• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/nospec.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define AX	regs[BPF_REG_AX]
58 #define ARG1	regs[BPF_REG_ARG1]
59 #define CTX	regs[BPF_REG_CTX]
60 #define IMM	insn->imm
61 
62 /* No hurry in this branch
63  *
64  * Exported for the bpf jit load helper.
65  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 	u8 *ptr = NULL;
69 
70 	if (k >= SKF_NET_OFF)
71 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 	else if (k >= SKF_LL_OFF)
73 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 
75 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 		return ptr;
77 
78 	return NULL;
79 }
80 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)81 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
82 {
83 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
84 	struct bpf_prog_aux *aux;
85 	struct bpf_prog *fp;
86 
87 	size = round_up(size, PAGE_SIZE);
88 	fp = __vmalloc(size, gfp_flags);
89 	if (fp == NULL)
90 		return NULL;
91 
92 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
93 	if (aux == NULL) {
94 		vfree(fp);
95 		return NULL;
96 	}
97 
98 	fp->pages = size / PAGE_SIZE;
99 	fp->aux = aux;
100 	fp->aux->prog = fp;
101 	fp->jit_requested = ebpf_jit_enabled();
102 
103 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
104 	mutex_init(&fp->aux->used_maps_mutex);
105 	mutex_init(&fp->aux->dst_mutex);
106 
107 	return fp;
108 }
109 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)110 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
111 {
112 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
113 	struct bpf_prog *prog;
114 	int cpu;
115 
116 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
117 	if (!prog)
118 		return NULL;
119 
120 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
121 	if (!prog->aux->stats) {
122 		kfree(prog->aux);
123 		vfree(prog);
124 		return NULL;
125 	}
126 
127 	for_each_possible_cpu(cpu) {
128 		struct bpf_prog_stats *pstats;
129 
130 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
131 		u64_stats_init(&pstats->syncp);
132 	}
133 	return prog;
134 }
135 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
136 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)137 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
138 {
139 	if (!prog->aux->nr_linfo || !prog->jit_requested)
140 		return 0;
141 
142 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
143 					 sizeof(*prog->aux->jited_linfo),
144 					 GFP_KERNEL | __GFP_NOWARN);
145 	if (!prog->aux->jited_linfo)
146 		return -ENOMEM;
147 
148 	return 0;
149 }
150 
bpf_prog_free_jited_linfo(struct bpf_prog * prog)151 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
152 {
153 	kfree(prog->aux->jited_linfo);
154 	prog->aux->jited_linfo = NULL;
155 }
156 
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)157 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
158 {
159 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
160 		bpf_prog_free_jited_linfo(prog);
161 }
162 
163 /* The jit engine is responsible to provide an array
164  * for insn_off to the jited_off mapping (insn_to_jit_off).
165  *
166  * The idx to this array is the insn_off.  Hence, the insn_off
167  * here is relative to the prog itself instead of the main prog.
168  * This array has one entry for each xlated bpf insn.
169  *
170  * jited_off is the byte off to the last byte of the jited insn.
171  *
172  * Hence, with
173  * insn_start:
174  *      The first bpf insn off of the prog.  The insn off
175  *      here is relative to the main prog.
176  *      e.g. if prog is a subprog, insn_start > 0
177  * linfo_idx:
178  *      The prog's idx to prog->aux->linfo and jited_linfo
179  *
180  * jited_linfo[linfo_idx] = prog->bpf_func
181  *
182  * For i > linfo_idx,
183  *
184  * jited_linfo[i] = prog->bpf_func +
185  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
186  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)187 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
188 			       const u32 *insn_to_jit_off)
189 {
190 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
191 	const struct bpf_line_info *linfo;
192 	void **jited_linfo;
193 
194 	if (!prog->aux->jited_linfo)
195 		/* Userspace did not provide linfo */
196 		return;
197 
198 	linfo_idx = prog->aux->linfo_idx;
199 	linfo = &prog->aux->linfo[linfo_idx];
200 	insn_start = linfo[0].insn_off;
201 	insn_end = insn_start + prog->len;
202 
203 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
204 	jited_linfo[0] = prog->bpf_func;
205 
206 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
207 
208 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
209 		/* The verifier ensures that linfo[i].insn_off is
210 		 * strictly increasing
211 		 */
212 		jited_linfo[i] = prog->bpf_func +
213 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
214 }
215 
bpf_prog_free_linfo(struct bpf_prog * prog)216 void bpf_prog_free_linfo(struct bpf_prog *prog)
217 {
218 	bpf_prog_free_jited_linfo(prog);
219 	kvfree(prog->aux->linfo);
220 }
221 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)222 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
223 				  gfp_t gfp_extra_flags)
224 {
225 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
226 	struct bpf_prog *fp;
227 	u32 pages, delta;
228 	int ret;
229 
230 	size = round_up(size, PAGE_SIZE);
231 	pages = size / PAGE_SIZE;
232 	if (pages <= fp_old->pages)
233 		return fp_old;
234 
235 	delta = pages - fp_old->pages;
236 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
237 	if (ret)
238 		return NULL;
239 
240 	fp = __vmalloc(size, gfp_flags);
241 	if (fp == NULL) {
242 		__bpf_prog_uncharge(fp_old->aux->user, delta);
243 	} else {
244 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
245 		fp->pages = pages;
246 		fp->aux->prog = fp;
247 
248 		/* We keep fp->aux from fp_old around in the new
249 		 * reallocated structure.
250 		 */
251 		fp_old->aux = NULL;
252 		__bpf_prog_free(fp_old);
253 	}
254 
255 	return fp;
256 }
257 
__bpf_prog_free(struct bpf_prog * fp)258 void __bpf_prog_free(struct bpf_prog *fp)
259 {
260 	if (fp->aux) {
261 		mutex_destroy(&fp->aux->used_maps_mutex);
262 		mutex_destroy(&fp->aux->dst_mutex);
263 		free_percpu(fp->aux->stats);
264 		kfree(fp->aux->poke_tab);
265 		kfree(fp->aux);
266 	}
267 	vfree(fp);
268 }
269 
bpf_prog_calc_tag(struct bpf_prog * fp)270 int bpf_prog_calc_tag(struct bpf_prog *fp)
271 {
272 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
273 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
274 	u32 digest[SHA1_DIGEST_WORDS];
275 	u32 ws[SHA1_WORKSPACE_WORDS];
276 	u32 i, bsize, psize, blocks;
277 	struct bpf_insn *dst;
278 	bool was_ld_map;
279 	u8 *raw, *todo;
280 	__be32 *result;
281 	__be64 *bits;
282 
283 	raw = vmalloc(raw_size);
284 	if (!raw)
285 		return -ENOMEM;
286 
287 	sha1_init(digest);
288 	memset(ws, 0, sizeof(ws));
289 
290 	/* We need to take out the map fd for the digest calculation
291 	 * since they are unstable from user space side.
292 	 */
293 	dst = (void *)raw;
294 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
295 		dst[i] = fp->insnsi[i];
296 		if (!was_ld_map &&
297 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
298 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
299 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
300 			was_ld_map = true;
301 			dst[i].imm = 0;
302 		} else if (was_ld_map &&
303 			   dst[i].code == 0 &&
304 			   dst[i].dst_reg == 0 &&
305 			   dst[i].src_reg == 0 &&
306 			   dst[i].off == 0) {
307 			was_ld_map = false;
308 			dst[i].imm = 0;
309 		} else {
310 			was_ld_map = false;
311 		}
312 	}
313 
314 	psize = bpf_prog_insn_size(fp);
315 	memset(&raw[psize], 0, raw_size - psize);
316 	raw[psize++] = 0x80;
317 
318 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
319 	blocks = bsize / SHA1_BLOCK_SIZE;
320 	todo   = raw;
321 	if (bsize - psize >= sizeof(__be64)) {
322 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
323 	} else {
324 		bits = (__be64 *)(todo + bsize + bits_offset);
325 		blocks++;
326 	}
327 	*bits = cpu_to_be64((psize - 1) << 3);
328 
329 	while (blocks--) {
330 		sha1_transform(digest, todo, ws);
331 		todo += SHA1_BLOCK_SIZE;
332 	}
333 
334 	result = (__force __be32 *)digest;
335 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
336 		result[i] = cpu_to_be32(digest[i]);
337 	memcpy(fp->tag, result, sizeof(fp->tag));
338 
339 	vfree(raw);
340 	return 0;
341 }
342 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)343 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
344 				s32 end_new, s32 curr, const bool probe_pass)
345 {
346 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
347 	s32 delta = end_new - end_old;
348 	s64 imm = insn->imm;
349 
350 	if (curr < pos && curr + imm + 1 >= end_old)
351 		imm += delta;
352 	else if (curr >= end_new && curr + imm + 1 < end_new)
353 		imm -= delta;
354 	if (imm < imm_min || imm > imm_max)
355 		return -ERANGE;
356 	if (!probe_pass)
357 		insn->imm = imm;
358 	return 0;
359 }
360 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)361 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
362 				s32 end_new, s32 curr, const bool probe_pass)
363 {
364 	const s32 off_min = S16_MIN, off_max = S16_MAX;
365 	s32 delta = end_new - end_old;
366 	s32 off = insn->off;
367 
368 	if (curr < pos && curr + off + 1 >= end_old)
369 		off += delta;
370 	else if (curr >= end_new && curr + off + 1 < end_new)
371 		off -= delta;
372 	if (off < off_min || off > off_max)
373 		return -ERANGE;
374 	if (!probe_pass)
375 		insn->off = off;
376 	return 0;
377 }
378 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)379 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
380 			    s32 end_new, const bool probe_pass)
381 {
382 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
383 	struct bpf_insn *insn = prog->insnsi;
384 	int ret = 0;
385 
386 	for (i = 0; i < insn_cnt; i++, insn++) {
387 		u8 code;
388 
389 		/* In the probing pass we still operate on the original,
390 		 * unpatched image in order to check overflows before we
391 		 * do any other adjustments. Therefore skip the patchlet.
392 		 */
393 		if (probe_pass && i == pos) {
394 			i = end_new;
395 			insn = prog->insnsi + end_old;
396 		}
397 		code = insn->code;
398 		if ((BPF_CLASS(code) != BPF_JMP &&
399 		     BPF_CLASS(code) != BPF_JMP32) ||
400 		    BPF_OP(code) == BPF_EXIT)
401 			continue;
402 		/* Adjust offset of jmps if we cross patch boundaries. */
403 		if (BPF_OP(code) == BPF_CALL) {
404 			if (insn->src_reg != BPF_PSEUDO_CALL)
405 				continue;
406 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
407 						   end_new, i, probe_pass);
408 		} else {
409 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
410 						   end_new, i, probe_pass);
411 		}
412 		if (ret)
413 			break;
414 	}
415 
416 	return ret;
417 }
418 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)419 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
420 {
421 	struct bpf_line_info *linfo;
422 	u32 i, nr_linfo;
423 
424 	nr_linfo = prog->aux->nr_linfo;
425 	if (!nr_linfo || !delta)
426 		return;
427 
428 	linfo = prog->aux->linfo;
429 
430 	for (i = 0; i < nr_linfo; i++)
431 		if (off < linfo[i].insn_off)
432 			break;
433 
434 	/* Push all off < linfo[i].insn_off by delta */
435 	for (; i < nr_linfo; i++)
436 		linfo[i].insn_off += delta;
437 }
438 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)439 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
440 				       const struct bpf_insn *patch, u32 len)
441 {
442 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
443 	const u32 cnt_max = S16_MAX;
444 	struct bpf_prog *prog_adj;
445 	int err;
446 
447 	/* Since our patchlet doesn't expand the image, we're done. */
448 	if (insn_delta == 0) {
449 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
450 		return prog;
451 	}
452 
453 	insn_adj_cnt = prog->len + insn_delta;
454 
455 	/* Reject anything that would potentially let the insn->off
456 	 * target overflow when we have excessive program expansions.
457 	 * We need to probe here before we do any reallocation where
458 	 * we afterwards may not fail anymore.
459 	 */
460 	if (insn_adj_cnt > cnt_max &&
461 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
462 		return ERR_PTR(err);
463 
464 	/* Several new instructions need to be inserted. Make room
465 	 * for them. Likely, there's no need for a new allocation as
466 	 * last page could have large enough tailroom.
467 	 */
468 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
469 				    GFP_USER);
470 	if (!prog_adj)
471 		return ERR_PTR(-ENOMEM);
472 
473 	prog_adj->len = insn_adj_cnt;
474 
475 	/* Patching happens in 3 steps:
476 	 *
477 	 * 1) Move over tail of insnsi from next instruction onwards,
478 	 *    so we can patch the single target insn with one or more
479 	 *    new ones (patching is always from 1 to n insns, n > 0).
480 	 * 2) Inject new instructions at the target location.
481 	 * 3) Adjust branch offsets if necessary.
482 	 */
483 	insn_rest = insn_adj_cnt - off - len;
484 
485 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
486 		sizeof(*patch) * insn_rest);
487 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
488 
489 	/* We are guaranteed to not fail at this point, otherwise
490 	 * the ship has sailed to reverse to the original state. An
491 	 * overflow cannot happen at this point.
492 	 */
493 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
494 
495 	bpf_adj_linfo(prog_adj, off, insn_delta);
496 
497 	return prog_adj;
498 }
499 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)500 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
501 {
502 	/* Branch offsets can't overflow when program is shrinking, no need
503 	 * to call bpf_adj_branches(..., true) here
504 	 */
505 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
506 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
507 	prog->len -= cnt;
508 
509 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
510 }
511 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)512 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
513 {
514 	int i;
515 
516 	for (i = 0; i < fp->aux->func_cnt; i++)
517 		bpf_prog_kallsyms_del(fp->aux->func[i]);
518 }
519 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)520 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
521 {
522 	bpf_prog_kallsyms_del_subprogs(fp);
523 	bpf_prog_kallsyms_del(fp);
524 }
525 
526 #ifdef CONFIG_BPF_JIT
527 /* All BPF JIT sysctl knobs here. */
528 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
529 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
530 int bpf_jit_harden   __read_mostly;
531 long bpf_jit_limit   __read_mostly;
532 long bpf_jit_limit_max __read_mostly;
533 
534 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)535 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
536 {
537 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
538 	unsigned long addr = (unsigned long)hdr;
539 
540 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
541 
542 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
543 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
544 }
545 
546 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)547 bpf_prog_ksym_set_name(struct bpf_prog *prog)
548 {
549 	char *sym = prog->aux->ksym.name;
550 	const char *end = sym + KSYM_NAME_LEN;
551 	const struct btf_type *type;
552 	const char *func_name;
553 
554 	BUILD_BUG_ON(sizeof("bpf_prog_") +
555 		     sizeof(prog->tag) * 2 +
556 		     /* name has been null terminated.
557 		      * We should need +1 for the '_' preceding
558 		      * the name.  However, the null character
559 		      * is double counted between the name and the
560 		      * sizeof("bpf_prog_") above, so we omit
561 		      * the +1 here.
562 		      */
563 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
564 
565 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
566 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
567 
568 	/* prog->aux->name will be ignored if full btf name is available */
569 	if (prog->aux->func_info_cnt) {
570 		type = btf_type_by_id(prog->aux->btf,
571 				      prog->aux->func_info[prog->aux->func_idx].type_id);
572 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
573 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
574 		return;
575 	}
576 
577 	if (prog->aux->name[0])
578 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
579 	else
580 		*sym = 0;
581 }
582 
bpf_get_ksym_start(struct latch_tree_node * n)583 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
584 {
585 	return container_of(n, struct bpf_ksym, tnode)->start;
586 }
587 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)588 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
589 					  struct latch_tree_node *b)
590 {
591 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
592 }
593 
bpf_tree_comp(void * key,struct latch_tree_node * n)594 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
595 {
596 	unsigned long val = (unsigned long)key;
597 	const struct bpf_ksym *ksym;
598 
599 	ksym = container_of(n, struct bpf_ksym, tnode);
600 
601 	if (val < ksym->start)
602 		return -1;
603 	if (val >= ksym->end)
604 		return  1;
605 
606 	return 0;
607 }
608 
609 static const struct latch_tree_ops bpf_tree_ops = {
610 	.less	= bpf_tree_less,
611 	.comp	= bpf_tree_comp,
612 };
613 
614 static DEFINE_SPINLOCK(bpf_lock);
615 static LIST_HEAD(bpf_kallsyms);
616 static struct latch_tree_root bpf_tree __cacheline_aligned;
617 
bpf_ksym_add(struct bpf_ksym * ksym)618 void bpf_ksym_add(struct bpf_ksym *ksym)
619 {
620 	spin_lock_bh(&bpf_lock);
621 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
622 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
623 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
624 	spin_unlock_bh(&bpf_lock);
625 }
626 
__bpf_ksym_del(struct bpf_ksym * ksym)627 static void __bpf_ksym_del(struct bpf_ksym *ksym)
628 {
629 	if (list_empty(&ksym->lnode))
630 		return;
631 
632 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
633 	list_del_rcu(&ksym->lnode);
634 }
635 
bpf_ksym_del(struct bpf_ksym * ksym)636 void bpf_ksym_del(struct bpf_ksym *ksym)
637 {
638 	spin_lock_bh(&bpf_lock);
639 	__bpf_ksym_del(ksym);
640 	spin_unlock_bh(&bpf_lock);
641 }
642 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)643 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
644 {
645 	return fp->jited && !bpf_prog_was_classic(fp);
646 }
647 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)648 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
649 {
650 	return list_empty(&fp->aux->ksym.lnode) ||
651 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
652 }
653 
bpf_prog_kallsyms_add(struct bpf_prog * fp)654 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
655 {
656 	if (!bpf_prog_kallsyms_candidate(fp) ||
657 	    !bpf_capable())
658 		return;
659 
660 	bpf_prog_ksym_set_addr(fp);
661 	bpf_prog_ksym_set_name(fp);
662 	fp->aux->ksym.prog = true;
663 
664 	bpf_ksym_add(&fp->aux->ksym);
665 }
666 
bpf_prog_kallsyms_del(struct bpf_prog * fp)667 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
668 {
669 	if (!bpf_prog_kallsyms_candidate(fp))
670 		return;
671 
672 	bpf_ksym_del(&fp->aux->ksym);
673 }
674 
bpf_ksym_find(unsigned long addr)675 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
676 {
677 	struct latch_tree_node *n;
678 
679 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
680 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
681 }
682 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)683 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
684 				 unsigned long *off, char *sym)
685 {
686 	struct bpf_ksym *ksym;
687 	char *ret = NULL;
688 
689 	rcu_read_lock();
690 	ksym = bpf_ksym_find(addr);
691 	if (ksym) {
692 		unsigned long symbol_start = ksym->start;
693 		unsigned long symbol_end = ksym->end;
694 
695 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
696 
697 		ret = sym;
698 		if (size)
699 			*size = symbol_end - symbol_start;
700 		if (off)
701 			*off  = addr - symbol_start;
702 	}
703 	rcu_read_unlock();
704 
705 	return ret;
706 }
707 
is_bpf_text_address(unsigned long addr)708 bool is_bpf_text_address(unsigned long addr)
709 {
710 	bool ret;
711 
712 	rcu_read_lock();
713 	ret = bpf_ksym_find(addr) != NULL;
714 	rcu_read_unlock();
715 
716 	return ret;
717 }
718 
bpf_prog_ksym_find(unsigned long addr)719 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
720 {
721 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
722 
723 	return ksym && ksym->prog ?
724 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
725 	       NULL;
726 }
727 
search_bpf_extables(unsigned long addr)728 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
729 {
730 	const struct exception_table_entry *e = NULL;
731 	struct bpf_prog *prog;
732 
733 	rcu_read_lock();
734 	prog = bpf_prog_ksym_find(addr);
735 	if (!prog)
736 		goto out;
737 	if (!prog->aux->num_exentries)
738 		goto out;
739 
740 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
741 out:
742 	rcu_read_unlock();
743 	return e;
744 }
745 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)746 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
747 		    char *sym)
748 {
749 	struct bpf_ksym *ksym;
750 	unsigned int it = 0;
751 	int ret = -ERANGE;
752 
753 	if (!bpf_jit_kallsyms_enabled())
754 		return ret;
755 
756 	rcu_read_lock();
757 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
758 		if (it++ != symnum)
759 			continue;
760 
761 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
762 
763 		*value = ksym->start;
764 		*type  = BPF_SYM_ELF_TYPE;
765 
766 		ret = 0;
767 		break;
768 	}
769 	rcu_read_unlock();
770 
771 	return ret;
772 }
773 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)774 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
775 				struct bpf_jit_poke_descriptor *poke)
776 {
777 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
778 	static const u32 poke_tab_max = 1024;
779 	u32 slot = prog->aux->size_poke_tab;
780 	u32 size = slot + 1;
781 
782 	if (size > poke_tab_max)
783 		return -ENOSPC;
784 	if (poke->tailcall_target || poke->tailcall_target_stable ||
785 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
786 		return -EINVAL;
787 
788 	switch (poke->reason) {
789 	case BPF_POKE_REASON_TAIL_CALL:
790 		if (!poke->tail_call.map)
791 			return -EINVAL;
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
798 	if (!tab)
799 		return -ENOMEM;
800 
801 	memcpy(&tab[slot], poke, sizeof(*poke));
802 	prog->aux->size_poke_tab = size;
803 	prog->aux->poke_tab = tab;
804 
805 	return slot;
806 }
807 
808 static atomic_long_t bpf_jit_current;
809 
810 /* Can be overridden by an arch's JIT compiler if it has a custom,
811  * dedicated BPF backend memory area, or if neither of the two
812  * below apply.
813  */
bpf_jit_alloc_exec_limit(void)814 u64 __weak bpf_jit_alloc_exec_limit(void)
815 {
816 #if defined(MODULES_VADDR)
817 	return MODULES_END - MODULES_VADDR;
818 #else
819 	return VMALLOC_END - VMALLOC_START;
820 #endif
821 }
822 
bpf_jit_charge_init(void)823 static int __init bpf_jit_charge_init(void)
824 {
825 	/* Only used as heuristic here to derive limit. */
826 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
827 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
828 					    PAGE_SIZE), LONG_MAX);
829 	return 0;
830 }
831 pure_initcall(bpf_jit_charge_init);
832 
bpf_jit_charge_modmem(u32 pages)833 int bpf_jit_charge_modmem(u32 pages)
834 {
835 	if (atomic_long_add_return(pages, &bpf_jit_current) >
836 	    (bpf_jit_limit >> PAGE_SHIFT)) {
837 		if (!bpf_capable()) {
838 			atomic_long_sub(pages, &bpf_jit_current);
839 			return -EPERM;
840 		}
841 	}
842 
843 	return 0;
844 }
845 
bpf_jit_uncharge_modmem(u32 pages)846 void bpf_jit_uncharge_modmem(u32 pages)
847 {
848 	atomic_long_sub(pages, &bpf_jit_current);
849 }
850 
bpf_jit_alloc_exec(unsigned long size)851 void *__weak bpf_jit_alloc_exec(unsigned long size)
852 {
853 	return module_alloc(size);
854 }
855 
bpf_jit_free_exec(void * addr)856 void __weak bpf_jit_free_exec(void *addr)
857 {
858 	module_memfree(addr);
859 }
860 
861 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)862 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
863 		     unsigned int alignment,
864 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
865 {
866 	struct bpf_binary_header *hdr;
867 	u32 size, hole, start, pages;
868 
869 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
870 		     alignment > BPF_IMAGE_ALIGNMENT);
871 
872 	/* Most of BPF filters are really small, but if some of them
873 	 * fill a page, allow at least 128 extra bytes to insert a
874 	 * random section of illegal instructions.
875 	 */
876 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
877 	pages = size / PAGE_SIZE;
878 
879 	if (bpf_jit_charge_modmem(pages))
880 		return NULL;
881 	hdr = bpf_jit_alloc_exec(size);
882 	if (!hdr) {
883 		bpf_jit_uncharge_modmem(pages);
884 		return NULL;
885 	}
886 
887 	/* Fill space with illegal/arch-dep instructions. */
888 	bpf_fill_ill_insns(hdr, size);
889 
890 	hdr->pages = pages;
891 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
892 		     PAGE_SIZE - sizeof(*hdr));
893 	start = (get_random_int() % hole) & ~(alignment - 1);
894 
895 	/* Leave a random number of instructions before BPF code. */
896 	*image_ptr = &hdr->image[start];
897 
898 	return hdr;
899 }
900 
bpf_jit_binary_free(struct bpf_binary_header * hdr)901 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
902 {
903 	u32 pages = hdr->pages;
904 
905 	bpf_jit_free_exec(hdr);
906 	bpf_jit_uncharge_modmem(pages);
907 }
908 
909 /* This symbol is only overridden by archs that have different
910  * requirements than the usual eBPF JITs, f.e. when they only
911  * implement cBPF JIT, do not set images read-only, etc.
912  */
bpf_jit_free(struct bpf_prog * fp)913 void __weak bpf_jit_free(struct bpf_prog *fp)
914 {
915 	if (fp->jited) {
916 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
917 
918 		bpf_jit_binary_free(hdr);
919 
920 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
921 	}
922 
923 	bpf_prog_unlock_free(fp);
924 }
925 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)926 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
927 			  const struct bpf_insn *insn, bool extra_pass,
928 			  u64 *func_addr, bool *func_addr_fixed)
929 {
930 	s16 off = insn->off;
931 	s32 imm = insn->imm;
932 	u8 *addr;
933 
934 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
935 	if (!*func_addr_fixed) {
936 		/* Place-holder address till the last pass has collected
937 		 * all addresses for JITed subprograms in which case we
938 		 * can pick them up from prog->aux.
939 		 */
940 		if (!extra_pass)
941 			addr = NULL;
942 		else if (prog->aux->func &&
943 			 off >= 0 && off < prog->aux->func_cnt)
944 			addr = (u8 *)prog->aux->func[off]->bpf_func;
945 		else
946 			return -EINVAL;
947 	} else {
948 		/* Address of a BPF helper call. Since part of the core
949 		 * kernel, it's always at a fixed location. __bpf_call_base
950 		 * and the helper with imm relative to it are both in core
951 		 * kernel.
952 		 */
953 		addr = (u8 *)__bpf_call_base + imm;
954 	}
955 
956 	*func_addr = (unsigned long)addr;
957 	return 0;
958 }
959 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)960 static int bpf_jit_blind_insn(const struct bpf_insn *from,
961 			      const struct bpf_insn *aux,
962 			      struct bpf_insn *to_buff,
963 			      bool emit_zext)
964 {
965 	struct bpf_insn *to = to_buff;
966 	u32 imm_rnd = get_random_int();
967 	s16 off;
968 
969 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
970 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
971 
972 	/* Constraints on AX register:
973 	 *
974 	 * AX register is inaccessible from user space. It is mapped in
975 	 * all JITs, and used here for constant blinding rewrites. It is
976 	 * typically "stateless" meaning its contents are only valid within
977 	 * the executed instruction, but not across several instructions.
978 	 * There are a few exceptions however which are further detailed
979 	 * below.
980 	 *
981 	 * Constant blinding is only used by JITs, not in the interpreter.
982 	 * The interpreter uses AX in some occasions as a local temporary
983 	 * register e.g. in DIV or MOD instructions.
984 	 *
985 	 * In restricted circumstances, the verifier can also use the AX
986 	 * register for rewrites as long as they do not interfere with
987 	 * the above cases!
988 	 */
989 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
990 		goto out;
991 
992 	if (from->imm == 0 &&
993 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
994 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
995 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
996 		goto out;
997 	}
998 
999 	switch (from->code) {
1000 	case BPF_ALU | BPF_ADD | BPF_K:
1001 	case BPF_ALU | BPF_SUB | BPF_K:
1002 	case BPF_ALU | BPF_AND | BPF_K:
1003 	case BPF_ALU | BPF_OR  | BPF_K:
1004 	case BPF_ALU | BPF_XOR | BPF_K:
1005 	case BPF_ALU | BPF_MUL | BPF_K:
1006 	case BPF_ALU | BPF_MOV | BPF_K:
1007 	case BPF_ALU | BPF_DIV | BPF_K:
1008 	case BPF_ALU | BPF_MOD | BPF_K:
1009 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1010 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1011 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1012 		break;
1013 
1014 	case BPF_ALU64 | BPF_ADD | BPF_K:
1015 	case BPF_ALU64 | BPF_SUB | BPF_K:
1016 	case BPF_ALU64 | BPF_AND | BPF_K:
1017 	case BPF_ALU64 | BPF_OR  | BPF_K:
1018 	case BPF_ALU64 | BPF_XOR | BPF_K:
1019 	case BPF_ALU64 | BPF_MUL | BPF_K:
1020 	case BPF_ALU64 | BPF_MOV | BPF_K:
1021 	case BPF_ALU64 | BPF_DIV | BPF_K:
1022 	case BPF_ALU64 | BPF_MOD | BPF_K:
1023 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1024 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1025 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1026 		break;
1027 
1028 	case BPF_JMP | BPF_JEQ  | BPF_K:
1029 	case BPF_JMP | BPF_JNE  | BPF_K:
1030 	case BPF_JMP | BPF_JGT  | BPF_K:
1031 	case BPF_JMP | BPF_JLT  | BPF_K:
1032 	case BPF_JMP | BPF_JGE  | BPF_K:
1033 	case BPF_JMP | BPF_JLE  | BPF_K:
1034 	case BPF_JMP | BPF_JSGT | BPF_K:
1035 	case BPF_JMP | BPF_JSLT | BPF_K:
1036 	case BPF_JMP | BPF_JSGE | BPF_K:
1037 	case BPF_JMP | BPF_JSLE | BPF_K:
1038 	case BPF_JMP | BPF_JSET | BPF_K:
1039 		/* Accommodate for extra offset in case of a backjump. */
1040 		off = from->off;
1041 		if (off < 0)
1042 			off -= 2;
1043 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1044 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1045 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1046 		break;
1047 
1048 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1049 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1050 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1051 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1052 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1053 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1054 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1055 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1056 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1057 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1058 	case BPF_JMP32 | BPF_JSET | BPF_K:
1059 		/* Accommodate for extra offset in case of a backjump. */
1060 		off = from->off;
1061 		if (off < 0)
1062 			off -= 2;
1063 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1064 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1066 				      off);
1067 		break;
1068 
1069 	case BPF_LD | BPF_IMM | BPF_DW:
1070 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1071 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1072 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1073 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1074 		break;
1075 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1076 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1077 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1078 		if (emit_zext)
1079 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1080 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1081 		break;
1082 
1083 	case BPF_ST | BPF_MEM | BPF_DW:
1084 	case BPF_ST | BPF_MEM | BPF_W:
1085 	case BPF_ST | BPF_MEM | BPF_H:
1086 	case BPF_ST | BPF_MEM | BPF_B:
1087 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1088 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1089 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1090 		break;
1091 	}
1092 out:
1093 	return to - to_buff;
1094 }
1095 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1096 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1097 					      gfp_t gfp_extra_flags)
1098 {
1099 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1100 	struct bpf_prog *fp;
1101 
1102 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1103 	if (fp != NULL) {
1104 		/* aux->prog still points to the fp_other one, so
1105 		 * when promoting the clone to the real program,
1106 		 * this still needs to be adapted.
1107 		 */
1108 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1109 	}
1110 
1111 	return fp;
1112 }
1113 
bpf_prog_clone_free(struct bpf_prog * fp)1114 static void bpf_prog_clone_free(struct bpf_prog *fp)
1115 {
1116 	/* aux was stolen by the other clone, so we cannot free
1117 	 * it from this path! It will be freed eventually by the
1118 	 * other program on release.
1119 	 *
1120 	 * At this point, we don't need a deferred release since
1121 	 * clone is guaranteed to not be locked.
1122 	 */
1123 	fp->aux = NULL;
1124 	__bpf_prog_free(fp);
1125 }
1126 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1127 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1128 {
1129 	/* We have to repoint aux->prog to self, as we don't
1130 	 * know whether fp here is the clone or the original.
1131 	 */
1132 	fp->aux->prog = fp;
1133 	bpf_prog_clone_free(fp_other);
1134 }
1135 
bpf_jit_blind_constants(struct bpf_prog * prog)1136 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1137 {
1138 	struct bpf_insn insn_buff[16], aux[2];
1139 	struct bpf_prog *clone, *tmp;
1140 	int insn_delta, insn_cnt;
1141 	struct bpf_insn *insn;
1142 	int i, rewritten;
1143 
1144 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1145 		return prog;
1146 
1147 	clone = bpf_prog_clone_create(prog, GFP_USER);
1148 	if (!clone)
1149 		return ERR_PTR(-ENOMEM);
1150 
1151 	insn_cnt = clone->len;
1152 	insn = clone->insnsi;
1153 
1154 	for (i = 0; i < insn_cnt; i++, insn++) {
1155 		/* We temporarily need to hold the original ld64 insn
1156 		 * so that we can still access the first part in the
1157 		 * second blinding run.
1158 		 */
1159 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1160 		    insn[1].code == 0)
1161 			memcpy(aux, insn, sizeof(aux));
1162 
1163 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1164 						clone->aux->verifier_zext);
1165 		if (!rewritten)
1166 			continue;
1167 
1168 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1169 		if (IS_ERR(tmp)) {
1170 			/* Patching may have repointed aux->prog during
1171 			 * realloc from the original one, so we need to
1172 			 * fix it up here on error.
1173 			 */
1174 			bpf_jit_prog_release_other(prog, clone);
1175 			return tmp;
1176 		}
1177 
1178 		clone = tmp;
1179 		insn_delta = rewritten - 1;
1180 
1181 		/* Walk new program and skip insns we just inserted. */
1182 		insn = clone->insnsi + i + insn_delta;
1183 		insn_cnt += insn_delta;
1184 		i        += insn_delta;
1185 	}
1186 
1187 	clone->blinded = 1;
1188 	return clone;
1189 }
1190 #endif /* CONFIG_BPF_JIT */
1191 
1192 /* Base function for offset calculation. Needs to go into .text section,
1193  * therefore keeping it non-static as well; will also be used by JITs
1194  * anyway later on, so do not let the compiler omit it. This also needs
1195  * to go into kallsyms for correlation from e.g. bpftool, so naming
1196  * must not change.
1197  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1198 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1199 {
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(__bpf_call_base);
1203 
1204 /* All UAPI available opcodes. */
1205 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1206 	/* 32 bit ALU operations. */		\
1207 	/*   Register based. */			\
1208 	INSN_3(ALU, ADD,  X),			\
1209 	INSN_3(ALU, SUB,  X),			\
1210 	INSN_3(ALU, AND,  X),			\
1211 	INSN_3(ALU, OR,   X),			\
1212 	INSN_3(ALU, LSH,  X),			\
1213 	INSN_3(ALU, RSH,  X),			\
1214 	INSN_3(ALU, XOR,  X),			\
1215 	INSN_3(ALU, MUL,  X),			\
1216 	INSN_3(ALU, MOV,  X),			\
1217 	INSN_3(ALU, ARSH, X),			\
1218 	INSN_3(ALU, DIV,  X),			\
1219 	INSN_3(ALU, MOD,  X),			\
1220 	INSN_2(ALU, NEG),			\
1221 	INSN_3(ALU, END, TO_BE),		\
1222 	INSN_3(ALU, END, TO_LE),		\
1223 	/*   Immediate based. */		\
1224 	INSN_3(ALU, ADD,  K),			\
1225 	INSN_3(ALU, SUB,  K),			\
1226 	INSN_3(ALU, AND,  K),			\
1227 	INSN_3(ALU, OR,   K),			\
1228 	INSN_3(ALU, LSH,  K),			\
1229 	INSN_3(ALU, RSH,  K),			\
1230 	INSN_3(ALU, XOR,  K),			\
1231 	INSN_3(ALU, MUL,  K),			\
1232 	INSN_3(ALU, MOV,  K),			\
1233 	INSN_3(ALU, ARSH, K),			\
1234 	INSN_3(ALU, DIV,  K),			\
1235 	INSN_3(ALU, MOD,  K),			\
1236 	/* 64 bit ALU operations. */		\
1237 	/*   Register based. */			\
1238 	INSN_3(ALU64, ADD,  X),			\
1239 	INSN_3(ALU64, SUB,  X),			\
1240 	INSN_3(ALU64, AND,  X),			\
1241 	INSN_3(ALU64, OR,   X),			\
1242 	INSN_3(ALU64, LSH,  X),			\
1243 	INSN_3(ALU64, RSH,  X),			\
1244 	INSN_3(ALU64, XOR,  X),			\
1245 	INSN_3(ALU64, MUL,  X),			\
1246 	INSN_3(ALU64, MOV,  X),			\
1247 	INSN_3(ALU64, ARSH, X),			\
1248 	INSN_3(ALU64, DIV,  X),			\
1249 	INSN_3(ALU64, MOD,  X),			\
1250 	INSN_2(ALU64, NEG),			\
1251 	/*   Immediate based. */		\
1252 	INSN_3(ALU64, ADD,  K),			\
1253 	INSN_3(ALU64, SUB,  K),			\
1254 	INSN_3(ALU64, AND,  K),			\
1255 	INSN_3(ALU64, OR,   K),			\
1256 	INSN_3(ALU64, LSH,  K),			\
1257 	INSN_3(ALU64, RSH,  K),			\
1258 	INSN_3(ALU64, XOR,  K),			\
1259 	INSN_3(ALU64, MUL,  K),			\
1260 	INSN_3(ALU64, MOV,  K),			\
1261 	INSN_3(ALU64, ARSH, K),			\
1262 	INSN_3(ALU64, DIV,  K),			\
1263 	INSN_3(ALU64, MOD,  K),			\
1264 	/* Call instruction. */			\
1265 	INSN_2(JMP, CALL),			\
1266 	/* Exit instruction. */			\
1267 	INSN_2(JMP, EXIT),			\
1268 	/* 32-bit Jump instructions. */		\
1269 	/*   Register based. */			\
1270 	INSN_3(JMP32, JEQ,  X),			\
1271 	INSN_3(JMP32, JNE,  X),			\
1272 	INSN_3(JMP32, JGT,  X),			\
1273 	INSN_3(JMP32, JLT,  X),			\
1274 	INSN_3(JMP32, JGE,  X),			\
1275 	INSN_3(JMP32, JLE,  X),			\
1276 	INSN_3(JMP32, JSGT, X),			\
1277 	INSN_3(JMP32, JSLT, X),			\
1278 	INSN_3(JMP32, JSGE, X),			\
1279 	INSN_3(JMP32, JSLE, X),			\
1280 	INSN_3(JMP32, JSET, X),			\
1281 	/*   Immediate based. */		\
1282 	INSN_3(JMP32, JEQ,  K),			\
1283 	INSN_3(JMP32, JNE,  K),			\
1284 	INSN_3(JMP32, JGT,  K),			\
1285 	INSN_3(JMP32, JLT,  K),			\
1286 	INSN_3(JMP32, JGE,  K),			\
1287 	INSN_3(JMP32, JLE,  K),			\
1288 	INSN_3(JMP32, JSGT, K),			\
1289 	INSN_3(JMP32, JSLT, K),			\
1290 	INSN_3(JMP32, JSGE, K),			\
1291 	INSN_3(JMP32, JSLE, K),			\
1292 	INSN_3(JMP32, JSET, K),			\
1293 	/* Jump instructions. */		\
1294 	/*   Register based. */			\
1295 	INSN_3(JMP, JEQ,  X),			\
1296 	INSN_3(JMP, JNE,  X),			\
1297 	INSN_3(JMP, JGT,  X),			\
1298 	INSN_3(JMP, JLT,  X),			\
1299 	INSN_3(JMP, JGE,  X),			\
1300 	INSN_3(JMP, JLE,  X),			\
1301 	INSN_3(JMP, JSGT, X),			\
1302 	INSN_3(JMP, JSLT, X),			\
1303 	INSN_3(JMP, JSGE, X),			\
1304 	INSN_3(JMP, JSLE, X),			\
1305 	INSN_3(JMP, JSET, X),			\
1306 	/*   Immediate based. */		\
1307 	INSN_3(JMP, JEQ,  K),			\
1308 	INSN_3(JMP, JNE,  K),			\
1309 	INSN_3(JMP, JGT,  K),			\
1310 	INSN_3(JMP, JLT,  K),			\
1311 	INSN_3(JMP, JGE,  K),			\
1312 	INSN_3(JMP, JLE,  K),			\
1313 	INSN_3(JMP, JSGT, K),			\
1314 	INSN_3(JMP, JSLT, K),			\
1315 	INSN_3(JMP, JSGE, K),			\
1316 	INSN_3(JMP, JSLE, K),			\
1317 	INSN_3(JMP, JSET, K),			\
1318 	INSN_2(JMP, JA),			\
1319 	/* Store instructions. */		\
1320 	/*   Register based. */			\
1321 	INSN_3(STX, MEM,  B),			\
1322 	INSN_3(STX, MEM,  H),			\
1323 	INSN_3(STX, MEM,  W),			\
1324 	INSN_3(STX, MEM,  DW),			\
1325 	INSN_3(STX, XADD, W),			\
1326 	INSN_3(STX, XADD, DW),			\
1327 	/*   Immediate based. */		\
1328 	INSN_3(ST, MEM, B),			\
1329 	INSN_3(ST, MEM, H),			\
1330 	INSN_3(ST, MEM, W),			\
1331 	INSN_3(ST, MEM, DW),			\
1332 	/* Load instructions. */		\
1333 	/*   Register based. */			\
1334 	INSN_3(LDX, MEM, B),			\
1335 	INSN_3(LDX, MEM, H),			\
1336 	INSN_3(LDX, MEM, W),			\
1337 	INSN_3(LDX, MEM, DW),			\
1338 	/*   Immediate based. */		\
1339 	INSN_3(LD, IMM, DW)
1340 
bpf_opcode_in_insntable(u8 code)1341 bool bpf_opcode_in_insntable(u8 code)
1342 {
1343 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1344 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1345 	static const bool public_insntable[256] = {
1346 		[0 ... 255] = false,
1347 		/* Now overwrite non-defaults ... */
1348 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1349 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1350 		[BPF_LD | BPF_ABS | BPF_B] = true,
1351 		[BPF_LD | BPF_ABS | BPF_H] = true,
1352 		[BPF_LD | BPF_ABS | BPF_W] = true,
1353 		[BPF_LD | BPF_IND | BPF_B] = true,
1354 		[BPF_LD | BPF_IND | BPF_H] = true,
1355 		[BPF_LD | BPF_IND | BPF_W] = true,
1356 	};
1357 #undef BPF_INSN_3_TBL
1358 #undef BPF_INSN_2_TBL
1359 	return public_insntable[code];
1360 }
1361 
1362 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1363 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1364 {
1365 	memset(dst, 0, size);
1366 	return -EFAULT;
1367 }
1368 
1369 /**
1370  *	__bpf_prog_run - run eBPF program on a given context
1371  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1372  *	@insn: is the array of eBPF instructions
1373  *	@stack: is the eBPF storage stack
1374  *
1375  * Decode and execute eBPF instructions.
1376  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1377 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1378 {
1379 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1380 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1381 	static const void * const jumptable[256] __annotate_jump_table = {
1382 		[0 ... 255] = &&default_label,
1383 		/* Now overwrite non-defaults ... */
1384 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1385 		/* Non-UAPI available opcodes. */
1386 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1387 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1388 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1389 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1390 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1391 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1392 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1393 	};
1394 #undef BPF_INSN_3_LBL
1395 #undef BPF_INSN_2_LBL
1396 	u32 tail_call_cnt = 0;
1397 
1398 #define CONT	 ({ insn++; goto select_insn; })
1399 #define CONT_JMP ({ insn++; goto select_insn; })
1400 
1401 select_insn:
1402 	goto *jumptable[insn->code];
1403 
1404 	/* Explicitly mask the register-based shift amounts with 63 or 31
1405 	 * to avoid undefined behavior. Normally this won't affect the
1406 	 * generated code, for example, in case of native 64 bit archs such
1407 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1408 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1409 	 * the BPF shift operations to machine instructions which produce
1410 	 * implementation-defined results in such a case; the resulting
1411 	 * contents of the register may be arbitrary, but program behaviour
1412 	 * as a whole remains defined. In other words, in case of JIT backends,
1413 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1414 	 */
1415 	/* ALU (shifts) */
1416 #define SHT(OPCODE, OP)					\
1417 	ALU64_##OPCODE##_X:				\
1418 		DST = DST OP (SRC & 63);		\
1419 		CONT;					\
1420 	ALU_##OPCODE##_X:				\
1421 		DST = (u32) DST OP ((u32) SRC & 31);	\
1422 		CONT;					\
1423 	ALU64_##OPCODE##_K:				\
1424 		DST = DST OP IMM;			\
1425 		CONT;					\
1426 	ALU_##OPCODE##_K:				\
1427 		DST = (u32) DST OP (u32) IMM;		\
1428 		CONT;
1429 	/* ALU (rest) */
1430 #define ALU(OPCODE, OP)					\
1431 	ALU64_##OPCODE##_X:				\
1432 		DST = DST OP SRC;			\
1433 		CONT;					\
1434 	ALU_##OPCODE##_X:				\
1435 		DST = (u32) DST OP (u32) SRC;		\
1436 		CONT;					\
1437 	ALU64_##OPCODE##_K:				\
1438 		DST = DST OP IMM;			\
1439 		CONT;					\
1440 	ALU_##OPCODE##_K:				\
1441 		DST = (u32) DST OP (u32) IMM;		\
1442 		CONT;
1443 	ALU(ADD,  +)
1444 	ALU(SUB,  -)
1445 	ALU(AND,  &)
1446 	ALU(OR,   |)
1447 	ALU(XOR,  ^)
1448 	ALU(MUL,  *)
1449 	SHT(LSH, <<)
1450 	SHT(RSH, >>)
1451 #undef SHT
1452 #undef ALU
1453 	ALU_NEG:
1454 		DST = (u32) -DST;
1455 		CONT;
1456 	ALU64_NEG:
1457 		DST = -DST;
1458 		CONT;
1459 	ALU_MOV_X:
1460 		DST = (u32) SRC;
1461 		CONT;
1462 	ALU_MOV_K:
1463 		DST = (u32) IMM;
1464 		CONT;
1465 	ALU64_MOV_X:
1466 		DST = SRC;
1467 		CONT;
1468 	ALU64_MOV_K:
1469 		DST = IMM;
1470 		CONT;
1471 	LD_IMM_DW:
1472 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1473 		insn++;
1474 		CONT;
1475 	ALU_ARSH_X:
1476 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1477 		CONT;
1478 	ALU_ARSH_K:
1479 		DST = (u64) (u32) (((s32) DST) >> IMM);
1480 		CONT;
1481 	ALU64_ARSH_X:
1482 		(*(s64 *) &DST) >>= (SRC & 63);
1483 		CONT;
1484 	ALU64_ARSH_K:
1485 		(*(s64 *) &DST) >>= IMM;
1486 		CONT;
1487 	ALU64_MOD_X:
1488 		div64_u64_rem(DST, SRC, &AX);
1489 		DST = AX;
1490 		CONT;
1491 	ALU_MOD_X:
1492 		AX = (u32) DST;
1493 		DST = do_div(AX, (u32) SRC);
1494 		CONT;
1495 	ALU64_MOD_K:
1496 		div64_u64_rem(DST, IMM, &AX);
1497 		DST = AX;
1498 		CONT;
1499 	ALU_MOD_K:
1500 		AX = (u32) DST;
1501 		DST = do_div(AX, (u32) IMM);
1502 		CONT;
1503 	ALU64_DIV_X:
1504 		DST = div64_u64(DST, SRC);
1505 		CONT;
1506 	ALU_DIV_X:
1507 		AX = (u32) DST;
1508 		do_div(AX, (u32) SRC);
1509 		DST = (u32) AX;
1510 		CONT;
1511 	ALU64_DIV_K:
1512 		DST = div64_u64(DST, IMM);
1513 		CONT;
1514 	ALU_DIV_K:
1515 		AX = (u32) DST;
1516 		do_div(AX, (u32) IMM);
1517 		DST = (u32) AX;
1518 		CONT;
1519 	ALU_END_TO_BE:
1520 		switch (IMM) {
1521 		case 16:
1522 			DST = (__force u16) cpu_to_be16(DST);
1523 			break;
1524 		case 32:
1525 			DST = (__force u32) cpu_to_be32(DST);
1526 			break;
1527 		case 64:
1528 			DST = (__force u64) cpu_to_be64(DST);
1529 			break;
1530 		}
1531 		CONT;
1532 	ALU_END_TO_LE:
1533 		switch (IMM) {
1534 		case 16:
1535 			DST = (__force u16) cpu_to_le16(DST);
1536 			break;
1537 		case 32:
1538 			DST = (__force u32) cpu_to_le32(DST);
1539 			break;
1540 		case 64:
1541 			DST = (__force u64) cpu_to_le64(DST);
1542 			break;
1543 		}
1544 		CONT;
1545 
1546 	/* CALL */
1547 	JMP_CALL:
1548 		/* Function call scratches BPF_R1-BPF_R5 registers,
1549 		 * preserves BPF_R6-BPF_R9, and stores return value
1550 		 * into BPF_R0.
1551 		 */
1552 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1553 						       BPF_R4, BPF_R5);
1554 		CONT;
1555 
1556 	JMP_CALL_ARGS:
1557 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1558 							    BPF_R3, BPF_R4,
1559 							    BPF_R5,
1560 							    insn + insn->off + 1);
1561 		CONT;
1562 
1563 	JMP_TAIL_CALL: {
1564 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1565 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1566 		struct bpf_prog *prog;
1567 		u32 index = BPF_R3;
1568 
1569 		if (unlikely(index >= array->map.max_entries))
1570 			goto out;
1571 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1572 			goto out;
1573 
1574 		tail_call_cnt++;
1575 
1576 		prog = READ_ONCE(array->ptrs[index]);
1577 		if (!prog)
1578 			goto out;
1579 
1580 		/* ARG1 at this point is guaranteed to point to CTX from
1581 		 * the verifier side due to the fact that the tail call is
1582 		 * handled like a helper, that is, bpf_tail_call_proto,
1583 		 * where arg1_type is ARG_PTR_TO_CTX.
1584 		 */
1585 		insn = prog->insnsi;
1586 		goto select_insn;
1587 out:
1588 		CONT;
1589 	}
1590 	JMP_JA:
1591 		insn += insn->off;
1592 		CONT;
1593 	JMP_EXIT:
1594 		return BPF_R0;
1595 	/* JMP */
1596 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1597 	JMP_##OPCODE##_X:					\
1598 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1599 			insn += insn->off;			\
1600 			CONT_JMP;				\
1601 		}						\
1602 		CONT;						\
1603 	JMP32_##OPCODE##_X:					\
1604 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1605 			insn += insn->off;			\
1606 			CONT_JMP;				\
1607 		}						\
1608 		CONT;						\
1609 	JMP_##OPCODE##_K:					\
1610 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1611 			insn += insn->off;			\
1612 			CONT_JMP;				\
1613 		}						\
1614 		CONT;						\
1615 	JMP32_##OPCODE##_K:					\
1616 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1617 			insn += insn->off;			\
1618 			CONT_JMP;				\
1619 		}						\
1620 		CONT;
1621 	COND_JMP(u, JEQ, ==)
1622 	COND_JMP(u, JNE, !=)
1623 	COND_JMP(u, JGT, >)
1624 	COND_JMP(u, JLT, <)
1625 	COND_JMP(u, JGE, >=)
1626 	COND_JMP(u, JLE, <=)
1627 	COND_JMP(u, JSET, &)
1628 	COND_JMP(s, JSGT, >)
1629 	COND_JMP(s, JSLT, <)
1630 	COND_JMP(s, JSGE, >=)
1631 	COND_JMP(s, JSLE, <=)
1632 #undef COND_JMP
1633 	/* ST, STX and LDX*/
1634 	ST_NOSPEC:
1635 		/* Speculation barrier for mitigating Speculative Store Bypass.
1636 		 * In case of arm64, we rely on the firmware mitigation as
1637 		 * controlled via the ssbd kernel parameter. Whenever the
1638 		 * mitigation is enabled, it works for all of the kernel code
1639 		 * with no need to provide any additional instructions here.
1640 		 * In case of x86, we use 'lfence' insn for mitigation. We
1641 		 * reuse preexisting logic from Spectre v1 mitigation that
1642 		 * happens to produce the required code on x86 for v4 as well.
1643 		 */
1644 		barrier_nospec();
1645 		CONT;
1646 #define LDST(SIZEOP, SIZE)						\
1647 	STX_MEM_##SIZEOP:						\
1648 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1649 		CONT;							\
1650 	ST_MEM_##SIZEOP:						\
1651 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1652 		CONT;							\
1653 	LDX_MEM_##SIZEOP:						\
1654 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1655 		CONT;
1656 
1657 	LDST(B,   u8)
1658 	LDST(H,  u16)
1659 	LDST(W,  u32)
1660 	LDST(DW, u64)
1661 #undef LDST
1662 #define LDX_PROBE(SIZEOP, SIZE)							\
1663 	LDX_PROBE_MEM_##SIZEOP:							\
1664 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1665 		CONT;
1666 	LDX_PROBE(B,  1)
1667 	LDX_PROBE(H,  2)
1668 	LDX_PROBE(W,  4)
1669 	LDX_PROBE(DW, 8)
1670 #undef LDX_PROBE
1671 
1672 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1673 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1674 			   (DST + insn->off));
1675 		CONT;
1676 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1677 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1678 			     (DST + insn->off));
1679 		CONT;
1680 
1681 	default_label:
1682 		/* If we ever reach this, we have a bug somewhere. Die hard here
1683 		 * instead of just returning 0; we could be somewhere in a subprog,
1684 		 * so execution could continue otherwise which we do /not/ want.
1685 		 *
1686 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1687 		 */
1688 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1689 		BUG_ON(1);
1690 		return 0;
1691 }
1692 
1693 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1694 #define DEFINE_BPF_PROG_RUN(stack_size) \
1695 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1696 { \
1697 	u64 stack[stack_size / sizeof(u64)]; \
1698 	u64 regs[MAX_BPF_EXT_REG]; \
1699 \
1700 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1701 	ARG1 = (u64) (unsigned long) ctx; \
1702 	return ___bpf_prog_run(regs, insn, stack); \
1703 }
1704 
1705 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1706 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1707 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1708 				      const struct bpf_insn *insn) \
1709 { \
1710 	u64 stack[stack_size / sizeof(u64)]; \
1711 	u64 regs[MAX_BPF_EXT_REG]; \
1712 \
1713 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1714 	BPF_R1 = r1; \
1715 	BPF_R2 = r2; \
1716 	BPF_R3 = r3; \
1717 	BPF_R4 = r4; \
1718 	BPF_R5 = r5; \
1719 	return ___bpf_prog_run(regs, insn, stack); \
1720 }
1721 
1722 #define EVAL1(FN, X) FN(X)
1723 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1724 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1725 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1726 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1727 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1728 
1729 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1730 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1731 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1732 
1733 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1734 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1735 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1736 
1737 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1738 
1739 static unsigned int (*interpreters[])(const void *ctx,
1740 				      const struct bpf_insn *insn) = {
1741 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1742 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1743 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1744 };
1745 #undef PROG_NAME_LIST
1746 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1747 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1748 				  const struct bpf_insn *insn) = {
1749 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1750 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1751 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1752 };
1753 #undef PROG_NAME_LIST
1754 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1755 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1756 {
1757 	stack_depth = max_t(u32, stack_depth, 1);
1758 	insn->off = (s16) insn->imm;
1759 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1760 		__bpf_call_base_args;
1761 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1762 }
1763 
1764 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1765 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1766 					 const struct bpf_insn *insn)
1767 {
1768 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1769 	 * is not working properly, so warn about it!
1770 	 */
1771 	WARN_ON_ONCE(1);
1772 	return 0;
1773 }
1774 #endif
1775 
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1776 bool bpf_prog_array_compatible(struct bpf_array *array,
1777 			       const struct bpf_prog *fp)
1778 {
1779 	bool ret;
1780 
1781 	if (fp->kprobe_override)
1782 		return false;
1783 
1784 	spin_lock(&array->aux->owner.lock);
1785 
1786 	if (!array->aux->owner.type) {
1787 		/* There's no owner yet where we could check for
1788 		 * compatibility.
1789 		 */
1790 		array->aux->owner.type  = fp->type;
1791 		array->aux->owner.jited = fp->jited;
1792 		ret = true;
1793 	} else {
1794 		ret = array->aux->owner.type  == fp->type &&
1795 		      array->aux->owner.jited == fp->jited;
1796 	}
1797 	spin_unlock(&array->aux->owner.lock);
1798 	return ret;
1799 }
1800 
bpf_check_tail_call(const struct bpf_prog * fp)1801 static int bpf_check_tail_call(const struct bpf_prog *fp)
1802 {
1803 	struct bpf_prog_aux *aux = fp->aux;
1804 	int i, ret = 0;
1805 
1806 	mutex_lock(&aux->used_maps_mutex);
1807 	for (i = 0; i < aux->used_map_cnt; i++) {
1808 		struct bpf_map *map = aux->used_maps[i];
1809 		struct bpf_array *array;
1810 
1811 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1812 			continue;
1813 
1814 		array = container_of(map, struct bpf_array, map);
1815 		if (!bpf_prog_array_compatible(array, fp)) {
1816 			ret = -EINVAL;
1817 			goto out;
1818 		}
1819 	}
1820 
1821 out:
1822 	mutex_unlock(&aux->used_maps_mutex);
1823 	return ret;
1824 }
1825 
bpf_prog_select_func(struct bpf_prog * fp)1826 static void bpf_prog_select_func(struct bpf_prog *fp)
1827 {
1828 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1829 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1830 
1831 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1832 #else
1833 	fp->bpf_func = __bpf_prog_ret0_warn;
1834 #endif
1835 }
1836 
1837 /**
1838  *	bpf_prog_select_runtime - select exec runtime for BPF program
1839  *	@fp: bpf_prog populated with internal BPF program
1840  *	@err: pointer to error variable
1841  *
1842  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1843  * The BPF program will be executed via BPF_PROG_RUN() macro.
1844  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1845 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1846 {
1847 	/* In case of BPF to BPF calls, verifier did all the prep
1848 	 * work with regards to JITing, etc.
1849 	 */
1850 	if (fp->bpf_func)
1851 		goto finalize;
1852 
1853 	bpf_prog_select_func(fp);
1854 
1855 	/* eBPF JITs can rewrite the program in case constant
1856 	 * blinding is active. However, in case of error during
1857 	 * blinding, bpf_int_jit_compile() must always return a
1858 	 * valid program, which in this case would simply not
1859 	 * be JITed, but falls back to the interpreter.
1860 	 */
1861 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1862 		*err = bpf_prog_alloc_jited_linfo(fp);
1863 		if (*err)
1864 			return fp;
1865 
1866 		fp = bpf_int_jit_compile(fp);
1867 		if (!fp->jited) {
1868 			bpf_prog_free_jited_linfo(fp);
1869 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1870 			*err = -ENOTSUPP;
1871 			return fp;
1872 #endif
1873 		} else {
1874 			bpf_prog_free_unused_jited_linfo(fp);
1875 		}
1876 	} else {
1877 		*err = bpf_prog_offload_compile(fp);
1878 		if (*err)
1879 			return fp;
1880 	}
1881 
1882 finalize:
1883 	bpf_prog_lock_ro(fp);
1884 
1885 	/* The tail call compatibility check can only be done at
1886 	 * this late stage as we need to determine, if we deal
1887 	 * with JITed or non JITed program concatenations and not
1888 	 * all eBPF JITs might immediately support all features.
1889 	 */
1890 	*err = bpf_check_tail_call(fp);
1891 
1892 	return fp;
1893 }
1894 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1895 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1896 static unsigned int __bpf_prog_ret1(const void *ctx,
1897 				    const struct bpf_insn *insn)
1898 {
1899 	return 1;
1900 }
1901 
1902 static struct bpf_prog_dummy {
1903 	struct bpf_prog prog;
1904 } dummy_bpf_prog = {
1905 	.prog = {
1906 		.bpf_func = __bpf_prog_ret1,
1907 	},
1908 };
1909 
1910 /* to avoid allocating empty bpf_prog_array for cgroups that
1911  * don't have bpf program attached use one global 'empty_prog_array'
1912  * It will not be modified the caller of bpf_prog_array_alloc()
1913  * (since caller requested prog_cnt == 0)
1914  * that pointer should be 'freed' by bpf_prog_array_free()
1915  */
1916 static struct {
1917 	struct bpf_prog_array hdr;
1918 	struct bpf_prog *null_prog;
1919 } empty_prog_array = {
1920 	.null_prog = NULL,
1921 };
1922 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1923 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1924 {
1925 	if (prog_cnt)
1926 		return kzalloc(sizeof(struct bpf_prog_array) +
1927 			       sizeof(struct bpf_prog_array_item) *
1928 			       (prog_cnt + 1),
1929 			       flags);
1930 
1931 	return &empty_prog_array.hdr;
1932 }
1933 
bpf_prog_array_free(struct bpf_prog_array * progs)1934 void bpf_prog_array_free(struct bpf_prog_array *progs)
1935 {
1936 	if (!progs || progs == &empty_prog_array.hdr)
1937 		return;
1938 	kfree_rcu(progs, rcu);
1939 }
1940 
bpf_prog_array_length(struct bpf_prog_array * array)1941 int bpf_prog_array_length(struct bpf_prog_array *array)
1942 {
1943 	struct bpf_prog_array_item *item;
1944 	u32 cnt = 0;
1945 
1946 	for (item = array->items; item->prog; item++)
1947 		if (item->prog != &dummy_bpf_prog.prog)
1948 			cnt++;
1949 	return cnt;
1950 }
1951 
bpf_prog_array_is_empty(struct bpf_prog_array * array)1952 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1953 {
1954 	struct bpf_prog_array_item *item;
1955 
1956 	for (item = array->items; item->prog; item++)
1957 		if (item->prog != &dummy_bpf_prog.prog)
1958 			return false;
1959 	return true;
1960 }
1961 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1962 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1963 				     u32 *prog_ids,
1964 				     u32 request_cnt)
1965 {
1966 	struct bpf_prog_array_item *item;
1967 	int i = 0;
1968 
1969 	for (item = array->items; item->prog; item++) {
1970 		if (item->prog == &dummy_bpf_prog.prog)
1971 			continue;
1972 		prog_ids[i] = item->prog->aux->id;
1973 		if (++i == request_cnt) {
1974 			item++;
1975 			break;
1976 		}
1977 	}
1978 
1979 	return !!(item->prog);
1980 }
1981 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1982 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1983 				__u32 __user *prog_ids, u32 cnt)
1984 {
1985 	unsigned long err = 0;
1986 	bool nospc;
1987 	u32 *ids;
1988 
1989 	/* users of this function are doing:
1990 	 * cnt = bpf_prog_array_length();
1991 	 * if (cnt > 0)
1992 	 *     bpf_prog_array_copy_to_user(..., cnt);
1993 	 * so below kcalloc doesn't need extra cnt > 0 check.
1994 	 */
1995 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1996 	if (!ids)
1997 		return -ENOMEM;
1998 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1999 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2000 	kfree(ids);
2001 	if (err)
2002 		return -EFAULT;
2003 	if (nospc)
2004 		return -ENOSPC;
2005 	return 0;
2006 }
2007 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2008 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2009 				struct bpf_prog *old_prog)
2010 {
2011 	struct bpf_prog_array_item *item;
2012 
2013 	for (item = array->items; item->prog; item++)
2014 		if (item->prog == old_prog) {
2015 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2016 			break;
2017 		}
2018 }
2019 
2020 /**
2021  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2022  *                                   index into the program array with
2023  *                                   a dummy no-op program.
2024  * @array: a bpf_prog_array
2025  * @index: the index of the program to replace
2026  *
2027  * Skips over dummy programs, by not counting them, when calculating
2028  * the position of the program to replace.
2029  *
2030  * Return:
2031  * * 0		- Success
2032  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2033  * * -ENOENT	- Index out of range
2034  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2035 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2036 {
2037 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2038 }
2039 
2040 /**
2041  * bpf_prog_array_update_at() - Updates the program at the given index
2042  *                              into the program array.
2043  * @array: a bpf_prog_array
2044  * @index: the index of the program to update
2045  * @prog: the program to insert into the array
2046  *
2047  * Skips over dummy programs, by not counting them, when calculating
2048  * the position of the program to update.
2049  *
2050  * Return:
2051  * * 0		- Success
2052  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2053  * * -ENOENT	- Index out of range
2054  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2055 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2056 			     struct bpf_prog *prog)
2057 {
2058 	struct bpf_prog_array_item *item;
2059 
2060 	if (unlikely(index < 0))
2061 		return -EINVAL;
2062 
2063 	for (item = array->items; item->prog; item++) {
2064 		if (item->prog == &dummy_bpf_prog.prog)
2065 			continue;
2066 		if (!index) {
2067 			WRITE_ONCE(item->prog, prog);
2068 			return 0;
2069 		}
2070 		index--;
2071 	}
2072 	return -ENOENT;
2073 }
2074 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2075 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2076 			struct bpf_prog *exclude_prog,
2077 			struct bpf_prog *include_prog,
2078 			struct bpf_prog_array **new_array)
2079 {
2080 	int new_prog_cnt, carry_prog_cnt = 0;
2081 	struct bpf_prog_array_item *existing;
2082 	struct bpf_prog_array *array;
2083 	bool found_exclude = false;
2084 	int new_prog_idx = 0;
2085 
2086 	/* Figure out how many existing progs we need to carry over to
2087 	 * the new array.
2088 	 */
2089 	if (old_array) {
2090 		existing = old_array->items;
2091 		for (; existing->prog; existing++) {
2092 			if (existing->prog == exclude_prog) {
2093 				found_exclude = true;
2094 				continue;
2095 			}
2096 			if (existing->prog != &dummy_bpf_prog.prog)
2097 				carry_prog_cnt++;
2098 			if (existing->prog == include_prog)
2099 				return -EEXIST;
2100 		}
2101 	}
2102 
2103 	if (exclude_prog && !found_exclude)
2104 		return -ENOENT;
2105 
2106 	/* How many progs (not NULL) will be in the new array? */
2107 	new_prog_cnt = carry_prog_cnt;
2108 	if (include_prog)
2109 		new_prog_cnt += 1;
2110 
2111 	/* Do we have any prog (not NULL) in the new array? */
2112 	if (!new_prog_cnt) {
2113 		*new_array = NULL;
2114 		return 0;
2115 	}
2116 
2117 	/* +1 as the end of prog_array is marked with NULL */
2118 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2119 	if (!array)
2120 		return -ENOMEM;
2121 
2122 	/* Fill in the new prog array */
2123 	if (carry_prog_cnt) {
2124 		existing = old_array->items;
2125 		for (; existing->prog; existing++)
2126 			if (existing->prog != exclude_prog &&
2127 			    existing->prog != &dummy_bpf_prog.prog) {
2128 				array->items[new_prog_idx++].prog =
2129 					existing->prog;
2130 			}
2131 	}
2132 	if (include_prog)
2133 		array->items[new_prog_idx++].prog = include_prog;
2134 	array->items[new_prog_idx].prog = NULL;
2135 	*new_array = array;
2136 	return 0;
2137 }
2138 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2139 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2140 			     u32 *prog_ids, u32 request_cnt,
2141 			     u32 *prog_cnt)
2142 {
2143 	u32 cnt = 0;
2144 
2145 	if (array)
2146 		cnt = bpf_prog_array_length(array);
2147 
2148 	*prog_cnt = cnt;
2149 
2150 	/* return early if user requested only program count or nothing to copy */
2151 	if (!request_cnt || !cnt)
2152 		return 0;
2153 
2154 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2155 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2156 								     : 0;
2157 }
2158 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2159 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2160 			  struct bpf_map **used_maps, u32 len)
2161 {
2162 	struct bpf_map *map;
2163 	u32 i;
2164 
2165 	for (i = 0; i < len; i++) {
2166 		map = used_maps[i];
2167 		if (map->ops->map_poke_untrack)
2168 			map->ops->map_poke_untrack(map, aux);
2169 		bpf_map_put(map);
2170 	}
2171 }
2172 
bpf_free_used_maps(struct bpf_prog_aux * aux)2173 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2174 {
2175 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2176 	kfree(aux->used_maps);
2177 }
2178 
bpf_prog_free_deferred(struct work_struct * work)2179 static void bpf_prog_free_deferred(struct work_struct *work)
2180 {
2181 	struct bpf_prog_aux *aux;
2182 	int i;
2183 
2184 	aux = container_of(work, struct bpf_prog_aux, work);
2185 	bpf_free_used_maps(aux);
2186 	if (bpf_prog_is_dev_bound(aux))
2187 		bpf_prog_offload_destroy(aux->prog);
2188 #ifdef CONFIG_PERF_EVENTS
2189 	if (aux->prog->has_callchain_buf)
2190 		put_callchain_buffers();
2191 #endif
2192 	if (aux->dst_trampoline)
2193 		bpf_trampoline_put(aux->dst_trampoline);
2194 	for (i = 0; i < aux->func_cnt; i++) {
2195 		/* We can just unlink the subprog poke descriptor table as
2196 		 * it was originally linked to the main program and is also
2197 		 * released along with it.
2198 		 */
2199 		aux->func[i]->aux->poke_tab = NULL;
2200 		bpf_jit_free(aux->func[i]);
2201 	}
2202 	if (aux->func_cnt) {
2203 		kfree(aux->func);
2204 		bpf_prog_unlock_free(aux->prog);
2205 	} else {
2206 		bpf_jit_free(aux->prog);
2207 	}
2208 }
2209 
2210 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2211 void bpf_prog_free(struct bpf_prog *fp)
2212 {
2213 	struct bpf_prog_aux *aux = fp->aux;
2214 
2215 	if (aux->dst_prog)
2216 		bpf_prog_put(aux->dst_prog);
2217 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2218 	schedule_work(&aux->work);
2219 }
2220 EXPORT_SYMBOL_GPL(bpf_prog_free);
2221 
2222 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2223 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2224 
bpf_user_rnd_init_once(void)2225 void bpf_user_rnd_init_once(void)
2226 {
2227 	prandom_init_once(&bpf_user_rnd_state);
2228 }
2229 
BPF_CALL_0(bpf_user_rnd_u32)2230 BPF_CALL_0(bpf_user_rnd_u32)
2231 {
2232 	/* Should someone ever have the rather unwise idea to use some
2233 	 * of the registers passed into this function, then note that
2234 	 * this function is called from native eBPF and classic-to-eBPF
2235 	 * transformations. Register assignments from both sides are
2236 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2237 	 */
2238 	struct rnd_state *state;
2239 	u32 res;
2240 
2241 	state = &get_cpu_var(bpf_user_rnd_state);
2242 	res = prandom_u32_state(state);
2243 	put_cpu_var(bpf_user_rnd_state);
2244 
2245 	return res;
2246 }
2247 
BPF_CALL_0(bpf_get_raw_cpu_id)2248 BPF_CALL_0(bpf_get_raw_cpu_id)
2249 {
2250 	return raw_smp_processor_id();
2251 }
2252 
2253 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2254 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2255 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2257 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2258 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2259 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2260 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2261 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2262 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2263 
2264 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2265 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2266 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2267 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2268 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2269 
2270 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2271 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2272 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2273 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2274 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2275 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2276 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2277 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2278 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2279 
bpf_get_trace_printk_proto(void)2280 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2281 {
2282 	return NULL;
2283 }
2284 
2285 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2286 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2287 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2288 {
2289 	return -ENOTSUPP;
2290 }
2291 EXPORT_SYMBOL_GPL(bpf_event_output);
2292 
2293 /* Always built-in helper functions. */
2294 const struct bpf_func_proto bpf_tail_call_proto = {
2295 	.func		= NULL,
2296 	.gpl_only	= false,
2297 	.ret_type	= RET_VOID,
2298 	.arg1_type	= ARG_PTR_TO_CTX,
2299 	.arg2_type	= ARG_CONST_MAP_PTR,
2300 	.arg3_type	= ARG_ANYTHING,
2301 };
2302 
2303 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2304  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2305  * eBPF and implicitly also cBPF can get JITed!
2306  */
bpf_int_jit_compile(struct bpf_prog * prog)2307 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2308 {
2309 	return prog;
2310 }
2311 
2312 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2313  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2314  */
bpf_jit_compile(struct bpf_prog * prog)2315 void __weak bpf_jit_compile(struct bpf_prog *prog)
2316 {
2317 }
2318 
bpf_helper_changes_pkt_data(void * func)2319 bool __weak bpf_helper_changes_pkt_data(void *func)
2320 {
2321 	return false;
2322 }
2323 
2324 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2325  * analysis code and wants explicit zero extension inserted by verifier.
2326  * Otherwise, return FALSE.
2327  */
bpf_jit_needs_zext(void)2328 bool __weak bpf_jit_needs_zext(void)
2329 {
2330 	return false;
2331 }
2332 
2333 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2334  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2335  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2336 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2337 			 int len)
2338 {
2339 	return -EFAULT;
2340 }
2341 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2342 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2343 			      void *addr1, void *addr2)
2344 {
2345 	return -ENOTSUPP;
2346 }
2347 
2348 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2349 EXPORT_SYMBOL(bpf_stats_enabled_key);
2350 
2351 /* All definitions of tracepoints related to BPF. */
2352 #define CREATE_TRACE_POINTS
2353 #include <linux/bpf_trace.h>
2354 
2355 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2356 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2357