1 #include <boost/gil/image.hpp>
2 #include <boost/gil/image_view.hpp>
3 #include <boost/gil/image_processing/numeric.hpp>
4 #include <boost/gil/image_processing/hessian.hpp>
5 #include <boost/gil/extension/io/png.hpp>
6 #include <vector>
7 #include <functional>
8 #include <set>
9 #include <iostream>
10 #include <fstream>
11
12 namespace gil = boost::gil;
13
14 // some images might produce artifacts
15 // when converted to grayscale,
16 // which was previously observed on
17 // canny edge detector for test input
18 // used for this example.
19 // the algorithm here follows sRGB gamma definition
20 // taken from here (luminance calculation):
21 // https://en.wikipedia.org/wiki/Grayscale
to_grayscale(gil::rgb8_view_t original)22 gil::gray8_image_t to_grayscale(gil::rgb8_view_t original)
23 {
24 gil::gray8_image_t output_image(original.dimensions());
25 auto output = gil::view(output_image);
26 constexpr double max_channel_intensity = (std::numeric_limits<std::uint8_t>::max)();
27 for (long int y = 0; y < original.height(); ++y)
28 {
29 for (long int x = 0; x < original.width(); ++x)
30 {
31 // scale the values into range [0, 1] and calculate linear intensity
32 auto& p = original(x, y);
33 double red_intensity = p.at(std::integral_constant<int, 0>{})
34 / max_channel_intensity;
35 double green_intensity = p.at(std::integral_constant<int, 1>{})
36 / max_channel_intensity;
37 double blue_intensity = p.at(std::integral_constant<int, 2>{})
38 / max_channel_intensity;
39 auto linear_luminosity = 0.2126 * red_intensity
40 + 0.7152 * green_intensity
41 + 0.0722 * blue_intensity;
42
43 // perform gamma adjustment
44 double gamma_compressed_luminosity = 0;
45 if (linear_luminosity < 0.0031308)
46 {
47 gamma_compressed_luminosity = linear_luminosity * 12.92;
48 } else
49 {
50 gamma_compressed_luminosity = 1.055 * std::pow(linear_luminosity, 1 / 2.4) - 0.055;
51 }
52
53 // since now it is scaled, descale it back
54 output(x, y) = gamma_compressed_luminosity * max_channel_intensity;
55 }
56 }
57
58 return output_image;
59 }
60
apply_gaussian_blur(gil::gray8_view_t input_view,gil::gray8_view_t output_view)61 void apply_gaussian_blur(gil::gray8_view_t input_view, gil::gray8_view_t output_view)
62 {
63 constexpr static auto filter_height = 5ull;
64 constexpr static auto filter_width = 5ull;
65 constexpr static double filter[filter_height][filter_width] =
66 {
67 2, 4, 6, 4, 2,
68 4, 9, 12, 9, 4,
69 5, 12, 15, 12, 5,
70 4, 9, 12, 9, 4,
71 2, 4, 5, 4, 2,
72 };
73 constexpr double factor = 1.0 / 159;
74 constexpr double bias = 0.0;
75
76 const auto height = input_view.height();
77 const auto width = input_view.width();
78 for (std::ptrdiff_t x = 0; x < width; ++x)
79 {
80 for (std::ptrdiff_t y = 0; y < height; ++y)
81 {
82 double intensity = 0.0;
83 for (std::ptrdiff_t filter_y = 0; filter_y < filter_height; ++filter_y)
84 {
85 for (std::ptrdiff_t filter_x = 0; filter_x < filter_width; ++filter_x)
86 {
87 int image_x = x - filter_width / 2 + filter_x;
88 int image_y = y - filter_height / 2 + filter_y;
89 if (image_x >= input_view.width() || image_x < 0 ||
90 image_y >= input_view.height() || image_y < 0)
91 {
92 continue;
93 }
94 const auto& pixel = input_view(image_x, image_y);
95 intensity += pixel.at(std::integral_constant<int, 0>{})
96 * filter[filter_y][filter_x];
97 }
98 }
99 auto& pixel = output_view(gil::point_t(x, y));
100 pixel = (std::min)((std::max)(int(factor * intensity + bias), 0), 255);
101 }
102
103 }
104 }
105
suppress(gil::gray32f_view_t harris_response,double harris_response_threshold)106 std::vector<gil::point_t> suppress(
107 gil::gray32f_view_t harris_response,
108 double harris_response_threshold)
109 {
110 std::vector<gil::point_t> corner_points;
111 for (gil::gray32f_view_t::coord_t y = 1; y < harris_response.height() - 1; ++y)
112 {
113 for (gil::gray32f_view_t::coord_t x = 1; x < harris_response.width() - 1; ++x)
114 {
115 auto value = [](gil::gray32f_pixel_t pixel) {
116 return pixel.at(std::integral_constant<int, 0>{});
117 };
118 double values[9] = {
119 value(harris_response(x - 1, y - 1)),
120 value(harris_response(x, y - 1)),
121 value(harris_response(x + 1, y - 1)),
122 value(harris_response(x - 1, y)),
123 value(harris_response(x, y)),
124 value(harris_response(x + 1, y)),
125 value(harris_response(x - 1, y + 1)),
126 value(harris_response(x, y + 1)),
127 value(harris_response(x + 1, y + 1))
128 };
129
130 auto maxima = *std::max_element(
131 values,
132 values + 9,
133 [](double lhs, double rhs)
134 {
135 return lhs < rhs;
136 }
137 );
138
139 if (maxima == value(harris_response(x, y))
140 && std::count(values, values + 9, maxima) == 1
141 && maxima >= harris_response_threshold)
142 {
143 corner_points.emplace_back(x, y);
144 }
145 }
146 }
147
148 return corner_points;
149 }
150
main(int argc,char * argv[])151 int main(int argc, char* argv[]) {
152 if (argc != 5)
153 {
154 std::cout << "usage: " << argv[0] << " <input.png> <odd-window-size>"
155 " <hessian-response-threshold> <output.png>\n";
156 return -1;
157 }
158
159 std::size_t window_size = std::stoul(argv[2]);
160 long hessian_determinant_threshold = std::stol(argv[3]);
161
162 gil::rgb8_image_t input_image;
163
164 gil::read_image(argv[1], input_image, gil::png_tag{});
165
166 auto input_view = gil::view(input_image);
167 auto grayscaled = to_grayscale(input_view);
168 gil::gray8_image_t smoothed_image(grayscaled.dimensions());
169 auto smoothed = gil::view(smoothed_image);
170 apply_gaussian_blur(gil::view(grayscaled), smoothed);
171 gil::gray16s_image_t x_gradient_image(grayscaled.dimensions());
172 gil::gray16s_image_t y_gradient_image(grayscaled.dimensions());
173
174 auto x_gradient = gil::view(x_gradient_image);
175 auto y_gradient = gil::view(y_gradient_image);
176 auto scharr_x = gil::generate_dx_scharr();
177 gil::detail::convolve_2d(smoothed, scharr_x, x_gradient);
178 auto scharr_y = gil::generate_dy_scharr();
179 gil::detail::convolve_2d(smoothed, scharr_y, y_gradient);
180
181 gil::gray32f_image_t m11(x_gradient.dimensions());
182 gil::gray32f_image_t m12_21(x_gradient.dimensions());
183 gil::gray32f_image_t m22(x_gradient.dimensions());
184 gil::compute_hessian_entries(
185 x_gradient,
186 y_gradient,
187 gil::view(m11),
188 gil::view(m12_21),
189 gil::view(m22)
190 );
191
192 gil::gray32f_image_t hessian_response(x_gradient.dimensions());
193 auto gaussian_kernel = gil::generate_gaussian_kernel(window_size, 0.84089642);
194 gil::compute_hessian_responses(
195 gil::view(m11),
196 gil::view(m12_21),
197 gil::view(m22),
198 gaussian_kernel,
199 gil::view(hessian_response)
200 );
201
202 auto corner_points = suppress(gil::view(hessian_response), hessian_determinant_threshold);
203 for (auto point: corner_points) {
204 input_view(point) = gil::rgb8_pixel_t(0, 0, 0);
205 input_view(point).at(std::integral_constant<int, 1>{}) = 255;
206 }
207 gil::write_view(argv[4], input_view, gil::png_tag{});
208 }
209