1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/kernel.h>
19 #include <linux/linkage.h>
20 #include <linux/irqflags.h>
21 #include <linux/init.h>
22 #include <linux/percpu.h>
23 #include <linux/prctl.h>
24 #include <linux/preempt.h>
25 #include <linux/ptrace.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/signal.h>
29 #include <linux/slab.h>
30 #include <linux/stddef.h>
31 #include <linux/sysctl.h>
32 #include <linux/swab.h>
33
34 #include <asm/esr.h>
35 #include <asm/exception.h>
36 #include <asm/fpsimd.h>
37 #include <asm/cpufeature.h>
38 #include <asm/cputype.h>
39 #include <asm/neon.h>
40 #include <asm/processor.h>
41 #include <asm/simd.h>
42 #include <asm/sigcontext.h>
43 #include <asm/sysreg.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46
47 #define FPEXC_IOF (1 << 0)
48 #define FPEXC_DZF (1 << 1)
49 #define FPEXC_OFF (1 << 2)
50 #define FPEXC_UFF (1 << 3)
51 #define FPEXC_IXF (1 << 4)
52 #define FPEXC_IDF (1 << 7)
53
54 /*
55 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
56 *
57 * In order to reduce the number of times the FPSIMD state is needlessly saved
58 * and restored, we need to keep track of two things:
59 * (a) for each task, we need to remember which CPU was the last one to have
60 * the task's FPSIMD state loaded into its FPSIMD registers;
61 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
62 * been loaded into its FPSIMD registers most recently, or whether it has
63 * been used to perform kernel mode NEON in the meantime.
64 *
65 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
66 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
67 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
68 * address of the userland FPSIMD state of the task that was loaded onto the CPU
69 * the most recently, or NULL if kernel mode NEON has been performed after that.
70 *
71 * With this in place, we no longer have to restore the next FPSIMD state right
72 * when switching between tasks. Instead, we can defer this check to userland
73 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
74 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
75 * can omit the FPSIMD restore.
76 *
77 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
78 * indicate whether or not the userland FPSIMD state of the current task is
79 * present in the registers. The flag is set unless the FPSIMD registers of this
80 * CPU currently contain the most recent userland FPSIMD state of the current
81 * task.
82 *
83 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
84 * save the task's FPSIMD context back to task_struct from softirq context.
85 * To prevent this from racing with the manipulation of the task's FPSIMD state
86 * from task context and thereby corrupting the state, it is necessary to
87 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
88 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
89 * run but prevent them to use FPSIMD.
90 *
91 * For a certain task, the sequence may look something like this:
92 * - the task gets scheduled in; if both the task's fpsimd_cpu field
93 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
94 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
95 * cleared, otherwise it is set;
96 *
97 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
98 * userland FPSIMD state is copied from memory to the registers, the task's
99 * fpsimd_cpu field is set to the id of the current CPU, the current
100 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
101 * TIF_FOREIGN_FPSTATE flag is cleared;
102 *
103 * - the task executes an ordinary syscall; upon return to userland, the
104 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
105 * restored;
106 *
107 * - the task executes a syscall which executes some NEON instructions; this is
108 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
109 * register contents to memory, clears the fpsimd_last_state per-cpu variable
110 * and sets the TIF_FOREIGN_FPSTATE flag;
111 *
112 * - the task gets preempted after kernel_neon_end() is called; as we have not
113 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
114 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
115 */
116 struct fpsimd_last_state_struct {
117 struct user_fpsimd_state *st;
118 void *sve_state;
119 unsigned int sve_vl;
120 };
121
122 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
123
124 /* Default VL for tasks that don't set it explicitly: */
125 static int __sve_default_vl = -1;
126
get_sve_default_vl(void)127 static int get_sve_default_vl(void)
128 {
129 return READ_ONCE(__sve_default_vl);
130 }
131
132 #ifdef CONFIG_ARM64_SVE
133
set_sve_default_vl(int val)134 static void set_sve_default_vl(int val)
135 {
136 WRITE_ONCE(__sve_default_vl, val);
137 }
138
139 /* Maximum supported vector length across all CPUs (initially poisoned) */
140 int __ro_after_init sve_max_vl = SVE_VL_MIN;
141 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
142
143 /*
144 * Set of available vector lengths,
145 * where length vq encoded as bit __vq_to_bit(vq):
146 */
147 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
148 /* Set of vector lengths present on at least one cpu: */
149 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
150
151 static void __percpu *efi_sve_state;
152
153 #else /* ! CONFIG_ARM64_SVE */
154
155 /* Dummy declaration for code that will be optimised out: */
156 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
157 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
158 extern void __percpu *efi_sve_state;
159
160 #endif /* ! CONFIG_ARM64_SVE */
161
162 DEFINE_PER_CPU(bool, fpsimd_context_busy);
163 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
164
__get_cpu_fpsimd_context(void)165 static void __get_cpu_fpsimd_context(void)
166 {
167 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
168
169 WARN_ON(busy);
170 }
171
172 /*
173 * Claim ownership of the CPU FPSIMD context for use by the calling context.
174 *
175 * The caller may freely manipulate the FPSIMD context metadata until
176 * put_cpu_fpsimd_context() is called.
177 *
178 * The double-underscore version must only be called if you know the task
179 * can't be preempted.
180 */
get_cpu_fpsimd_context(void)181 static void get_cpu_fpsimd_context(void)
182 {
183 local_bh_disable();
184 __get_cpu_fpsimd_context();
185 }
186
__put_cpu_fpsimd_context(void)187 static void __put_cpu_fpsimd_context(void)
188 {
189 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
190
191 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
192 }
193
194 /*
195 * Release the CPU FPSIMD context.
196 *
197 * Must be called from a context in which get_cpu_fpsimd_context() was
198 * previously called, with no call to put_cpu_fpsimd_context() in the
199 * meantime.
200 */
put_cpu_fpsimd_context(void)201 static void put_cpu_fpsimd_context(void)
202 {
203 __put_cpu_fpsimd_context();
204 local_bh_enable();
205 }
206
have_cpu_fpsimd_context(void)207 static bool have_cpu_fpsimd_context(void)
208 {
209 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
210 }
211
212 /*
213 * Call __sve_free() directly only if you know task can't be scheduled
214 * or preempted.
215 */
__sve_free(struct task_struct * task)216 static void __sve_free(struct task_struct *task)
217 {
218 kfree(task->thread.sve_state);
219 task->thread.sve_state = NULL;
220 }
221
sve_free(struct task_struct * task)222 static void sve_free(struct task_struct *task)
223 {
224 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
225
226 __sve_free(task);
227 }
228
229 /*
230 * TIF_SVE controls whether a task can use SVE without trapping while
231 * in userspace, and also the way a task's FPSIMD/SVE state is stored
232 * in thread_struct.
233 *
234 * The kernel uses this flag to track whether a user task is actively
235 * using SVE, and therefore whether full SVE register state needs to
236 * be tracked. If not, the cheaper FPSIMD context handling code can
237 * be used instead of the more costly SVE equivalents.
238 *
239 * * TIF_SVE set:
240 *
241 * The task can execute SVE instructions while in userspace without
242 * trapping to the kernel.
243 *
244 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
245 * corresponding Zn), P0-P15 and FFR are encoded in in
246 * task->thread.sve_state, formatted appropriately for vector
247 * length task->thread.sve_vl.
248 *
249 * task->thread.sve_state must point to a valid buffer at least
250 * sve_state_size(task) bytes in size.
251 *
252 * During any syscall, the kernel may optionally clear TIF_SVE and
253 * discard the vector state except for the FPSIMD subset.
254 *
255 * * TIF_SVE clear:
256 *
257 * An attempt by the user task to execute an SVE instruction causes
258 * do_sve_acc() to be called, which does some preparation and then
259 * sets TIF_SVE.
260 *
261 * When stored, FPSIMD registers V0-V31 are encoded in
262 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
263 * logically zero but not stored anywhere; P0-P15 and FFR are not
264 * stored and have unspecified values from userspace's point of
265 * view. For hygiene purposes, the kernel zeroes them on next use,
266 * but userspace is discouraged from relying on this.
267 *
268 * task->thread.sve_state does not need to be non-NULL, valid or any
269 * particular size: it must not be dereferenced.
270 *
271 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
272 * irrespective of whether TIF_SVE is clear or set, since these are
273 * not vector length dependent.
274 */
275
276 /*
277 * Update current's FPSIMD/SVE registers from thread_struct.
278 *
279 * This function should be called only when the FPSIMD/SVE state in
280 * thread_struct is known to be up to date, when preparing to enter
281 * userspace.
282 */
task_fpsimd_load(void)283 static void task_fpsimd_load(void)
284 {
285 WARN_ON(!system_supports_fpsimd());
286 WARN_ON(!have_cpu_fpsimd_context());
287
288 if (system_supports_sve() && test_thread_flag(TIF_SVE))
289 sve_load_state(sve_pffr(¤t->thread),
290 ¤t->thread.uw.fpsimd_state.fpsr,
291 sve_vq_from_vl(current->thread.sve_vl) - 1);
292 else
293 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
294 }
295
296 /*
297 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
298 * date with respect to the CPU registers.
299 */
fpsimd_save(void)300 static void fpsimd_save(void)
301 {
302 struct fpsimd_last_state_struct const *last =
303 this_cpu_ptr(&fpsimd_last_state);
304 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
305
306 WARN_ON(!system_supports_fpsimd());
307 WARN_ON(!have_cpu_fpsimd_context());
308
309 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
310 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
311 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
312 /*
313 * Can't save the user regs, so current would
314 * re-enter user with corrupt state.
315 * There's no way to recover, so kill it:
316 */
317 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
318 return;
319 }
320
321 sve_save_state((char *)last->sve_state +
322 sve_ffr_offset(last->sve_vl),
323 &last->st->fpsr);
324 } else
325 fpsimd_save_state(last->st);
326 }
327 }
328
329 /*
330 * All vector length selection from userspace comes through here.
331 * We're on a slow path, so some sanity-checks are included.
332 * If things go wrong there's a bug somewhere, but try to fall back to a
333 * safe choice.
334 */
find_supported_vector_length(unsigned int vl)335 static unsigned int find_supported_vector_length(unsigned int vl)
336 {
337 int bit;
338 int max_vl = sve_max_vl;
339
340 if (WARN_ON(!sve_vl_valid(vl)))
341 vl = SVE_VL_MIN;
342
343 if (WARN_ON(!sve_vl_valid(max_vl)))
344 max_vl = SVE_VL_MIN;
345
346 if (vl > max_vl)
347 vl = max_vl;
348
349 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
350 __vq_to_bit(sve_vq_from_vl(vl)));
351 return sve_vl_from_vq(__bit_to_vq(bit));
352 }
353
354 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
355
sve_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)356 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
357 void *buffer, size_t *lenp, loff_t *ppos)
358 {
359 int ret;
360 int vl = get_sve_default_vl();
361 struct ctl_table tmp_table = {
362 .data = &vl,
363 .maxlen = sizeof(vl),
364 };
365
366 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
367 if (ret || !write)
368 return ret;
369
370 /* Writing -1 has the special meaning "set to max": */
371 if (vl == -1)
372 vl = sve_max_vl;
373
374 if (!sve_vl_valid(vl))
375 return -EINVAL;
376
377 set_sve_default_vl(find_supported_vector_length(vl));
378 return 0;
379 }
380
381 static struct ctl_table sve_default_vl_table[] = {
382 {
383 .procname = "sve_default_vector_length",
384 .mode = 0644,
385 .proc_handler = sve_proc_do_default_vl,
386 },
387 { }
388 };
389
sve_sysctl_init(void)390 static int __init sve_sysctl_init(void)
391 {
392 if (system_supports_sve())
393 if (!register_sysctl("abi", sve_default_vl_table))
394 return -EINVAL;
395
396 return 0;
397 }
398
399 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)400 static int __init sve_sysctl_init(void) { return 0; }
401 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
402
403 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
404 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
405
406 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)407 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
408 {
409 u64 a = swab64(x);
410 u64 b = swab64(x >> 64);
411
412 return ((__uint128_t)a << 64) | b;
413 }
414 #else
arm64_cpu_to_le128(__uint128_t x)415 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
416 {
417 return x;
418 }
419 #endif
420
421 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
422
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)423 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
424 unsigned int vq)
425 {
426 unsigned int i;
427 __uint128_t *p;
428
429 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
430 p = (__uint128_t *)ZREG(sst, vq, i);
431 *p = arm64_cpu_to_le128(fst->vregs[i]);
432 }
433 }
434
435 /*
436 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
437 * task->thread.sve_state.
438 *
439 * Task can be a non-runnable task, or current. In the latter case,
440 * the caller must have ownership of the cpu FPSIMD context before calling
441 * this function.
442 * task->thread.sve_state must point to at least sve_state_size(task)
443 * bytes of allocated kernel memory.
444 * task->thread.uw.fpsimd_state must be up to date before calling this
445 * function.
446 */
fpsimd_to_sve(struct task_struct * task)447 static void fpsimd_to_sve(struct task_struct *task)
448 {
449 unsigned int vq;
450 void *sst = task->thread.sve_state;
451 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
452
453 if (!system_supports_sve())
454 return;
455
456 vq = sve_vq_from_vl(task->thread.sve_vl);
457 __fpsimd_to_sve(sst, fst, vq);
458 }
459
460 /*
461 * Transfer the SVE state in task->thread.sve_state to
462 * task->thread.uw.fpsimd_state.
463 *
464 * Task can be a non-runnable task, or current. In the latter case,
465 * the caller must have ownership of the cpu FPSIMD context before calling
466 * this function.
467 * task->thread.sve_state must point to at least sve_state_size(task)
468 * bytes of allocated kernel memory.
469 * task->thread.sve_state must be up to date before calling this function.
470 */
sve_to_fpsimd(struct task_struct * task)471 static void sve_to_fpsimd(struct task_struct *task)
472 {
473 unsigned int vq;
474 void const *sst = task->thread.sve_state;
475 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
476 unsigned int i;
477 __uint128_t const *p;
478
479 if (!system_supports_sve())
480 return;
481
482 vq = sve_vq_from_vl(task->thread.sve_vl);
483 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
484 p = (__uint128_t const *)ZREG(sst, vq, i);
485 fst->vregs[i] = arm64_le128_to_cpu(*p);
486 }
487 }
488
489 #ifdef CONFIG_ARM64_SVE
490
491 /*
492 * Return how many bytes of memory are required to store the full SVE
493 * state for task, given task's currently configured vector length.
494 */
sve_state_size(struct task_struct const * task)495 size_t sve_state_size(struct task_struct const *task)
496 {
497 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
498 }
499
500 /*
501 * Ensure that task->thread.sve_state is allocated and sufficiently large.
502 *
503 * This function should be used only in preparation for replacing
504 * task->thread.sve_state with new data. The memory is always zeroed
505 * here to prevent stale data from showing through: this is done in
506 * the interest of testability and predictability: except in the
507 * do_sve_acc() case, there is no ABI requirement to hide stale data
508 * written previously be task.
509 */
sve_alloc(struct task_struct * task)510 void sve_alloc(struct task_struct *task)
511 {
512 if (task->thread.sve_state) {
513 memset(task->thread.sve_state, 0, sve_state_size(task));
514 return;
515 }
516
517 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
518 task->thread.sve_state =
519 kzalloc(sve_state_size(task), GFP_KERNEL);
520
521 /*
522 * If future SVE revisions can have larger vectors though,
523 * this may cease to be true:
524 */
525 BUG_ON(!task->thread.sve_state);
526 }
527
528
529 /*
530 * Ensure that task->thread.sve_state is up to date with respect to
531 * the user task, irrespective of when SVE is in use or not.
532 *
533 * This should only be called by ptrace. task must be non-runnable.
534 * task->thread.sve_state must point to at least sve_state_size(task)
535 * bytes of allocated kernel memory.
536 */
fpsimd_sync_to_sve(struct task_struct * task)537 void fpsimd_sync_to_sve(struct task_struct *task)
538 {
539 if (!test_tsk_thread_flag(task, TIF_SVE))
540 fpsimd_to_sve(task);
541 }
542
543 /*
544 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
545 * the user task, irrespective of whether SVE is in use or not.
546 *
547 * This should only be called by ptrace. task must be non-runnable.
548 * task->thread.sve_state must point to at least sve_state_size(task)
549 * bytes of allocated kernel memory.
550 */
sve_sync_to_fpsimd(struct task_struct * task)551 void sve_sync_to_fpsimd(struct task_struct *task)
552 {
553 if (test_tsk_thread_flag(task, TIF_SVE))
554 sve_to_fpsimd(task);
555 }
556
557 /*
558 * Ensure that task->thread.sve_state is up to date with respect to
559 * the task->thread.uw.fpsimd_state.
560 *
561 * This should only be called by ptrace to merge new FPSIMD register
562 * values into a task for which SVE is currently active.
563 * task must be non-runnable.
564 * task->thread.sve_state must point to at least sve_state_size(task)
565 * bytes of allocated kernel memory.
566 * task->thread.uw.fpsimd_state must already have been initialised with
567 * the new FPSIMD register values to be merged in.
568 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)569 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
570 {
571 unsigned int vq;
572 void *sst = task->thread.sve_state;
573 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
574
575 if (!test_tsk_thread_flag(task, TIF_SVE))
576 return;
577
578 vq = sve_vq_from_vl(task->thread.sve_vl);
579
580 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
581 __fpsimd_to_sve(sst, fst, vq);
582 }
583
sve_set_vector_length(struct task_struct * task,unsigned long vl,unsigned long flags)584 int sve_set_vector_length(struct task_struct *task,
585 unsigned long vl, unsigned long flags)
586 {
587 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
588 PR_SVE_SET_VL_ONEXEC))
589 return -EINVAL;
590
591 if (!sve_vl_valid(vl))
592 return -EINVAL;
593
594 /*
595 * Clamp to the maximum vector length that VL-agnostic SVE code can
596 * work with. A flag may be assigned in the future to allow setting
597 * of larger vector lengths without confusing older software.
598 */
599 if (vl > SVE_VL_ARCH_MAX)
600 vl = SVE_VL_ARCH_MAX;
601
602 vl = find_supported_vector_length(vl);
603
604 if (flags & (PR_SVE_VL_INHERIT |
605 PR_SVE_SET_VL_ONEXEC))
606 task->thread.sve_vl_onexec = vl;
607 else
608 /* Reset VL to system default on next exec: */
609 task->thread.sve_vl_onexec = 0;
610
611 /* Only actually set the VL if not deferred: */
612 if (flags & PR_SVE_SET_VL_ONEXEC)
613 goto out;
614
615 if (vl == task->thread.sve_vl)
616 goto out;
617
618 /*
619 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
620 * write any live register state back to task_struct, and convert to a
621 * non-SVE thread.
622 */
623 if (task == current) {
624 get_cpu_fpsimd_context();
625
626 fpsimd_save();
627 }
628
629 fpsimd_flush_task_state(task);
630 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
631 sve_to_fpsimd(task);
632
633 if (task == current)
634 put_cpu_fpsimd_context();
635
636 /*
637 * Force reallocation of task SVE state to the correct size
638 * on next use:
639 */
640 sve_free(task);
641
642 task->thread.sve_vl = vl;
643
644 out:
645 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
646 flags & PR_SVE_VL_INHERIT);
647
648 return 0;
649 }
650
651 /*
652 * Encode the current vector length and flags for return.
653 * This is only required for prctl(): ptrace has separate fields
654 *
655 * flags are as for sve_set_vector_length().
656 */
sve_prctl_status(unsigned long flags)657 static int sve_prctl_status(unsigned long flags)
658 {
659 int ret;
660
661 if (flags & PR_SVE_SET_VL_ONEXEC)
662 ret = current->thread.sve_vl_onexec;
663 else
664 ret = current->thread.sve_vl;
665
666 if (test_thread_flag(TIF_SVE_VL_INHERIT))
667 ret |= PR_SVE_VL_INHERIT;
668
669 return ret;
670 }
671
672 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)673 int sve_set_current_vl(unsigned long arg)
674 {
675 unsigned long vl, flags;
676 int ret;
677
678 vl = arg & PR_SVE_VL_LEN_MASK;
679 flags = arg & ~vl;
680
681 if (!system_supports_sve() || is_compat_task())
682 return -EINVAL;
683
684 ret = sve_set_vector_length(current, vl, flags);
685 if (ret)
686 return ret;
687
688 return sve_prctl_status(flags);
689 }
690
691 /* PR_SVE_GET_VL */
sve_get_current_vl(void)692 int sve_get_current_vl(void)
693 {
694 if (!system_supports_sve() || is_compat_task())
695 return -EINVAL;
696
697 return sve_prctl_status(0);
698 }
699
sve_probe_vqs(DECLARE_BITMAP (map,SVE_VQ_MAX))700 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
701 {
702 unsigned int vq, vl;
703 unsigned long zcr;
704
705 bitmap_zero(map, SVE_VQ_MAX);
706
707 zcr = ZCR_ELx_LEN_MASK;
708 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
709
710 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
711 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
712 vl = sve_get_vl();
713 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
714 set_bit(__vq_to_bit(vq), map);
715 }
716 }
717
718 /*
719 * Initialise the set of known supported VQs for the boot CPU.
720 * This is called during kernel boot, before secondary CPUs are brought up.
721 */
sve_init_vq_map(void)722 void __init sve_init_vq_map(void)
723 {
724 sve_probe_vqs(sve_vq_map);
725 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
726 }
727
728 /*
729 * If we haven't committed to the set of supported VQs yet, filter out
730 * those not supported by the current CPU.
731 * This function is called during the bring-up of early secondary CPUs only.
732 */
sve_update_vq_map(void)733 void sve_update_vq_map(void)
734 {
735 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
736
737 sve_probe_vqs(tmp_map);
738 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
739 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
740 }
741
742 /*
743 * Check whether the current CPU supports all VQs in the committed set.
744 * This function is called during the bring-up of late secondary CPUs only.
745 */
sve_verify_vq_map(void)746 int sve_verify_vq_map(void)
747 {
748 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
749 unsigned long b;
750
751 sve_probe_vqs(tmp_map);
752
753 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
754 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
755 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
756 smp_processor_id());
757 return -EINVAL;
758 }
759
760 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
761 return 0;
762
763 /*
764 * For KVM, it is necessary to ensure that this CPU doesn't
765 * support any vector length that guests may have probed as
766 * unsupported.
767 */
768
769 /* Recover the set of supported VQs: */
770 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
771 /* Find VQs supported that are not globally supported: */
772 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
773
774 /* Find the lowest such VQ, if any: */
775 b = find_last_bit(tmp_map, SVE_VQ_MAX);
776 if (b >= SVE_VQ_MAX)
777 return 0; /* no mismatches */
778
779 /*
780 * Mismatches above sve_max_virtualisable_vl are fine, since
781 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
782 */
783 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
784 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
785 smp_processor_id());
786 return -EINVAL;
787 }
788
789 return 0;
790 }
791
sve_efi_setup(void)792 static void __init sve_efi_setup(void)
793 {
794 if (!IS_ENABLED(CONFIG_EFI))
795 return;
796
797 /*
798 * alloc_percpu() warns and prints a backtrace if this goes wrong.
799 * This is evidence of a crippled system and we are returning void,
800 * so no attempt is made to handle this situation here.
801 */
802 if (!sve_vl_valid(sve_max_vl))
803 goto fail;
804
805 efi_sve_state = __alloc_percpu(
806 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
807 if (!efi_sve_state)
808 goto fail;
809
810 return;
811
812 fail:
813 panic("Cannot allocate percpu memory for EFI SVE save/restore");
814 }
815
816 /*
817 * Enable SVE for EL1.
818 * Intended for use by the cpufeatures code during CPU boot.
819 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)820 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
821 {
822 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
823 isb();
824 }
825
826 /*
827 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
828 * vector length.
829 *
830 * Use only if SVE is present.
831 * This function clobbers the SVE vector length.
832 */
read_zcr_features(void)833 u64 read_zcr_features(void)
834 {
835 u64 zcr;
836 unsigned int vq_max;
837
838 /*
839 * Set the maximum possible VL, and write zeroes to all other
840 * bits to see if they stick.
841 */
842 sve_kernel_enable(NULL);
843 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
844
845 zcr = read_sysreg_s(SYS_ZCR_EL1);
846 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
847 vq_max = sve_vq_from_vl(sve_get_vl());
848 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
849
850 return zcr;
851 }
852
sve_setup(void)853 void __init sve_setup(void)
854 {
855 u64 zcr;
856 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
857 unsigned long b;
858
859 if (!system_supports_sve())
860 return;
861
862 /*
863 * The SVE architecture mandates support for 128-bit vectors,
864 * so sve_vq_map must have at least SVE_VQ_MIN set.
865 * If something went wrong, at least try to patch it up:
866 */
867 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
868 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
869
870 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
871 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
872
873 /*
874 * Sanity-check that the max VL we determined through CPU features
875 * corresponds properly to sve_vq_map. If not, do our best:
876 */
877 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
878 sve_max_vl = find_supported_vector_length(sve_max_vl);
879
880 /*
881 * For the default VL, pick the maximum supported value <= 64.
882 * VL == 64 is guaranteed not to grow the signal frame.
883 */
884 set_sve_default_vl(find_supported_vector_length(64));
885
886 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
887 SVE_VQ_MAX);
888
889 b = find_last_bit(tmp_map, SVE_VQ_MAX);
890 if (b >= SVE_VQ_MAX)
891 /* No non-virtualisable VLs found */
892 sve_max_virtualisable_vl = SVE_VQ_MAX;
893 else if (WARN_ON(b == SVE_VQ_MAX - 1))
894 /* No virtualisable VLs? This is architecturally forbidden. */
895 sve_max_virtualisable_vl = SVE_VQ_MIN;
896 else /* b + 1 < SVE_VQ_MAX */
897 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
898
899 if (sve_max_virtualisable_vl > sve_max_vl)
900 sve_max_virtualisable_vl = sve_max_vl;
901
902 pr_info("SVE: maximum available vector length %u bytes per vector\n",
903 sve_max_vl);
904 pr_info("SVE: default vector length %u bytes per vector\n",
905 get_sve_default_vl());
906
907 /* KVM decides whether to support mismatched systems. Just warn here: */
908 if (sve_max_virtualisable_vl < sve_max_vl)
909 pr_warn("SVE: unvirtualisable vector lengths present\n");
910
911 sve_efi_setup();
912 }
913
914 /*
915 * Called from the put_task_struct() path, which cannot get here
916 * unless dead_task is really dead and not schedulable.
917 */
fpsimd_release_task(struct task_struct * dead_task)918 void fpsimd_release_task(struct task_struct *dead_task)
919 {
920 __sve_free(dead_task);
921 }
922
923 #endif /* CONFIG_ARM64_SVE */
924
925 /*
926 * Trapped SVE access
927 *
928 * Storage is allocated for the full SVE state, the current FPSIMD
929 * register contents are migrated across, and TIF_SVE is set so that
930 * the SVE access trap will be disabled the next time this task
931 * reaches ret_to_user.
932 *
933 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
934 * would have disabled the SVE access trap for userspace during
935 * ret_to_user, making an SVE access trap impossible in that case.
936 */
do_sve_acc(unsigned int esr,struct pt_regs * regs)937 void do_sve_acc(unsigned int esr, struct pt_regs *regs)
938 {
939 /* Even if we chose not to use SVE, the hardware could still trap: */
940 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
941 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
942 return;
943 }
944
945 sve_alloc(current);
946
947 get_cpu_fpsimd_context();
948
949 fpsimd_save();
950
951 /* Force ret_to_user to reload the registers: */
952 fpsimd_flush_task_state(current);
953
954 fpsimd_to_sve(current);
955 if (test_and_set_thread_flag(TIF_SVE))
956 WARN_ON(1); /* SVE access shouldn't have trapped */
957
958 put_cpu_fpsimd_context();
959 }
960
961 /*
962 * Trapped FP/ASIMD access.
963 */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)964 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
965 {
966 /* TODO: implement lazy context saving/restoring */
967 WARN_ON(1);
968 }
969
970 /*
971 * Raise a SIGFPE for the current process.
972 */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)973 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
974 {
975 unsigned int si_code = FPE_FLTUNK;
976
977 if (esr & ESR_ELx_FP_EXC_TFV) {
978 if (esr & FPEXC_IOF)
979 si_code = FPE_FLTINV;
980 else if (esr & FPEXC_DZF)
981 si_code = FPE_FLTDIV;
982 else if (esr & FPEXC_OFF)
983 si_code = FPE_FLTOVF;
984 else if (esr & FPEXC_UFF)
985 si_code = FPE_FLTUND;
986 else if (esr & FPEXC_IXF)
987 si_code = FPE_FLTRES;
988 }
989
990 send_sig_fault(SIGFPE, si_code,
991 (void __user *)instruction_pointer(regs),
992 current);
993 }
994
fpsimd_thread_switch(struct task_struct * next)995 void fpsimd_thread_switch(struct task_struct *next)
996 {
997 bool wrong_task, wrong_cpu;
998
999 if (!system_supports_fpsimd())
1000 return;
1001
1002 __get_cpu_fpsimd_context();
1003
1004 /* Save unsaved fpsimd state, if any: */
1005 fpsimd_save();
1006
1007 /*
1008 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1009 * state. For kernel threads, FPSIMD registers are never loaded
1010 * and wrong_task and wrong_cpu will always be true.
1011 */
1012 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1013 &next->thread.uw.fpsimd_state;
1014 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1015
1016 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1017 wrong_task || wrong_cpu);
1018
1019 __put_cpu_fpsimd_context();
1020 }
1021
fpsimd_flush_thread(void)1022 void fpsimd_flush_thread(void)
1023 {
1024 int vl, supported_vl;
1025
1026 if (!system_supports_fpsimd())
1027 return;
1028
1029 get_cpu_fpsimd_context();
1030
1031 fpsimd_flush_task_state(current);
1032 memset(¤t->thread.uw.fpsimd_state, 0,
1033 sizeof(current->thread.uw.fpsimd_state));
1034
1035 if (system_supports_sve()) {
1036 clear_thread_flag(TIF_SVE);
1037 sve_free(current);
1038
1039 /*
1040 * Reset the task vector length as required.
1041 * This is where we ensure that all user tasks have a valid
1042 * vector length configured: no kernel task can become a user
1043 * task without an exec and hence a call to this function.
1044 * By the time the first call to this function is made, all
1045 * early hardware probing is complete, so __sve_default_vl
1046 * should be valid.
1047 * If a bug causes this to go wrong, we make some noise and
1048 * try to fudge thread.sve_vl to a safe value here.
1049 */
1050 vl = current->thread.sve_vl_onexec ?
1051 current->thread.sve_vl_onexec : get_sve_default_vl();
1052
1053 if (WARN_ON(!sve_vl_valid(vl)))
1054 vl = SVE_VL_MIN;
1055
1056 supported_vl = find_supported_vector_length(vl);
1057 if (WARN_ON(supported_vl != vl))
1058 vl = supported_vl;
1059
1060 current->thread.sve_vl = vl;
1061
1062 /*
1063 * If the task is not set to inherit, ensure that the vector
1064 * length will be reset by a subsequent exec:
1065 */
1066 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1067 current->thread.sve_vl_onexec = 0;
1068 }
1069
1070 put_cpu_fpsimd_context();
1071 }
1072
1073 /*
1074 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1075 * currently held in the registers does in fact belong to 'current'
1076 */
fpsimd_preserve_current_state(void)1077 void fpsimd_preserve_current_state(void)
1078 {
1079 if (!system_supports_fpsimd())
1080 return;
1081
1082 get_cpu_fpsimd_context();
1083 fpsimd_save();
1084 put_cpu_fpsimd_context();
1085 }
1086
1087 /*
1088 * Like fpsimd_preserve_current_state(), but ensure that
1089 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1090 * the signal frame.
1091 */
fpsimd_signal_preserve_current_state(void)1092 void fpsimd_signal_preserve_current_state(void)
1093 {
1094 fpsimd_preserve_current_state();
1095 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1096 sve_to_fpsimd(current);
1097 }
1098
1099 /*
1100 * Associate current's FPSIMD context with this cpu
1101 * The caller must have ownership of the cpu FPSIMD context before calling
1102 * this function.
1103 */
fpsimd_bind_task_to_cpu(void)1104 void fpsimd_bind_task_to_cpu(void)
1105 {
1106 struct fpsimd_last_state_struct *last =
1107 this_cpu_ptr(&fpsimd_last_state);
1108
1109 WARN_ON(!system_supports_fpsimd());
1110 last->st = ¤t->thread.uw.fpsimd_state;
1111 last->sve_state = current->thread.sve_state;
1112 last->sve_vl = current->thread.sve_vl;
1113 current->thread.fpsimd_cpu = smp_processor_id();
1114
1115 if (system_supports_sve()) {
1116 /* Toggle SVE trapping for userspace if needed */
1117 if (test_thread_flag(TIF_SVE))
1118 sve_user_enable();
1119 else
1120 sve_user_disable();
1121
1122 /* Serialised by exception return to user */
1123 }
1124 }
1125
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl)1126 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1127 unsigned int sve_vl)
1128 {
1129 struct fpsimd_last_state_struct *last =
1130 this_cpu_ptr(&fpsimd_last_state);
1131
1132 WARN_ON(!system_supports_fpsimd());
1133 WARN_ON(!in_softirq() && !irqs_disabled());
1134
1135 last->st = st;
1136 last->sve_state = sve_state;
1137 last->sve_vl = sve_vl;
1138 }
1139
1140 /*
1141 * Load the userland FPSIMD state of 'current' from memory, but only if the
1142 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1143 * state of 'current'
1144 */
fpsimd_restore_current_state(void)1145 void fpsimd_restore_current_state(void)
1146 {
1147 /*
1148 * For the tasks that were created before we detected the absence of
1149 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1150 * e.g, init. This could be then inherited by the children processes.
1151 * If we later detect that the system doesn't support FP/SIMD,
1152 * we must clear the flag for all the tasks to indicate that the
1153 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1154 * do_notify_resume().
1155 */
1156 if (!system_supports_fpsimd()) {
1157 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1158 return;
1159 }
1160
1161 get_cpu_fpsimd_context();
1162
1163 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1164 task_fpsimd_load();
1165 fpsimd_bind_task_to_cpu();
1166 }
1167
1168 put_cpu_fpsimd_context();
1169 }
1170
1171 /*
1172 * Load an updated userland FPSIMD state for 'current' from memory and set the
1173 * flag that indicates that the FPSIMD register contents are the most recent
1174 * FPSIMD state of 'current'
1175 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1176 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1177 {
1178 if (WARN_ON(!system_supports_fpsimd()))
1179 return;
1180
1181 get_cpu_fpsimd_context();
1182
1183 current->thread.uw.fpsimd_state = *state;
1184 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1185 fpsimd_to_sve(current);
1186
1187 task_fpsimd_load();
1188 fpsimd_bind_task_to_cpu();
1189
1190 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1191
1192 put_cpu_fpsimd_context();
1193 }
1194
1195 /*
1196 * Invalidate live CPU copies of task t's FPSIMD state
1197 *
1198 * This function may be called with preemption enabled. The barrier()
1199 * ensures that the assignment to fpsimd_cpu is visible to any
1200 * preemption/softirq that could race with set_tsk_thread_flag(), so
1201 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1202 *
1203 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1204 * subsequent code.
1205 */
fpsimd_flush_task_state(struct task_struct * t)1206 void fpsimd_flush_task_state(struct task_struct *t)
1207 {
1208 t->thread.fpsimd_cpu = NR_CPUS;
1209 /*
1210 * If we don't support fpsimd, bail out after we have
1211 * reset the fpsimd_cpu for this task and clear the
1212 * FPSTATE.
1213 */
1214 if (!system_supports_fpsimd())
1215 return;
1216 barrier();
1217 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1218
1219 barrier();
1220 }
1221
1222 /*
1223 * Invalidate any task's FPSIMD state that is present on this cpu.
1224 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1225 * before calling this function.
1226 */
fpsimd_flush_cpu_state(void)1227 static void fpsimd_flush_cpu_state(void)
1228 {
1229 WARN_ON(!system_supports_fpsimd());
1230 __this_cpu_write(fpsimd_last_state.st, NULL);
1231 set_thread_flag(TIF_FOREIGN_FPSTATE);
1232 }
1233
1234 /*
1235 * Save the FPSIMD state to memory and invalidate cpu view.
1236 * This function must be called with preemption disabled.
1237 */
fpsimd_save_and_flush_cpu_state(void)1238 void fpsimd_save_and_flush_cpu_state(void)
1239 {
1240 if (!system_supports_fpsimd())
1241 return;
1242 WARN_ON(preemptible());
1243 __get_cpu_fpsimd_context();
1244 fpsimd_save();
1245 fpsimd_flush_cpu_state();
1246 __put_cpu_fpsimd_context();
1247 }
1248
1249 #ifdef CONFIG_KERNEL_MODE_NEON
1250
1251 /*
1252 * Kernel-side NEON support functions
1253 */
1254
1255 /*
1256 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1257 * context
1258 *
1259 * Must not be called unless may_use_simd() returns true.
1260 * Task context in the FPSIMD registers is saved back to memory as necessary.
1261 *
1262 * A matching call to kernel_neon_end() must be made before returning from the
1263 * calling context.
1264 *
1265 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1266 * called.
1267 */
kernel_neon_begin(void)1268 void kernel_neon_begin(void)
1269 {
1270 if (WARN_ON(!system_supports_fpsimd()))
1271 return;
1272
1273 BUG_ON(!may_use_simd());
1274
1275 get_cpu_fpsimd_context();
1276
1277 /* Save unsaved fpsimd state, if any: */
1278 fpsimd_save();
1279
1280 /* Invalidate any task state remaining in the fpsimd regs: */
1281 fpsimd_flush_cpu_state();
1282 }
1283 EXPORT_SYMBOL(kernel_neon_begin);
1284
1285 /*
1286 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1287 *
1288 * Must be called from a context in which kernel_neon_begin() was previously
1289 * called, with no call to kernel_neon_end() in the meantime.
1290 *
1291 * The caller must not use the FPSIMD registers after this function is called,
1292 * unless kernel_neon_begin() is called again in the meantime.
1293 */
kernel_neon_end(void)1294 void kernel_neon_end(void)
1295 {
1296 if (!system_supports_fpsimd())
1297 return;
1298
1299 put_cpu_fpsimd_context();
1300 }
1301 EXPORT_SYMBOL(kernel_neon_end);
1302
1303 #ifdef CONFIG_EFI
1304
1305 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1306 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1307 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1308
1309 /*
1310 * EFI runtime services support functions
1311 *
1312 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1313 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1314 * is always used rather than being an optional accelerator.
1315 *
1316 * These functions provide the necessary support for ensuring FPSIMD
1317 * save/restore in the contexts from which EFI is used.
1318 *
1319 * Do not use them for any other purpose -- if tempted to do so, you are
1320 * either doing something wrong or you need to propose some refactoring.
1321 */
1322
1323 /*
1324 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1325 */
__efi_fpsimd_begin(void)1326 void __efi_fpsimd_begin(void)
1327 {
1328 if (!system_supports_fpsimd())
1329 return;
1330
1331 WARN_ON(preemptible());
1332
1333 if (may_use_simd()) {
1334 kernel_neon_begin();
1335 } else {
1336 /*
1337 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1338 * preserving:
1339 */
1340 if (system_supports_sve() && likely(efi_sve_state)) {
1341 char *sve_state = this_cpu_ptr(efi_sve_state);
1342
1343 __this_cpu_write(efi_sve_state_used, true);
1344
1345 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1346 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1347 } else {
1348 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1349 }
1350
1351 __this_cpu_write(efi_fpsimd_state_used, true);
1352 }
1353 }
1354
1355 /*
1356 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1357 */
__efi_fpsimd_end(void)1358 void __efi_fpsimd_end(void)
1359 {
1360 if (!system_supports_fpsimd())
1361 return;
1362
1363 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1364 kernel_neon_end();
1365 } else {
1366 if (system_supports_sve() &&
1367 likely(__this_cpu_read(efi_sve_state_used))) {
1368 char const *sve_state = this_cpu_ptr(efi_sve_state);
1369
1370 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1371 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1372 sve_vq_from_vl(sve_get_vl()) - 1);
1373
1374 __this_cpu_write(efi_sve_state_used, false);
1375 } else {
1376 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1377 }
1378 }
1379 }
1380
1381 #endif /* CONFIG_EFI */
1382
1383 #endif /* CONFIG_KERNEL_MODE_NEON */
1384
1385 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1386 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1387 unsigned long cmd, void *v)
1388 {
1389 switch (cmd) {
1390 case CPU_PM_ENTER:
1391 fpsimd_save_and_flush_cpu_state();
1392 break;
1393 case CPU_PM_EXIT:
1394 break;
1395 case CPU_PM_ENTER_FAILED:
1396 default:
1397 return NOTIFY_DONE;
1398 }
1399 return NOTIFY_OK;
1400 }
1401
1402 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1403 .notifier_call = fpsimd_cpu_pm_notifier,
1404 };
1405
fpsimd_pm_init(void)1406 static void __init fpsimd_pm_init(void)
1407 {
1408 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1409 }
1410
1411 #else
fpsimd_pm_init(void)1412 static inline void fpsimd_pm_init(void) { }
1413 #endif /* CONFIG_CPU_PM */
1414
1415 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1416 static int fpsimd_cpu_dead(unsigned int cpu)
1417 {
1418 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1419 return 0;
1420 }
1421
fpsimd_hotplug_init(void)1422 static inline void fpsimd_hotplug_init(void)
1423 {
1424 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1425 NULL, fpsimd_cpu_dead);
1426 }
1427
1428 #else
fpsimd_hotplug_init(void)1429 static inline void fpsimd_hotplug_init(void) { }
1430 #endif
1431
1432 /*
1433 * FP/SIMD support code initialisation.
1434 */
fpsimd_init(void)1435 static int __init fpsimd_init(void)
1436 {
1437 if (cpu_have_named_feature(FP)) {
1438 fpsimd_pm_init();
1439 fpsimd_hotplug_init();
1440 } else {
1441 pr_notice("Floating-point is not implemented\n");
1442 }
1443
1444 if (!cpu_have_named_feature(ASIMD))
1445 pr_notice("Advanced SIMD is not implemented\n");
1446
1447 return sve_sysctl_init();
1448 }
1449 core_initcall(fpsimd_init);
1450