• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright Anton Bikineev 2014
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_TOOLS_RECURRENCE_HPP_
7 #define BOOST_MATH_TOOLS_RECURRENCE_HPP_
8 
9 #include <boost/math/tools/config.hpp>
10 #include <boost/math/tools/precision.hpp>
11 #include <boost/math/tools/tuple.hpp>
12 #include <boost/math/tools/fraction.hpp>
13 #include <boost/math/tools/cxx03_warn.hpp>
14 
15 #ifdef BOOST_NO_CXX11_HDR_TUPLE
16 #error "This header requires C++11 support"
17 #endif
18 
19 
20 namespace boost {
21    namespace math {
22       namespace tools {
23          namespace detail{
24 
25             //
26             // Function ratios directly from recurrence relations:
27             // H. Shintan, Note on Miller's recurrence algorithm, J. Sci. Hiroshima Univ. Ser. A-I
28             // Math., 29 (1965), pp. 121 - 133.
29             // and:
30             // COMPUTATIONAL ASPECTS OF THREE-TERM RECURRENCE RELATIONS
31             // WALTER GAUTSCHI
32             // SIAM REVIEW Vol. 9, No. 1, January, 1967
33             //
34             template <class Recurrence>
35             struct function_ratio_from_backwards_recurrence_fraction
36             {
37                typedef typename boost::remove_reference<decltype(boost::math::get<0>(std::declval<Recurrence&>()(0)))>::type value_type;
38                typedef std::pair<value_type, value_type> result_type;
function_ratio_from_backwards_recurrence_fractionboost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction39                function_ratio_from_backwards_recurrence_fraction(const Recurrence& r) : r(r), k(0) {}
40 
operator ()boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction41                result_type operator()()
42                {
43                   value_type a, b, c;
44                   boost::math::tie(a, b, c) = r(k);
45                   ++k;
46                   // an and bn defined as per Gauchi 1.16, not the same
47                   // as the usual continued fraction a' and b's.
48                   value_type bn = a / c;
49                   value_type an = b / c;
50                   return result_type(-bn, an);
51                }
52 
53             private:
54                function_ratio_from_backwards_recurrence_fraction operator=(const function_ratio_from_backwards_recurrence_fraction&);
55 
56                Recurrence r;
57                int k;
58             };
59 
60             template <class R, class T>
61             struct recurrence_reverser
62             {
recurrence_reverserboost::math::tools::detail::recurrence_reverser63                recurrence_reverser(const R& r) : r(r) {}
operator ()boost::math::tools::detail::recurrence_reverser64                boost::math::tuple<T, T, T> operator()(int i)
65                {
66                   using std::swap;
67                   boost::math::tuple<T, T, T> t = r(-i);
68                   swap(boost::math::get<0>(t), boost::math::get<2>(t));
69                   return t;
70                }
71                R r;
72             };
73 
74             template <class Recurrence>
75             struct recurrence_offsetter
76             {
77                typedef decltype(std::declval<Recurrence&>()(0)) result_type;
recurrence_offsetterboost::math::tools::detail::recurrence_offsetter78                recurrence_offsetter(Recurrence const& rr, int offset) : r(rr), k(offset) {}
operator ()boost::math::tools::detail::recurrence_offsetter79                result_type operator()(int i)
80                {
81                   return r(i + k);
82                }
83             private:
84                Recurrence r;
85                int k;
86             };
87 
88 
89 
90          }  // namespace detail
91 
92          //
93          // Given a stable backwards recurrence relation:
94          // a f_n-1 + b f_n + c f_n+1 = 0
95          // returns the ratio f_n / f_n-1
96          //
97          // Recurrence: a functor that returns a tuple of the factors (a,b,c).
98          // factor:     Convergence criteria, should be no less than machine epsilon.
99          // max_iter:   Maximum iterations to use solving the continued fraction.
100          //
101          template <class Recurrence, class T>
function_ratio_from_backwards_recurrence(const Recurrence & r,const T & factor,boost::uintmax_t & max_iter)102          T function_ratio_from_backwards_recurrence(const Recurrence& r, const T& factor, boost::uintmax_t& max_iter)
103          {
104             detail::function_ratio_from_backwards_recurrence_fraction<Recurrence> f(r);
105             return boost::math::tools::continued_fraction_a(f, factor, max_iter);
106          }
107 
108          //
109          // Given a stable forwards recurrence relation:
110          // a f_n-1 + b f_n + c f_n+1 = 0
111          // returns the ratio f_n / f_n+1
112          //
113          // Note that in most situations where this would be used, we're relying on
114          // pseudo-convergence, as in most cases f_n will not be minimal as N -> -INF
115          // as long as we reach convergence on the continued-fraction before f_n
116          // switches behaviour, we should be fine.
117          //
118          // Recurrence: a functor that returns a tuple of the factors (a,b,c).
119          // factor:     Convergence criteria, should be no less than machine epsilon.
120          // max_iter:   Maximum iterations to use solving the continued fraction.
121          //
122          template <class Recurrence, class T>
function_ratio_from_forwards_recurrence(const Recurrence & r,const T & factor,boost::uintmax_t & max_iter)123          T function_ratio_from_forwards_recurrence(const Recurrence& r, const T& factor, boost::uintmax_t& max_iter)
124          {
125             boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction<boost::math::tools::detail::recurrence_reverser<Recurrence, T> > f(r);
126             return boost::math::tools::continued_fraction_a(f, factor, max_iter);
127          }
128 
129 
130 
131          // solves usual recurrence relation for homogeneous
132          // difference equation in stable forward direction
133          // a(n)w(n-1) + b(n)w(n) + c(n)w(n+1) = 0
134          //
135          // Params:
136          // get_coefs: functor returning a tuple, where
137          //            get<0>() is a(n); get<1>() is b(n); get<2>() is c(n);
138          // last_index: index N to be found;
139          // first: w(-1);
140          // second: w(0);
141          //
142          template <class NextCoefs, class T>
apply_recurrence_relation_forward(const NextCoefs & get_coefs,unsigned number_of_steps,T first,T second,int * log_scaling=0,T * previous=0)143          inline T apply_recurrence_relation_forward(const NextCoefs& get_coefs, unsigned number_of_steps, T first, T second, int* log_scaling = 0, T* previous = 0)
144          {
145             BOOST_MATH_STD_USING
146             using boost::math::tuple;
147             using boost::math::get;
148 
149             T third;
150             T a, b, c;
151 
152             for (unsigned k = 0; k < number_of_steps; ++k)
153             {
154                tie(a, b, c) = get_coefs(k);
155 
156                if ((log_scaling) &&
157                   ((fabs(tools::max_value<T>() * (c / (a * 2048))) < fabs(first))
158                      || (fabs(tools::max_value<T>() * (c / (b * 2048))) < fabs(second))
159                      || (fabs(tools::min_value<T>() * (c * 2048 / a)) > fabs(first))
160                      || (fabs(tools::min_value<T>() * (c * 2048 / b)) > fabs(second))
161                      ))
162 
163                {
164                   // Rescale everything:
165                   int log_scale = itrunc(log(fabs(second)));
166                   T scale = exp(T(-log_scale));
167                   second *= scale;
168                   first *= scale;
169                   *log_scaling += log_scale;
170                }
171                // scale each part separately to avoid spurious overflow:
172                third = (a / -c) * first + (b / -c) * second;
173                BOOST_ASSERT((boost::math::isfinite)(third));
174 
175 
176                swap(first, second);
177                swap(second, third);
178             }
179 
180             if (previous)
181                *previous = first;
182 
183             return second;
184          }
185 
186          // solves usual recurrence relation for homogeneous
187          // difference equation in stable backward direction
188          // a(n)w(n-1) + b(n)w(n) + c(n)w(n+1) = 0
189          //
190          // Params:
191          // get_coefs: functor returning a tuple, where
192          //            get<0>() is a(n); get<1>() is b(n); get<2>() is c(n);
193          // number_of_steps: index N to be found;
194          // first: w(1);
195          // second: w(0);
196          //
197          template <class T, class NextCoefs>
apply_recurrence_relation_backward(const NextCoefs & get_coefs,unsigned number_of_steps,T first,T second,int * log_scaling=0,T * previous=0)198          inline T apply_recurrence_relation_backward(const NextCoefs& get_coefs, unsigned number_of_steps, T first, T second, int* log_scaling = 0, T* previous = 0)
199          {
200             BOOST_MATH_STD_USING
201             using boost::math::tuple;
202             using boost::math::get;
203 
204             T next;
205             T a, b, c;
206 
207             for (unsigned k = 0; k < number_of_steps; ++k)
208             {
209                tie(a, b, c) = get_coefs(-static_cast<int>(k));
210 
211                if ((log_scaling) &&
212                   ( (fabs(tools::max_value<T>() * (a / b) / 2048) < fabs(second))
213                      || (fabs(tools::max_value<T>() * (a / c) / 2048) < fabs(first))
214                      || (fabs(tools::min_value<T>() * (a / b) * 2048) > fabs(second))
215                      || (fabs(tools::min_value<T>() * (a / c) * 2048) > fabs(first))
216                   ))
217                {
218                   // Rescale everything:
219                   int log_scale = itrunc(log(fabs(second)));
220                   T scale = exp(T(-log_scale));
221                   second *= scale;
222                   first *= scale;
223                   *log_scaling += log_scale;
224                }
225                // scale each part separately to avoid spurious overflow:
226                next = (b / -a) * second + (c / -a) * first;
227                BOOST_ASSERT((boost::math::isfinite)(next));
228 
229                swap(first, second);
230                swap(second, next);
231             }
232 
233             if (previous)
234                *previous = first;
235 
236             return second;
237          }
238 
239          template <class Recurrence>
240          struct forward_recurrence_iterator
241          {
242             typedef typename boost::remove_reference<decltype(std::get<0>(std::declval<Recurrence&>()(0)))>::type value_type;
243 
forward_recurrence_iteratorboost::math::tools::forward_recurrence_iterator244             forward_recurrence_iterator(const Recurrence& r, value_type f_n_minus_1, value_type f_n)
245                : f_n_minus_1(f_n_minus_1), f_n(f_n), coef(r), k(0) {}
246 
forward_recurrence_iteratorboost::math::tools::forward_recurrence_iterator247             forward_recurrence_iterator(const Recurrence& r, value_type f_n)
248                : f_n(f_n), coef(r), k(0)
249             {
250                boost::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<boost::math::policies::policy<> >();
251                f_n_minus_1 = f_n * boost::math::tools::function_ratio_from_forwards_recurrence(detail::recurrence_offsetter<Recurrence>(r, -1), value_type(boost::math::tools::epsilon<value_type>() * 2), max_iter);
252                boost::math::policies::check_series_iterations<value_type>("forward_recurrence_iterator<>::forward_recurrence_iterator", max_iter, boost::math::policies::policy<>());
253             }
254 
operator ++boost::math::tools::forward_recurrence_iterator255             forward_recurrence_iterator& operator++()
256             {
257                using std::swap;
258                value_type a, b, c;
259                boost::math::tie(a, b, c) = coef(k);
260                value_type f_n_plus_1 = a * f_n_minus_1 / -c + b * f_n / -c;
261                swap(f_n_minus_1, f_n);
262                swap(f_n, f_n_plus_1);
263                ++k;
264                return *this;
265             }
266 
operator ++boost::math::tools::forward_recurrence_iterator267             forward_recurrence_iterator operator++(int)
268             {
269                forward_recurrence_iterator t(*this);
270                ++(*this);
271                return t;
272             }
273 
operator *boost::math::tools::forward_recurrence_iterator274             value_type operator*() { return f_n; }
275 
276             value_type f_n_minus_1, f_n;
277             Recurrence coef;
278             int k;
279          };
280 
281          template <class Recurrence>
282          struct backward_recurrence_iterator
283          {
284             typedef typename boost::remove_reference<decltype(std::get<0>(std::declval<Recurrence&>()(0)))>::type value_type;
285 
backward_recurrence_iteratorboost::math::tools::backward_recurrence_iterator286             backward_recurrence_iterator(const Recurrence& r, value_type f_n_plus_1, value_type f_n)
287                : f_n_plus_1(f_n_plus_1), f_n(f_n), coef(r), k(0) {}
288 
backward_recurrence_iteratorboost::math::tools::backward_recurrence_iterator289             backward_recurrence_iterator(const Recurrence& r, value_type f_n)
290                : f_n(f_n), coef(r), k(0)
291             {
292                boost::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<boost::math::policies::policy<> >();
293                f_n_plus_1 = f_n * boost::math::tools::function_ratio_from_backwards_recurrence(detail::recurrence_offsetter<Recurrence>(r, 1), value_type(boost::math::tools::epsilon<value_type>() * 2), max_iter);
294                boost::math::policies::check_series_iterations<value_type>("backward_recurrence_iterator<>::backward_recurrence_iterator", max_iter, boost::math::policies::policy<>());
295             }
296 
operator ++boost::math::tools::backward_recurrence_iterator297             backward_recurrence_iterator& operator++()
298             {
299                using std::swap;
300                value_type a, b, c;
301                boost::math::tie(a, b, c) = coef(k);
302                value_type f_n_minus_1 = c * f_n_plus_1 / -a + b * f_n / -a;
303                swap(f_n_plus_1, f_n);
304                swap(f_n, f_n_minus_1);
305                --k;
306                return *this;
307             }
308 
operator ++boost::math::tools::backward_recurrence_iterator309             backward_recurrence_iterator operator++(int)
310             {
311                backward_recurrence_iterator t(*this);
312                ++(*this);
313                return t;
314             }
315 
operator *boost::math::tools::backward_recurrence_iterator316             value_type operator*() { return f_n; }
317 
318             value_type f_n_plus_1, f_n;
319             Recurrence coef;
320             int k;
321          };
322 
323       }
324    }
325 } // namespaces
326 
327 #endif // BOOST_MATH_TOOLS_RECURRENCE_HPP_
328