dev;
3528
3529 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3530 if (!opts)
3531 return ERR_PTR(-ENOMEM);
3532
3533 opts->func_inst.set_inst_name = ffs_set_inst_name;
3534 opts->func_inst.free_func_inst = ffs_free_inst;
3535 ffs_dev_lock();
3536 dev = _ffs_alloc_dev();
3537 ffs_dev_unlock();
3538 if (IS_ERR(dev)) {
3539 kfree(opts);
3540 return ERR_CAST(dev);
3541 }
3542 opts->dev = dev;
3543 dev->opts = opts;
3544
3545 config_group_init_type_name(&opts->func_inst.group, "",
3546 &ffs_func_type);
3547 return &opts->func_inst;
3548 }
3549
ffs_free(struct usb_function * f)3550 static void ffs_free(struct usb_function *f)
3551 {
3552 kfree(ffs_func_from_usb(f));
3553 }
3554
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3555 static void ffs_func_unbind(struct usb_configuration *c,
3556 struct usb_function *f)
3557 {
3558 struct ffs_function *func = ffs_func_from_usb(f);
3559 struct ffs_data *ffs = func->ffs;
3560 struct f_fs_opts *opts =
3561 container_of(f->fi, struct f_fs_opts, func_inst);
3562 struct ffs_ep *ep = func->eps;
3563 unsigned count = ffs->eps_count;
3564 unsigned long flags;
3565
3566 ENTER();
3567 if (ffs->func == func) {
3568 ffs_func_eps_disable(func);
3569 ffs->func = NULL;
3570 }
3571
3572 /* Drain any pending AIO completions */
3573 drain_workqueue(ffs->io_completion_wq);
3574
3575 if (!--opts->refcnt)
3576 functionfs_unbind(ffs);
3577
3578 /* cleanup after autoconfig */
3579 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3580 while (count--) {
3581 if (ep->ep && ep->req)
3582 usb_ep_free_request(ep->ep, ep->req);
3583 ep->req = NULL;
3584 ++ep;
3585 }
3586 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3587 kfree(func->eps);
3588 func->eps = NULL;
3589 /*
3590 * eps, descriptors and interfaces_nums are allocated in the
3591 * same chunk so only one free is required.
3592 */
3593 func->function.fs_descriptors = NULL;
3594 func->function.hs_descriptors = NULL;
3595 func->function.ss_descriptors = NULL;
3596 func->function.ssp_descriptors = NULL;
3597 func->interfaces_nums = NULL;
3598
3599 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3600 }
3601
ffs_alloc(struct usb_function_instance * fi)3602 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3603 {
3604 struct ffs_function *func;
3605
3606 ENTER();
3607
3608 func = kzalloc(sizeof(*func), GFP_KERNEL);
3609 if (unlikely(!func))
3610 return ERR_PTR(-ENOMEM);
3611
3612 func->function.name = "Function FS Gadget";
3613
3614 func->function.bind = ffs_func_bind;
3615 func->function.unbind = ffs_func_unbind;
3616 func->function.set_alt = ffs_func_set_alt;
3617 func->function.disable = ffs_func_disable;
3618 func->function.setup = ffs_func_setup;
3619 func->function.req_match = ffs_func_req_match;
3620 func->function.suspend = ffs_func_suspend;
3621 func->function.resume = ffs_func_resume;
3622 func->function.free_func = ffs_free;
3623
3624 return &func->function;
3625 }
3626
3627 /*
3628 * ffs_lock must be taken by the caller of this function
3629 */
_ffs_alloc_dev(void)3630 static struct ffs_dev *_ffs_alloc_dev(void)
3631 {
3632 struct ffs_dev *dev;
3633 int ret;
3634
3635 if (_ffs_get_single_dev())
3636 return ERR_PTR(-EBUSY);
3637
3638 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3639 if (!dev)
3640 return ERR_PTR(-ENOMEM);
3641
3642 if (list_empty(&ffs_devices)) {
3643 ret = functionfs_init();
3644 if (ret) {
3645 kfree(dev);
3646 return ERR_PTR(ret);
3647 }
3648 }
3649
3650 list_add(&dev->entry, &ffs_devices);
3651
3652 return dev;
3653 }
3654
ffs_name_dev(struct ffs_dev * dev,const char * name)3655 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3656 {
3657 struct ffs_dev *existing;
3658 int ret = 0;
3659
3660 ffs_dev_lock();
3661
3662 existing = _ffs_do_find_dev(name);
3663 if (!existing)
3664 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3665 else if (existing != dev)
3666 ret = -EBUSY;
3667
3668 ffs_dev_unlock();
3669
3670 return ret;
3671 }
3672 EXPORT_SYMBOL_GPL(ffs_name_dev);
3673
ffs_single_dev(struct ffs_dev * dev)3674 int ffs_single_dev(struct ffs_dev *dev)
3675 {
3676 int ret;
3677
3678 ret = 0;
3679 ffs_dev_lock();
3680
3681 if (!list_is_singular(&ffs_devices))
3682 ret = -EBUSY;
3683 else
3684 dev->single = true;
3685
3686 ffs_dev_unlock();
3687 return ret;
3688 }
3689 EXPORT_SYMBOL_GPL(ffs_single_dev);
3690
3691 /*
3692 * ffs_lock must be taken by the caller of this function
3693 */
_ffs_free_dev(struct ffs_dev * dev)3694 static void _ffs_free_dev(struct ffs_dev *dev)
3695 {
3696 list_del(&dev->entry);
3697
3698 kfree(dev);
3699 if (list_empty(&ffs_devices))
3700 functionfs_cleanup();
3701 }
3702
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3703 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3704 {
3705 int ret = 0;
3706 struct ffs_dev *ffs_dev;
3707
3708 ENTER();
3709 ffs_dev_lock();
3710
3711 ffs_dev = _ffs_find_dev(dev_name);
3712 if (!ffs_dev) {
3713 ret = -ENOENT;
3714 } else if (ffs_dev->mounted) {
3715 ret = -EBUSY;
3716 } else if (ffs_dev->ffs_acquire_dev_callback &&
3717 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3718 ret = -ENOENT;
3719 } else {
3720 ffs_dev->mounted = true;
3721 ffs_dev->ffs_data = ffs_data;
3722 ffs_data->private_data = ffs_dev;
3723 }
3724
3725 ffs_dev_unlock();
3726 return ret;
3727 }
3728
ffs_release_dev(struct ffs_dev * ffs_dev)3729 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3730 {
3731 ENTER();
3732 ffs_dev_lock();
3733
3734 if (ffs_dev && ffs_dev->mounted) {
3735 ffs_dev->mounted = false;
3736 if (ffs_dev->ffs_data) {
3737 ffs_dev->ffs_data->private_data = NULL;
3738 ffs_dev->ffs_data = NULL;
3739 }
3740
3741 if (ffs_dev->ffs_release_dev_callback)
3742 ffs_dev->ffs_release_dev_callback(ffs_dev);
3743 }
3744
3745 ffs_dev_unlock();
3746 }
3747
ffs_ready(struct ffs_data * ffs)3748 static int ffs_ready(struct ffs_data *ffs)
3749 {
3750 struct ffs_dev *ffs_obj;
3751 int ret = 0;
3752
3753 ENTER();
3754 ffs_dev_lock();
3755
3756 ffs_obj = ffs->private_data;
3757 if (!ffs_obj) {
3758 ret = -EINVAL;
3759 goto done;
3760 }
3761 if (WARN_ON(ffs_obj->desc_ready)) {
3762 ret = -EBUSY;
3763 goto done;
3764 }
3765
3766 ffs_obj->desc_ready = true;
3767
3768 if (ffs_obj->ffs_ready_callback) {
3769 ret = ffs_obj->ffs_ready_callback(ffs);
3770 if (ret)
3771 goto done;
3772 }
3773
3774 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3775 done:
3776 ffs_dev_unlock();
3777 return ret;
3778 }
3779
ffs_closed(struct ffs_data * ffs)3780 static void ffs_closed(struct ffs_data *ffs)
3781 {
3782 struct ffs_dev *ffs_obj;
3783 struct f_fs_opts *opts;
3784 struct config_item *ci;
3785
3786 ENTER();
3787 ffs_dev_lock();
3788
3789 ffs_obj = ffs->private_data;
3790 if (!ffs_obj)
3791 goto done;
3792
3793 ffs_obj->desc_ready = false;
3794
3795 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3796 ffs_obj->ffs_closed_callback)
3797 ffs_obj->ffs_closed_callback(ffs);
3798
3799 if (ffs_obj->opts)
3800 opts = ffs_obj->opts;
3801 else
3802 goto done;
3803
3804 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3805 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3806 goto done;
3807
3808 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3809 ffs_dev_unlock();
3810
3811 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3812 unregister_gadget_item(ci);
3813 return;
3814 done:
3815 ffs_dev_unlock();
3816 }
3817
3818 /* Misc helper functions ****************************************************/
3819
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3820 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3821 {
3822 return nonblock
3823 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3824 : mutex_lock_interruptible(mutex);
3825 }
3826
ffs_prepare_buffer(const char __user * buf,size_t len)3827 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3828 {
3829 char *data;
3830
3831 if (unlikely(!len))
3832 return NULL;
3833
3834 data = kmalloc(len, GFP_KERNEL);
3835 if (unlikely(!data))
3836 return ERR_PTR(-ENOMEM);
3837
3838 if (unlikely(copy_from_user(data, buf, len))) {
3839 kfree(data);
3840 return ERR_PTR(-EFAULT);
3841 }
3842
3843 pr_vdebug("Buffer from user space:\n");
3844 ffs_dump_mem("", data, len);
3845
3846 return data;
3847 }
3848
3849 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3850 MODULE_LICENSE("GPL");
3851 MODULE_AUTHOR("Michal Nazarewicz");
3852