• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g723_40.c
29  *
30  * Description:
31  *
32  * g723_40_encoder (), g723_40_decoder ()
33  *
34  * These routines comprise an implementation of the CCITT G.723 40Kbps
35  * ADPCM coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which
37  * take advantage of workstation attributes, such as hardware 2's
38  * complement arithmetic.
39  *
40  * The deviation from the bit level specification (lookup tables),
41  * preserves the bit level performance specifications.
42  *
43  * As outlined in the G.723 Recommendation, the algorithm is broken
44  * down into modules.  Each section of code below is preceded by
45  * the name of the module which it is implementing.
46  *
47  */
48 
49 #include "g72x.h"
50 #include "g72x_priv.h"
51 
52 /*
53  * Maps G.723_40 code word to ructeconstructed scale factor normalized log
54  * magnitude values.
55  */
56 static short	_dqlntab [32] = { -2048, -66, 28, 104, 169, 224, 274, 318,
57 				358, 395, 429, 459, 488, 514, 539, 566,
58 				566, 539, 514, 488, 459, 429, 395, 358,
59 				318, 274, 224, 169, 104, 28, -66, -2048 } ;
60 
61 /* Maps G.723_40 code word to log of scale factor multiplier. */
62 static short	_witab [32] = { 448, 448, 768, 1248, 1280, 1312, 1856, 3200,
63 			4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272,
64 			22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512,
65 			3200, 1856, 1312, 1280, 1248, 768, 448, 448 } ;
66 
67 /*
68  * Maps G.723_40 code words to a set of values whose long and short
69  * term averages are computed and then compared to give an indication
70  * how stationary (steady state) the signal is.
71  */
72 static short	_fitab [32] = { 0, 0, 0, 0, 0, 0x200, 0x200, 0x200,
73 			0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
74 			0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
75 			0x200, 0x200, 0x200, 0, 0, 0, 0, 0 } ;
76 
77 static short qtab_723_40 [15] = { -122, -16, 68, 139, 198, 250, 298, 339,
78 				378, 413, 445, 475, 502, 528, 553 } ;
79 
80 /*
81  * g723_40_encoder ()
82  *
83  * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
84  * the resulting 5-bit CCITT G.723 40Kbps code.
85  * Returns -1 if the input coding value is invalid.
86  */
g723_40_encoder(int sl,G72x_STATE * state_ptr)87 int	g723_40_encoder (int sl, G72x_STATE *state_ptr)
88 {
89 	short		sei, sezi, se, sez ;	/* ACCUM */
90 	short		d ;			/* SUBTA */
91 	short		y ;			/* MIX */
92 	short		sr ;			/* ADDB */
93 	short		dqsez ;			/* ADDC */
94 	short		dq, i ;
95 
96 	/* linearize input sample to 14-bit PCM */
97 	sl >>= 2 ;		/* sl of 14-bit dynamic range */
98 
99 	sezi = predictor_zero (state_ptr) ;
100 	sez = sezi >> 1 ;
101 	sei = sezi + predictor_pole (state_ptr) ;
102 	se = sei >> 1 ;			/* se = estimated signal */
103 
104 	d = sl - se ;			/* d = estimation difference */
105 
106 	/* quantize prediction difference */
107 	y = step_size (state_ptr) ;	/* adaptive quantizer step size */
108 	i = quantize (d, y, qtab_723_40, 15) ;	/* i = ADPCM code */
109 
110 	dq = reconstruct (i & 0x10, _dqlntab [i], y) ;	/* quantized diff */
111 
112 	sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq ; /* reconstructed signal */
113 
114 	dqsez = sr + sez - se ;		/* dqsez = pole prediction diff. */
115 
116 	update (5, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
117 
118 	return i ;
119 }
120 
121 /*
122  * g723_40_decoder ()
123  *
124  * Decodes a 5-bit CCITT G.723 40Kbps code and returns
125  * the resulting 16-bit linear PCM, A-law or u-law sample value.
126  * -1 is returned if the output coding is unknown.
127  */
g723_40_decoder(int i,G72x_STATE * state_ptr)128 int	g723_40_decoder	(int i, G72x_STATE *state_ptr)
129 {
130 	short		sezi, sei, sez, se ;	/* ACCUM */
131 	short		y ;			/* MIX */
132 	short		sr ;			/* ADDB */
133 	short		dq ;
134 	short		dqsez ;
135 
136 	i &= 0x1f ;			/* mask to get proper bits */
137 	sezi = predictor_zero (state_ptr) ;
138 	sez = sezi >> 1 ;
139 	sei = sezi + predictor_pole (state_ptr) ;
140 	se = sei >> 1 ;			/* se = estimated signal */
141 
142 	y = step_size (state_ptr) ;	/* adaptive quantizer step size */
143 	dq = reconstruct (i & 0x10, _dqlntab [i], y) ;	/* estimation diff. */
144 
145 	sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq) ; /* reconst. signal */
146 
147 	dqsez = sr - se + sez ;		/* pole prediction diff. */
148 
149 	update (5, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
150 
151 	return arith_shift_left (sr, 2) ;	/* sr was of 14-bit dynamic range */
152 }
153 
154