1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24 #include <linux/kexec.h>
25 #include <linux/sizes.h>
26 #include <linux/device.h>
27 #include <linux/dma-map-ops.h>
28 #include <linux/decompress/generic.h>
29 #include <linux/of_fdt.h>
30 #include <linux/of_reserved_mem.h>
31 #include <linux/dmi.h>
32
33 #include <asm/addrspace.h>
34 #include <asm/bootinfo.h>
35 #include <asm/bugs.h>
36 #include <asm/cache.h>
37 #include <asm/cdmm.h>
38 #include <asm/cpu.h>
39 #include <asm/debug.h>
40 #include <asm/dma-coherence.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <asm/smp-ops.h>
44 #include <asm/prom.h>
45
46 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
47 const char __section(".appended_dtb") __appended_dtb[0x100000];
48 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
49
50 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
51
52 EXPORT_SYMBOL(cpu_data);
53
54 #ifdef CONFIG_VT
55 struct screen_info screen_info;
56 #endif
57
58 /*
59 * Setup information
60 *
61 * These are initialized so they are in the .data section
62 */
63 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
64
65 EXPORT_SYMBOL(mips_machtype);
66
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70 #ifdef CONFIG_CMDLINE_BOOL
71 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
72 #else
73 static const char builtin_cmdline[] __initconst = "";
74 #endif
75
76 /*
77 * mips_io_port_base is the begin of the address space to which x86 style
78 * I/O ports are mapped.
79 */
80 unsigned long mips_io_port_base = -1;
81 EXPORT_SYMBOL(mips_io_port_base);
82
83 static struct resource code_resource = { .name = "Kernel code", };
84 static struct resource data_resource = { .name = "Kernel data", };
85 static struct resource bss_resource = { .name = "Kernel bss", };
86
87 static void *detect_magic __initdata = detect_memory_region;
88
89 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
90 unsigned long ARCH_PFN_OFFSET;
91 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
92 #endif
93
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)94 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
95 {
96 void *dm = &detect_magic;
97 phys_addr_t size;
98
99 for (size = sz_min; size < sz_max; size <<= 1) {
100 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
101 break;
102 }
103
104 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
105 ((unsigned long long) size) / SZ_1M,
106 (unsigned long long) start,
107 ((unsigned long long) sz_min) / SZ_1M,
108 ((unsigned long long) sz_max) / SZ_1M);
109
110 memblock_add(start, size);
111 }
112
113 /*
114 * Manage initrd
115 */
116 #ifdef CONFIG_BLK_DEV_INITRD
117
rd_start_early(char * p)118 static int __init rd_start_early(char *p)
119 {
120 unsigned long start = memparse(p, &p);
121
122 #ifdef CONFIG_64BIT
123 /* Guess if the sign extension was forgotten by bootloader */
124 if (start < XKPHYS)
125 start = (int)start;
126 #endif
127 initrd_start = start;
128 initrd_end += start;
129 return 0;
130 }
131 early_param("rd_start", rd_start_early);
132
rd_size_early(char * p)133 static int __init rd_size_early(char *p)
134 {
135 initrd_end += memparse(p, &p);
136 return 0;
137 }
138 early_param("rd_size", rd_size_early);
139
140 /* it returns the next free pfn after initrd */
init_initrd(void)141 static unsigned long __init init_initrd(void)
142 {
143 unsigned long end;
144
145 /*
146 * Board specific code or command line parser should have
147 * already set up initrd_start and initrd_end. In these cases
148 * perfom sanity checks and use them if all looks good.
149 */
150 if (!initrd_start || initrd_end <= initrd_start)
151 goto disable;
152
153 if (initrd_start & ~PAGE_MASK) {
154 pr_err("initrd start must be page aligned\n");
155 goto disable;
156 }
157 if (initrd_start < PAGE_OFFSET) {
158 pr_err("initrd start < PAGE_OFFSET\n");
159 goto disable;
160 }
161
162 /*
163 * Sanitize initrd addresses. For example firmware
164 * can't guess if they need to pass them through
165 * 64-bits values if the kernel has been built in pure
166 * 32-bit. We need also to switch from KSEG0 to XKPHYS
167 * addresses now, so the code can now safely use __pa().
168 */
169 end = __pa(initrd_end);
170 initrd_end = (unsigned long)__va(end);
171 initrd_start = (unsigned long)__va(__pa(initrd_start));
172
173 ROOT_DEV = Root_RAM0;
174 return PFN_UP(end);
175 disable:
176 initrd_start = 0;
177 initrd_end = 0;
178 return 0;
179 }
180
181 /* In some conditions (e.g. big endian bootloader with a little endian
182 kernel), the initrd might appear byte swapped. Try to detect this and
183 byte swap it if needed. */
maybe_bswap_initrd(void)184 static void __init maybe_bswap_initrd(void)
185 {
186 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
187 u64 buf;
188
189 /* Check for CPIO signature */
190 if (!memcmp((void *)initrd_start, "070701", 6))
191 return;
192
193 /* Check for compressed initrd */
194 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
195 return;
196
197 /* Try again with a byte swapped header */
198 buf = swab64p((u64 *)initrd_start);
199 if (!memcmp(&buf, "070701", 6) ||
200 decompress_method((unsigned char *)(&buf), 8, NULL)) {
201 unsigned long i;
202
203 pr_info("Byteswapped initrd detected\n");
204 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
205 swab64s((u64 *)i);
206 }
207 #endif
208 }
209
finalize_initrd(void)210 static void __init finalize_initrd(void)
211 {
212 unsigned long size = initrd_end - initrd_start;
213
214 if (size == 0) {
215 printk(KERN_INFO "Initrd not found or empty");
216 goto disable;
217 }
218 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
219 printk(KERN_ERR "Initrd extends beyond end of memory");
220 goto disable;
221 }
222
223 maybe_bswap_initrd();
224
225 memblock_reserve(__pa(initrd_start), size);
226 initrd_below_start_ok = 1;
227
228 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
229 initrd_start, size);
230 return;
231 disable:
232 printk(KERN_CONT " - disabling initrd\n");
233 initrd_start = 0;
234 initrd_end = 0;
235 }
236
237 #else /* !CONFIG_BLK_DEV_INITRD */
238
init_initrd(void)239 static unsigned long __init init_initrd(void)
240 {
241 return 0;
242 }
243
244 #define finalize_initrd() do {} while (0)
245
246 #endif
247
248 /*
249 * Initialize the bootmem allocator. It also setup initrd related data
250 * if needed.
251 */
252 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
253
bootmem_init(void)254 static void __init bootmem_init(void)
255 {
256 init_initrd();
257 finalize_initrd();
258 }
259
260 #else /* !CONFIG_SGI_IP27 */
261
bootmem_init(void)262 static void __init bootmem_init(void)
263 {
264 phys_addr_t ramstart, ramend;
265 unsigned long start, end;
266 int i;
267
268 ramstart = memblock_start_of_DRAM();
269 ramend = memblock_end_of_DRAM();
270
271 /*
272 * Sanity check any INITRD first. We don't take it into account
273 * for bootmem setup initially, rely on the end-of-kernel-code
274 * as our memory range starting point. Once bootmem is inited we
275 * will reserve the area used for the initrd.
276 */
277 init_initrd();
278
279 /* Reserve memory occupied by kernel. */
280 memblock_reserve(__pa_symbol(&_text),
281 __pa_symbol(&_end) - __pa_symbol(&_text));
282
283 /* max_low_pfn is not a number of pages but the end pfn of low mem */
284
285 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
286 ARCH_PFN_OFFSET = PFN_UP(ramstart);
287 #else
288 /*
289 * Reserve any memory between the start of RAM and PHYS_OFFSET
290 */
291 if (ramstart > PHYS_OFFSET)
292 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
293
294 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
295 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
296 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
297 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
298 }
299 #endif
300
301 min_low_pfn = ARCH_PFN_OFFSET;
302 max_pfn = PFN_DOWN(ramend);
303 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
304 /*
305 * Skip highmem here so we get an accurate max_low_pfn if low
306 * memory stops short of high memory.
307 * If the region overlaps HIGHMEM_START, end is clipped so
308 * max_pfn excludes the highmem portion.
309 */
310 if (start >= PFN_DOWN(HIGHMEM_START))
311 continue;
312 if (end > PFN_DOWN(HIGHMEM_START))
313 end = PFN_DOWN(HIGHMEM_START);
314 if (end > max_low_pfn)
315 max_low_pfn = end;
316 }
317
318 if (min_low_pfn >= max_low_pfn)
319 panic("Incorrect memory mapping !!!");
320
321 if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
322 #ifdef CONFIG_HIGHMEM
323 highstart_pfn = PFN_DOWN(HIGHMEM_START);
324 highend_pfn = max_pfn;
325 #else
326 max_low_pfn = PFN_DOWN(HIGHMEM_START);
327 max_pfn = max_low_pfn;
328 #endif
329 }
330
331 /*
332 * Reserve initrd memory if needed.
333 */
334 finalize_initrd();
335 }
336
337 #endif /* CONFIG_SGI_IP27 */
338
339 static int usermem __initdata;
340
early_parse_mem(char * p)341 static int __init early_parse_mem(char *p)
342 {
343 phys_addr_t start, size;
344
345 /*
346 * If a user specifies memory size, we
347 * blow away any automatically generated
348 * size.
349 */
350 if (usermem == 0) {
351 usermem = 1;
352 memblock_remove(memblock_start_of_DRAM(),
353 memblock_end_of_DRAM() - memblock_start_of_DRAM());
354 }
355 start = 0;
356 size = memparse(p, &p);
357 if (*p == '@')
358 start = memparse(p + 1, &p);
359
360 memblock_add(start, size);
361
362 return 0;
363 }
364 early_param("mem", early_parse_mem);
365
early_parse_memmap(char * p)366 static int __init early_parse_memmap(char *p)
367 {
368 char *oldp;
369 u64 start_at, mem_size;
370
371 if (!p)
372 return -EINVAL;
373
374 if (!strncmp(p, "exactmap", 8)) {
375 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
376 return 0;
377 }
378
379 oldp = p;
380 mem_size = memparse(p, &p);
381 if (p == oldp)
382 return -EINVAL;
383
384 if (*p == '@') {
385 start_at = memparse(p+1, &p);
386 memblock_add(start_at, mem_size);
387 } else if (*p == '#') {
388 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
389 return -EINVAL;
390 } else if (*p == '$') {
391 start_at = memparse(p+1, &p);
392 memblock_add(start_at, mem_size);
393 memblock_reserve(start_at, mem_size);
394 } else {
395 pr_err("\"memmap\" invalid format!\n");
396 return -EINVAL;
397 }
398
399 if (*p == '\0') {
400 usermem = 1;
401 return 0;
402 } else
403 return -EINVAL;
404 }
405 early_param("memmap", early_parse_memmap);
406
407 #ifdef CONFIG_PROC_VMCORE
408 static unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)409 static int __init early_parse_elfcorehdr(char *p)
410 {
411 phys_addr_t start, end;
412 u64 i;
413
414 setup_elfcorehdr = memparse(p, &p);
415
416 for_each_mem_range(i, &start, &end) {
417 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
418 /*
419 * Reserve from the elf core header to the end of
420 * the memory segment, that should all be kdump
421 * reserved memory.
422 */
423 setup_elfcorehdr_size = end - setup_elfcorehdr;
424 break;
425 }
426 }
427 /*
428 * If we don't find it in the memory map, then we shouldn't
429 * have to worry about it, as the new kernel won't use it.
430 */
431 return 0;
432 }
433 early_param("elfcorehdr", early_parse_elfcorehdr);
434 #endif
435
436 #ifdef CONFIG_KEXEC
437
438 /* 64M alignment for crash kernel regions */
439 #define CRASH_ALIGN SZ_64M
440 #define CRASH_ADDR_MAX SZ_512M
441
mips_parse_crashkernel(void)442 static void __init mips_parse_crashkernel(void)
443 {
444 unsigned long long total_mem;
445 unsigned long long crash_size, crash_base;
446 int ret;
447
448 total_mem = memblock_phys_mem_size();
449 ret = parse_crashkernel(boot_command_line, total_mem,
450 &crash_size, &crash_base);
451 if (ret != 0 || crash_size <= 0)
452 return;
453
454 if (crash_base <= 0) {
455 crash_base = memblock_find_in_range(CRASH_ALIGN, CRASH_ADDR_MAX,
456 crash_size, CRASH_ALIGN);
457 if (!crash_base) {
458 pr_warn("crashkernel reservation failed - No suitable area found.\n");
459 return;
460 }
461 } else {
462 unsigned long long start;
463
464 start = memblock_find_in_range(crash_base, crash_base + crash_size,
465 crash_size, 1);
466 if (start != crash_base) {
467 pr_warn("Invalid memory region reserved for crash kernel\n");
468 return;
469 }
470 }
471
472 crashk_res.start = crash_base;
473 crashk_res.end = crash_base + crash_size - 1;
474 }
475
request_crashkernel(struct resource * res)476 static void __init request_crashkernel(struct resource *res)
477 {
478 int ret;
479
480 if (crashk_res.start == crashk_res.end)
481 return;
482
483 ret = request_resource(res, &crashk_res);
484 if (!ret)
485 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
486 (unsigned long)(resource_size(&crashk_res) >> 20),
487 (unsigned long)(crashk_res.start >> 20));
488 }
489 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)490 static void __init mips_parse_crashkernel(void)
491 {
492 }
493
request_crashkernel(struct resource * res)494 static void __init request_crashkernel(struct resource *res)
495 {
496 }
497 #endif /* !defined(CONFIG_KEXEC) */
498
check_kernel_sections_mem(void)499 static void __init check_kernel_sections_mem(void)
500 {
501 phys_addr_t start = __pa_symbol(&_text);
502 phys_addr_t size = __pa_symbol(&_end) - start;
503
504 if (!memblock_is_region_memory(start, size)) {
505 pr_info("Kernel sections are not in the memory maps\n");
506 memblock_add(start, size);
507 }
508 }
509
bootcmdline_append(const char * s,size_t max)510 static void __init bootcmdline_append(const char *s, size_t max)
511 {
512 if (!s[0] || !max)
513 return;
514
515 if (boot_command_line[0])
516 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
517
518 strlcat(boot_command_line, s, max);
519 }
520
521 #ifdef CONFIG_OF_EARLY_FLATTREE
522
bootcmdline_scan_chosen(unsigned long node,const char * uname,int depth,void * data)523 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
524 int depth, void *data)
525 {
526 bool *dt_bootargs = data;
527 const char *p;
528 int l;
529
530 if (depth != 1 || !data ||
531 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
532 return 0;
533
534 p = of_get_flat_dt_prop(node, "bootargs", &l);
535 if (p != NULL && l > 0) {
536 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
537 *dt_bootargs = true;
538 }
539
540 return 1;
541 }
542
543 #endif /* CONFIG_OF_EARLY_FLATTREE */
544
bootcmdline_init(void)545 static void __init bootcmdline_init(void)
546 {
547 bool dt_bootargs = false;
548
549 /*
550 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
551 * trivial - we simply use the built-in command line unconditionally &
552 * unmodified.
553 */
554 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
555 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
556 return;
557 }
558
559 /*
560 * If the user specified a built-in command line &
561 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
562 * prepended to arguments from the bootloader or DT so we'll copy them
563 * to the start of boot_command_line here. Otherwise, empty
564 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
565 */
566 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
567 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
568 else
569 boot_command_line[0] = 0;
570
571 #ifdef CONFIG_OF_EARLY_FLATTREE
572 /*
573 * If we're configured to take boot arguments from DT, look for those
574 * now.
575 */
576 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
577 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
578 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
579 #endif
580
581 /*
582 * If we didn't get any arguments from DT (regardless of whether that's
583 * because we weren't configured to look for them, or because we looked
584 * & found none) then we'll take arguments from the bootloader.
585 * plat_mem_setup() should have filled arcs_cmdline with arguments from
586 * the bootloader.
587 */
588 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
589 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
590
591 /*
592 * If the user specified a built-in command line & we didn't already
593 * prepend it, we append it to boot_command_line here.
594 */
595 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
596 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
597 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
598 }
599
600 /*
601 * arch_mem_init - initialize memory management subsystem
602 *
603 * o plat_mem_setup() detects the memory configuration and will record detected
604 * memory areas using memblock_add.
605 *
606 * At this stage the memory configuration of the system is known to the
607 * kernel but generic memory management system is still entirely uninitialized.
608 *
609 * o bootmem_init()
610 * o sparse_init()
611 * o paging_init()
612 * o dma_contiguous_reserve()
613 *
614 * At this stage the bootmem allocator is ready to use.
615 *
616 * NOTE: historically plat_mem_setup did the entire platform initialization.
617 * This was rather impractical because it meant plat_mem_setup had to
618 * get away without any kind of memory allocator. To keep old code from
619 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
620 * initialization hook for anything else was introduced.
621 */
arch_mem_init(char ** cmdline_p)622 static void __init arch_mem_init(char **cmdline_p)
623 {
624 /* call board setup routine */
625 plat_mem_setup();
626 memblock_set_bottom_up(true);
627
628 bootcmdline_init();
629 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
630 *cmdline_p = command_line;
631
632 parse_early_param();
633
634 if (usermem)
635 pr_info("User-defined physical RAM map overwrite\n");
636
637 check_kernel_sections_mem();
638
639 early_init_fdt_reserve_self();
640 early_init_fdt_scan_reserved_mem();
641
642 #ifndef CONFIG_NUMA
643 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
644 #endif
645 bootmem_init();
646
647 /*
648 * Prevent memblock from allocating high memory.
649 * This cannot be done before max_low_pfn is detected, so up
650 * to this point is possible to only reserve physical memory
651 * with memblock_reserve; memblock_alloc* can be used
652 * only after this point
653 */
654 memblock_set_current_limit(PFN_PHYS(max_low_pfn));
655
656 #ifdef CONFIG_PROC_VMCORE
657 if (setup_elfcorehdr && setup_elfcorehdr_size) {
658 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
659 setup_elfcorehdr, setup_elfcorehdr_size);
660 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size);
661 }
662 #endif
663
664 mips_parse_crashkernel();
665 #ifdef CONFIG_KEXEC
666 if (crashk_res.start != crashk_res.end)
667 memblock_reserve(crashk_res.start, resource_size(&crashk_res));
668 #endif
669 device_tree_init();
670
671 /*
672 * In order to reduce the possibility of kernel panic when failed to
673 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
674 * low memory as small as possible before plat_swiotlb_setup(), so
675 * make sparse_init() using top-down allocation.
676 */
677 memblock_set_bottom_up(false);
678 sparse_init();
679 memblock_set_bottom_up(true);
680
681 plat_swiotlb_setup();
682
683 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
684
685 /* Reserve for hibernation. */
686 memblock_reserve(__pa_symbol(&__nosave_begin),
687 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
688
689 fdt_init_reserved_mem();
690
691 memblock_dump_all();
692
693 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
694 }
695
resource_init(void)696 static void __init resource_init(void)
697 {
698 phys_addr_t start, end;
699 u64 i;
700
701 if (UNCAC_BASE != IO_BASE)
702 return;
703
704 code_resource.start = __pa_symbol(&_text);
705 code_resource.end = __pa_symbol(&_etext) - 1;
706 data_resource.start = __pa_symbol(&_etext);
707 data_resource.end = __pa_symbol(&_edata) - 1;
708 bss_resource.start = __pa_symbol(&__bss_start);
709 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
710
711 for_each_mem_range(i, &start, &end) {
712 struct resource *res;
713
714 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
715 if (!res)
716 panic("%s: Failed to allocate %zu bytes\n", __func__,
717 sizeof(struct resource));
718
719 res->start = start;
720 /*
721 * In memblock, end points to the first byte after the
722 * range while in resourses, end points to the last byte in
723 * the range.
724 */
725 res->end = end - 1;
726 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
727 res->name = "System RAM";
728
729 request_resource(&iomem_resource, res);
730
731 /*
732 * We don't know which RAM region contains kernel data,
733 * so we try it repeatedly and let the resource manager
734 * test it.
735 */
736 request_resource(res, &code_resource);
737 request_resource(res, &data_resource);
738 request_resource(res, &bss_resource);
739 request_crashkernel(res);
740 }
741 }
742
743 #ifdef CONFIG_SMP
prefill_possible_map(void)744 static void __init prefill_possible_map(void)
745 {
746 int i, possible = num_possible_cpus();
747
748 if (possible > nr_cpu_ids)
749 possible = nr_cpu_ids;
750
751 for (i = 0; i < possible; i++)
752 set_cpu_possible(i, true);
753 for (; i < NR_CPUS; i++)
754 set_cpu_possible(i, false);
755
756 nr_cpu_ids = possible;
757 }
758 #else
prefill_possible_map(void)759 static inline void prefill_possible_map(void) {}
760 #endif
761
setup_arch(char ** cmdline_p)762 void __init setup_arch(char **cmdline_p)
763 {
764 cpu_probe();
765 mips_cm_probe();
766 prom_init();
767
768 setup_early_fdc_console();
769 #ifdef CONFIG_EARLY_PRINTK
770 setup_early_printk();
771 #endif
772 cpu_report();
773 check_bugs_early();
774
775 #if defined(CONFIG_VT)
776 #if defined(CONFIG_VGA_CONSOLE)
777 conswitchp = &vga_con;
778 #endif
779 #endif
780
781 arch_mem_init(cmdline_p);
782 dmi_setup();
783
784 resource_init();
785 plat_smp_setup();
786 prefill_possible_map();
787
788 cpu_cache_init();
789 paging_init();
790 }
791
792 unsigned long kernelsp[NR_CPUS];
793 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
794
795 #ifdef CONFIG_USE_OF
796 unsigned long fw_passed_dtb;
797 #endif
798
799 #ifdef CONFIG_DEBUG_FS
800 struct dentry *mips_debugfs_dir;
debugfs_mips(void)801 static int __init debugfs_mips(void)
802 {
803 mips_debugfs_dir = debugfs_create_dir("mips", NULL);
804 return 0;
805 }
806 arch_initcall(debugfs_mips);
807 #endif
808
809 #ifdef CONFIG_DMA_MAYBE_COHERENT
810 /* User defined DMA coherency from command line. */
811 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
812 EXPORT_SYMBOL_GPL(coherentio);
813 int hw_coherentio; /* Actual hardware supported DMA coherency setting. */
814
setcoherentio(char * str)815 static int __init setcoherentio(char *str)
816 {
817 coherentio = IO_COHERENCE_ENABLED;
818 pr_info("Hardware DMA cache coherency (command line)\n");
819 return 0;
820 }
821 early_param("coherentio", setcoherentio);
822
setnocoherentio(char * str)823 static int __init setnocoherentio(char *str)
824 {
825 coherentio = IO_COHERENCE_DISABLED;
826 pr_info("Software DMA cache coherency (command line)\n");
827 return 0;
828 }
829 early_param("nocoherentio", setnocoherentio);
830 #endif
831