• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <boost/gil/image.hpp>
2 #include <boost/gil/image_view.hpp>
3 #include <boost/gil/image_processing/numeric.hpp>
4 #include <boost/gil/image_processing/hessian.hpp>
5 #include <boost/gil/extension/io/png.hpp>
6 #include <vector>
7 #include <functional>
8 #include <set>
9 #include <iostream>
10 #include <fstream>
11 
12 namespace gil = boost::gil;
13 
14 // some images might produce artifacts
15 // when converted to grayscale,
16 // which was previously observed on
17 // canny edge detector for test input
18 // used for this example.
19 // the algorithm here follows sRGB gamma definition
20 // taken from here (luminance calculation):
21 // https://en.wikipedia.org/wiki/Grayscale
to_grayscale(gil::rgb8_view_t original)22 gil::gray8_image_t to_grayscale(gil::rgb8_view_t original)
23 {
24     gil::gray8_image_t output_image(original.dimensions());
25     auto output = gil::view(output_image);
26     constexpr double max_channel_intensity = (std::numeric_limits<std::uint8_t>::max)();
27     for (long int y = 0; y < original.height(); ++y)
28     {
29         for (long int x = 0; x < original.width(); ++x)
30         {
31             // scale the values into range [0, 1] and calculate linear intensity
32             auto& p = original(x, y);
33             double red_intensity = p.at(std::integral_constant<int, 0>{})
34                 / max_channel_intensity;
35             double green_intensity = p.at(std::integral_constant<int, 1>{})
36                 / max_channel_intensity;
37             double blue_intensity = p.at(std::integral_constant<int, 2>{})
38                 / max_channel_intensity;
39             auto linear_luminosity = 0.2126 * red_intensity
40                                     + 0.7152 * green_intensity
41                                     + 0.0722 * blue_intensity;
42 
43             // perform gamma adjustment
44             double gamma_compressed_luminosity = 0;
45             if (linear_luminosity < 0.0031308)
46             {
47                 gamma_compressed_luminosity = linear_luminosity * 12.92;
48             } else
49             {
50                 gamma_compressed_luminosity = 1.055 * std::pow(linear_luminosity, 1 / 2.4) - 0.055;
51             }
52 
53             // since now it is scaled, descale it back
54             output(x, y) = gamma_compressed_luminosity * max_channel_intensity;
55         }
56     }
57 
58     return output_image;
59 }
60 
apply_gaussian_blur(gil::gray8_view_t input_view,gil::gray8_view_t output_view)61 void apply_gaussian_blur(gil::gray8_view_t input_view, gil::gray8_view_t output_view)
62 {
63     constexpr static auto filter_height = 5ull;
64     constexpr static auto filter_width = 5ull;
65     constexpr static double filter[filter_height][filter_width] =
66     {
67         2,  4,  6,  4,  2,
68         4, 9, 12, 9,  4,
69         5, 12, 15, 12,  5,
70         4, 9, 12, 9,  4,
71         2,  4,  5,  4,  2,
72     };
73     constexpr double factor = 1.0 / 159;
74     constexpr double bias = 0.0;
75 
76     const auto height = input_view.height();
77     const auto width = input_view.width();
78     for (std::ptrdiff_t x = 0; x < width; ++x)
79     {
80         for (std::ptrdiff_t y = 0; y < height; ++y)
81         {
82             double intensity = 0.0;
83             for (std::ptrdiff_t filter_y = 0; filter_y < filter_height; ++filter_y)
84             {
85                 for (std::ptrdiff_t filter_x = 0; filter_x < filter_width; ++filter_x)
86                 {
87                     int image_x = x - filter_width / 2 + filter_x;
88                     int image_y = y - filter_height / 2 + filter_y;
89                     if (image_x >= input_view.width() || image_x < 0 ||
90                         image_y >= input_view.height() || image_y < 0)
91                     {
92                         continue;
93                     }
94                     const auto& pixel = input_view(image_x, image_y);
95                     intensity += pixel.at(std::integral_constant<int, 0>{})
96                         * filter[filter_y][filter_x];
97                 }
98             }
99             auto& pixel = output_view(gil::point_t(x, y));
100             pixel = (std::min)((std::max)(int(factor * intensity + bias), 0), 255);
101         }
102 
103     }
104 }
105 
suppress(gil::gray32f_view_t harris_response,double harris_response_threshold)106 std::vector<gil::point_t> suppress(
107     gil::gray32f_view_t harris_response,
108     double harris_response_threshold)
109 {
110     std::vector<gil::point_t> corner_points;
111     for (gil::gray32f_view_t::coord_t y = 1; y < harris_response.height() - 1; ++y)
112     {
113         for (gil::gray32f_view_t::coord_t x = 1; x < harris_response.width() - 1; ++x)
114         {
115             auto value = [](gil::gray32f_pixel_t pixel) {
116                 return pixel.at(std::integral_constant<int, 0>{});
117             };
118             double values[9] = {
119                 value(harris_response(x - 1, y - 1)),
120                 value(harris_response(x, y - 1)),
121                 value(harris_response(x + 1, y - 1)),
122                 value(harris_response(x - 1, y)),
123                 value(harris_response(x, y)),
124                 value(harris_response(x + 1, y)),
125                 value(harris_response(x - 1, y + 1)),
126                 value(harris_response(x, y + 1)),
127                 value(harris_response(x + 1, y + 1))
128             };
129 
130             auto maxima = *std::max_element(
131                 values,
132                 values + 9,
133                 [](double lhs, double rhs)
134                 {
135                     return lhs < rhs;
136                 }
137             );
138 
139             if (maxima == value(harris_response(x, y))
140                 && std::count(values, values + 9, maxima) == 1
141                 && maxima >= harris_response_threshold)
142             {
143                 corner_points.emplace_back(x, y);
144             }
145         }
146     }
147 
148     return corner_points;
149 }
150 
main(int argc,char * argv[])151 int main(int argc, char* argv[]) {
152     if (argc != 5)
153     {
154         std::cout << "usage: " << argv[0] << " <input.png> <odd-window-size>"
155             " <hessian-response-threshold> <output.png>\n";
156         return -1;
157     }
158 
159     std::size_t window_size = std::stoul(argv[2]);
160     long hessian_determinant_threshold = std::stol(argv[3]);
161 
162     gil::rgb8_image_t input_image;
163 
164     gil::read_image(argv[1], input_image, gil::png_tag{});
165 
166     auto input_view = gil::view(input_image);
167     auto grayscaled = to_grayscale(input_view);
168     gil::gray8_image_t smoothed_image(grayscaled.dimensions());
169     auto smoothed = gil::view(smoothed_image);
170     apply_gaussian_blur(gil::view(grayscaled), smoothed);
171     gil::gray16s_image_t x_gradient_image(grayscaled.dimensions());
172     gil::gray16s_image_t y_gradient_image(grayscaled.dimensions());
173 
174     auto x_gradient = gil::view(x_gradient_image);
175     auto y_gradient = gil::view(y_gradient_image);
176     auto scharr_x = gil::generate_dx_scharr();
177     gil::detail::convolve_2d(smoothed, scharr_x, x_gradient);
178     auto scharr_y = gil::generate_dy_scharr();
179     gil::detail::convolve_2d(smoothed, scharr_y, y_gradient);
180 
181     gil::gray32f_image_t m11(x_gradient.dimensions());
182     gil::gray32f_image_t m12_21(x_gradient.dimensions());
183     gil::gray32f_image_t m22(x_gradient.dimensions());
184     gil::compute_hessian_entries(
185         x_gradient,
186         y_gradient,
187         gil::view(m11),
188         gil::view(m12_21),
189         gil::view(m22)
190     );
191 
192     gil::gray32f_image_t hessian_response(x_gradient.dimensions());
193     auto gaussian_kernel = gil::generate_gaussian_kernel(window_size, 0.84089642);
194     gil::compute_hessian_responses(
195         gil::view(m11),
196         gil::view(m12_21),
197         gil::view(m22),
198         gaussian_kernel,
199         gil::view(hessian_response)
200     );
201 
202     auto corner_points = suppress(gil::view(hessian_response), hessian_determinant_threshold);
203     for (auto point: corner_points) {
204         input_view(point) = gil::rgb8_pixel_t(0, 0, 0);
205         input_view(point).at(std::integral_constant<int, 1>{}) = 255;
206     }
207     gil::write_view(argv[4], input_view, gil::png_tag{});
208 }
209