1 /*
2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
17 *
18 * Author: Ryan Lortie <desrt@desrt.ca>
19 */
20
21 /* Prologue {{{1 */
22
23 #include "config.h"
24
25 #include <glib/gvariant-serialiser.h>
26 #include "gvariant-internal.h"
27 #include <glib/gvariant-core.h>
28 #include <glib/gtestutils.h>
29 #include <glib/gstrfuncs.h>
30 #include <glib/gslice.h>
31 #include <glib/ghash.h>
32 #include <glib/gmem.h>
33
34 #include <string.h>
35
36
37 /**
38 * SECTION:gvariant
39 * @title: GVariant
40 * @short_description: strongly typed value datatype
41 * @see_also: GVariantType
42 *
43 * #GVariant is a variant datatype; it can contain one or more values
44 * along with information about the type of the values.
45 *
46 * A #GVariant may contain simple types, like an integer, or a boolean value;
47 * or complex types, like an array of two strings, or a dictionary of key
48 * value pairs. A #GVariant is also immutable: once it's been created neither
49 * its type nor its content can be modified further.
50 *
51 * GVariant is useful whenever data needs to be serialized, for example when
52 * sending method parameters in D-Bus, or when saving settings using GSettings.
53 *
54 * When creating a new #GVariant, you pass the data you want to store in it
55 * along with a string representing the type of data you wish to pass to it.
56 *
57 * For instance, if you want to create a #GVariant holding an integer value you
58 * can use:
59 *
60 * |[<!-- language="C" -->
61 * GVariant *v = g_variant_new ("u", 40);
62 * ]|
63 *
64 * The string "u" in the first argument tells #GVariant that the data passed to
65 * the constructor (40) is going to be an unsigned integer.
66 *
67 * More advanced examples of #GVariant in use can be found in documentation for
68 * [GVariant format strings][gvariant-format-strings-pointers].
69 *
70 * The range of possible values is determined by the type.
71 *
72 * The type system used by #GVariant is #GVariantType.
73 *
74 * #GVariant instances always have a type and a value (which are given
75 * at construction time). The type and value of a #GVariant instance
76 * can never change other than by the #GVariant itself being
77 * destroyed. A #GVariant cannot contain a pointer.
78 *
79 * #GVariant is reference counted using g_variant_ref() and
80 * g_variant_unref(). #GVariant also has floating reference counts --
81 * see g_variant_ref_sink().
82 *
83 * #GVariant is completely threadsafe. A #GVariant instance can be
84 * concurrently accessed in any way from any number of threads without
85 * problems.
86 *
87 * #GVariant is heavily optimised for dealing with data in serialised
88 * form. It works particularly well with data located in memory-mapped
89 * files. It can perform nearly all deserialisation operations in a
90 * small constant time, usually touching only a single memory page.
91 * Serialised #GVariant data can also be sent over the network.
92 *
93 * #GVariant is largely compatible with D-Bus. Almost all types of
94 * #GVariant instances can be sent over D-Bus. See #GVariantType for
95 * exceptions. (However, #GVariant's serialisation format is not the same
96 * as the serialisation format of a D-Bus message body: use #GDBusMessage,
97 * in the gio library, for those.)
98 *
99 * For space-efficiency, the #GVariant serialisation format does not
100 * automatically include the variant's length, type or endianness,
101 * which must either be implied from context (such as knowledge that a
102 * particular file format always contains a little-endian
103 * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
104 * or supplied out-of-band (for instance, a length, type and/or endianness
105 * indicator could be placed at the beginning of a file, network message
106 * or network stream).
107 *
108 * A #GVariant's size is limited mainly by any lower level operating
109 * system constraints, such as the number of bits in #gsize. For
110 * example, it is reasonable to have a 2GB file mapped into memory
111 * with #GMappedFile, and call g_variant_new_from_data() on it.
112 *
113 * For convenience to C programmers, #GVariant features powerful
114 * varargs-based value construction and destruction. This feature is
115 * designed to be embedded in other libraries.
116 *
117 * There is a Python-inspired text language for describing #GVariant
118 * values. #GVariant includes a printer for this language and a parser
119 * with type inferencing.
120 *
121 * ## Memory Use
122 *
123 * #GVariant tries to be quite efficient with respect to memory use.
124 * This section gives a rough idea of how much memory is used by the
125 * current implementation. The information here is subject to change
126 * in the future.
127 *
128 * The memory allocated by #GVariant can be grouped into 4 broad
129 * purposes: memory for serialised data, memory for the type
130 * information cache, buffer management memory and memory for the
131 * #GVariant structure itself.
132 *
133 * ## Serialised Data Memory
134 *
135 * This is the memory that is used for storing GVariant data in
136 * serialised form. This is what would be sent over the network or
137 * what would end up on disk, not counting any indicator of the
138 * endianness, or of the length or type of the top-level variant.
139 *
140 * The amount of memory required to store a boolean is 1 byte. 16,
141 * 32 and 64 bit integers and double precision floating point numbers
142 * use their "natural" size. Strings (including object path and
143 * signature strings) are stored with a nul terminator, and as such
144 * use the length of the string plus 1 byte.
145 *
146 * Maybe types use no space at all to represent the null value and
147 * use the same amount of space (sometimes plus one byte) as the
148 * equivalent non-maybe-typed value to represent the non-null case.
149 *
150 * Arrays use the amount of space required to store each of their
151 * members, concatenated. Additionally, if the items stored in an
152 * array are not of a fixed-size (ie: strings, other arrays, etc)
153 * then an additional framing offset is stored for each item. The
154 * size of this offset is either 1, 2 or 4 bytes depending on the
155 * overall size of the container. Additionally, extra padding bytes
156 * are added as required for alignment of child values.
157 *
158 * Tuples (including dictionary entries) use the amount of space
159 * required to store each of their members, concatenated, plus one
160 * framing offset (as per arrays) for each non-fixed-sized item in
161 * the tuple, except for the last one. Additionally, extra padding
162 * bytes are added as required for alignment of child values.
163 *
164 * Variants use the same amount of space as the item inside of the
165 * variant, plus 1 byte, plus the length of the type string for the
166 * item inside the variant.
167 *
168 * As an example, consider a dictionary mapping strings to variants.
169 * In the case that the dictionary is empty, 0 bytes are required for
170 * the serialisation.
171 *
172 * If we add an item "width" that maps to the int32 value of 500 then
173 * we will use 4 byte to store the int32 (so 6 for the variant
174 * containing it) and 6 bytes for the string. The variant must be
175 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
176 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
177 * for the dictionary entry. An additional 1 byte is added to the
178 * array as a framing offset making a total of 15 bytes.
179 *
180 * If we add another entry, "title" that maps to a nullable string
181 * that happens to have a value of null, then we use 0 bytes for the
182 * null value (and 3 bytes for the variant to contain it along with
183 * its type string) plus 6 bytes for the string. Again, we need 2
184 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
185 *
186 * We now require extra padding between the two items in the array.
187 * After the 14 bytes of the first item, that's 2 bytes required.
188 * We now require 2 framing offsets for an extra two
189 * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
190 * dictionary.
191 *
192 * ## Type Information Cache
193 *
194 * For each GVariant type that currently exists in the program a type
195 * information structure is kept in the type information cache. The
196 * type information structure is required for rapid deserialisation.
197 *
198 * Continuing with the above example, if a #GVariant exists with the
199 * type "a{sv}" then a type information struct will exist for
200 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
201 * will share the same type information. Additionally, all
202 * single-digit types are stored in read-only static memory and do
203 * not contribute to the writable memory footprint of a program using
204 * #GVariant.
205 *
206 * Aside from the type information structures stored in read-only
207 * memory, there are two forms of type information. One is used for
208 * container types where there is a single element type: arrays and
209 * maybe types. The other is used for container types where there
210 * are multiple element types: tuples and dictionary entries.
211 *
212 * Array type info structures are 6 * sizeof (void *), plus the
213 * memory required to store the type string itself. This means that
214 * on 32-bit systems, the cache entry for "a{sv}" would require 30
215 * bytes of memory (plus malloc overhead).
216 *
217 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
218 * sizeof (void *) for each item in the tuple, plus the memory
219 * required to store the type string itself. A 2-item tuple, for
220 * example, would have a type information structure that consumed
221 * writable memory in the size of 14 * sizeof (void *) (plus type
222 * string) This means that on 32-bit systems, the cache entry for
223 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
224 *
225 * This means that in total, for our "a{sv}" example, 91 bytes of
226 * type information would be allocated.
227 *
228 * The type information cache, additionally, uses a #GHashTable to
229 * store and look up the cached items and stores a pointer to this
230 * hash table in static storage. The hash table is freed when there
231 * are zero items in the type cache.
232 *
233 * Although these sizes may seem large it is important to remember
234 * that a program will probably only have a very small number of
235 * different types of values in it and that only one type information
236 * structure is required for many different values of the same type.
237 *
238 * ## Buffer Management Memory
239 *
240 * #GVariant uses an internal buffer management structure to deal
241 * with the various different possible sources of serialised data
242 * that it uses. The buffer is responsible for ensuring that the
243 * correct call is made when the data is no longer in use by
244 * #GVariant. This may involve a g_free() or a g_slice_free() or
245 * even g_mapped_file_unref().
246 *
247 * One buffer management structure is used for each chunk of
248 * serialised data. The size of the buffer management structure
249 * is 4 * (void *). On 32-bit systems, that's 16 bytes.
250 *
251 * ## GVariant structure
252 *
253 * The size of a #GVariant structure is 6 * (void *). On 32-bit
254 * systems, that's 24 bytes.
255 *
256 * #GVariant structures only exist if they are explicitly created
257 * with API calls. For example, if a #GVariant is constructed out of
258 * serialised data for the example given above (with the dictionary)
259 * then although there are 9 individual values that comprise the
260 * entire dictionary (two keys, two values, two variants containing
261 * the values, two dictionary entries, plus the dictionary itself),
262 * only 1 #GVariant instance exists -- the one referring to the
263 * dictionary.
264 *
265 * If calls are made to start accessing the other values then
266 * #GVariant instances will exist for those values only for as long
267 * as they are in use (ie: until you call g_variant_unref()). The
268 * type information is shared. The serialised data and the buffer
269 * management structure for that serialised data is shared by the
270 * child.
271 *
272 * ## Summary
273 *
274 * To put the entire example together, for our dictionary mapping
275 * strings to variants (with two entries, as given above), we are
276 * using 91 bytes of memory for type information, 29 bytes of memory
277 * for the serialised data, 16 bytes for buffer management and 24
278 * bytes for the #GVariant instance, or a total of 160 bytes, plus
279 * malloc overhead. If we were to use g_variant_get_child_value() to
280 * access the two dictionary entries, we would use an additional 48
281 * bytes. If we were to have other dictionaries of the same type, we
282 * would use more memory for the serialised data and buffer
283 * management for those dictionaries, but the type information would
284 * be shared.
285 */
286
287 /* definition of GVariant structure is in gvariant-core.c */
288
289 /* this is a g_return_val_if_fail() for making
290 * sure a (GVariant *) has the required type.
291 */
292 #define TYPE_CHECK(value, TYPE, val) \
293 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
294 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
295 "g_variant_is_of_type (" #value \
296 ", " #TYPE ")"); \
297 return val; \
298 }
299
300 /* Numeric Type Constructor/Getters {{{1 */
301 /* < private >
302 * g_variant_new_from_trusted:
303 * @type: the #GVariantType
304 * @data: the data to use
305 * @size: the size of @data
306 *
307 * Constructs a new trusted #GVariant instance from the provided data.
308 * This is used to implement g_variant_new_* for all the basic types.
309 *
310 * Note: @data must be backed by memory that is aligned appropriately for the
311 * @type being loaded. Otherwise this function will internally create a copy of
312 * the memory (since GLib 2.60) or (in older versions) fail and exit the
313 * process.
314 *
315 * Returns: a new floating #GVariant
316 */
317 static GVariant *
g_variant_new_from_trusted(const GVariantType * type,gconstpointer data,gsize size)318 g_variant_new_from_trusted (const GVariantType *type,
319 gconstpointer data,
320 gsize size)
321 {
322 GVariant *value;
323 GBytes *bytes;
324
325 bytes = g_bytes_new (data, size);
326 value = g_variant_new_from_bytes (type, bytes, TRUE);
327 g_bytes_unref (bytes);
328
329 return value;
330 }
331
332 /**
333 * g_variant_new_boolean:
334 * @value: a #gboolean value
335 *
336 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
337 *
338 * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
339 *
340 * Since: 2.24
341 **/
342 GVariant *
g_variant_new_boolean(gboolean value)343 g_variant_new_boolean (gboolean value)
344 {
345 guchar v = value;
346
347 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
348 }
349
350 /**
351 * g_variant_get_boolean:
352 * @value: a boolean #GVariant instance
353 *
354 * Returns the boolean value of @value.
355 *
356 * It is an error to call this function with a @value of any type
357 * other than %G_VARIANT_TYPE_BOOLEAN.
358 *
359 * Returns: %TRUE or %FALSE
360 *
361 * Since: 2.24
362 **/
363 gboolean
g_variant_get_boolean(GVariant * value)364 g_variant_get_boolean (GVariant *value)
365 {
366 const guchar *data;
367
368 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
369
370 data = g_variant_get_data (value);
371
372 return data != NULL ? *data != 0 : FALSE;
373 }
374
375 /* the constructors and accessors for byte, int{16,32,64}, handles and
376 * doubles all look pretty much exactly the same, so we reduce
377 * copy/pasting here.
378 */
379 #define NUMERIC_TYPE(TYPE, type, ctype) \
380 GVariant *g_variant_new_##type (ctype value) { \
381 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
382 &value, sizeof value); \
383 } \
384 ctype g_variant_get_##type (GVariant *value) { \
385 const ctype *data; \
386 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
387 data = g_variant_get_data (value); \
388 return data != NULL ? *data : 0; \
389 }
390
391
392 /**
393 * g_variant_new_byte:
394 * @value: a #guint8 value
395 *
396 * Creates a new byte #GVariant instance.
397 *
398 * Returns: (transfer none): a floating reference to a new byte #GVariant instance
399 *
400 * Since: 2.24
401 **/
402 /**
403 * g_variant_get_byte:
404 * @value: a byte #GVariant instance
405 *
406 * Returns the byte value of @value.
407 *
408 * It is an error to call this function with a @value of any type
409 * other than %G_VARIANT_TYPE_BYTE.
410 *
411 * Returns: a #guint8
412 *
413 * Since: 2.24
414 **/
NUMERIC_TYPE(BYTE,byte,guint8)415 NUMERIC_TYPE (BYTE, byte, guint8)
416
417 /**
418 * g_variant_new_int16:
419 * @value: a #gint16 value
420 *
421 * Creates a new int16 #GVariant instance.
422 *
423 * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
424 *
425 * Since: 2.24
426 **/
427 /**
428 * g_variant_get_int16:
429 * @value: an int16 #GVariant instance
430 *
431 * Returns the 16-bit signed integer value of @value.
432 *
433 * It is an error to call this function with a @value of any type
434 * other than %G_VARIANT_TYPE_INT16.
435 *
436 * Returns: a #gint16
437 *
438 * Since: 2.24
439 **/
440 NUMERIC_TYPE (INT16, int16, gint16)
441
442 /**
443 * g_variant_new_uint16:
444 * @value: a #guint16 value
445 *
446 * Creates a new uint16 #GVariant instance.
447 *
448 * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
449 *
450 * Since: 2.24
451 **/
452 /**
453 * g_variant_get_uint16:
454 * @value: a uint16 #GVariant instance
455 *
456 * Returns the 16-bit unsigned integer value of @value.
457 *
458 * It is an error to call this function with a @value of any type
459 * other than %G_VARIANT_TYPE_UINT16.
460 *
461 * Returns: a #guint16
462 *
463 * Since: 2.24
464 **/
465 NUMERIC_TYPE (UINT16, uint16, guint16)
466
467 /**
468 * g_variant_new_int32:
469 * @value: a #gint32 value
470 *
471 * Creates a new int32 #GVariant instance.
472 *
473 * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
474 *
475 * Since: 2.24
476 **/
477 /**
478 * g_variant_get_int32:
479 * @value: an int32 #GVariant instance
480 *
481 * Returns the 32-bit signed integer value of @value.
482 *
483 * It is an error to call this function with a @value of any type
484 * other than %G_VARIANT_TYPE_INT32.
485 *
486 * Returns: a #gint32
487 *
488 * Since: 2.24
489 **/
490 NUMERIC_TYPE (INT32, int32, gint32)
491
492 /**
493 * g_variant_new_uint32:
494 * @value: a #guint32 value
495 *
496 * Creates a new uint32 #GVariant instance.
497 *
498 * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
499 *
500 * Since: 2.24
501 **/
502 /**
503 * g_variant_get_uint32:
504 * @value: a uint32 #GVariant instance
505 *
506 * Returns the 32-bit unsigned integer value of @value.
507 *
508 * It is an error to call this function with a @value of any type
509 * other than %G_VARIANT_TYPE_UINT32.
510 *
511 * Returns: a #guint32
512 *
513 * Since: 2.24
514 **/
515 NUMERIC_TYPE (UINT32, uint32, guint32)
516
517 /**
518 * g_variant_new_int64:
519 * @value: a #gint64 value
520 *
521 * Creates a new int64 #GVariant instance.
522 *
523 * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
524 *
525 * Since: 2.24
526 **/
527 /**
528 * g_variant_get_int64:
529 * @value: an int64 #GVariant instance
530 *
531 * Returns the 64-bit signed integer value of @value.
532 *
533 * It is an error to call this function with a @value of any type
534 * other than %G_VARIANT_TYPE_INT64.
535 *
536 * Returns: a #gint64
537 *
538 * Since: 2.24
539 **/
540 NUMERIC_TYPE (INT64, int64, gint64)
541
542 /**
543 * g_variant_new_uint64:
544 * @value: a #guint64 value
545 *
546 * Creates a new uint64 #GVariant instance.
547 *
548 * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
549 *
550 * Since: 2.24
551 **/
552 /**
553 * g_variant_get_uint64:
554 * @value: a uint64 #GVariant instance
555 *
556 * Returns the 64-bit unsigned integer value of @value.
557 *
558 * It is an error to call this function with a @value of any type
559 * other than %G_VARIANT_TYPE_UINT64.
560 *
561 * Returns: a #guint64
562 *
563 * Since: 2.24
564 **/
565 NUMERIC_TYPE (UINT64, uint64, guint64)
566
567 /**
568 * g_variant_new_handle:
569 * @value: a #gint32 value
570 *
571 * Creates a new handle #GVariant instance.
572 *
573 * By convention, handles are indexes into an array of file descriptors
574 * that are sent alongside a D-Bus message. If you're not interacting
575 * with D-Bus, you probably don't need them.
576 *
577 * Returns: (transfer none): a floating reference to a new handle #GVariant instance
578 *
579 * Since: 2.24
580 **/
581 /**
582 * g_variant_get_handle:
583 * @value: a handle #GVariant instance
584 *
585 * Returns the 32-bit signed integer value of @value.
586 *
587 * It is an error to call this function with a @value of any type other
588 * than %G_VARIANT_TYPE_HANDLE.
589 *
590 * By convention, handles are indexes into an array of file descriptors
591 * that are sent alongside a D-Bus message. If you're not interacting
592 * with D-Bus, you probably don't need them.
593 *
594 * Returns: a #gint32
595 *
596 * Since: 2.24
597 **/
598 NUMERIC_TYPE (HANDLE, handle, gint32)
599
600 /**
601 * g_variant_new_double:
602 * @value: a #gdouble floating point value
603 *
604 * Creates a new double #GVariant instance.
605 *
606 * Returns: (transfer none): a floating reference to a new double #GVariant instance
607 *
608 * Since: 2.24
609 **/
610 /**
611 * g_variant_get_double:
612 * @value: a double #GVariant instance
613 *
614 * Returns the double precision floating point value of @value.
615 *
616 * It is an error to call this function with a @value of any type
617 * other than %G_VARIANT_TYPE_DOUBLE.
618 *
619 * Returns: a #gdouble
620 *
621 * Since: 2.24
622 **/
623 NUMERIC_TYPE (DOUBLE, double, gdouble)
624
625 /* Container type Constructor / Deconstructors {{{1 */
626 /**
627 * g_variant_new_maybe:
628 * @child_type: (nullable): the #GVariantType of the child, or %NULL
629 * @child: (nullable): the child value, or %NULL
630 *
631 * Depending on if @child is %NULL, either wraps @child inside of a
632 * maybe container or creates a Nothing instance for the given @type.
633 *
634 * At least one of @child_type and @child must be non-%NULL.
635 * If @child_type is non-%NULL then it must be a definite type.
636 * If they are both non-%NULL then @child_type must be the type
637 * of @child.
638 *
639 * If @child is a floating reference (see g_variant_ref_sink()), the new
640 * instance takes ownership of @child.
641 *
642 * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
643 *
644 * Since: 2.24
645 **/
646 GVariant *
647 g_variant_new_maybe (const GVariantType *child_type,
648 GVariant *child)
649 {
650 GVariantType *maybe_type;
651 GVariant *value;
652
653 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
654 (child_type), 0);
655 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
656 g_return_val_if_fail (child_type == NULL || child == NULL ||
657 g_variant_is_of_type (child, child_type),
658 NULL);
659
660 if (child_type == NULL)
661 child_type = g_variant_get_type (child);
662
663 maybe_type = g_variant_type_new_maybe (child_type);
664
665 if (child != NULL)
666 {
667 GVariant **children;
668 gboolean trusted;
669
670 children = g_new (GVariant *, 1);
671 children[0] = g_variant_ref_sink (child);
672 trusted = g_variant_is_trusted (children[0]);
673
674 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
675 }
676 else
677 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
678
679 g_variant_type_free (maybe_type);
680
681 return value;
682 }
683
684 /**
685 * g_variant_get_maybe:
686 * @value: a maybe-typed value
687 *
688 * Given a maybe-typed #GVariant instance, extract its value. If the
689 * value is Nothing, then this function returns %NULL.
690 *
691 * Returns: (nullable) (transfer full): the contents of @value, or %NULL
692 *
693 * Since: 2.24
694 **/
695 GVariant *
g_variant_get_maybe(GVariant * value)696 g_variant_get_maybe (GVariant *value)
697 {
698 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
699
700 if (g_variant_n_children (value))
701 return g_variant_get_child_value (value, 0);
702
703 return NULL;
704 }
705
706 /**
707 * g_variant_new_variant: (constructor)
708 * @value: a #GVariant instance
709 *
710 * Boxes @value. The result is a #GVariant instance representing a
711 * variant containing the original value.
712 *
713 * If @child is a floating reference (see g_variant_ref_sink()), the new
714 * instance takes ownership of @child.
715 *
716 * Returns: (transfer none): a floating reference to a new variant #GVariant instance
717 *
718 * Since: 2.24
719 **/
720 GVariant *
g_variant_new_variant(GVariant * value)721 g_variant_new_variant (GVariant *value)
722 {
723 g_return_val_if_fail (value != NULL, NULL);
724
725 g_variant_ref_sink (value);
726
727 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
728 g_memdup2 (&value, sizeof value),
729 1, g_variant_is_trusted (value));
730 }
731
732 /**
733 * g_variant_get_variant:
734 * @value: a variant #GVariant instance
735 *
736 * Unboxes @value. The result is the #GVariant instance that was
737 * contained in @value.
738 *
739 * Returns: (transfer full): the item contained in the variant
740 *
741 * Since: 2.24
742 **/
743 GVariant *
g_variant_get_variant(GVariant * value)744 g_variant_get_variant (GVariant *value)
745 {
746 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
747
748 return g_variant_get_child_value (value, 0);
749 }
750
751 /**
752 * g_variant_new_array:
753 * @child_type: (nullable): the element type of the new array
754 * @children: (nullable) (array length=n_children): an array of
755 * #GVariant pointers, the children
756 * @n_children: the length of @children
757 *
758 * Creates a new #GVariant array from @children.
759 *
760 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
761 * child type is determined by inspecting the first element of the
762 * @children array. If @child_type is non-%NULL then it must be a
763 * definite type.
764 *
765 * The items of the array are taken from the @children array. No entry
766 * in the @children array may be %NULL.
767 *
768 * All items in the array must have the same type, which must be the
769 * same as @child_type, if given.
770 *
771 * If the @children are floating references (see g_variant_ref_sink()), the
772 * new instance takes ownership of them as if via g_variant_ref_sink().
773 *
774 * Returns: (transfer none): a floating reference to a new #GVariant array
775 *
776 * Since: 2.24
777 **/
778 GVariant *
g_variant_new_array(const GVariantType * child_type,GVariant * const * children,gsize n_children)779 g_variant_new_array (const GVariantType *child_type,
780 GVariant * const *children,
781 gsize n_children)
782 {
783 GVariantType *array_type;
784 GVariant **my_children;
785 gboolean trusted;
786 GVariant *value;
787 gsize i;
788
789 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
790 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
791 g_return_val_if_fail (child_type == NULL ||
792 g_variant_type_is_definite (child_type), NULL);
793
794 my_children = g_new (GVariant *, n_children);
795 trusted = TRUE;
796
797 if (child_type == NULL)
798 child_type = g_variant_get_type (children[0]);
799 array_type = g_variant_type_new_array (child_type);
800
801 for (i = 0; i < n_children; i++)
802 {
803 TYPE_CHECK (children[i], child_type, NULL);
804 my_children[i] = g_variant_ref_sink (children[i]);
805 trusted &= g_variant_is_trusted (children[i]);
806 }
807
808 value = g_variant_new_from_children (array_type, my_children,
809 n_children, trusted);
810 g_variant_type_free (array_type);
811
812 return value;
813 }
814
815 /*< private >
816 * g_variant_make_tuple_type:
817 * @children: (array length=n_children): an array of GVariant *
818 * @n_children: the length of @children
819 *
820 * Return the type of a tuple containing @children as its items.
821 **/
822 static GVariantType *
g_variant_make_tuple_type(GVariant * const * children,gsize n_children)823 g_variant_make_tuple_type (GVariant * const *children,
824 gsize n_children)
825 {
826 const GVariantType **types;
827 GVariantType *type;
828 gsize i;
829
830 types = g_new (const GVariantType *, n_children);
831
832 for (i = 0; i < n_children; i++)
833 types[i] = g_variant_get_type (children[i]);
834
835 type = g_variant_type_new_tuple (types, n_children);
836 g_free (types);
837
838 return type;
839 }
840
841 /**
842 * g_variant_new_tuple:
843 * @children: (array length=n_children): the items to make the tuple out of
844 * @n_children: the length of @children
845 *
846 * Creates a new tuple #GVariant out of the items in @children. The
847 * type is determined from the types of @children. No entry in the
848 * @children array may be %NULL.
849 *
850 * If @n_children is 0 then the unit tuple is constructed.
851 *
852 * If the @children are floating references (see g_variant_ref_sink()), the
853 * new instance takes ownership of them as if via g_variant_ref_sink().
854 *
855 * Returns: (transfer none): a floating reference to a new #GVariant tuple
856 *
857 * Since: 2.24
858 **/
859 GVariant *
g_variant_new_tuple(GVariant * const * children,gsize n_children)860 g_variant_new_tuple (GVariant * const *children,
861 gsize n_children)
862 {
863 GVariantType *tuple_type;
864 GVariant **my_children;
865 gboolean trusted;
866 GVariant *value;
867 gsize i;
868
869 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
870
871 my_children = g_new (GVariant *, n_children);
872 trusted = TRUE;
873
874 for (i = 0; i < n_children; i++)
875 {
876 my_children[i] = g_variant_ref_sink (children[i]);
877 trusted &= g_variant_is_trusted (children[i]);
878 }
879
880 tuple_type = g_variant_make_tuple_type (children, n_children);
881 value = g_variant_new_from_children (tuple_type, my_children,
882 n_children, trusted);
883 g_variant_type_free (tuple_type);
884
885 return value;
886 }
887
888 /*< private >
889 * g_variant_make_dict_entry_type:
890 * @key: a #GVariant, the key
891 * @val: a #GVariant, the value
892 *
893 * Return the type of a dictionary entry containing @key and @val as its
894 * children.
895 **/
896 static GVariantType *
g_variant_make_dict_entry_type(GVariant * key,GVariant * val)897 g_variant_make_dict_entry_type (GVariant *key,
898 GVariant *val)
899 {
900 return g_variant_type_new_dict_entry (g_variant_get_type (key),
901 g_variant_get_type (val));
902 }
903
904 /**
905 * g_variant_new_dict_entry: (constructor)
906 * @key: a basic #GVariant, the key
907 * @value: a #GVariant, the value
908 *
909 * Creates a new dictionary entry #GVariant. @key and @value must be
910 * non-%NULL. @key must be a value of a basic type (ie: not a container).
911 *
912 * If the @key or @value are floating references (see g_variant_ref_sink()),
913 * the new instance takes ownership of them as if via g_variant_ref_sink().
914 *
915 * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
916 *
917 * Since: 2.24
918 **/
919 GVariant *
g_variant_new_dict_entry(GVariant * key,GVariant * value)920 g_variant_new_dict_entry (GVariant *key,
921 GVariant *value)
922 {
923 GVariantType *dict_type;
924 GVariant **children;
925 gboolean trusted;
926
927 g_return_val_if_fail (key != NULL && value != NULL, NULL);
928 g_return_val_if_fail (!g_variant_is_container (key), NULL);
929
930 children = g_new (GVariant *, 2);
931 children[0] = g_variant_ref_sink (key);
932 children[1] = g_variant_ref_sink (value);
933 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
934
935 dict_type = g_variant_make_dict_entry_type (key, value);
936 value = g_variant_new_from_children (dict_type, children, 2, trusted);
937 g_variant_type_free (dict_type);
938
939 return value;
940 }
941
942 /**
943 * g_variant_lookup: (skip)
944 * @dictionary: a dictionary #GVariant
945 * @key: the key to look up in the dictionary
946 * @format_string: a GVariant format string
947 * @...: the arguments to unpack the value into
948 *
949 * Looks up a value in a dictionary #GVariant.
950 *
951 * This function is a wrapper around g_variant_lookup_value() and
952 * g_variant_get(). In the case that %NULL would have been returned,
953 * this function returns %FALSE. Otherwise, it unpacks the returned
954 * value and returns %TRUE.
955 *
956 * @format_string determines the C types that are used for unpacking
957 * the values and also determines if the values are copied or borrowed,
958 * see the section on
959 * [GVariant format strings][gvariant-format-strings-pointers].
960 *
961 * This function is currently implemented with a linear scan. If you
962 * plan to do many lookups then #GVariantDict may be more efficient.
963 *
964 * Returns: %TRUE if a value was unpacked
965 *
966 * Since: 2.28
967 */
968 gboolean
g_variant_lookup(GVariant * dictionary,const gchar * key,const gchar * format_string,...)969 g_variant_lookup (GVariant *dictionary,
970 const gchar *key,
971 const gchar *format_string,
972 ...)
973 {
974 GVariantType *type;
975 GVariant *value;
976
977 /* flatten */
978 g_variant_get_data (dictionary);
979
980 type = g_variant_format_string_scan_type (format_string, NULL, NULL);
981 value = g_variant_lookup_value (dictionary, key, type);
982 g_variant_type_free (type);
983
984 if (value)
985 {
986 va_list ap;
987
988 va_start (ap, format_string);
989 g_variant_get_va (value, format_string, NULL, &ap);
990 g_variant_unref (value);
991 va_end (ap);
992
993 return TRUE;
994 }
995
996 else
997 return FALSE;
998 }
999
1000 /**
1001 * g_variant_lookup_value:
1002 * @dictionary: a dictionary #GVariant
1003 * @key: the key to look up in the dictionary
1004 * @expected_type: (nullable): a #GVariantType, or %NULL
1005 *
1006 * Looks up a value in a dictionary #GVariant.
1007 *
1008 * This function works with dictionaries of the type a{s*} (and equally
1009 * well with type a{o*}, but we only further discuss the string case
1010 * for sake of clarity).
1011 *
1012 * In the event that @dictionary has the type a{sv}, the @expected_type
1013 * string specifies what type of value is expected to be inside of the
1014 * variant. If the value inside the variant has a different type then
1015 * %NULL is returned. In the event that @dictionary has a value type other
1016 * than v then @expected_type must directly match the value type and it is
1017 * used to unpack the value directly or an error occurs.
1018 *
1019 * In either case, if @key is not found in @dictionary, %NULL is returned.
1020 *
1021 * If the key is found and the value has the correct type, it is
1022 * returned. If @expected_type was specified then any non-%NULL return
1023 * value will have this type.
1024 *
1025 * This function is currently implemented with a linear scan. If you
1026 * plan to do many lookups then #GVariantDict may be more efficient.
1027 *
1028 * Returns: (transfer full): the value of the dictionary key, or %NULL
1029 *
1030 * Since: 2.28
1031 */
1032 GVariant *
g_variant_lookup_value(GVariant * dictionary,const gchar * key,const GVariantType * expected_type)1033 g_variant_lookup_value (GVariant *dictionary,
1034 const gchar *key,
1035 const GVariantType *expected_type)
1036 {
1037 GVariantIter iter;
1038 GVariant *entry;
1039 GVariant *value;
1040
1041 g_return_val_if_fail (g_variant_is_of_type (dictionary,
1042 G_VARIANT_TYPE ("a{s*}")) ||
1043 g_variant_is_of_type (dictionary,
1044 G_VARIANT_TYPE ("a{o*}")),
1045 NULL);
1046
1047 g_variant_iter_init (&iter, dictionary);
1048
1049 while ((entry = g_variant_iter_next_value (&iter)))
1050 {
1051 GVariant *entry_key;
1052 gboolean matches;
1053
1054 entry_key = g_variant_get_child_value (entry, 0);
1055 matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1056 g_variant_unref (entry_key);
1057
1058 if (matches)
1059 break;
1060
1061 g_variant_unref (entry);
1062 }
1063
1064 if (entry == NULL)
1065 return NULL;
1066
1067 value = g_variant_get_child_value (entry, 1);
1068 g_variant_unref (entry);
1069
1070 if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1071 {
1072 GVariant *tmp;
1073
1074 tmp = g_variant_get_variant (value);
1075 g_variant_unref (value);
1076
1077 if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1078 {
1079 g_variant_unref (tmp);
1080 tmp = NULL;
1081 }
1082
1083 value = tmp;
1084 }
1085
1086 g_return_val_if_fail (expected_type == NULL || value == NULL ||
1087 g_variant_is_of_type (value, expected_type), NULL);
1088
1089 return value;
1090 }
1091
1092 /**
1093 * g_variant_get_fixed_array:
1094 * @value: a #GVariant array with fixed-sized elements
1095 * @n_elements: (out): a pointer to the location to store the number of items
1096 * @element_size: the size of each element
1097 *
1098 * Provides access to the serialised data for an array of fixed-sized
1099 * items.
1100 *
1101 * @value must be an array with fixed-sized elements. Numeric types are
1102 * fixed-size, as are tuples containing only other fixed-sized types.
1103 *
1104 * @element_size must be the size of a single element in the array,
1105 * as given by the section on
1106 * [serialized data memory][gvariant-serialised-data-memory].
1107 *
1108 * In particular, arrays of these fixed-sized types can be interpreted
1109 * as an array of the given C type, with @element_size set to the size
1110 * the appropriate type:
1111 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1112 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1113 * - %G_VARIANT_TYPE_BYTE: #guint8
1114 * - %G_VARIANT_TYPE_HANDLE: #guint32
1115 * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1116 *
1117 * For example, if calling this function for an array of 32-bit integers,
1118 * you might say `sizeof(gint32)`. This value isn't used except for the purpose
1119 * of a double-check that the form of the serialised data matches the caller's
1120 * expectation.
1121 *
1122 * @n_elements, which must be non-%NULL, is set equal to the number of
1123 * items in the array.
1124 *
1125 * Returns: (array length=n_elements) (transfer none): a pointer to
1126 * the fixed array
1127 *
1128 * Since: 2.24
1129 **/
1130 gconstpointer
g_variant_get_fixed_array(GVariant * value,gsize * n_elements,gsize element_size)1131 g_variant_get_fixed_array (GVariant *value,
1132 gsize *n_elements,
1133 gsize element_size)
1134 {
1135 GVariantTypeInfo *array_info;
1136 gsize array_element_size;
1137 gconstpointer data;
1138 gsize size;
1139
1140 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1141
1142 g_return_val_if_fail (n_elements != NULL, NULL);
1143 g_return_val_if_fail (element_size > 0, NULL);
1144
1145 array_info = g_variant_get_type_info (value);
1146 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1147
1148 g_return_val_if_fail (array_element_size, NULL);
1149
1150 if G_UNLIKELY (array_element_size != element_size)
1151 {
1152 if (array_element_size)
1153 g_critical ("g_variant_get_fixed_array: assertion "
1154 "'g_variant_array_has_fixed_size (value, element_size)' "
1155 "failed: array size %"G_GSIZE_FORMAT" does not match "
1156 "given element_size %"G_GSIZE_FORMAT".",
1157 array_element_size, element_size);
1158 else
1159 g_critical ("g_variant_get_fixed_array: assertion "
1160 "'g_variant_array_has_fixed_size (value, element_size)' "
1161 "failed: array does not have fixed size.");
1162 }
1163
1164 data = g_variant_get_data (value);
1165 size = g_variant_get_size (value);
1166
1167 if (size % element_size)
1168 *n_elements = 0;
1169 else
1170 *n_elements = size / element_size;
1171
1172 if (*n_elements)
1173 return data;
1174
1175 return NULL;
1176 }
1177
1178 /**
1179 * g_variant_new_fixed_array:
1180 * @element_type: the #GVariantType of each element
1181 * @elements: a pointer to the fixed array of contiguous elements
1182 * @n_elements: the number of elements
1183 * @element_size: the size of each element
1184 *
1185 * Constructs a new array #GVariant instance, where the elements are
1186 * of @element_type type.
1187 *
1188 * @elements must be an array with fixed-sized elements. Numeric types are
1189 * fixed-size as are tuples containing only other fixed-sized types.
1190 *
1191 * @element_size must be the size of a single element in the array.
1192 * For example, if calling this function for an array of 32-bit integers,
1193 * you might say sizeof(gint32). This value isn't used except for the purpose
1194 * of a double-check that the form of the serialised data matches the caller's
1195 * expectation.
1196 *
1197 * @n_elements must be the length of the @elements array.
1198 *
1199 * Returns: (transfer none): a floating reference to a new array #GVariant instance
1200 *
1201 * Since: 2.32
1202 **/
1203 GVariant *
g_variant_new_fixed_array(const GVariantType * element_type,gconstpointer elements,gsize n_elements,gsize element_size)1204 g_variant_new_fixed_array (const GVariantType *element_type,
1205 gconstpointer elements,
1206 gsize n_elements,
1207 gsize element_size)
1208 {
1209 GVariantType *array_type;
1210 gsize array_element_size;
1211 GVariantTypeInfo *array_info;
1212 GVariant *value;
1213 gpointer data;
1214
1215 g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
1216 g_return_val_if_fail (element_size > 0, NULL);
1217
1218 array_type = g_variant_type_new_array (element_type);
1219 array_info = g_variant_type_info_get (array_type);
1220 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1221 if G_UNLIKELY (array_element_size != element_size)
1222 {
1223 if (array_element_size)
1224 g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
1225 " does not match given element_size %" G_GSIZE_FORMAT ".",
1226 array_element_size, element_size);
1227 else
1228 g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
1229 return NULL;
1230 }
1231
1232 data = g_memdup2 (elements, n_elements * element_size);
1233 value = g_variant_new_from_data (array_type, data,
1234 n_elements * element_size,
1235 FALSE, g_free, data);
1236
1237 g_variant_type_free (array_type);
1238 g_variant_type_info_unref (array_info);
1239
1240 return value;
1241 }
1242
1243 /* String type constructor/getters/validation {{{1 */
1244 /**
1245 * g_variant_new_string:
1246 * @string: a normal UTF-8 nul-terminated string
1247 *
1248 * Creates a string #GVariant with the contents of @string.
1249 *
1250 * @string must be valid UTF-8, and must not be %NULL. To encode
1251 * potentially-%NULL strings, use g_variant_new() with `ms` as the
1252 * [format string][gvariant-format-strings-maybe-types].
1253 *
1254 * Returns: (transfer none): a floating reference to a new string #GVariant instance
1255 *
1256 * Since: 2.24
1257 **/
1258 GVariant *
g_variant_new_string(const gchar * string)1259 g_variant_new_string (const gchar *string)
1260 {
1261 g_return_val_if_fail (string != NULL, NULL);
1262 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1263
1264 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1265 string, strlen (string) + 1);
1266 }
1267
1268 /**
1269 * g_variant_new_take_string: (skip)
1270 * @string: a normal UTF-8 nul-terminated string
1271 *
1272 * Creates a string #GVariant with the contents of @string.
1273 *
1274 * @string must be valid UTF-8, and must not be %NULL. To encode
1275 * potentially-%NULL strings, use this with g_variant_new_maybe().
1276 *
1277 * This function consumes @string. g_free() will be called on @string
1278 * when it is no longer required.
1279 *
1280 * You must not modify or access @string in any other way after passing
1281 * it to this function. It is even possible that @string is immediately
1282 * freed.
1283 *
1284 * Returns: (transfer none): a floating reference to a new string
1285 * #GVariant instance
1286 *
1287 * Since: 2.38
1288 **/
1289 GVariant *
g_variant_new_take_string(gchar * string)1290 g_variant_new_take_string (gchar *string)
1291 {
1292 GVariant *value;
1293 GBytes *bytes;
1294
1295 g_return_val_if_fail (string != NULL, NULL);
1296 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1297
1298 bytes = g_bytes_new_take (string, strlen (string) + 1);
1299 value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1300 g_bytes_unref (bytes);
1301
1302 return value;
1303 }
1304
1305 /**
1306 * g_variant_new_printf: (skip)
1307 * @format_string: a printf-style format string
1308 * @...: arguments for @format_string
1309 *
1310 * Creates a string-type GVariant using printf formatting.
1311 *
1312 * This is similar to calling g_strdup_printf() and then
1313 * g_variant_new_string() but it saves a temporary variable and an
1314 * unnecessary copy.
1315 *
1316 * Returns: (transfer none): a floating reference to a new string
1317 * #GVariant instance
1318 *
1319 * Since: 2.38
1320 **/
1321 GVariant *
g_variant_new_printf(const gchar * format_string,...)1322 g_variant_new_printf (const gchar *format_string,
1323 ...)
1324 {
1325 GVariant *value;
1326 GBytes *bytes;
1327 gchar *string;
1328 va_list ap;
1329
1330 g_return_val_if_fail (format_string != NULL, NULL);
1331
1332 va_start (ap, format_string);
1333 string = g_strdup_vprintf (format_string, ap);
1334 va_end (ap);
1335
1336 bytes = g_bytes_new_take (string, strlen (string) + 1);
1337 value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1338 g_bytes_unref (bytes);
1339
1340 return value;
1341 }
1342
1343 /**
1344 * g_variant_new_object_path:
1345 * @object_path: a normal C nul-terminated string
1346 *
1347 * Creates a D-Bus object path #GVariant with the contents of @string.
1348 * @string must be a valid D-Bus object path. Use
1349 * g_variant_is_object_path() if you're not sure.
1350 *
1351 * Returns: (transfer none): a floating reference to a new object path #GVariant instance
1352 *
1353 * Since: 2.24
1354 **/
1355 GVariant *
g_variant_new_object_path(const gchar * object_path)1356 g_variant_new_object_path (const gchar *object_path)
1357 {
1358 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1359
1360 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1361 object_path, strlen (object_path) + 1);
1362 }
1363
1364 /**
1365 * g_variant_is_object_path:
1366 * @string: a normal C nul-terminated string
1367 *
1368 * Determines if a given string is a valid D-Bus object path. You
1369 * should ensure that a string is a valid D-Bus object path before
1370 * passing it to g_variant_new_object_path().
1371 *
1372 * A valid object path starts with `/` followed by zero or more
1373 * sequences of characters separated by `/` characters. Each sequence
1374 * must contain only the characters `[A-Z][a-z][0-9]_`. No sequence
1375 * (including the one following the final `/` character) may be empty.
1376 *
1377 * Returns: %TRUE if @string is a D-Bus object path
1378 *
1379 * Since: 2.24
1380 **/
1381 gboolean
g_variant_is_object_path(const gchar * string)1382 g_variant_is_object_path (const gchar *string)
1383 {
1384 g_return_val_if_fail (string != NULL, FALSE);
1385
1386 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1387 }
1388
1389 /**
1390 * g_variant_new_signature:
1391 * @signature: a normal C nul-terminated string
1392 *
1393 * Creates a D-Bus type signature #GVariant with the contents of
1394 * @string. @string must be a valid D-Bus type signature. Use
1395 * g_variant_is_signature() if you're not sure.
1396 *
1397 * Returns: (transfer none): a floating reference to a new signature #GVariant instance
1398 *
1399 * Since: 2.24
1400 **/
1401 GVariant *
g_variant_new_signature(const gchar * signature)1402 g_variant_new_signature (const gchar *signature)
1403 {
1404 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1405
1406 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1407 signature, strlen (signature) + 1);
1408 }
1409
1410 /**
1411 * g_variant_is_signature:
1412 * @string: a normal C nul-terminated string
1413 *
1414 * Determines if a given string is a valid D-Bus type signature. You
1415 * should ensure that a string is a valid D-Bus type signature before
1416 * passing it to g_variant_new_signature().
1417 *
1418 * D-Bus type signatures consist of zero or more definite #GVariantType
1419 * strings in sequence.
1420 *
1421 * Returns: %TRUE if @string is a D-Bus type signature
1422 *
1423 * Since: 2.24
1424 **/
1425 gboolean
g_variant_is_signature(const gchar * string)1426 g_variant_is_signature (const gchar *string)
1427 {
1428 g_return_val_if_fail (string != NULL, FALSE);
1429
1430 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1431 }
1432
1433 /**
1434 * g_variant_get_string:
1435 * @value: a string #GVariant instance
1436 * @length: (optional) (default 0) (out): a pointer to a #gsize,
1437 * to store the length
1438 *
1439 * Returns the string value of a #GVariant instance with a string
1440 * type. This includes the types %G_VARIANT_TYPE_STRING,
1441 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1442 *
1443 * The string will always be UTF-8 encoded, will never be %NULL, and will never
1444 * contain nul bytes.
1445 *
1446 * If @length is non-%NULL then the length of the string (in bytes) is
1447 * returned there. For trusted values, this information is already
1448 * known. Untrusted values will be validated and, if valid, a strlen() will be
1449 * performed. If invalid, a default value will be returned — for
1450 * %G_VARIANT_TYPE_OBJECT_PATH, this is `"/"`, and for other types it is the
1451 * empty string.
1452 *
1453 * It is an error to call this function with a @value of any type
1454 * other than those three.
1455 *
1456 * The return value remains valid as long as @value exists.
1457 *
1458 * Returns: (transfer none): the constant string, UTF-8 encoded
1459 *
1460 * Since: 2.24
1461 **/
1462 const gchar *
g_variant_get_string(GVariant * value,gsize * length)1463 g_variant_get_string (GVariant *value,
1464 gsize *length)
1465 {
1466 gconstpointer data;
1467 gsize size;
1468
1469 g_return_val_if_fail (value != NULL, NULL);
1470 g_return_val_if_fail (
1471 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1472 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1473 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1474
1475 data = g_variant_get_data (value);
1476 size = g_variant_get_size (value);
1477
1478 if (!g_variant_is_trusted (value))
1479 {
1480 switch (g_variant_classify (value))
1481 {
1482 case G_VARIANT_CLASS_STRING:
1483 if (g_variant_serialiser_is_string (data, size))
1484 break;
1485
1486 data = "";
1487 size = 1;
1488 break;
1489
1490 case G_VARIANT_CLASS_OBJECT_PATH:
1491 if (g_variant_serialiser_is_object_path (data, size))
1492 break;
1493
1494 data = "/";
1495 size = 2;
1496 break;
1497
1498 case G_VARIANT_CLASS_SIGNATURE:
1499 if (g_variant_serialiser_is_signature (data, size))
1500 break;
1501
1502 data = "";
1503 size = 1;
1504 break;
1505
1506 default:
1507 g_assert_not_reached ();
1508 }
1509 }
1510
1511 if (length)
1512 *length = size - 1;
1513
1514 return data;
1515 }
1516
1517 /**
1518 * g_variant_dup_string:
1519 * @value: a string #GVariant instance
1520 * @length: (out): a pointer to a #gsize, to store the length
1521 *
1522 * Similar to g_variant_get_string() except that instead of returning
1523 * a constant string, the string is duplicated.
1524 *
1525 * The string will always be UTF-8 encoded.
1526 *
1527 * The return value must be freed using g_free().
1528 *
1529 * Returns: (transfer full): a newly allocated string, UTF-8 encoded
1530 *
1531 * Since: 2.24
1532 **/
1533 gchar *
g_variant_dup_string(GVariant * value,gsize * length)1534 g_variant_dup_string (GVariant *value,
1535 gsize *length)
1536 {
1537 return g_strdup (g_variant_get_string (value, length));
1538 }
1539
1540 /**
1541 * g_variant_new_strv:
1542 * @strv: (array length=length) (element-type utf8): an array of strings
1543 * @length: the length of @strv, or -1
1544 *
1545 * Constructs an array of strings #GVariant from the given array of
1546 * strings.
1547 *
1548 * If @length is -1 then @strv is %NULL-terminated.
1549 *
1550 * Returns: (transfer none): a new floating #GVariant instance
1551 *
1552 * Since: 2.24
1553 **/
1554 GVariant *
g_variant_new_strv(const gchar * const * strv,gssize length)1555 g_variant_new_strv (const gchar * const *strv,
1556 gssize length)
1557 {
1558 GVariant **strings;
1559 gsize i, length_unsigned;
1560
1561 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1562
1563 if (length < 0)
1564 length = g_strv_length ((gchar **) strv);
1565 length_unsigned = length;
1566
1567 strings = g_new (GVariant *, length_unsigned);
1568 for (i = 0; i < length_unsigned; i++)
1569 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1570
1571 return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1572 strings, length_unsigned, TRUE);
1573 }
1574
1575 /**
1576 * g_variant_get_strv:
1577 * @value: an array of strings #GVariant
1578 * @length: (out) (optional): the length of the result, or %NULL
1579 *
1580 * Gets the contents of an array of strings #GVariant. This call
1581 * makes a shallow copy; the return result should be released with
1582 * g_free(), but the individual strings must not be modified.
1583 *
1584 * If @length is non-%NULL then the number of elements in the result
1585 * is stored there. In any case, the resulting array will be
1586 * %NULL-terminated.
1587 *
1588 * For an empty array, @length will be set to 0 and a pointer to a
1589 * %NULL pointer will be returned.
1590 *
1591 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1592 *
1593 * Since: 2.24
1594 **/
1595 const gchar **
g_variant_get_strv(GVariant * value,gsize * length)1596 g_variant_get_strv (GVariant *value,
1597 gsize *length)
1598 {
1599 const gchar **strv;
1600 gsize n;
1601 gsize i;
1602
1603 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1604
1605 g_variant_get_data (value);
1606 n = g_variant_n_children (value);
1607 strv = g_new (const gchar *, n + 1);
1608
1609 for (i = 0; i < n; i++)
1610 {
1611 GVariant *string;
1612
1613 string = g_variant_get_child_value (value, i);
1614 strv[i] = g_variant_get_string (string, NULL);
1615 g_variant_unref (string);
1616 }
1617 strv[i] = NULL;
1618
1619 if (length)
1620 *length = n;
1621
1622 return strv;
1623 }
1624
1625 /**
1626 * g_variant_dup_strv:
1627 * @value: an array of strings #GVariant
1628 * @length: (out) (optional): the length of the result, or %NULL
1629 *
1630 * Gets the contents of an array of strings #GVariant. This call
1631 * makes a deep copy; the return result should be released with
1632 * g_strfreev().
1633 *
1634 * If @length is non-%NULL then the number of elements in the result
1635 * is stored there. In any case, the resulting array will be
1636 * %NULL-terminated.
1637 *
1638 * For an empty array, @length will be set to 0 and a pointer to a
1639 * %NULL pointer will be returned.
1640 *
1641 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1642 *
1643 * Since: 2.24
1644 **/
1645 gchar **
g_variant_dup_strv(GVariant * value,gsize * length)1646 g_variant_dup_strv (GVariant *value,
1647 gsize *length)
1648 {
1649 gchar **strv;
1650 gsize n;
1651 gsize i;
1652
1653 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1654
1655 n = g_variant_n_children (value);
1656 strv = g_new (gchar *, n + 1);
1657
1658 for (i = 0; i < n; i++)
1659 {
1660 GVariant *string;
1661
1662 string = g_variant_get_child_value (value, i);
1663 strv[i] = g_variant_dup_string (string, NULL);
1664 g_variant_unref (string);
1665 }
1666 strv[i] = NULL;
1667
1668 if (length)
1669 *length = n;
1670
1671 return strv;
1672 }
1673
1674 /**
1675 * g_variant_new_objv:
1676 * @strv: (array length=length) (element-type utf8): an array of strings
1677 * @length: the length of @strv, or -1
1678 *
1679 * Constructs an array of object paths #GVariant from the given array of
1680 * strings.
1681 *
1682 * Each string must be a valid #GVariant object path; see
1683 * g_variant_is_object_path().
1684 *
1685 * If @length is -1 then @strv is %NULL-terminated.
1686 *
1687 * Returns: (transfer none): a new floating #GVariant instance
1688 *
1689 * Since: 2.30
1690 **/
1691 GVariant *
g_variant_new_objv(const gchar * const * strv,gssize length)1692 g_variant_new_objv (const gchar * const *strv,
1693 gssize length)
1694 {
1695 GVariant **strings;
1696 gsize i, length_unsigned;
1697
1698 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1699
1700 if (length < 0)
1701 length = g_strv_length ((gchar **) strv);
1702 length_unsigned = length;
1703
1704 strings = g_new (GVariant *, length_unsigned);
1705 for (i = 0; i < length_unsigned; i++)
1706 strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1707
1708 return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1709 strings, length_unsigned, TRUE);
1710 }
1711
1712 /**
1713 * g_variant_get_objv:
1714 * @value: an array of object paths #GVariant
1715 * @length: (out) (optional): the length of the result, or %NULL
1716 *
1717 * Gets the contents of an array of object paths #GVariant. This call
1718 * makes a shallow copy; the return result should be released with
1719 * g_free(), but the individual strings must not be modified.
1720 *
1721 * If @length is non-%NULL then the number of elements in the result
1722 * is stored there. In any case, the resulting array will be
1723 * %NULL-terminated.
1724 *
1725 * For an empty array, @length will be set to 0 and a pointer to a
1726 * %NULL pointer will be returned.
1727 *
1728 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1729 *
1730 * Since: 2.30
1731 **/
1732 const gchar **
g_variant_get_objv(GVariant * value,gsize * length)1733 g_variant_get_objv (GVariant *value,
1734 gsize *length)
1735 {
1736 const gchar **strv;
1737 gsize n;
1738 gsize i;
1739
1740 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1741
1742 g_variant_get_data (value);
1743 n = g_variant_n_children (value);
1744 strv = g_new (const gchar *, n + 1);
1745
1746 for (i = 0; i < n; i++)
1747 {
1748 GVariant *string;
1749
1750 string = g_variant_get_child_value (value, i);
1751 strv[i] = g_variant_get_string (string, NULL);
1752 g_variant_unref (string);
1753 }
1754 strv[i] = NULL;
1755
1756 if (length)
1757 *length = n;
1758
1759 return strv;
1760 }
1761
1762 /**
1763 * g_variant_dup_objv:
1764 * @value: an array of object paths #GVariant
1765 * @length: (out) (optional): the length of the result, or %NULL
1766 *
1767 * Gets the contents of an array of object paths #GVariant. This call
1768 * makes a deep copy; the return result should be released with
1769 * g_strfreev().
1770 *
1771 * If @length is non-%NULL then the number of elements in the result
1772 * is stored there. In any case, the resulting array will be
1773 * %NULL-terminated.
1774 *
1775 * For an empty array, @length will be set to 0 and a pointer to a
1776 * %NULL pointer will be returned.
1777 *
1778 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1779 *
1780 * Since: 2.30
1781 **/
1782 gchar **
g_variant_dup_objv(GVariant * value,gsize * length)1783 g_variant_dup_objv (GVariant *value,
1784 gsize *length)
1785 {
1786 gchar **strv;
1787 gsize n;
1788 gsize i;
1789
1790 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1791
1792 n = g_variant_n_children (value);
1793 strv = g_new (gchar *, n + 1);
1794
1795 for (i = 0; i < n; i++)
1796 {
1797 GVariant *string;
1798
1799 string = g_variant_get_child_value (value, i);
1800 strv[i] = g_variant_dup_string (string, NULL);
1801 g_variant_unref (string);
1802 }
1803 strv[i] = NULL;
1804
1805 if (length)
1806 *length = n;
1807
1808 return strv;
1809 }
1810
1811
1812 /**
1813 * g_variant_new_bytestring:
1814 * @string: (array zero-terminated=1) (element-type guint8): a normal
1815 * nul-terminated string in no particular encoding
1816 *
1817 * Creates an array-of-bytes #GVariant with the contents of @string.
1818 * This function is just like g_variant_new_string() except that the
1819 * string need not be valid UTF-8.
1820 *
1821 * The nul terminator character at the end of the string is stored in
1822 * the array.
1823 *
1824 * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1825 *
1826 * Since: 2.26
1827 **/
1828 GVariant *
g_variant_new_bytestring(const gchar * string)1829 g_variant_new_bytestring (const gchar *string)
1830 {
1831 g_return_val_if_fail (string != NULL, NULL);
1832
1833 return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1834 string, strlen (string) + 1);
1835 }
1836
1837 /**
1838 * g_variant_get_bytestring:
1839 * @value: an array-of-bytes #GVariant instance
1840 *
1841 * Returns the string value of a #GVariant instance with an
1842 * array-of-bytes type. The string has no particular encoding.
1843 *
1844 * If the array does not end with a nul terminator character, the empty
1845 * string is returned. For this reason, you can always trust that a
1846 * non-%NULL nul-terminated string will be returned by this function.
1847 *
1848 * If the array contains a nul terminator character somewhere other than
1849 * the last byte then the returned string is the string, up to the first
1850 * such nul character.
1851 *
1852 * g_variant_get_fixed_array() should be used instead if the array contains
1853 * arbitrary data that could not be nul-terminated or could contain nul bytes.
1854 *
1855 * It is an error to call this function with a @value that is not an
1856 * array of bytes.
1857 *
1858 * The return value remains valid as long as @value exists.
1859 *
1860 * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
1861 * the constant string
1862 *
1863 * Since: 2.26
1864 **/
1865 const gchar *
g_variant_get_bytestring(GVariant * value)1866 g_variant_get_bytestring (GVariant *value)
1867 {
1868 const gchar *string;
1869 gsize size;
1870
1871 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1872
1873 /* Won't be NULL since this is an array type */
1874 string = g_variant_get_data (value);
1875 size = g_variant_get_size (value);
1876
1877 if (size && string[size - 1] == '\0')
1878 return string;
1879 else
1880 return "";
1881 }
1882
1883 /**
1884 * g_variant_dup_bytestring:
1885 * @value: an array-of-bytes #GVariant instance
1886 * @length: (out) (optional) (default NULL): a pointer to a #gsize, to store
1887 * the length (not including the nul terminator)
1888 *
1889 * Similar to g_variant_get_bytestring() except that instead of
1890 * returning a constant string, the string is duplicated.
1891 *
1892 * The return value must be freed using g_free().
1893 *
1894 * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
1895 * a newly allocated string
1896 *
1897 * Since: 2.26
1898 **/
1899 gchar *
g_variant_dup_bytestring(GVariant * value,gsize * length)1900 g_variant_dup_bytestring (GVariant *value,
1901 gsize *length)
1902 {
1903 const gchar *original = g_variant_get_bytestring (value);
1904 gsize size;
1905
1906 /* don't crash in case get_bytestring() had an assert failure */
1907 if (original == NULL)
1908 return NULL;
1909
1910 size = strlen (original);
1911
1912 if (length)
1913 *length = size;
1914
1915 return g_memdup2 (original, size + 1);
1916 }
1917
1918 /**
1919 * g_variant_new_bytestring_array:
1920 * @strv: (array length=length): an array of strings
1921 * @length: the length of @strv, or -1
1922 *
1923 * Constructs an array of bytestring #GVariant from the given array of
1924 * strings.
1925 *
1926 * If @length is -1 then @strv is %NULL-terminated.
1927 *
1928 * Returns: (transfer none): a new floating #GVariant instance
1929 *
1930 * Since: 2.26
1931 **/
1932 GVariant *
g_variant_new_bytestring_array(const gchar * const * strv,gssize length)1933 g_variant_new_bytestring_array (const gchar * const *strv,
1934 gssize length)
1935 {
1936 GVariant **strings;
1937 gsize i, length_unsigned;
1938
1939 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1940
1941 if (length < 0)
1942 length = g_strv_length ((gchar **) strv);
1943 length_unsigned = length;
1944
1945 strings = g_new (GVariant *, length_unsigned);
1946 for (i = 0; i < length_unsigned; i++)
1947 strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1948
1949 return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1950 strings, length_unsigned, TRUE);
1951 }
1952
1953 /**
1954 * g_variant_get_bytestring_array:
1955 * @value: an array of array of bytes #GVariant ('aay')
1956 * @length: (out) (optional): the length of the result, or %NULL
1957 *
1958 * Gets the contents of an array of array of bytes #GVariant. This call
1959 * makes a shallow copy; the return result should be released with
1960 * g_free(), but the individual strings must not be modified.
1961 *
1962 * If @length is non-%NULL then the number of elements in the result is
1963 * stored there. In any case, the resulting array will be
1964 * %NULL-terminated.
1965 *
1966 * For an empty array, @length will be set to 0 and a pointer to a
1967 * %NULL pointer will be returned.
1968 *
1969 * Returns: (array length=length) (transfer container): an array of constant strings
1970 *
1971 * Since: 2.26
1972 **/
1973 const gchar **
g_variant_get_bytestring_array(GVariant * value,gsize * length)1974 g_variant_get_bytestring_array (GVariant *value,
1975 gsize *length)
1976 {
1977 const gchar **strv;
1978 gsize n;
1979 gsize i;
1980
1981 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1982
1983 g_variant_get_data (value);
1984 n = g_variant_n_children (value);
1985 strv = g_new (const gchar *, n + 1);
1986
1987 for (i = 0; i < n; i++)
1988 {
1989 GVariant *string;
1990
1991 string = g_variant_get_child_value (value, i);
1992 strv[i] = g_variant_get_bytestring (string);
1993 g_variant_unref (string);
1994 }
1995 strv[i] = NULL;
1996
1997 if (length)
1998 *length = n;
1999
2000 return strv;
2001 }
2002
2003 /**
2004 * g_variant_dup_bytestring_array:
2005 * @value: an array of array of bytes #GVariant ('aay')
2006 * @length: (out) (optional): the length of the result, or %NULL
2007 *
2008 * Gets the contents of an array of array of bytes #GVariant. This call
2009 * makes a deep copy; the return result should be released with
2010 * g_strfreev().
2011 *
2012 * If @length is non-%NULL then the number of elements in the result is
2013 * stored there. In any case, the resulting array will be
2014 * %NULL-terminated.
2015 *
2016 * For an empty array, @length will be set to 0 and a pointer to a
2017 * %NULL pointer will be returned.
2018 *
2019 * Returns: (array length=length) (transfer full): an array of strings
2020 *
2021 * Since: 2.26
2022 **/
2023 gchar **
g_variant_dup_bytestring_array(GVariant * value,gsize * length)2024 g_variant_dup_bytestring_array (GVariant *value,
2025 gsize *length)
2026 {
2027 gchar **strv;
2028 gsize n;
2029 gsize i;
2030
2031 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
2032
2033 g_variant_get_data (value);
2034 n = g_variant_n_children (value);
2035 strv = g_new (gchar *, n + 1);
2036
2037 for (i = 0; i < n; i++)
2038 {
2039 GVariant *string;
2040
2041 string = g_variant_get_child_value (value, i);
2042 strv[i] = g_variant_dup_bytestring (string, NULL);
2043 g_variant_unref (string);
2044 }
2045 strv[i] = NULL;
2046
2047 if (length)
2048 *length = n;
2049
2050 return strv;
2051 }
2052
2053 /* Type checking and querying {{{1 */
2054 /**
2055 * g_variant_get_type:
2056 * @value: a #GVariant
2057 *
2058 * Determines the type of @value.
2059 *
2060 * The return value is valid for the lifetime of @value and must not
2061 * be freed.
2062 *
2063 * Returns: a #GVariantType
2064 *
2065 * Since: 2.24
2066 **/
2067 const GVariantType *
g_variant_get_type(GVariant * value)2068 g_variant_get_type (GVariant *value)
2069 {
2070 GVariantTypeInfo *type_info;
2071
2072 g_return_val_if_fail (value != NULL, NULL);
2073
2074 type_info = g_variant_get_type_info (value);
2075
2076 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
2077 }
2078
2079 /**
2080 * g_variant_get_type_string:
2081 * @value: a #GVariant
2082 *
2083 * Returns the type string of @value. Unlike the result of calling
2084 * g_variant_type_peek_string(), this string is nul-terminated. This
2085 * string belongs to #GVariant and must not be freed.
2086 *
2087 * Returns: the type string for the type of @value
2088 *
2089 * Since: 2.24
2090 **/
2091 const gchar *
g_variant_get_type_string(GVariant * value)2092 g_variant_get_type_string (GVariant *value)
2093 {
2094 GVariantTypeInfo *type_info;
2095
2096 g_return_val_if_fail (value != NULL, NULL);
2097
2098 type_info = g_variant_get_type_info (value);
2099
2100 return g_variant_type_info_get_type_string (type_info);
2101 }
2102
2103 /**
2104 * g_variant_is_of_type:
2105 * @value: a #GVariant instance
2106 * @type: a #GVariantType
2107 *
2108 * Checks if a value has a type matching the provided type.
2109 *
2110 * Returns: %TRUE if the type of @value matches @type
2111 *
2112 * Since: 2.24
2113 **/
2114 gboolean
g_variant_is_of_type(GVariant * value,const GVariantType * type)2115 g_variant_is_of_type (GVariant *value,
2116 const GVariantType *type)
2117 {
2118 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
2119 }
2120
2121 /**
2122 * g_variant_is_container:
2123 * @value: a #GVariant instance
2124 *
2125 * Checks if @value is a container.
2126 *
2127 * Returns: %TRUE if @value is a container
2128 *
2129 * Since: 2.24
2130 */
2131 gboolean
g_variant_is_container(GVariant * value)2132 g_variant_is_container (GVariant *value)
2133 {
2134 return g_variant_type_is_container (g_variant_get_type (value));
2135 }
2136
2137
2138 /**
2139 * g_variant_classify:
2140 * @value: a #GVariant
2141 *
2142 * Classifies @value according to its top-level type.
2143 *
2144 * Returns: the #GVariantClass of @value
2145 *
2146 * Since: 2.24
2147 **/
2148 /**
2149 * GVariantClass:
2150 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
2151 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
2152 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
2153 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
2154 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
2155 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
2156 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
2157 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
2158 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
2159 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
2160 * point value.
2161 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
2162 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
2163 * string.
2164 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
2165 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
2166 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
2167 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
2168 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
2169 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
2170 *
2171 * The range of possible top-level types of #GVariant instances.
2172 *
2173 * Since: 2.24
2174 **/
2175 GVariantClass
g_variant_classify(GVariant * value)2176 g_variant_classify (GVariant *value)
2177 {
2178 g_return_val_if_fail (value != NULL, 0);
2179
2180 return *g_variant_get_type_string (value);
2181 }
2182
2183 /* Pretty printer {{{1 */
2184 /* This function is not introspectable because if @string is NULL,
2185 @returns is (transfer full), otherwise it is (transfer none), which
2186 is not supported by GObjectIntrospection */
2187 /**
2188 * g_variant_print_string: (skip)
2189 * @value: a #GVariant
2190 * @string: (nullable) (default NULL): a #GString, or %NULL
2191 * @type_annotate: %TRUE if type information should be included in
2192 * the output
2193 *
2194 * Behaves as g_variant_print(), but operates on a #GString.
2195 *
2196 * If @string is non-%NULL then it is appended to and returned. Else,
2197 * a new empty #GString is allocated and it is returned.
2198 *
2199 * Returns: a #GString containing the string
2200 *
2201 * Since: 2.24
2202 **/
2203 GString *
g_variant_print_string(GVariant * value,GString * string,gboolean type_annotate)2204 g_variant_print_string (GVariant *value,
2205 GString *string,
2206 gboolean type_annotate)
2207 {
2208 if G_UNLIKELY (string == NULL)
2209 string = g_string_new (NULL);
2210
2211 switch (g_variant_classify (value))
2212 {
2213 case G_VARIANT_CLASS_MAYBE:
2214 if (type_annotate)
2215 g_string_append_printf (string, "@%s ",
2216 g_variant_get_type_string (value));
2217
2218 if (g_variant_n_children (value))
2219 {
2220 gchar *printed_child;
2221 GVariant *element;
2222
2223 /* Nested maybes:
2224 *
2225 * Consider the case of the type "mmi". In this case we could
2226 * write "just just 4", but "4" alone is totally unambiguous,
2227 * so we try to drop "just" where possible.
2228 *
2229 * We have to be careful not to always drop "just", though,
2230 * since "nothing" needs to be distinguishable from "just
2231 * nothing". The case where we need to ensure we keep the
2232 * "just" is actually exactly the case where we have a nested
2233 * Nothing.
2234 *
2235 * Instead of searching for that nested Nothing, we just print
2236 * the contained value into a separate string and see if we
2237 * end up with "nothing" at the end of it. If so, we need to
2238 * add "just" at our level.
2239 */
2240 element = g_variant_get_child_value (value, 0);
2241 printed_child = g_variant_print (element, FALSE);
2242 g_variant_unref (element);
2243
2244 if (g_str_has_suffix (printed_child, "nothing"))
2245 g_string_append (string, "just ");
2246 g_string_append (string, printed_child);
2247 g_free (printed_child);
2248 }
2249 else
2250 g_string_append (string, "nothing");
2251
2252 break;
2253
2254 case G_VARIANT_CLASS_ARRAY:
2255 /* it's an array so the first character of the type string is 'a'
2256 *
2257 * if the first two characters are 'ay' then it's a bytestring.
2258 * under certain conditions we print those as strings.
2259 */
2260 if (g_variant_get_type_string (value)[1] == 'y')
2261 {
2262 const gchar *str;
2263 gsize size;
2264 gsize i;
2265
2266 /* first determine if it is a byte string.
2267 * that's when there's a single nul character: at the end.
2268 */
2269 str = g_variant_get_data (value);
2270 size = g_variant_get_size (value);
2271
2272 for (i = 0; i < size; i++)
2273 if (str[i] == '\0')
2274 break;
2275
2276 /* first nul byte is the last byte -> it's a byte string. */
2277 if (i == size - 1)
2278 {
2279 gchar *escaped = g_strescape (str, NULL);
2280
2281 /* use double quotes only if a ' is in the string */
2282 if (strchr (str, '\''))
2283 g_string_append_printf (string, "b\"%s\"", escaped);
2284 else
2285 g_string_append_printf (string, "b'%s'", escaped);
2286
2287 g_free (escaped);
2288 break;
2289 }
2290
2291 else
2292 {
2293 /* fall through and handle normally... */
2294 }
2295 }
2296
2297 /*
2298 * if the first two characters are 'a{' then it's an array of
2299 * dictionary entries (ie: a dictionary) so we print that
2300 * differently.
2301 */
2302 if (g_variant_get_type_string (value)[1] == '{')
2303 /* dictionary */
2304 {
2305 const gchar *comma = "";
2306 gsize n, i;
2307
2308 if ((n = g_variant_n_children (value)) == 0)
2309 {
2310 if (type_annotate)
2311 g_string_append_printf (string, "@%s ",
2312 g_variant_get_type_string (value));
2313 g_string_append (string, "{}");
2314 break;
2315 }
2316
2317 g_string_append_c (string, '{');
2318 for (i = 0; i < n; i++)
2319 {
2320 GVariant *entry, *key, *val;
2321
2322 g_string_append (string, comma);
2323 comma = ", ";
2324
2325 entry = g_variant_get_child_value (value, i);
2326 key = g_variant_get_child_value (entry, 0);
2327 val = g_variant_get_child_value (entry, 1);
2328 g_variant_unref (entry);
2329
2330 g_variant_print_string (key, string, type_annotate);
2331 g_variant_unref (key);
2332 g_string_append (string, ": ");
2333 g_variant_print_string (val, string, type_annotate);
2334 g_variant_unref (val);
2335 type_annotate = FALSE;
2336 }
2337 g_string_append_c (string, '}');
2338 }
2339 else
2340 /* normal (non-dictionary) array */
2341 {
2342 const gchar *comma = "";
2343 gsize n, i;
2344
2345 if ((n = g_variant_n_children (value)) == 0)
2346 {
2347 if (type_annotate)
2348 g_string_append_printf (string, "@%s ",
2349 g_variant_get_type_string (value));
2350 g_string_append (string, "[]");
2351 break;
2352 }
2353
2354 g_string_append_c (string, '[');
2355 for (i = 0; i < n; i++)
2356 {
2357 GVariant *element;
2358
2359 g_string_append (string, comma);
2360 comma = ", ";
2361
2362 element = g_variant_get_child_value (value, i);
2363
2364 g_variant_print_string (element, string, type_annotate);
2365 g_variant_unref (element);
2366 type_annotate = FALSE;
2367 }
2368 g_string_append_c (string, ']');
2369 }
2370
2371 break;
2372
2373 case G_VARIANT_CLASS_TUPLE:
2374 {
2375 gsize n, i;
2376
2377 n = g_variant_n_children (value);
2378
2379 g_string_append_c (string, '(');
2380 for (i = 0; i < n; i++)
2381 {
2382 GVariant *element;
2383
2384 element = g_variant_get_child_value (value, i);
2385 g_variant_print_string (element, string, type_annotate);
2386 g_string_append (string, ", ");
2387 g_variant_unref (element);
2388 }
2389
2390 /* for >1 item: remove final ", "
2391 * for 1 item: remove final " ", but leave the ","
2392 * for 0 items: there is only "(", so remove nothing
2393 */
2394 g_string_truncate (string, string->len - (n > 0) - (n > 1));
2395 g_string_append_c (string, ')');
2396 }
2397 break;
2398
2399 case G_VARIANT_CLASS_DICT_ENTRY:
2400 {
2401 GVariant *element;
2402
2403 g_string_append_c (string, '{');
2404
2405 element = g_variant_get_child_value (value, 0);
2406 g_variant_print_string (element, string, type_annotate);
2407 g_variant_unref (element);
2408
2409 g_string_append (string, ", ");
2410
2411 element = g_variant_get_child_value (value, 1);
2412 g_variant_print_string (element, string, type_annotate);
2413 g_variant_unref (element);
2414
2415 g_string_append_c (string, '}');
2416 }
2417 break;
2418
2419 case G_VARIANT_CLASS_VARIANT:
2420 {
2421 GVariant *child = g_variant_get_variant (value);
2422
2423 /* Always annotate types in nested variants, because they are
2424 * (by nature) of variable type.
2425 */
2426 g_string_append_c (string, '<');
2427 g_variant_print_string (child, string, TRUE);
2428 g_string_append_c (string, '>');
2429
2430 g_variant_unref (child);
2431 }
2432 break;
2433
2434 case G_VARIANT_CLASS_BOOLEAN:
2435 if (g_variant_get_boolean (value))
2436 g_string_append (string, "true");
2437 else
2438 g_string_append (string, "false");
2439 break;
2440
2441 case G_VARIANT_CLASS_STRING:
2442 {
2443 const gchar *str = g_variant_get_string (value, NULL);
2444 gunichar quote = strchr (str, '\'') ? '"' : '\'';
2445
2446 g_string_append_c (string, quote);
2447
2448 while (*str)
2449 {
2450 gunichar c = g_utf8_get_char (str);
2451
2452 if (c == quote || c == '\\')
2453 g_string_append_c (string, '\\');
2454
2455 if (g_unichar_isprint (c))
2456 g_string_append_unichar (string, c);
2457
2458 else
2459 {
2460 g_string_append_c (string, '\\');
2461 if (c < 0x10000)
2462 switch (c)
2463 {
2464 case '\a':
2465 g_string_append_c (string, 'a');
2466 break;
2467
2468 case '\b':
2469 g_string_append_c (string, 'b');
2470 break;
2471
2472 case '\f':
2473 g_string_append_c (string, 'f');
2474 break;
2475
2476 case '\n':
2477 g_string_append_c (string, 'n');
2478 break;
2479
2480 case '\r':
2481 g_string_append_c (string, 'r');
2482 break;
2483
2484 case '\t':
2485 g_string_append_c (string, 't');
2486 break;
2487
2488 case '\v':
2489 g_string_append_c (string, 'v');
2490 break;
2491
2492 default:
2493 g_string_append_printf (string, "u%04x", c);
2494 break;
2495 }
2496 else
2497 g_string_append_printf (string, "U%08x", c);
2498 }
2499
2500 str = g_utf8_next_char (str);
2501 }
2502
2503 g_string_append_c (string, quote);
2504 }
2505 break;
2506
2507 case G_VARIANT_CLASS_BYTE:
2508 if (type_annotate)
2509 g_string_append (string, "byte ");
2510 g_string_append_printf (string, "0x%02x",
2511 g_variant_get_byte (value));
2512 break;
2513
2514 case G_VARIANT_CLASS_INT16:
2515 if (type_annotate)
2516 g_string_append (string, "int16 ");
2517 g_string_append_printf (string, "%"G_GINT16_FORMAT,
2518 g_variant_get_int16 (value));
2519 break;
2520
2521 case G_VARIANT_CLASS_UINT16:
2522 if (type_annotate)
2523 g_string_append (string, "uint16 ");
2524 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2525 g_variant_get_uint16 (value));
2526 break;
2527
2528 case G_VARIANT_CLASS_INT32:
2529 /* Never annotate this type because it is the default for numbers
2530 * (and this is a *pretty* printer)
2531 */
2532 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2533 g_variant_get_int32 (value));
2534 break;
2535
2536 case G_VARIANT_CLASS_HANDLE:
2537 if (type_annotate)
2538 g_string_append (string, "handle ");
2539 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2540 g_variant_get_handle (value));
2541 break;
2542
2543 case G_VARIANT_CLASS_UINT32:
2544 if (type_annotate)
2545 g_string_append (string, "uint32 ");
2546 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2547 g_variant_get_uint32 (value));
2548 break;
2549
2550 case G_VARIANT_CLASS_INT64:
2551 if (type_annotate)
2552 g_string_append (string, "int64 ");
2553 g_string_append_printf (string, "%"G_GINT64_FORMAT,
2554 g_variant_get_int64 (value));
2555 break;
2556
2557 case G_VARIANT_CLASS_UINT64:
2558 if (type_annotate)
2559 g_string_append (string, "uint64 ");
2560 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2561 g_variant_get_uint64 (value));
2562 break;
2563
2564 case G_VARIANT_CLASS_DOUBLE:
2565 {
2566 gchar buffer[100];
2567 gint i;
2568
2569 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2570
2571 for (i = 0; buffer[i]; i++)
2572 if (buffer[i] == '.' || buffer[i] == 'e' ||
2573 buffer[i] == 'n' || buffer[i] == 'N')
2574 break;
2575
2576 /* if there is no '.' or 'e' in the float then add one */
2577 if (buffer[i] == '\0')
2578 {
2579 buffer[i++] = '.';
2580 buffer[i++] = '0';
2581 buffer[i++] = '\0';
2582 }
2583
2584 g_string_append (string, buffer);
2585 }
2586 break;
2587
2588 case G_VARIANT_CLASS_OBJECT_PATH:
2589 if (type_annotate)
2590 g_string_append (string, "objectpath ");
2591 g_string_append_printf (string, "\'%s\'",
2592 g_variant_get_string (value, NULL));
2593 break;
2594
2595 case G_VARIANT_CLASS_SIGNATURE:
2596 if (type_annotate)
2597 g_string_append (string, "signature ");
2598 g_string_append_printf (string, "\'%s\'",
2599 g_variant_get_string (value, NULL));
2600 break;
2601
2602 default:
2603 g_assert_not_reached ();
2604 }
2605
2606 return string;
2607 }
2608
2609 /**
2610 * g_variant_print:
2611 * @value: a #GVariant
2612 * @type_annotate: %TRUE if type information should be included in
2613 * the output
2614 *
2615 * Pretty-prints @value in the format understood by g_variant_parse().
2616 *
2617 * The format is described [here][gvariant-text].
2618 *
2619 * If @type_annotate is %TRUE, then type information is included in
2620 * the output.
2621 *
2622 * Returns: (transfer full): a newly-allocated string holding the result.
2623 *
2624 * Since: 2.24
2625 */
2626 gchar *
g_variant_print(GVariant * value,gboolean type_annotate)2627 g_variant_print (GVariant *value,
2628 gboolean type_annotate)
2629 {
2630 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2631 FALSE);
2632 }
2633
2634 /* Hash, Equal, Compare {{{1 */
2635 /**
2636 * g_variant_hash:
2637 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2638 *
2639 * Generates a hash value for a #GVariant instance.
2640 *
2641 * The output of this function is guaranteed to be the same for a given
2642 * value only per-process. It may change between different processor
2643 * architectures or even different versions of GLib. Do not use this
2644 * function as a basis for building protocols or file formats.
2645 *
2646 * The type of @value is #gconstpointer only to allow use of this
2647 * function with #GHashTable. @value must be a #GVariant.
2648 *
2649 * Returns: a hash value corresponding to @value
2650 *
2651 * Since: 2.24
2652 **/
2653 guint
g_variant_hash(gconstpointer value_)2654 g_variant_hash (gconstpointer value_)
2655 {
2656 GVariant *value = (GVariant *) value_;
2657
2658 switch (g_variant_classify (value))
2659 {
2660 case G_VARIANT_CLASS_STRING:
2661 case G_VARIANT_CLASS_OBJECT_PATH:
2662 case G_VARIANT_CLASS_SIGNATURE:
2663 return g_str_hash (g_variant_get_string (value, NULL));
2664
2665 case G_VARIANT_CLASS_BOOLEAN:
2666 /* this is a very odd thing to hash... */
2667 return g_variant_get_boolean (value);
2668
2669 case G_VARIANT_CLASS_BYTE:
2670 return g_variant_get_byte (value);
2671
2672 case G_VARIANT_CLASS_INT16:
2673 case G_VARIANT_CLASS_UINT16:
2674 {
2675 const guint16 *ptr;
2676
2677 ptr = g_variant_get_data (value);
2678
2679 if (ptr)
2680 return *ptr;
2681 else
2682 return 0;
2683 }
2684
2685 case G_VARIANT_CLASS_INT32:
2686 case G_VARIANT_CLASS_UINT32:
2687 case G_VARIANT_CLASS_HANDLE:
2688 {
2689 const guint *ptr;
2690
2691 ptr = g_variant_get_data (value);
2692
2693 if (ptr)
2694 return *ptr;
2695 else
2696 return 0;
2697 }
2698
2699 case G_VARIANT_CLASS_INT64:
2700 case G_VARIANT_CLASS_UINT64:
2701 case G_VARIANT_CLASS_DOUBLE:
2702 /* need a separate case for these guys because otherwise
2703 * performance could be quite bad on big endian systems
2704 */
2705 {
2706 const guint *ptr;
2707
2708 ptr = g_variant_get_data (value);
2709
2710 if (ptr)
2711 return ptr[0] + ptr[1];
2712 else
2713 return 0;
2714 }
2715
2716 default:
2717 g_return_val_if_fail (!g_variant_is_container (value), 0);
2718 g_assert_not_reached ();
2719 }
2720 }
2721
2722 /**
2723 * g_variant_equal:
2724 * @one: (type GVariant): a #GVariant instance
2725 * @two: (type GVariant): a #GVariant instance
2726 *
2727 * Checks if @one and @two have the same type and value.
2728 *
2729 * The types of @one and @two are #gconstpointer only to allow use of
2730 * this function with #GHashTable. They must each be a #GVariant.
2731 *
2732 * Returns: %TRUE if @one and @two are equal
2733 *
2734 * Since: 2.24
2735 **/
2736 gboolean
g_variant_equal(gconstpointer one,gconstpointer two)2737 g_variant_equal (gconstpointer one,
2738 gconstpointer two)
2739 {
2740 gboolean equal;
2741
2742 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2743
2744 if (g_variant_get_type_info ((GVariant *) one) !=
2745 g_variant_get_type_info ((GVariant *) two))
2746 return FALSE;
2747
2748 /* if both values are trusted to be in their canonical serialised form
2749 * then a simple memcmp() of their serialised data will answer the
2750 * question.
2751 *
2752 * if not, then this might generate a false negative (since it is
2753 * possible for two different byte sequences to represent the same
2754 * value). for now we solve this by pretty-printing both values and
2755 * comparing the result.
2756 */
2757 if (g_variant_is_trusted ((GVariant *) one) &&
2758 g_variant_is_trusted ((GVariant *) two))
2759 {
2760 gconstpointer data_one, data_two;
2761 gsize size_one, size_two;
2762
2763 size_one = g_variant_get_size ((GVariant *) one);
2764 size_two = g_variant_get_size ((GVariant *) two);
2765
2766 if (size_one != size_two)
2767 return FALSE;
2768
2769 data_one = g_variant_get_data ((GVariant *) one);
2770 data_two = g_variant_get_data ((GVariant *) two);
2771
2772 if (size_one)
2773 equal = memcmp (data_one, data_two, size_one) == 0;
2774 else
2775 equal = TRUE;
2776 }
2777 else
2778 {
2779 gchar *strone, *strtwo;
2780
2781 strone = g_variant_print ((GVariant *) one, FALSE);
2782 strtwo = g_variant_print ((GVariant *) two, FALSE);
2783 equal = strcmp (strone, strtwo) == 0;
2784 g_free (strone);
2785 g_free (strtwo);
2786 }
2787
2788 return equal;
2789 }
2790
2791 /**
2792 * g_variant_compare:
2793 * @one: (type GVariant): a basic-typed #GVariant instance
2794 * @two: (type GVariant): a #GVariant instance of the same type
2795 *
2796 * Compares @one and @two.
2797 *
2798 * The types of @one and @two are #gconstpointer only to allow use of
2799 * this function with #GTree, #GPtrArray, etc. They must each be a
2800 * #GVariant.
2801 *
2802 * Comparison is only defined for basic types (ie: booleans, numbers,
2803 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2804 * ordered in the usual way. Strings are in ASCII lexographical order.
2805 *
2806 * It is a programmer error to attempt to compare container values or
2807 * two values that have types that are not exactly equal. For example,
2808 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2809 * integer. Also note that this function is not particularly
2810 * well-behaved when it comes to comparison of doubles; in particular,
2811 * the handling of incomparable values (ie: NaN) is undefined.
2812 *
2813 * If you only require an equality comparison, g_variant_equal() is more
2814 * general.
2815 *
2816 * Returns: negative value if a < b;
2817 * zero if a = b;
2818 * positive value if a > b.
2819 *
2820 * Since: 2.26
2821 **/
2822 gint
g_variant_compare(gconstpointer one,gconstpointer two)2823 g_variant_compare (gconstpointer one,
2824 gconstpointer two)
2825 {
2826 GVariant *a = (GVariant *) one;
2827 GVariant *b = (GVariant *) two;
2828
2829 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2830
2831 switch (g_variant_classify (a))
2832 {
2833 case G_VARIANT_CLASS_BOOLEAN:
2834 return g_variant_get_boolean (a) -
2835 g_variant_get_boolean (b);
2836
2837 case G_VARIANT_CLASS_BYTE:
2838 return ((gint) g_variant_get_byte (a)) -
2839 ((gint) g_variant_get_byte (b));
2840
2841 case G_VARIANT_CLASS_INT16:
2842 return ((gint) g_variant_get_int16 (a)) -
2843 ((gint) g_variant_get_int16 (b));
2844
2845 case G_VARIANT_CLASS_UINT16:
2846 return ((gint) g_variant_get_uint16 (a)) -
2847 ((gint) g_variant_get_uint16 (b));
2848
2849 case G_VARIANT_CLASS_INT32:
2850 {
2851 gint32 a_val = g_variant_get_int32 (a);
2852 gint32 b_val = g_variant_get_int32 (b);
2853
2854 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2855 }
2856
2857 case G_VARIANT_CLASS_UINT32:
2858 {
2859 guint32 a_val = g_variant_get_uint32 (a);
2860 guint32 b_val = g_variant_get_uint32 (b);
2861
2862 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2863 }
2864
2865 case G_VARIANT_CLASS_INT64:
2866 {
2867 gint64 a_val = g_variant_get_int64 (a);
2868 gint64 b_val = g_variant_get_int64 (b);
2869
2870 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2871 }
2872
2873 case G_VARIANT_CLASS_UINT64:
2874 {
2875 guint64 a_val = g_variant_get_uint64 (a);
2876 guint64 b_val = g_variant_get_uint64 (b);
2877
2878 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2879 }
2880
2881 case G_VARIANT_CLASS_DOUBLE:
2882 {
2883 gdouble a_val = g_variant_get_double (a);
2884 gdouble b_val = g_variant_get_double (b);
2885
2886 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2887 }
2888
2889 case G_VARIANT_CLASS_STRING:
2890 case G_VARIANT_CLASS_OBJECT_PATH:
2891 case G_VARIANT_CLASS_SIGNATURE:
2892 return strcmp (g_variant_get_string (a, NULL),
2893 g_variant_get_string (b, NULL));
2894
2895 default:
2896 g_return_val_if_fail (!g_variant_is_container (a), 0);
2897 g_assert_not_reached ();
2898 }
2899 }
2900
2901 /* GVariantIter {{{1 */
2902 /**
2903 * GVariantIter: (skip)
2904 *
2905 * #GVariantIter is an opaque data structure and can only be accessed
2906 * using the following functions.
2907 **/
2908 struct stack_iter
2909 {
2910 GVariant *value;
2911 gssize n, i;
2912
2913 const gchar *loop_format;
2914
2915 gsize padding[3];
2916 gsize magic;
2917 };
2918
2919 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2920
2921 struct heap_iter
2922 {
2923 struct stack_iter iter;
2924
2925 GVariant *value_ref;
2926 gsize magic;
2927 };
2928
2929 #define GVSI(i) ((struct stack_iter *) (i))
2930 #define GVHI(i) ((struct heap_iter *) (i))
2931 #define GVSI_MAGIC ((gsize) 3579507750u)
2932 #define GVHI_MAGIC ((gsize) 1450270775u)
2933 #define is_valid_iter(i) (i != NULL && \
2934 GVSI(i)->magic == GVSI_MAGIC)
2935 #define is_valid_heap_iter(i) (is_valid_iter(i) && \
2936 GVHI(i)->magic == GVHI_MAGIC)
2937
2938 /**
2939 * g_variant_iter_new:
2940 * @value: a container #GVariant
2941 *
2942 * Creates a heap-allocated #GVariantIter for iterating over the items
2943 * in @value.
2944 *
2945 * Use g_variant_iter_free() to free the return value when you no longer
2946 * need it.
2947 *
2948 * A reference is taken to @value and will be released only when
2949 * g_variant_iter_free() is called.
2950 *
2951 * Returns: (transfer full): a new heap-allocated #GVariantIter
2952 *
2953 * Since: 2.24
2954 **/
2955 GVariantIter *
g_variant_iter_new(GVariant * value)2956 g_variant_iter_new (GVariant *value)
2957 {
2958 GVariantIter *iter;
2959
2960 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2961 GVHI(iter)->value_ref = g_variant_ref (value);
2962 GVHI(iter)->magic = GVHI_MAGIC;
2963
2964 g_variant_iter_init (iter, value);
2965
2966 return iter;
2967 }
2968
2969 /**
2970 * g_variant_iter_init: (skip)
2971 * @iter: a pointer to a #GVariantIter
2972 * @value: a container #GVariant
2973 *
2974 * Initialises (without allocating) a #GVariantIter. @iter may be
2975 * completely uninitialised prior to this call; its old value is
2976 * ignored.
2977 *
2978 * The iterator remains valid for as long as @value exists, and need not
2979 * be freed in any way.
2980 *
2981 * Returns: the number of items in @value
2982 *
2983 * Since: 2.24
2984 **/
2985 gsize
g_variant_iter_init(GVariantIter * iter,GVariant * value)2986 g_variant_iter_init (GVariantIter *iter,
2987 GVariant *value)
2988 {
2989 GVSI(iter)->magic = GVSI_MAGIC;
2990 GVSI(iter)->value = value;
2991 GVSI(iter)->n = g_variant_n_children (value);
2992 GVSI(iter)->i = -1;
2993 GVSI(iter)->loop_format = NULL;
2994
2995 return GVSI(iter)->n;
2996 }
2997
2998 /**
2999 * g_variant_iter_copy:
3000 * @iter: a #GVariantIter
3001 *
3002 * Creates a new heap-allocated #GVariantIter to iterate over the
3003 * container that was being iterated over by @iter. Iteration begins on
3004 * the new iterator from the current position of the old iterator but
3005 * the two copies are independent past that point.
3006 *
3007 * Use g_variant_iter_free() to free the return value when you no longer
3008 * need it.
3009 *
3010 * A reference is taken to the container that @iter is iterating over
3011 * and will be related only when g_variant_iter_free() is called.
3012 *
3013 * Returns: (transfer full): a new heap-allocated #GVariantIter
3014 *
3015 * Since: 2.24
3016 **/
3017 GVariantIter *
g_variant_iter_copy(GVariantIter * iter)3018 g_variant_iter_copy (GVariantIter *iter)
3019 {
3020 GVariantIter *copy;
3021
3022 g_return_val_if_fail (is_valid_iter (iter), 0);
3023
3024 copy = g_variant_iter_new (GVSI(iter)->value);
3025 GVSI(copy)->i = GVSI(iter)->i;
3026
3027 return copy;
3028 }
3029
3030 /**
3031 * g_variant_iter_n_children:
3032 * @iter: a #GVariantIter
3033 *
3034 * Queries the number of child items in the container that we are
3035 * iterating over. This is the total number of items -- not the number
3036 * of items remaining.
3037 *
3038 * This function might be useful for preallocation of arrays.
3039 *
3040 * Returns: the number of children in the container
3041 *
3042 * Since: 2.24
3043 **/
3044 gsize
g_variant_iter_n_children(GVariantIter * iter)3045 g_variant_iter_n_children (GVariantIter *iter)
3046 {
3047 g_return_val_if_fail (is_valid_iter (iter), 0);
3048
3049 return GVSI(iter)->n;
3050 }
3051
3052 /**
3053 * g_variant_iter_free:
3054 * @iter: (transfer full): a heap-allocated #GVariantIter
3055 *
3056 * Frees a heap-allocated #GVariantIter. Only call this function on
3057 * iterators that were returned by g_variant_iter_new() or
3058 * g_variant_iter_copy().
3059 *
3060 * Since: 2.24
3061 **/
3062 void
g_variant_iter_free(GVariantIter * iter)3063 g_variant_iter_free (GVariantIter *iter)
3064 {
3065 g_return_if_fail (is_valid_heap_iter (iter));
3066
3067 g_variant_unref (GVHI(iter)->value_ref);
3068 GVHI(iter)->magic = 0;
3069
3070 g_slice_free (struct heap_iter, GVHI(iter));
3071 }
3072
3073 /**
3074 * g_variant_iter_next_value:
3075 * @iter: a #GVariantIter
3076 *
3077 * Gets the next item in the container. If no more items remain then
3078 * %NULL is returned.
3079 *
3080 * Use g_variant_unref() to drop your reference on the return value when
3081 * you no longer need it.
3082 *
3083 * Here is an example for iterating with g_variant_iter_next_value():
3084 * |[<!-- language="C" -->
3085 * // recursively iterate a container
3086 * void
3087 * iterate_container_recursive (GVariant *container)
3088 * {
3089 * GVariantIter iter;
3090 * GVariant *child;
3091 *
3092 * g_variant_iter_init (&iter, container);
3093 * while ((child = g_variant_iter_next_value (&iter)))
3094 * {
3095 * g_print ("type '%s'\n", g_variant_get_type_string (child));
3096 *
3097 * if (g_variant_is_container (child))
3098 * iterate_container_recursive (child);
3099 *
3100 * g_variant_unref (child);
3101 * }
3102 * }
3103 * ]|
3104 *
3105 * Returns: (nullable) (transfer full): a #GVariant, or %NULL
3106 *
3107 * Since: 2.24
3108 **/
3109 GVariant *
g_variant_iter_next_value(GVariantIter * iter)3110 g_variant_iter_next_value (GVariantIter *iter)
3111 {
3112 g_return_val_if_fail (is_valid_iter (iter), FALSE);
3113
3114 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
3115 {
3116 g_critical ("g_variant_iter_next_value: must not be called again "
3117 "after NULL has already been returned.");
3118 return NULL;
3119 }
3120
3121 GVSI(iter)->i++;
3122
3123 if (GVSI(iter)->i < GVSI(iter)->n)
3124 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
3125
3126 return NULL;
3127 }
3128
3129 /* GVariantBuilder {{{1 */
3130 /**
3131 * GVariantBuilder:
3132 *
3133 * A utility type for constructing container-type #GVariant instances.
3134 *
3135 * This is an opaque structure and may only be accessed using the
3136 * following functions.
3137 *
3138 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
3139 * access it from more than one thread.
3140 **/
3141
3142 struct stack_builder
3143 {
3144 GVariantBuilder *parent;
3145 GVariantType *type;
3146
3147 /* type constraint explicitly specified by 'type'.
3148 * for tuple types, this moves along as we add more items.
3149 */
3150 const GVariantType *expected_type;
3151
3152 /* type constraint implied by previous array item.
3153 */
3154 const GVariantType *prev_item_type;
3155
3156 /* constraints on the number of children. max = -1 for unlimited. */
3157 gsize min_items;
3158 gsize max_items;
3159
3160 /* dynamically-growing pointer array */
3161 GVariant **children;
3162 gsize allocated_children;
3163 gsize offset;
3164
3165 /* set to '1' if all items in the container will have the same type
3166 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
3167 */
3168 guint uniform_item_types : 1;
3169
3170 /* set to '1' initially and changed to '0' if an untrusted value is
3171 * added
3172 */
3173 guint trusted : 1;
3174
3175 gsize magic;
3176 };
3177
3178 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
3179
3180 struct heap_builder
3181 {
3182 GVariantBuilder builder;
3183 gsize magic;
3184
3185 gint ref_count;
3186 };
3187
3188 #define GVSB(b) ((struct stack_builder *) (b))
3189 #define GVHB(b) ((struct heap_builder *) (b))
3190 #define GVSB_MAGIC ((gsize) 1033660112u)
3191 #define GVSB_MAGIC_PARTIAL ((gsize) 2942751021u)
3192 #define GVHB_MAGIC ((gsize) 3087242682u)
3193 #define is_valid_builder(b) (b != NULL && \
3194 GVSB(b)->magic == GVSB_MAGIC)
3195 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
3196
3197 /* Just to make sure that by adding a union to GVariantBuilder, we
3198 * didn't accidentally change ABI. */
3199 G_STATIC_ASSERT (sizeof (GVariantBuilder) == sizeof (gsize[16]));
3200
3201 static gboolean
ensure_valid_builder(GVariantBuilder * builder)3202 ensure_valid_builder (GVariantBuilder *builder)
3203 {
3204 if (is_valid_builder (builder))
3205 return TRUE;
3206 if (builder->u.s.partial_magic == GVSB_MAGIC_PARTIAL)
3207 {
3208 static GVariantBuilder cleared_builder;
3209
3210 /* Make sure that only first two fields were set and the rest is
3211 * zeroed to avoid messing up the builder that had parent
3212 * address equal to GVSB_MAGIC_PARTIAL. */
3213 if (memcmp (cleared_builder.u.s.y, builder->u.s.y, sizeof cleared_builder.u.s.y))
3214 return FALSE;
3215
3216 g_variant_builder_init (builder, builder->u.s.type);
3217 }
3218 return is_valid_builder (builder);
3219 }
3220
3221 /**
3222 * g_variant_builder_new:
3223 * @type: a container type
3224 *
3225 * Allocates and initialises a new #GVariantBuilder.
3226 *
3227 * You should call g_variant_builder_unref() on the return value when it
3228 * is no longer needed. The memory will not be automatically freed by
3229 * any other call.
3230 *
3231 * In most cases it is easier to place a #GVariantBuilder directly on
3232 * the stack of the calling function and initialise it with
3233 * g_variant_builder_init().
3234 *
3235 * Returns: (transfer full): a #GVariantBuilder
3236 *
3237 * Since: 2.24
3238 **/
3239 GVariantBuilder *
g_variant_builder_new(const GVariantType * type)3240 g_variant_builder_new (const GVariantType *type)
3241 {
3242 GVariantBuilder *builder;
3243
3244 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
3245 g_variant_builder_init (builder, type);
3246 GVHB(builder)->magic = GVHB_MAGIC;
3247 GVHB(builder)->ref_count = 1;
3248
3249 return builder;
3250 }
3251
3252 /**
3253 * g_variant_builder_unref:
3254 * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
3255 *
3256 * Decreases the reference count on @builder.
3257 *
3258 * In the event that there are no more references, releases all memory
3259 * associated with the #GVariantBuilder.
3260 *
3261 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3262 * things will happen.
3263 *
3264 * Since: 2.24
3265 **/
3266 void
g_variant_builder_unref(GVariantBuilder * builder)3267 g_variant_builder_unref (GVariantBuilder *builder)
3268 {
3269 g_return_if_fail (is_valid_heap_builder (builder));
3270
3271 if (--GVHB(builder)->ref_count)
3272 return;
3273
3274 g_variant_builder_clear (builder);
3275 GVHB(builder)->magic = 0;
3276
3277 g_slice_free (struct heap_builder, GVHB(builder));
3278 }
3279
3280 /**
3281 * g_variant_builder_ref:
3282 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
3283 *
3284 * Increases the reference count on @builder.
3285 *
3286 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3287 * things will happen.
3288 *
3289 * Returns: (transfer full): a new reference to @builder
3290 *
3291 * Since: 2.24
3292 **/
3293 GVariantBuilder *
g_variant_builder_ref(GVariantBuilder * builder)3294 g_variant_builder_ref (GVariantBuilder *builder)
3295 {
3296 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3297
3298 GVHB(builder)->ref_count++;
3299
3300 return builder;
3301 }
3302
3303 /**
3304 * g_variant_builder_clear: (skip)
3305 * @builder: a #GVariantBuilder
3306 *
3307 * Releases all memory associated with a #GVariantBuilder without
3308 * freeing the #GVariantBuilder structure itself.
3309 *
3310 * It typically only makes sense to do this on a stack-allocated
3311 * #GVariantBuilder if you want to abort building the value part-way
3312 * through. This function need not be called if you call
3313 * g_variant_builder_end() and it also doesn't need to be called on
3314 * builders allocated with g_variant_builder_new() (see
3315 * g_variant_builder_unref() for that).
3316 *
3317 * This function leaves the #GVariantBuilder structure set to all-zeros.
3318 * It is valid to call this function on either an initialised
3319 * #GVariantBuilder or one that is set to all-zeros but it is not valid
3320 * to call this function on uninitialised memory.
3321 *
3322 * Since: 2.24
3323 **/
3324 void
g_variant_builder_clear(GVariantBuilder * builder)3325 g_variant_builder_clear (GVariantBuilder *builder)
3326 {
3327 gsize i;
3328
3329 if (GVSB(builder)->magic == 0)
3330 /* all-zeros or partial case */
3331 return;
3332
3333 g_return_if_fail (ensure_valid_builder (builder));
3334
3335 g_variant_type_free (GVSB(builder)->type);
3336
3337 for (i = 0; i < GVSB(builder)->offset; i++)
3338 g_variant_unref (GVSB(builder)->children[i]);
3339
3340 g_free (GVSB(builder)->children);
3341
3342 if (GVSB(builder)->parent)
3343 {
3344 g_variant_builder_clear (GVSB(builder)->parent);
3345 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3346 }
3347
3348 memset (builder, 0, sizeof (GVariantBuilder));
3349 }
3350
3351 /**
3352 * g_variant_builder_init: (skip)
3353 * @builder: a #GVariantBuilder
3354 * @type: a container type
3355 *
3356 * Initialises a #GVariantBuilder structure.
3357 *
3358 * @type must be non-%NULL. It specifies the type of container to
3359 * construct. It can be an indefinite type such as
3360 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3361 * Maybe, array, tuple, dictionary entry and variant-typed values may be
3362 * constructed.
3363 *
3364 * After the builder is initialised, values are added using
3365 * g_variant_builder_add_value() or g_variant_builder_add().
3366 *
3367 * After all the child values are added, g_variant_builder_end() frees
3368 * the memory associated with the builder and returns the #GVariant that
3369 * was created.
3370 *
3371 * This function completely ignores the previous contents of @builder.
3372 * On one hand this means that it is valid to pass in completely
3373 * uninitialised memory. On the other hand, this means that if you are
3374 * initialising over top of an existing #GVariantBuilder you need to
3375 * first call g_variant_builder_clear() in order to avoid leaking
3376 * memory.
3377 *
3378 * You must not call g_variant_builder_ref() or
3379 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3380 * with this function. If you ever pass a reference to a
3381 * #GVariantBuilder outside of the control of your own code then you
3382 * should assume that the person receiving that reference may try to use
3383 * reference counting; you should use g_variant_builder_new() instead of
3384 * this function.
3385 *
3386 * Since: 2.24
3387 **/
3388 void
g_variant_builder_init(GVariantBuilder * builder,const GVariantType * type)3389 g_variant_builder_init (GVariantBuilder *builder,
3390 const GVariantType *type)
3391 {
3392 g_return_if_fail (type != NULL);
3393 g_return_if_fail (g_variant_type_is_container (type));
3394
3395 memset (builder, 0, sizeof (GVariantBuilder));
3396
3397 GVSB(builder)->type = g_variant_type_copy (type);
3398 GVSB(builder)->magic = GVSB_MAGIC;
3399 GVSB(builder)->trusted = TRUE;
3400
3401 switch (*(const gchar *) type)
3402 {
3403 case G_VARIANT_CLASS_VARIANT:
3404 GVSB(builder)->uniform_item_types = TRUE;
3405 GVSB(builder)->allocated_children = 1;
3406 GVSB(builder)->expected_type = NULL;
3407 GVSB(builder)->min_items = 1;
3408 GVSB(builder)->max_items = 1;
3409 break;
3410
3411 case G_VARIANT_CLASS_ARRAY:
3412 GVSB(builder)->uniform_item_types = TRUE;
3413 GVSB(builder)->allocated_children = 8;
3414 GVSB(builder)->expected_type =
3415 g_variant_type_element (GVSB(builder)->type);
3416 GVSB(builder)->min_items = 0;
3417 GVSB(builder)->max_items = -1;
3418 break;
3419
3420 case G_VARIANT_CLASS_MAYBE:
3421 GVSB(builder)->uniform_item_types = TRUE;
3422 GVSB(builder)->allocated_children = 1;
3423 GVSB(builder)->expected_type =
3424 g_variant_type_element (GVSB(builder)->type);
3425 GVSB(builder)->min_items = 0;
3426 GVSB(builder)->max_items = 1;
3427 break;
3428
3429 case G_VARIANT_CLASS_DICT_ENTRY:
3430 GVSB(builder)->uniform_item_types = FALSE;
3431 GVSB(builder)->allocated_children = 2;
3432 GVSB(builder)->expected_type =
3433 g_variant_type_key (GVSB(builder)->type);
3434 GVSB(builder)->min_items = 2;
3435 GVSB(builder)->max_items = 2;
3436 break;
3437
3438 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3439 GVSB(builder)->uniform_item_types = FALSE;
3440 GVSB(builder)->allocated_children = 8;
3441 GVSB(builder)->expected_type = NULL;
3442 GVSB(builder)->min_items = 0;
3443 GVSB(builder)->max_items = -1;
3444 break;
3445
3446 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3447 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3448 GVSB(builder)->expected_type =
3449 g_variant_type_first (GVSB(builder)->type);
3450 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3451 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3452 GVSB(builder)->uniform_item_types = FALSE;
3453 break;
3454
3455 default:
3456 g_assert_not_reached ();
3457 }
3458
3459 GVSB(builder)->children = g_new (GVariant *,
3460 GVSB(builder)->allocated_children);
3461 }
3462
3463 static void
g_variant_builder_make_room(struct stack_builder * builder)3464 g_variant_builder_make_room (struct stack_builder *builder)
3465 {
3466 if (builder->offset == builder->allocated_children)
3467 {
3468 builder->allocated_children *= 2;
3469 builder->children = g_renew (GVariant *, builder->children,
3470 builder->allocated_children);
3471 }
3472 }
3473
3474 /**
3475 * g_variant_builder_add_value:
3476 * @builder: a #GVariantBuilder
3477 * @value: a #GVariant
3478 *
3479 * Adds @value to @builder.
3480 *
3481 * It is an error to call this function in any way that would create an
3482 * inconsistent value to be constructed. Some examples of this are
3483 * putting different types of items into an array, putting the wrong
3484 * types or number of items in a tuple, putting more than one value into
3485 * a variant, etc.
3486 *
3487 * If @value is a floating reference (see g_variant_ref_sink()),
3488 * the @builder instance takes ownership of @value.
3489 *
3490 * Since: 2.24
3491 **/
3492 void
g_variant_builder_add_value(GVariantBuilder * builder,GVariant * value)3493 g_variant_builder_add_value (GVariantBuilder *builder,
3494 GVariant *value)
3495 {
3496 g_return_if_fail (ensure_valid_builder (builder));
3497 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3498 g_return_if_fail (!GVSB(builder)->expected_type ||
3499 g_variant_is_of_type (value,
3500 GVSB(builder)->expected_type));
3501 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3502 g_variant_is_of_type (value,
3503 GVSB(builder)->prev_item_type));
3504
3505 GVSB(builder)->trusted &= g_variant_is_trusted (value);
3506
3507 if (!GVSB(builder)->uniform_item_types)
3508 {
3509 /* advance our expected type pointers */
3510 if (GVSB(builder)->expected_type)
3511 GVSB(builder)->expected_type =
3512 g_variant_type_next (GVSB(builder)->expected_type);
3513
3514 if (GVSB(builder)->prev_item_type)
3515 GVSB(builder)->prev_item_type =
3516 g_variant_type_next (GVSB(builder)->prev_item_type);
3517 }
3518 else
3519 GVSB(builder)->prev_item_type = g_variant_get_type (value);
3520
3521 g_variant_builder_make_room (GVSB(builder));
3522
3523 GVSB(builder)->children[GVSB(builder)->offset++] =
3524 g_variant_ref_sink (value);
3525 }
3526
3527 /**
3528 * g_variant_builder_open:
3529 * @builder: a #GVariantBuilder
3530 * @type: the #GVariantType of the container
3531 *
3532 * Opens a subcontainer inside the given @builder. When done adding
3533 * items to the subcontainer, g_variant_builder_close() must be called. @type
3534 * is the type of the container: so to build a tuple of several values, @type
3535 * must include the tuple itself.
3536 *
3537 * It is an error to call this function in any way that would cause an
3538 * inconsistent value to be constructed (ie: adding too many values or
3539 * a value of an incorrect type).
3540 *
3541 * Example of building a nested variant:
3542 * |[<!-- language="C" -->
3543 * GVariantBuilder builder;
3544 * guint32 some_number = get_number ();
3545 * g_autoptr (GHashTable) some_dict = get_dict ();
3546 * GHashTableIter iter;
3547 * const gchar *key;
3548 * const GVariant *value;
3549 * g_autoptr (GVariant) output = NULL;
3550 *
3551 * g_variant_builder_init (&builder, G_VARIANT_TYPE ("(ua{sv})"));
3552 * g_variant_builder_add (&builder, "u", some_number);
3553 * g_variant_builder_open (&builder, G_VARIANT_TYPE ("a{sv}"));
3554 *
3555 * g_hash_table_iter_init (&iter, some_dict);
3556 * while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value))
3557 * {
3558 * g_variant_builder_open (&builder, G_VARIANT_TYPE ("{sv}"));
3559 * g_variant_builder_add (&builder, "s", key);
3560 * g_variant_builder_add (&builder, "v", value);
3561 * g_variant_builder_close (&builder);
3562 * }
3563 *
3564 * g_variant_builder_close (&builder);
3565 *
3566 * output = g_variant_builder_end (&builder);
3567 * ]|
3568 *
3569 * Since: 2.24
3570 **/
3571 void
g_variant_builder_open(GVariantBuilder * builder,const GVariantType * type)3572 g_variant_builder_open (GVariantBuilder *builder,
3573 const GVariantType *type)
3574 {
3575 GVariantBuilder *parent;
3576
3577 g_return_if_fail (ensure_valid_builder (builder));
3578 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3579 g_return_if_fail (!GVSB(builder)->expected_type ||
3580 g_variant_type_is_subtype_of (type,
3581 GVSB(builder)->expected_type));
3582 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3583 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3584 type));
3585
3586 parent = g_slice_dup (GVariantBuilder, builder);
3587 g_variant_builder_init (builder, type);
3588 GVSB(builder)->parent = parent;
3589
3590 /* push the prev_item_type down into the subcontainer */
3591 if (GVSB(parent)->prev_item_type)
3592 {
3593 if (!GVSB(builder)->uniform_item_types)
3594 /* tuples and dict entries */
3595 GVSB(builder)->prev_item_type =
3596 g_variant_type_first (GVSB(parent)->prev_item_type);
3597
3598 else if (!g_variant_type_is_variant (GVSB(builder)->type))
3599 /* maybes and arrays */
3600 GVSB(builder)->prev_item_type =
3601 g_variant_type_element (GVSB(parent)->prev_item_type);
3602 }
3603 }
3604
3605 /**
3606 * g_variant_builder_close:
3607 * @builder: a #GVariantBuilder
3608 *
3609 * Closes the subcontainer inside the given @builder that was opened by
3610 * the most recent call to g_variant_builder_open().
3611 *
3612 * It is an error to call this function in any way that would create an
3613 * inconsistent value to be constructed (ie: too few values added to the
3614 * subcontainer).
3615 *
3616 * Since: 2.24
3617 **/
3618 void
g_variant_builder_close(GVariantBuilder * builder)3619 g_variant_builder_close (GVariantBuilder *builder)
3620 {
3621 GVariantBuilder *parent;
3622
3623 g_return_if_fail (ensure_valid_builder (builder));
3624 g_return_if_fail (GVSB(builder)->parent != NULL);
3625
3626 parent = GVSB(builder)->parent;
3627 GVSB(builder)->parent = NULL;
3628
3629 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3630 *builder = *parent;
3631
3632 g_slice_free (GVariantBuilder, parent);
3633 }
3634
3635 /*< private >
3636 * g_variant_make_maybe_type:
3637 * @element: a #GVariant
3638 *
3639 * Return the type of a maybe containing @element.
3640 */
3641 static GVariantType *
g_variant_make_maybe_type(GVariant * element)3642 g_variant_make_maybe_type (GVariant *element)
3643 {
3644 return g_variant_type_new_maybe (g_variant_get_type (element));
3645 }
3646
3647 /*< private >
3648 * g_variant_make_array_type:
3649 * @element: a #GVariant
3650 *
3651 * Return the type of an array containing @element.
3652 */
3653 static GVariantType *
g_variant_make_array_type(GVariant * element)3654 g_variant_make_array_type (GVariant *element)
3655 {
3656 return g_variant_type_new_array (g_variant_get_type (element));
3657 }
3658
3659 /**
3660 * g_variant_builder_end:
3661 * @builder: a #GVariantBuilder
3662 *
3663 * Ends the builder process and returns the constructed value.
3664 *
3665 * It is not permissible to use @builder in any way after this call
3666 * except for reference counting operations (in the case of a
3667 * heap-allocated #GVariantBuilder) or by reinitialising it with
3668 * g_variant_builder_init() (in the case of stack-allocated). This
3669 * means that for the stack-allocated builders there is no need to
3670 * call g_variant_builder_clear() after the call to
3671 * g_variant_builder_end().
3672 *
3673 * It is an error to call this function in any way that would create an
3674 * inconsistent value to be constructed (ie: insufficient number of
3675 * items added to a container with a specific number of children
3676 * required). It is also an error to call this function if the builder
3677 * was created with an indefinite array or maybe type and no children
3678 * have been added; in this case it is impossible to infer the type of
3679 * the empty array.
3680 *
3681 * Returns: (transfer none): a new, floating, #GVariant
3682 *
3683 * Since: 2.24
3684 **/
3685 GVariant *
g_variant_builder_end(GVariantBuilder * builder)3686 g_variant_builder_end (GVariantBuilder *builder)
3687 {
3688 GVariantType *my_type;
3689 GVariant *value;
3690
3691 g_return_val_if_fail (ensure_valid_builder (builder), NULL);
3692 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3693 NULL);
3694 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3695 GVSB(builder)->prev_item_type != NULL ||
3696 g_variant_type_is_definite (GVSB(builder)->type),
3697 NULL);
3698
3699 if (g_variant_type_is_definite (GVSB(builder)->type))
3700 my_type = g_variant_type_copy (GVSB(builder)->type);
3701
3702 else if (g_variant_type_is_maybe (GVSB(builder)->type))
3703 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3704
3705 else if (g_variant_type_is_array (GVSB(builder)->type))
3706 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3707
3708 else if (g_variant_type_is_tuple (GVSB(builder)->type))
3709 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3710 GVSB(builder)->offset);
3711
3712 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3713 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3714 GVSB(builder)->children[1]);
3715 else
3716 g_assert_not_reached ();
3717
3718 value = g_variant_new_from_children (my_type,
3719 g_renew (GVariant *,
3720 GVSB(builder)->children,
3721 GVSB(builder)->offset),
3722 GVSB(builder)->offset,
3723 GVSB(builder)->trusted);
3724 GVSB(builder)->children = NULL;
3725 GVSB(builder)->offset = 0;
3726
3727 g_variant_builder_clear (builder);
3728 g_variant_type_free (my_type);
3729
3730 return value;
3731 }
3732
3733 /* GVariantDict {{{1 */
3734
3735 /**
3736 * GVariantDict:
3737 *
3738 * #GVariantDict is a mutable interface to #GVariant dictionaries.
3739 *
3740 * It can be used for doing a sequence of dictionary lookups in an
3741 * efficient way on an existing #GVariant dictionary or it can be used
3742 * to construct new dictionaries with a hashtable-like interface. It
3743 * can also be used for taking existing dictionaries and modifying them
3744 * in order to create new ones.
3745 *
3746 * #GVariantDict can only be used with %G_VARIANT_TYPE_VARDICT
3747 * dictionaries.
3748 *
3749 * It is possible to use #GVariantDict allocated on the stack or on the
3750 * heap. When using a stack-allocated #GVariantDict, you begin with a
3751 * call to g_variant_dict_init() and free the resources with a call to
3752 * g_variant_dict_clear().
3753 *
3754 * Heap-allocated #GVariantDict follows normal refcounting rules: you
3755 * allocate it with g_variant_dict_new() and use g_variant_dict_ref()
3756 * and g_variant_dict_unref().
3757 *
3758 * g_variant_dict_end() is used to convert the #GVariantDict back into a
3759 * dictionary-type #GVariant. When used with stack-allocated instances,
3760 * this also implicitly frees all associated memory, but for
3761 * heap-allocated instances, you must still call g_variant_dict_unref()
3762 * afterwards.
3763 *
3764 * You will typically want to use a heap-allocated #GVariantDict when
3765 * you expose it as part of an API. For most other uses, the
3766 * stack-allocated form will be more convenient.
3767 *
3768 * Consider the following two examples that do the same thing in each
3769 * style: take an existing dictionary and look up the "count" uint32
3770 * key, adding 1 to it if it is found, or returning an error if the
3771 * key is not found. Each returns the new dictionary as a floating
3772 * #GVariant.
3773 *
3774 * ## Using a stack-allocated GVariantDict
3775 *
3776 * |[<!-- language="C" -->
3777 * GVariant *
3778 * add_to_count (GVariant *orig,
3779 * GError **error)
3780 * {
3781 * GVariantDict dict;
3782 * guint32 count;
3783 *
3784 * g_variant_dict_init (&dict, orig);
3785 * if (!g_variant_dict_lookup (&dict, "count", "u", &count))
3786 * {
3787 * g_set_error (...);
3788 * g_variant_dict_clear (&dict);
3789 * return NULL;
3790 * }
3791 *
3792 * g_variant_dict_insert (&dict, "count", "u", count + 1);
3793 *
3794 * return g_variant_dict_end (&dict);
3795 * }
3796 * ]|
3797 *
3798 * ## Using heap-allocated GVariantDict
3799 *
3800 * |[<!-- language="C" -->
3801 * GVariant *
3802 * add_to_count (GVariant *orig,
3803 * GError **error)
3804 * {
3805 * GVariantDict *dict;
3806 * GVariant *result;
3807 * guint32 count;
3808 *
3809 * dict = g_variant_dict_new (orig);
3810 *
3811 * if (g_variant_dict_lookup (dict, "count", "u", &count))
3812 * {
3813 * g_variant_dict_insert (dict, "count", "u", count + 1);
3814 * result = g_variant_dict_end (dict);
3815 * }
3816 * else
3817 * {
3818 * g_set_error (...);
3819 * result = NULL;
3820 * }
3821 *
3822 * g_variant_dict_unref (dict);
3823 *
3824 * return result;
3825 * }
3826 * ]|
3827 *
3828 * Since: 2.40
3829 **/
3830 struct stack_dict
3831 {
3832 GHashTable *values;
3833 gsize magic;
3834 };
3835
3836 G_STATIC_ASSERT (sizeof (struct stack_dict) <= sizeof (GVariantDict));
3837
3838 struct heap_dict
3839 {
3840 struct stack_dict dict;
3841 gint ref_count;
3842 gsize magic;
3843 };
3844
3845 #define GVSD(d) ((struct stack_dict *) (d))
3846 #define GVHD(d) ((struct heap_dict *) (d))
3847 #define GVSD_MAGIC ((gsize) 2579507750u)
3848 #define GVSD_MAGIC_PARTIAL ((gsize) 3488698669u)
3849 #define GVHD_MAGIC ((gsize) 2450270775u)
3850 #define is_valid_dict(d) (d != NULL && \
3851 GVSD(d)->magic == GVSD_MAGIC)
3852 #define is_valid_heap_dict(d) (GVHD(d)->magic == GVHD_MAGIC)
3853
3854 /* Just to make sure that by adding a union to GVariantDict, we didn't
3855 * accidentally change ABI. */
3856 G_STATIC_ASSERT (sizeof (GVariantDict) == sizeof (gsize[16]));
3857
3858 static gboolean
ensure_valid_dict(GVariantDict * dict)3859 ensure_valid_dict (GVariantDict *dict)
3860 {
3861 if (is_valid_dict (dict))
3862 return TRUE;
3863 if (dict->u.s.partial_magic == GVSD_MAGIC_PARTIAL)
3864 {
3865 static GVariantDict cleared_dict;
3866
3867 /* Make sure that only first two fields were set and the rest is
3868 * zeroed to avoid messing up the builder that had parent
3869 * address equal to GVSB_MAGIC_PARTIAL. */
3870 if (memcmp (cleared_dict.u.s.y, dict->u.s.y, sizeof cleared_dict.u.s.y))
3871 return FALSE;
3872
3873 g_variant_dict_init (dict, dict->u.s.asv);
3874 }
3875 return is_valid_dict (dict);
3876 }
3877
3878 /**
3879 * g_variant_dict_new:
3880 * @from_asv: (nullable): the #GVariant with which to initialise the
3881 * dictionary
3882 *
3883 * Allocates and initialises a new #GVariantDict.
3884 *
3885 * You should call g_variant_dict_unref() on the return value when it
3886 * is no longer needed. The memory will not be automatically freed by
3887 * any other call.
3888 *
3889 * In some cases it may be easier to place a #GVariantDict directly on
3890 * the stack of the calling function and initialise it with
3891 * g_variant_dict_init(). This is particularly useful when you are
3892 * using #GVariantDict to construct a #GVariant.
3893 *
3894 * Returns: (transfer full): a #GVariantDict
3895 *
3896 * Since: 2.40
3897 **/
3898 GVariantDict *
g_variant_dict_new(GVariant * from_asv)3899 g_variant_dict_new (GVariant *from_asv)
3900 {
3901 GVariantDict *dict;
3902
3903 dict = g_slice_alloc (sizeof (struct heap_dict));
3904 g_variant_dict_init (dict, from_asv);
3905 GVHD(dict)->magic = GVHD_MAGIC;
3906 GVHD(dict)->ref_count = 1;
3907
3908 return dict;
3909 }
3910
3911 /**
3912 * g_variant_dict_init: (skip)
3913 * @dict: a #GVariantDict
3914 * @from_asv: (nullable): the initial value for @dict
3915 *
3916 * Initialises a #GVariantDict structure.
3917 *
3918 * If @from_asv is given, it is used to initialise the dictionary.
3919 *
3920 * This function completely ignores the previous contents of @dict. On
3921 * one hand this means that it is valid to pass in completely
3922 * uninitialised memory. On the other hand, this means that if you are
3923 * initialising over top of an existing #GVariantDict you need to first
3924 * call g_variant_dict_clear() in order to avoid leaking memory.
3925 *
3926 * You must not call g_variant_dict_ref() or g_variant_dict_unref() on a
3927 * #GVariantDict that was initialised with this function. If you ever
3928 * pass a reference to a #GVariantDict outside of the control of your
3929 * own code then you should assume that the person receiving that
3930 * reference may try to use reference counting; you should use
3931 * g_variant_dict_new() instead of this function.
3932 *
3933 * Since: 2.40
3934 **/
3935 void
g_variant_dict_init(GVariantDict * dict,GVariant * from_asv)3936 g_variant_dict_init (GVariantDict *dict,
3937 GVariant *from_asv)
3938 {
3939 GVariantIter iter;
3940 gchar *key;
3941 GVariant *value;
3942
3943 GVSD(dict)->values = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
3944 GVSD(dict)->magic = GVSD_MAGIC;
3945
3946 if (from_asv)
3947 {
3948 g_variant_iter_init (&iter, from_asv);
3949 while (g_variant_iter_next (&iter, "{sv}", &key, &value))
3950 g_hash_table_insert (GVSD(dict)->values, key, value);
3951 }
3952 }
3953
3954 /**
3955 * g_variant_dict_lookup:
3956 * @dict: a #GVariantDict
3957 * @key: the key to look up in the dictionary
3958 * @format_string: a GVariant format string
3959 * @...: the arguments to unpack the value into
3960 *
3961 * Looks up a value in a #GVariantDict.
3962 *
3963 * This function is a wrapper around g_variant_dict_lookup_value() and
3964 * g_variant_get(). In the case that %NULL would have been returned,
3965 * this function returns %FALSE. Otherwise, it unpacks the returned
3966 * value and returns %TRUE.
3967 *
3968 * @format_string determines the C types that are used for unpacking the
3969 * values and also determines if the values are copied or borrowed, see the
3970 * section on [GVariant format strings][gvariant-format-strings-pointers].
3971 *
3972 * Returns: %TRUE if a value was unpacked
3973 *
3974 * Since: 2.40
3975 **/
3976 gboolean
g_variant_dict_lookup(GVariantDict * dict,const gchar * key,const gchar * format_string,...)3977 g_variant_dict_lookup (GVariantDict *dict,
3978 const gchar *key,
3979 const gchar *format_string,
3980 ...)
3981 {
3982 GVariant *value;
3983 va_list ap;
3984
3985 g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
3986 g_return_val_if_fail (key != NULL, FALSE);
3987 g_return_val_if_fail (format_string != NULL, FALSE);
3988
3989 value = g_hash_table_lookup (GVSD(dict)->values, key);
3990
3991 if (value == NULL || !g_variant_check_format_string (value, format_string, FALSE))
3992 return FALSE;
3993
3994 va_start (ap, format_string);
3995 g_variant_get_va (value, format_string, NULL, &ap);
3996 va_end (ap);
3997
3998 return TRUE;
3999 }
4000
4001 /**
4002 * g_variant_dict_lookup_value:
4003 * @dict: a #GVariantDict
4004 * @key: the key to look up in the dictionary
4005 * @expected_type: (nullable): a #GVariantType, or %NULL
4006 *
4007 * Looks up a value in a #GVariantDict.
4008 *
4009 * If @key is not found in @dictionary, %NULL is returned.
4010 *
4011 * The @expected_type string specifies what type of value is expected.
4012 * If the value associated with @key has a different type then %NULL is
4013 * returned.
4014 *
4015 * If the key is found and the value has the correct type, it is
4016 * returned. If @expected_type was specified then any non-%NULL return
4017 * value will have this type.
4018 *
4019 * Returns: (transfer full): the value of the dictionary key, or %NULL
4020 *
4021 * Since: 2.40
4022 **/
4023 GVariant *
g_variant_dict_lookup_value(GVariantDict * dict,const gchar * key,const GVariantType * expected_type)4024 g_variant_dict_lookup_value (GVariantDict *dict,
4025 const gchar *key,
4026 const GVariantType *expected_type)
4027 {
4028 GVariant *result;
4029
4030 g_return_val_if_fail (ensure_valid_dict (dict), NULL);
4031 g_return_val_if_fail (key != NULL, NULL);
4032
4033 result = g_hash_table_lookup (GVSD(dict)->values, key);
4034
4035 if (result && (!expected_type || g_variant_is_of_type (result, expected_type)))
4036 return g_variant_ref (result);
4037
4038 return NULL;
4039 }
4040
4041 /**
4042 * g_variant_dict_contains:
4043 * @dict: a #GVariantDict
4044 * @key: the key to look up in the dictionary
4045 *
4046 * Checks if @key exists in @dict.
4047 *
4048 * Returns: %TRUE if @key is in @dict
4049 *
4050 * Since: 2.40
4051 **/
4052 gboolean
g_variant_dict_contains(GVariantDict * dict,const gchar * key)4053 g_variant_dict_contains (GVariantDict *dict,
4054 const gchar *key)
4055 {
4056 g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
4057 g_return_val_if_fail (key != NULL, FALSE);
4058
4059 return g_hash_table_contains (GVSD(dict)->values, key);
4060 }
4061
4062 /**
4063 * g_variant_dict_insert:
4064 * @dict: a #GVariantDict
4065 * @key: the key to insert a value for
4066 * @format_string: a #GVariant varargs format string
4067 * @...: arguments, as per @format_string
4068 *
4069 * Inserts a value into a #GVariantDict.
4070 *
4071 * This call is a convenience wrapper that is exactly equivalent to
4072 * calling g_variant_new() followed by g_variant_dict_insert_value().
4073 *
4074 * Since: 2.40
4075 **/
4076 void
g_variant_dict_insert(GVariantDict * dict,const gchar * key,const gchar * format_string,...)4077 g_variant_dict_insert (GVariantDict *dict,
4078 const gchar *key,
4079 const gchar *format_string,
4080 ...)
4081 {
4082 va_list ap;
4083
4084 g_return_if_fail (ensure_valid_dict (dict));
4085 g_return_if_fail (key != NULL);
4086 g_return_if_fail (format_string != NULL);
4087
4088 va_start (ap, format_string);
4089 g_variant_dict_insert_value (dict, key, g_variant_new_va (format_string, NULL, &ap));
4090 va_end (ap);
4091 }
4092
4093 /**
4094 * g_variant_dict_insert_value:
4095 * @dict: a #GVariantDict
4096 * @key: the key to insert a value for
4097 * @value: the value to insert
4098 *
4099 * Inserts (or replaces) a key in a #GVariantDict.
4100 *
4101 * @value is consumed if it is floating.
4102 *
4103 * Since: 2.40
4104 **/
4105 void
g_variant_dict_insert_value(GVariantDict * dict,const gchar * key,GVariant * value)4106 g_variant_dict_insert_value (GVariantDict *dict,
4107 const gchar *key,
4108 GVariant *value)
4109 {
4110 g_return_if_fail (ensure_valid_dict (dict));
4111 g_return_if_fail (key != NULL);
4112 g_return_if_fail (value != NULL);
4113
4114 g_hash_table_insert (GVSD(dict)->values, g_strdup (key), g_variant_ref_sink (value));
4115 }
4116
4117 /**
4118 * g_variant_dict_remove:
4119 * @dict: a #GVariantDict
4120 * @key: the key to remove
4121 *
4122 * Removes a key and its associated value from a #GVariantDict.
4123 *
4124 * Returns: %TRUE if the key was found and removed
4125 *
4126 * Since: 2.40
4127 **/
4128 gboolean
g_variant_dict_remove(GVariantDict * dict,const gchar * key)4129 g_variant_dict_remove (GVariantDict *dict,
4130 const gchar *key)
4131 {
4132 g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
4133 g_return_val_if_fail (key != NULL, FALSE);
4134
4135 return g_hash_table_remove (GVSD(dict)->values, key);
4136 }
4137
4138 /**
4139 * g_variant_dict_clear:
4140 * @dict: a #GVariantDict
4141 *
4142 * Releases all memory associated with a #GVariantDict without freeing
4143 * the #GVariantDict structure itself.
4144 *
4145 * It typically only makes sense to do this on a stack-allocated
4146 * #GVariantDict if you want to abort building the value part-way
4147 * through. This function need not be called if you call
4148 * g_variant_dict_end() and it also doesn't need to be called on dicts
4149 * allocated with g_variant_dict_new (see g_variant_dict_unref() for
4150 * that).
4151 *
4152 * It is valid to call this function on either an initialised
4153 * #GVariantDict or one that was previously cleared by an earlier call
4154 * to g_variant_dict_clear() but it is not valid to call this function
4155 * on uninitialised memory.
4156 *
4157 * Since: 2.40
4158 **/
4159 void
g_variant_dict_clear(GVariantDict * dict)4160 g_variant_dict_clear (GVariantDict *dict)
4161 {
4162 if (GVSD(dict)->magic == 0)
4163 /* all-zeros case */
4164 return;
4165
4166 g_return_if_fail (ensure_valid_dict (dict));
4167
4168 g_hash_table_unref (GVSD(dict)->values);
4169 GVSD(dict)->values = NULL;
4170
4171 GVSD(dict)->magic = 0;
4172 }
4173
4174 /**
4175 * g_variant_dict_end:
4176 * @dict: a #GVariantDict
4177 *
4178 * Returns the current value of @dict as a #GVariant of type
4179 * %G_VARIANT_TYPE_VARDICT, clearing it in the process.
4180 *
4181 * It is not permissible to use @dict in any way after this call except
4182 * for reference counting operations (in the case of a heap-allocated
4183 * #GVariantDict) or by reinitialising it with g_variant_dict_init() (in
4184 * the case of stack-allocated).
4185 *
4186 * Returns: (transfer none): a new, floating, #GVariant
4187 *
4188 * Since: 2.40
4189 **/
4190 GVariant *
g_variant_dict_end(GVariantDict * dict)4191 g_variant_dict_end (GVariantDict *dict)
4192 {
4193 GVariantBuilder builder;
4194 GHashTableIter iter;
4195 gpointer key, value;
4196
4197 g_return_val_if_fail (ensure_valid_dict (dict), NULL);
4198
4199 g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
4200
4201 g_hash_table_iter_init (&iter, GVSD(dict)->values);
4202 while (g_hash_table_iter_next (&iter, &key, &value))
4203 g_variant_builder_add (&builder, "{sv}", (const gchar *) key, (GVariant *) value);
4204
4205 g_variant_dict_clear (dict);
4206
4207 return g_variant_builder_end (&builder);
4208 }
4209
4210 /**
4211 * g_variant_dict_ref:
4212 * @dict: a heap-allocated #GVariantDict
4213 *
4214 * Increases the reference count on @dict.
4215 *
4216 * Don't call this on stack-allocated #GVariantDict instances or bad
4217 * things will happen.
4218 *
4219 * Returns: (transfer full): a new reference to @dict
4220 *
4221 * Since: 2.40
4222 **/
4223 GVariantDict *
g_variant_dict_ref(GVariantDict * dict)4224 g_variant_dict_ref (GVariantDict *dict)
4225 {
4226 g_return_val_if_fail (is_valid_heap_dict (dict), NULL);
4227
4228 GVHD(dict)->ref_count++;
4229
4230 return dict;
4231 }
4232
4233 /**
4234 * g_variant_dict_unref:
4235 * @dict: (transfer full): a heap-allocated #GVariantDict
4236 *
4237 * Decreases the reference count on @dict.
4238 *
4239 * In the event that there are no more references, releases all memory
4240 * associated with the #GVariantDict.
4241 *
4242 * Don't call this on stack-allocated #GVariantDict instances or bad
4243 * things will happen.
4244 *
4245 * Since: 2.40
4246 **/
4247 void
g_variant_dict_unref(GVariantDict * dict)4248 g_variant_dict_unref (GVariantDict *dict)
4249 {
4250 g_return_if_fail (is_valid_heap_dict (dict));
4251
4252 if (--GVHD(dict)->ref_count == 0)
4253 {
4254 g_variant_dict_clear (dict);
4255 g_slice_free (struct heap_dict, (struct heap_dict *) dict);
4256 }
4257 }
4258
4259
4260 /* Format strings {{{1 */
4261 /*< private >
4262 * g_variant_format_string_scan:
4263 * @string: a string that may be prefixed with a format string
4264 * @limit: (nullable) (default NULL): a pointer to the end of @string,
4265 * or %NULL
4266 * @endptr: (nullable) (default NULL): location to store the end pointer,
4267 * or %NULL
4268 *
4269 * Checks the string pointed to by @string for starting with a properly
4270 * formed #GVariant varargs format string. If no valid format string is
4271 * found then %FALSE is returned.
4272 *
4273 * If @string does start with a valid format string then %TRUE is
4274 * returned. If @endptr is non-%NULL then it is updated to point to the
4275 * first character after the format string.
4276 *
4277 * If @limit is non-%NULL then @limit (and any character after it) will
4278 * not be accessed and the effect is otherwise equivalent to if the
4279 * character at @limit were nul.
4280 *
4281 * See the section on [GVariant format strings][gvariant-format-strings].
4282 *
4283 * Returns: %TRUE if there was a valid format string
4284 *
4285 * Since: 2.24
4286 */
4287 gboolean
g_variant_format_string_scan(const gchar * string,const gchar * limit,const gchar ** endptr)4288 g_variant_format_string_scan (const gchar *string,
4289 const gchar *limit,
4290 const gchar **endptr)
4291 {
4292 #define next_char() (string == limit ? '\0' : *(string++))
4293 #define peek_char() (string == limit ? '\0' : *string)
4294 char c;
4295
4296 switch (next_char())
4297 {
4298 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
4299 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
4300 case 'g': case 'v': case '*': case '?': case 'r':
4301 break;
4302
4303 case 'm':
4304 return g_variant_format_string_scan (string, limit, endptr);
4305
4306 case 'a':
4307 case '@':
4308 return g_variant_type_string_scan (string, limit, endptr);
4309
4310 case '(':
4311 while (peek_char() != ')')
4312 if (!g_variant_format_string_scan (string, limit, &string))
4313 return FALSE;
4314
4315 next_char(); /* consume ')' */
4316 break;
4317
4318 case '{':
4319 c = next_char();
4320
4321 if (c == '&')
4322 {
4323 c = next_char ();
4324
4325 if (c != 's' && c != 'o' && c != 'g')
4326 return FALSE;
4327 }
4328 else
4329 {
4330 if (c == '@')
4331 c = next_char ();
4332
4333 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
4334 * The terminating null character is considered to be
4335 * part of the string.
4336 */
4337 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
4338 return FALSE;
4339 }
4340
4341 if (!g_variant_format_string_scan (string, limit, &string))
4342 return FALSE;
4343
4344 if (next_char() != '}')
4345 return FALSE;
4346
4347 break;
4348
4349 case '^':
4350 if ((c = next_char()) == 'a')
4351 {
4352 if ((c = next_char()) == '&')
4353 {
4354 if ((c = next_char()) == 'a')
4355 {
4356 if ((c = next_char()) == 'y')
4357 break; /* '^a&ay' */
4358 }
4359
4360 else if (c == 's' || c == 'o')
4361 break; /* '^a&s', '^a&o' */
4362 }
4363
4364 else if (c == 'a')
4365 {
4366 if ((c = next_char()) == 'y')
4367 break; /* '^aay' */
4368 }
4369
4370 else if (c == 's' || c == 'o')
4371 break; /* '^as', '^ao' */
4372
4373 else if (c == 'y')
4374 break; /* '^ay' */
4375 }
4376 else if (c == '&')
4377 {
4378 if ((c = next_char()) == 'a')
4379 {
4380 if ((c = next_char()) == 'y')
4381 break; /* '^&ay' */
4382 }
4383 }
4384
4385 return FALSE;
4386
4387 case '&':
4388 c = next_char();
4389
4390 if (c != 's' && c != 'o' && c != 'g')
4391 return FALSE;
4392
4393 break;
4394
4395 default:
4396 return FALSE;
4397 }
4398
4399 if (endptr != NULL)
4400 *endptr = string;
4401
4402 #undef next_char
4403 #undef peek_char
4404
4405 return TRUE;
4406 }
4407
4408 /**
4409 * g_variant_check_format_string:
4410 * @value: a #GVariant
4411 * @format_string: a valid #GVariant format string
4412 * @copy_only: %TRUE to ensure the format string makes deep copies
4413 *
4414 * Checks if calling g_variant_get() with @format_string on @value would
4415 * be valid from a type-compatibility standpoint. @format_string is
4416 * assumed to be a valid format string (from a syntactic standpoint).
4417 *
4418 * If @copy_only is %TRUE then this function additionally checks that it
4419 * would be safe to call g_variant_unref() on @value immediately after
4420 * the call to g_variant_get() without invalidating the result. This is
4421 * only possible if deep copies are made (ie: there are no pointers to
4422 * the data inside of the soon-to-be-freed #GVariant instance). If this
4423 * check fails then a g_critical() is printed and %FALSE is returned.
4424 *
4425 * This function is meant to be used by functions that wish to provide
4426 * varargs accessors to #GVariant values of uncertain values (eg:
4427 * g_variant_lookup() or g_menu_model_get_item_attribute()).
4428 *
4429 * Returns: %TRUE if @format_string is safe to use
4430 *
4431 * Since: 2.34
4432 */
4433 gboolean
g_variant_check_format_string(GVariant * value,const gchar * format_string,gboolean copy_only)4434 g_variant_check_format_string (GVariant *value,
4435 const gchar *format_string,
4436 gboolean copy_only)
4437 {
4438 const gchar *original_format = format_string;
4439 const gchar *type_string;
4440
4441 /* Interesting factoid: assuming a format string is valid, it can be
4442 * converted to a type string by removing all '@' '&' and '^'
4443 * characters.
4444 *
4445 * Instead of doing that, we can just skip those characters when
4446 * comparing it to the type string of @value.
4447 *
4448 * For the copy-only case we can just drop the '&' from the list of
4449 * characters to skip over. A '&' will never appear in a type string
4450 * so we know that it won't be possible to return %TRUE if it is in a
4451 * format string.
4452 */
4453 type_string = g_variant_get_type_string (value);
4454
4455 while (*type_string || *format_string)
4456 {
4457 gchar format = *format_string++;
4458
4459 switch (format)
4460 {
4461 case '&':
4462 if G_UNLIKELY (copy_only)
4463 {
4464 /* for the love of all that is good, please don't mark this string for translation... */
4465 g_critical ("g_variant_check_format_string() is being called by a function with a GVariant varargs "
4466 "interface to validate the passed format string for type safety. The passed format "
4467 "(%s) contains a '&' character which would result in a pointer being returned to the "
4468 "data inside of a GVariant instance that may no longer exist by the time the function "
4469 "returns. Modify your code to use a format string without '&'.", original_format);
4470 return FALSE;
4471 }
4472
4473 G_GNUC_FALLTHROUGH;
4474 case '^':
4475 case '@':
4476 /* ignore these 2 (or 3) */
4477 continue;
4478
4479 case '?':
4480 /* attempt to consume one of 'bynqiuxthdsog' */
4481 {
4482 char s = *type_string++;
4483
4484 if (s == '\0' || strchr ("bynqiuxthdsog", s) == NULL)
4485 return FALSE;
4486 }
4487 continue;
4488
4489 case 'r':
4490 /* ensure it's a tuple */
4491 if (*type_string != '(')
4492 return FALSE;
4493
4494 G_GNUC_FALLTHROUGH;
4495 case '*':
4496 /* consume a full type string for the '*' or 'r' */
4497 if (!g_variant_type_string_scan (type_string, NULL, &type_string))
4498 return FALSE;
4499
4500 continue;
4501
4502 default:
4503 /* attempt to consume exactly one character equal to the format */
4504 if (format != *type_string++)
4505 return FALSE;
4506 }
4507 }
4508
4509 return TRUE;
4510 }
4511
4512 /*< private >
4513 * g_variant_format_string_scan_type:
4514 * @string: a string that may be prefixed with a format string
4515 * @limit: (nullable) (default NULL): a pointer to the end of @string,
4516 * or %NULL
4517 * @endptr: (nullable) (default NULL): location to store the end pointer,
4518 * or %NULL
4519 *
4520 * If @string starts with a valid format string then this function will
4521 * return the type that the format string corresponds to. Otherwise
4522 * this function returns %NULL.
4523 *
4524 * Use g_variant_type_free() to free the return value when you no longer
4525 * need it.
4526 *
4527 * This function is otherwise exactly like
4528 * g_variant_format_string_scan().
4529 *
4530 * Returns: (nullable): a #GVariantType if there was a valid format string
4531 *
4532 * Since: 2.24
4533 */
4534 GVariantType *
g_variant_format_string_scan_type(const gchar * string,const gchar * limit,const gchar ** endptr)4535 g_variant_format_string_scan_type (const gchar *string,
4536 const gchar *limit,
4537 const gchar **endptr)
4538 {
4539 const gchar *my_end;
4540 gchar *dest;
4541 gchar *new;
4542
4543 if (endptr == NULL)
4544 endptr = &my_end;
4545
4546 if (!g_variant_format_string_scan (string, limit, endptr))
4547 return NULL;
4548
4549 dest = new = g_malloc (*endptr - string + 1);
4550 while (string != *endptr)
4551 {
4552 if (*string != '@' && *string != '&' && *string != '^')
4553 *dest++ = *string;
4554 string++;
4555 }
4556 *dest = '\0';
4557
4558 return (GVariantType *) G_VARIANT_TYPE (new);
4559 }
4560
4561 static gboolean
valid_format_string(const gchar * format_string,gboolean single,GVariant * value)4562 valid_format_string (const gchar *format_string,
4563 gboolean single,
4564 GVariant *value)
4565 {
4566 const gchar *endptr;
4567 GVariantType *type;
4568
4569 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
4570
4571 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
4572 {
4573 if (single)
4574 g_critical ("'%s' is not a valid GVariant format string",
4575 format_string);
4576 else
4577 g_critical ("'%s' does not have a valid GVariant format "
4578 "string as a prefix", format_string);
4579
4580 if (type != NULL)
4581 g_variant_type_free (type);
4582
4583 return FALSE;
4584 }
4585
4586 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
4587 {
4588 gchar *fragment;
4589 gchar *typestr;
4590
4591 fragment = g_strndup (format_string, endptr - format_string);
4592 typestr = g_variant_type_dup_string (type);
4593
4594 g_critical ("the GVariant format string '%s' has a type of "
4595 "'%s' but the given value has a type of '%s'",
4596 fragment, typestr, g_variant_get_type_string (value));
4597
4598 g_variant_type_free (type);
4599 g_free (fragment);
4600 g_free (typestr);
4601
4602 return FALSE;
4603 }
4604
4605 g_variant_type_free (type);
4606
4607 return TRUE;
4608 }
4609
4610 /* Variable Arguments {{{1 */
4611 /* We consider 2 main classes of format strings:
4612 *
4613 * - recursive format strings
4614 * these are ones that result in recursion and the collection of
4615 * possibly more than one argument. Maybe types, tuples,
4616 * dictionary entries.
4617 *
4618 * - leaf format string
4619 * these result in the collection of a single argument.
4620 *
4621 * Leaf format strings are further subdivided into two categories:
4622 *
4623 * - single non-null pointer ("nnp")
4624 * these either collect or return a single non-null pointer.
4625 *
4626 * - other
4627 * these collect or return something else (bool, number, etc).
4628 *
4629 * Based on the above, the varargs handling code is split into 4 main parts:
4630 *
4631 * - nnp handling code
4632 * - leaf handling code (which may invoke nnp code)
4633 * - generic handling code (may be recursive, may invoke leaf code)
4634 * - user-facing API (which invokes the generic code)
4635 *
4636 * Each section implements some of the following functions:
4637 *
4638 * - skip:
4639 * collect the arguments for the format string as if
4640 * g_variant_new() had been called, but do nothing with them. used
4641 * for skipping over arguments when constructing a Nothing maybe
4642 * type.
4643 *
4644 * - new:
4645 * create a GVariant *
4646 *
4647 * - get:
4648 * unpack a GVariant *
4649 *
4650 * - free (nnp only):
4651 * free a previously allocated item
4652 */
4653
4654 static gboolean
g_variant_format_string_is_leaf(const gchar * str)4655 g_variant_format_string_is_leaf (const gchar *str)
4656 {
4657 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
4658 }
4659
4660 static gboolean
g_variant_format_string_is_nnp(const gchar * str)4661 g_variant_format_string_is_nnp (const gchar *str)
4662 {
4663 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
4664 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
4665 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
4666 }
4667
4668 /* Single non-null pointer ("nnp") {{{2 */
4669 static void
g_variant_valist_free_nnp(const gchar * str,gpointer ptr)4670 g_variant_valist_free_nnp (const gchar *str,
4671 gpointer ptr)
4672 {
4673 switch (*str)
4674 {
4675 case 'a':
4676 g_variant_iter_free (ptr);
4677 break;
4678
4679 case '^':
4680 if (g_str_has_suffix (str, "y"))
4681 {
4682 if (str[2] != 'a') /* '^a&ay', '^ay' */
4683 g_free (ptr);
4684 else if (str[1] == 'a') /* '^aay' */
4685 g_strfreev (ptr);
4686 break; /* '^&ay' */
4687 }
4688 else if (str[2] != '&') /* '^as', '^ao' */
4689 g_strfreev (ptr);
4690 else /* '^a&s', '^a&o' */
4691 g_free (ptr);
4692 break;
4693
4694 case 's':
4695 case 'o':
4696 case 'g':
4697 g_free (ptr);
4698 break;
4699
4700 case '@':
4701 case '*':
4702 case '?':
4703 case 'v':
4704 g_variant_unref (ptr);
4705 break;
4706
4707 case '&':
4708 break;
4709
4710 default:
4711 g_assert_not_reached ();
4712 }
4713 }
4714
4715 static gchar
g_variant_scan_convenience(const gchar ** str,gboolean * constant,guint * arrays)4716 g_variant_scan_convenience (const gchar **str,
4717 gboolean *constant,
4718 guint *arrays)
4719 {
4720 *constant = FALSE;
4721 *arrays = 0;
4722
4723 for (;;)
4724 {
4725 char c = *(*str)++;
4726
4727 if (c == '&')
4728 *constant = TRUE;
4729
4730 else if (c == 'a')
4731 (*arrays)++;
4732
4733 else
4734 return c;
4735 }
4736 }
4737
4738 static GVariant *
g_variant_valist_new_nnp(const gchar ** str,gpointer ptr)4739 g_variant_valist_new_nnp (const gchar **str,
4740 gpointer ptr)
4741 {
4742 if (**str == '&')
4743 (*str)++;
4744
4745 switch (*(*str)++)
4746 {
4747 case 'a':
4748 if (ptr != NULL)
4749 {
4750 const GVariantType *type;
4751 GVariant *value;
4752
4753 value = g_variant_builder_end (ptr);
4754 type = g_variant_get_type (value);
4755
4756 if G_UNLIKELY (!g_variant_type_is_array (type))
4757 g_error ("g_variant_new: expected array GVariantBuilder but "
4758 "the built value has type '%s'",
4759 g_variant_get_type_string (value));
4760
4761 type = g_variant_type_element (type);
4762
4763 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
4764 {
4765 gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4766 g_error ("g_variant_new: expected GVariantBuilder array element "
4767 "type '%s' but the built value has element type '%s'",
4768 type_string, g_variant_get_type_string (value) + 1);
4769 g_free (type_string);
4770 }
4771
4772 g_variant_type_string_scan (*str, NULL, str);
4773
4774 return value;
4775 }
4776 else
4777
4778 /* special case: NULL pointer for empty array */
4779 {
4780 const GVariantType *type = (GVariantType *) *str;
4781
4782 g_variant_type_string_scan (*str, NULL, str);
4783
4784 if G_UNLIKELY (!g_variant_type_is_definite (type))
4785 g_error ("g_variant_new: NULL pointer given with indefinite "
4786 "array type; unable to determine which type of empty "
4787 "array to construct.");
4788
4789 return g_variant_new_array (type, NULL, 0);
4790 }
4791
4792 case 's':
4793 {
4794 GVariant *value;
4795
4796 value = g_variant_new_string (ptr);
4797
4798 if (value == NULL)
4799 value = g_variant_new_string ("[Invalid UTF-8]");
4800
4801 return value;
4802 }
4803
4804 case 'o':
4805 return g_variant_new_object_path (ptr);
4806
4807 case 'g':
4808 return g_variant_new_signature (ptr);
4809
4810 case '^':
4811 {
4812 gboolean constant;
4813 guint arrays;
4814 gchar type;
4815
4816 type = g_variant_scan_convenience (str, &constant, &arrays);
4817
4818 if (type == 's')
4819 return g_variant_new_strv (ptr, -1);
4820
4821 if (type == 'o')
4822 return g_variant_new_objv (ptr, -1);
4823
4824 if (arrays > 1)
4825 return g_variant_new_bytestring_array (ptr, -1);
4826
4827 return g_variant_new_bytestring (ptr);
4828 }
4829
4830 case '@':
4831 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
4832 {
4833 gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4834 g_error ("g_variant_new: expected GVariant of type '%s' but "
4835 "received value has type '%s'",
4836 type_string, g_variant_get_type_string (ptr));
4837 g_free (type_string);
4838 }
4839
4840 g_variant_type_string_scan (*str, NULL, str);
4841
4842 return ptr;
4843
4844 case '*':
4845 return ptr;
4846
4847 case '?':
4848 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
4849 g_error ("g_variant_new: format string '?' expects basic-typed "
4850 "GVariant, but received value has type '%s'",
4851 g_variant_get_type_string (ptr));
4852
4853 return ptr;
4854
4855 case 'r':
4856 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
4857 g_error ("g_variant_new: format string 'r' expects tuple-typed "
4858 "GVariant, but received value has type '%s'",
4859 g_variant_get_type_string (ptr));
4860
4861 return ptr;
4862
4863 case 'v':
4864 return g_variant_new_variant (ptr);
4865
4866 default:
4867 g_assert_not_reached ();
4868 }
4869 }
4870
4871 static gpointer
g_variant_valist_get_nnp(const gchar ** str,GVariant * value)4872 g_variant_valist_get_nnp (const gchar **str,
4873 GVariant *value)
4874 {
4875 switch (*(*str)++)
4876 {
4877 case 'a':
4878 g_variant_type_string_scan (*str, NULL, str);
4879 return g_variant_iter_new (value);
4880
4881 case '&':
4882 (*str)++;
4883 return (gchar *) g_variant_get_string (value, NULL);
4884
4885 case 's':
4886 case 'o':
4887 case 'g':
4888 return g_variant_dup_string (value, NULL);
4889
4890 case '^':
4891 {
4892 gboolean constant;
4893 guint arrays;
4894 gchar type;
4895
4896 type = g_variant_scan_convenience (str, &constant, &arrays);
4897
4898 if (type == 's')
4899 {
4900 if (constant)
4901 return g_variant_get_strv (value, NULL);
4902 else
4903 return g_variant_dup_strv (value, NULL);
4904 }
4905
4906 else if (type == 'o')
4907 {
4908 if (constant)
4909 return g_variant_get_objv (value, NULL);
4910 else
4911 return g_variant_dup_objv (value, NULL);
4912 }
4913
4914 else if (arrays > 1)
4915 {
4916 if (constant)
4917 return g_variant_get_bytestring_array (value, NULL);
4918 else
4919 return g_variant_dup_bytestring_array (value, NULL);
4920 }
4921
4922 else
4923 {
4924 if (constant)
4925 return (gchar *) g_variant_get_bytestring (value);
4926 else
4927 return g_variant_dup_bytestring (value, NULL);
4928 }
4929 }
4930
4931 case '@':
4932 g_variant_type_string_scan (*str, NULL, str);
4933 G_GNUC_FALLTHROUGH;
4934
4935 case '*':
4936 case '?':
4937 case 'r':
4938 return g_variant_ref (value);
4939
4940 case 'v':
4941 return g_variant_get_variant (value);
4942
4943 default:
4944 g_assert_not_reached ();
4945 }
4946 }
4947
4948 /* Leaves {{{2 */
4949 static void
g_variant_valist_skip_leaf(const gchar ** str,va_list * app)4950 g_variant_valist_skip_leaf (const gchar **str,
4951 va_list *app)
4952 {
4953 if (g_variant_format_string_is_nnp (*str))
4954 {
4955 g_variant_format_string_scan (*str, NULL, str);
4956 va_arg (*app, gpointer);
4957 return;
4958 }
4959
4960 switch (*(*str)++)
4961 {
4962 case 'b':
4963 case 'y':
4964 case 'n':
4965 case 'q':
4966 case 'i':
4967 case 'u':
4968 case 'h':
4969 va_arg (*app, int);
4970 return;
4971
4972 case 'x':
4973 case 't':
4974 va_arg (*app, guint64);
4975 return;
4976
4977 case 'd':
4978 va_arg (*app, gdouble);
4979 return;
4980
4981 default:
4982 g_assert_not_reached ();
4983 }
4984 }
4985
4986 static GVariant *
g_variant_valist_new_leaf(const gchar ** str,va_list * app)4987 g_variant_valist_new_leaf (const gchar **str,
4988 va_list *app)
4989 {
4990 if (g_variant_format_string_is_nnp (*str))
4991 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
4992
4993 switch (*(*str)++)
4994 {
4995 case 'b':
4996 return g_variant_new_boolean (va_arg (*app, gboolean));
4997
4998 case 'y':
4999 return g_variant_new_byte (va_arg (*app, guint));
5000
5001 case 'n':
5002 return g_variant_new_int16 (va_arg (*app, gint));
5003
5004 case 'q':
5005 return g_variant_new_uint16 (va_arg (*app, guint));
5006
5007 case 'i':
5008 return g_variant_new_int32 (va_arg (*app, gint));
5009
5010 case 'u':
5011 return g_variant_new_uint32 (va_arg (*app, guint));
5012
5013 case 'x':
5014 return g_variant_new_int64 (va_arg (*app, gint64));
5015
5016 case 't':
5017 return g_variant_new_uint64 (va_arg (*app, guint64));
5018
5019 case 'h':
5020 return g_variant_new_handle (va_arg (*app, gint));
5021
5022 case 'd':
5023 return g_variant_new_double (va_arg (*app, gdouble));
5024
5025 default:
5026 g_assert_not_reached ();
5027 }
5028 }
5029
5030 /* The code below assumes this */
5031 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
5032 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
5033
5034 static void
g_variant_valist_get_leaf(const gchar ** str,GVariant * value,gboolean free,va_list * app)5035 g_variant_valist_get_leaf (const gchar **str,
5036 GVariant *value,
5037 gboolean free,
5038 va_list *app)
5039 {
5040 gpointer ptr = va_arg (*app, gpointer);
5041
5042 if (ptr == NULL)
5043 {
5044 g_variant_format_string_scan (*str, NULL, str);
5045 return;
5046 }
5047
5048 if (g_variant_format_string_is_nnp (*str))
5049 {
5050 gpointer *nnp = (gpointer *) ptr;
5051
5052 if (free && *nnp != NULL)
5053 g_variant_valist_free_nnp (*str, *nnp);
5054
5055 *nnp = NULL;
5056
5057 if (value != NULL)
5058 *nnp = g_variant_valist_get_nnp (str, value);
5059 else
5060 g_variant_format_string_scan (*str, NULL, str);
5061
5062 return;
5063 }
5064
5065 if (value != NULL)
5066 {
5067 switch (*(*str)++)
5068 {
5069 case 'b':
5070 *(gboolean *) ptr = g_variant_get_boolean (value);
5071 return;
5072
5073 case 'y':
5074 *(guint8 *) ptr = g_variant_get_byte (value);
5075 return;
5076
5077 case 'n':
5078 *(gint16 *) ptr = g_variant_get_int16 (value);
5079 return;
5080
5081 case 'q':
5082 *(guint16 *) ptr = g_variant_get_uint16 (value);
5083 return;
5084
5085 case 'i':
5086 *(gint32 *) ptr = g_variant_get_int32 (value);
5087 return;
5088
5089 case 'u':
5090 *(guint32 *) ptr = g_variant_get_uint32 (value);
5091 return;
5092
5093 case 'x':
5094 *(gint64 *) ptr = g_variant_get_int64 (value);
5095 return;
5096
5097 case 't':
5098 *(guint64 *) ptr = g_variant_get_uint64 (value);
5099 return;
5100
5101 case 'h':
5102 *(gint32 *) ptr = g_variant_get_handle (value);
5103 return;
5104
5105 case 'd':
5106 *(gdouble *) ptr = g_variant_get_double (value);
5107 return;
5108 }
5109 }
5110 else
5111 {
5112 switch (*(*str)++)
5113 {
5114 case 'y':
5115 *(guint8 *) ptr = 0;
5116 return;
5117
5118 case 'n':
5119 case 'q':
5120 *(guint16 *) ptr = 0;
5121 return;
5122
5123 case 'i':
5124 case 'u':
5125 case 'h':
5126 case 'b':
5127 *(guint32 *) ptr = 0;
5128 return;
5129
5130 case 'x':
5131 case 't':
5132 case 'd':
5133 *(guint64 *) ptr = 0;
5134 return;
5135 }
5136 }
5137
5138 g_assert_not_reached ();
5139 }
5140
5141 /* Generic (recursive) {{{2 */
5142 static void
g_variant_valist_skip(const gchar ** str,va_list * app)5143 g_variant_valist_skip (const gchar **str,
5144 va_list *app)
5145 {
5146 if (g_variant_format_string_is_leaf (*str))
5147 g_variant_valist_skip_leaf (str, app);
5148
5149 else if (**str == 'm') /* maybe */
5150 {
5151 (*str)++;
5152
5153 if (!g_variant_format_string_is_nnp (*str))
5154 va_arg (*app, gboolean);
5155
5156 g_variant_valist_skip (str, app);
5157 }
5158 else /* tuple, dictionary entry */
5159 {
5160 g_assert (**str == '(' || **str == '{');
5161 (*str)++;
5162 while (**str != ')' && **str != '}')
5163 g_variant_valist_skip (str, app);
5164 (*str)++;
5165 }
5166 }
5167
5168 static GVariant *
g_variant_valist_new(const gchar ** str,va_list * app)5169 g_variant_valist_new (const gchar **str,
5170 va_list *app)
5171 {
5172 if (g_variant_format_string_is_leaf (*str))
5173 return g_variant_valist_new_leaf (str, app);
5174
5175 if (**str == 'm') /* maybe */
5176 {
5177 GVariantType *type = NULL;
5178 GVariant *value = NULL;
5179
5180 (*str)++;
5181
5182 if (g_variant_format_string_is_nnp (*str))
5183 {
5184 gpointer nnp = va_arg (*app, gpointer);
5185
5186 if (nnp != NULL)
5187 value = g_variant_valist_new_nnp (str, nnp);
5188 else
5189 type = g_variant_format_string_scan_type (*str, NULL, str);
5190 }
5191 else
5192 {
5193 gboolean just = va_arg (*app, gboolean);
5194
5195 if (just)
5196 value = g_variant_valist_new (str, app);
5197 else
5198 {
5199 type = g_variant_format_string_scan_type (*str, NULL, NULL);
5200 g_variant_valist_skip (str, app);
5201 }
5202 }
5203
5204 value = g_variant_new_maybe (type, value);
5205
5206 if (type != NULL)
5207 g_variant_type_free (type);
5208
5209 return value;
5210 }
5211 else /* tuple, dictionary entry */
5212 {
5213 GVariantBuilder b;
5214
5215 if (**str == '(')
5216 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
5217 else
5218 {
5219 g_assert (**str == '{');
5220 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
5221 }
5222
5223 (*str)++; /* '(' */
5224 while (**str != ')' && **str != '}')
5225 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
5226 (*str)++; /* ')' */
5227
5228 return g_variant_builder_end (&b);
5229 }
5230 }
5231
5232 static void
g_variant_valist_get(const gchar ** str,GVariant * value,gboolean free,va_list * app)5233 g_variant_valist_get (const gchar **str,
5234 GVariant *value,
5235 gboolean free,
5236 va_list *app)
5237 {
5238 if (g_variant_format_string_is_leaf (*str))
5239 g_variant_valist_get_leaf (str, value, free, app);
5240
5241 else if (**str == 'm')
5242 {
5243 (*str)++;
5244
5245 if (value != NULL)
5246 value = g_variant_get_maybe (value);
5247
5248 if (!g_variant_format_string_is_nnp (*str))
5249 {
5250 gboolean *ptr = va_arg (*app, gboolean *);
5251
5252 if (ptr != NULL)
5253 *ptr = value != NULL;
5254 }
5255
5256 g_variant_valist_get (str, value, free, app);
5257
5258 if (value != NULL)
5259 g_variant_unref (value);
5260 }
5261
5262 else /* tuple, dictionary entry */
5263 {
5264 gint index = 0;
5265
5266 g_assert (**str == '(' || **str == '{');
5267
5268 (*str)++;
5269 while (**str != ')' && **str != '}')
5270 {
5271 if (value != NULL)
5272 {
5273 GVariant *child = g_variant_get_child_value (value, index++);
5274 g_variant_valist_get (str, child, free, app);
5275 g_variant_unref (child);
5276 }
5277 else
5278 g_variant_valist_get (str, NULL, free, app);
5279 }
5280 (*str)++;
5281 }
5282 }
5283
5284 /* User-facing API {{{2 */
5285 /**
5286 * g_variant_new: (skip)
5287 * @format_string: a #GVariant format string
5288 * @...: arguments, as per @format_string
5289 *
5290 * Creates a new #GVariant instance.
5291 *
5292 * Think of this function as an analogue to g_strdup_printf().
5293 *
5294 * The type of the created instance and the arguments that are expected
5295 * by this function are determined by @format_string. See the section on
5296 * [GVariant format strings][gvariant-format-strings]. Please note that
5297 * the syntax of the format string is very likely to be extended in the
5298 * future.
5299 *
5300 * The first character of the format string must not be '*' '?' '@' or
5301 * 'r'; in essence, a new #GVariant must always be constructed by this
5302 * function (and not merely passed through it unmodified).
5303 *
5304 * Note that the arguments must be of the correct width for their types
5305 * specified in @format_string. This can be achieved by casting them. See
5306 * the [GVariant varargs documentation][gvariant-varargs].
5307 *
5308 * |[<!-- language="C" -->
5309 * MyFlags some_flags = FLAG_ONE | FLAG_TWO;
5310 * const gchar *some_strings[] = { "a", "b", "c", NULL };
5311 * GVariant *new_variant;
5312 *
5313 * new_variant = g_variant_new ("(t^as)",
5314 * // This cast is required.
5315 * (guint64) some_flags,
5316 * some_strings);
5317 * ]|
5318 *
5319 * Returns: a new floating #GVariant instance
5320 *
5321 * Since: 2.24
5322 **/
5323 GVariant *
g_variant_new(const gchar * format_string,...)5324 g_variant_new (const gchar *format_string,
5325 ...)
5326 {
5327 GVariant *value;
5328 va_list ap;
5329
5330 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
5331 format_string[0] != '?' && format_string[0] != '@' &&
5332 format_string[0] != '*' && format_string[0] != 'r',
5333 NULL);
5334
5335 va_start (ap, format_string);
5336 value = g_variant_new_va (format_string, NULL, &ap);
5337 va_end (ap);
5338
5339 return value;
5340 }
5341
5342 /**
5343 * g_variant_new_va: (skip)
5344 * @format_string: a string that is prefixed with a format string
5345 * @endptr: (nullable) (default NULL): location to store the end pointer,
5346 * or %NULL
5347 * @app: a pointer to a #va_list
5348 *
5349 * This function is intended to be used by libraries based on
5350 * #GVariant that want to provide g_variant_new()-like functionality
5351 * to their users.
5352 *
5353 * The API is more general than g_variant_new() to allow a wider range
5354 * of possible uses.
5355 *
5356 * @format_string must still point to a valid format string, but it only
5357 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
5358 * non-%NULL then it is updated to point to the first character past the
5359 * end of the format string.
5360 *
5361 * @app is a pointer to a #va_list. The arguments, according to
5362 * @format_string, are collected from this #va_list and the list is left
5363 * pointing to the argument following the last.
5364 *
5365 * Note that the arguments in @app must be of the correct width for their
5366 * types specified in @format_string when collected into the #va_list.
5367 * See the [GVariant varargs documentation][gvariant-varargs].
5368 *
5369 * These two generalisations allow mixing of multiple calls to
5370 * g_variant_new_va() and g_variant_get_va() within a single actual
5371 * varargs call by the user.
5372 *
5373 * The return value will be floating if it was a newly created GVariant
5374 * instance (for example, if the format string was "(ii)"). In the case
5375 * that the format_string was '*', '?', 'r', or a format starting with
5376 * '@' then the collected #GVariant pointer will be returned unmodified,
5377 * without adding any additional references.
5378 *
5379 * In order to behave correctly in all cases it is necessary for the
5380 * calling function to g_variant_ref_sink() the return result before
5381 * returning control to the user that originally provided the pointer.
5382 * At this point, the caller will have their own full reference to the
5383 * result. This can also be done by adding the result to a container,
5384 * or by passing it to another g_variant_new() call.
5385 *
5386 * Returns: a new, usually floating, #GVariant
5387 *
5388 * Since: 2.24
5389 **/
5390 GVariant *
g_variant_new_va(const gchar * format_string,const gchar ** endptr,va_list * app)5391 g_variant_new_va (const gchar *format_string,
5392 const gchar **endptr,
5393 va_list *app)
5394 {
5395 GVariant *value;
5396
5397 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
5398 NULL);
5399 g_return_val_if_fail (app != NULL, NULL);
5400
5401 value = g_variant_valist_new (&format_string, app);
5402
5403 if (endptr != NULL)
5404 *endptr = format_string;
5405
5406 return value;
5407 }
5408
5409 /**
5410 * g_variant_get: (skip)
5411 * @value: a #GVariant instance
5412 * @format_string: a #GVariant format string
5413 * @...: arguments, as per @format_string
5414 *
5415 * Deconstructs a #GVariant instance.
5416 *
5417 * Think of this function as an analogue to scanf().
5418 *
5419 * The arguments that are expected by this function are entirely
5420 * determined by @format_string. @format_string also restricts the
5421 * permissible types of @value. It is an error to give a value with
5422 * an incompatible type. See the section on
5423 * [GVariant format strings][gvariant-format-strings].
5424 * Please note that the syntax of the format string is very likely to be
5425 * extended in the future.
5426 *
5427 * @format_string determines the C types that are used for unpacking
5428 * the values and also determines if the values are copied or borrowed,
5429 * see the section on
5430 * [GVariant format strings][gvariant-format-strings-pointers].
5431 *
5432 * Since: 2.24
5433 **/
5434 void
g_variant_get(GVariant * value,const gchar * format_string,...)5435 g_variant_get (GVariant *value,
5436 const gchar *format_string,
5437 ...)
5438 {
5439 va_list ap;
5440
5441 g_return_if_fail (value != NULL);
5442 g_return_if_fail (valid_format_string (format_string, TRUE, value));
5443
5444 /* if any direct-pointer-access formats are in use, flatten first */
5445 if (strchr (format_string, '&'))
5446 g_variant_get_data (value);
5447
5448 va_start (ap, format_string);
5449 g_variant_get_va (value, format_string, NULL, &ap);
5450 va_end (ap);
5451 }
5452
5453 /**
5454 * g_variant_get_va: (skip)
5455 * @value: a #GVariant
5456 * @format_string: a string that is prefixed with a format string
5457 * @endptr: (nullable) (default NULL): location to store the end pointer,
5458 * or %NULL
5459 * @app: a pointer to a #va_list
5460 *
5461 * This function is intended to be used by libraries based on #GVariant
5462 * that want to provide g_variant_get()-like functionality to their
5463 * users.
5464 *
5465 * The API is more general than g_variant_get() to allow a wider range
5466 * of possible uses.
5467 *
5468 * @format_string must still point to a valid format string, but it only
5469 * need to be nul-terminated if @endptr is %NULL. If @endptr is
5470 * non-%NULL then it is updated to point to the first character past the
5471 * end of the format string.
5472 *
5473 * @app is a pointer to a #va_list. The arguments, according to
5474 * @format_string, are collected from this #va_list and the list is left
5475 * pointing to the argument following the last.
5476 *
5477 * These two generalisations allow mixing of multiple calls to
5478 * g_variant_new_va() and g_variant_get_va() within a single actual
5479 * varargs call by the user.
5480 *
5481 * @format_string determines the C types that are used for unpacking
5482 * the values and also determines if the values are copied or borrowed,
5483 * see the section on
5484 * [GVariant format strings][gvariant-format-strings-pointers].
5485 *
5486 * Since: 2.24
5487 **/
5488 void
g_variant_get_va(GVariant * value,const gchar * format_string,const gchar ** endptr,va_list * app)5489 g_variant_get_va (GVariant *value,
5490 const gchar *format_string,
5491 const gchar **endptr,
5492 va_list *app)
5493 {
5494 g_return_if_fail (valid_format_string (format_string, !endptr, value));
5495 g_return_if_fail (value != NULL);
5496 g_return_if_fail (app != NULL);
5497
5498 /* if any direct-pointer-access formats are in use, flatten first */
5499 if (strchr (format_string, '&'))
5500 g_variant_get_data (value);
5501
5502 g_variant_valist_get (&format_string, value, FALSE, app);
5503
5504 if (endptr != NULL)
5505 *endptr = format_string;
5506 }
5507
5508 /* Varargs-enabled Utility Functions {{{1 */
5509
5510 /**
5511 * g_variant_builder_add: (skip)
5512 * @builder: a #GVariantBuilder
5513 * @format_string: a #GVariant varargs format string
5514 * @...: arguments, as per @format_string
5515 *
5516 * Adds to a #GVariantBuilder.
5517 *
5518 * This call is a convenience wrapper that is exactly equivalent to
5519 * calling g_variant_new() followed by g_variant_builder_add_value().
5520 *
5521 * Note that the arguments must be of the correct width for their types
5522 * specified in @format_string. This can be achieved by casting them. See
5523 * the [GVariant varargs documentation][gvariant-varargs].
5524 *
5525 * This function might be used as follows:
5526 *
5527 * |[<!-- language="C" -->
5528 * GVariant *
5529 * make_pointless_dictionary (void)
5530 * {
5531 * GVariantBuilder builder;
5532 * int i;
5533 *
5534 * g_variant_builder_init (&builder, G_VARIANT_TYPE_ARRAY);
5535 * for (i = 0; i < 16; i++)
5536 * {
5537 * gchar buf[3];
5538 *
5539 * sprintf (buf, "%d", i);
5540 * g_variant_builder_add (&builder, "{is}", i, buf);
5541 * }
5542 *
5543 * return g_variant_builder_end (&builder);
5544 * }
5545 * ]|
5546 *
5547 * Since: 2.24
5548 */
5549 void
g_variant_builder_add(GVariantBuilder * builder,const gchar * format_string,...)5550 g_variant_builder_add (GVariantBuilder *builder,
5551 const gchar *format_string,
5552 ...)
5553 {
5554 GVariant *variant;
5555 va_list ap;
5556
5557 va_start (ap, format_string);
5558 variant = g_variant_new_va (format_string, NULL, &ap);
5559 va_end (ap);
5560
5561 g_variant_builder_add_value (builder, variant);
5562 }
5563
5564 /**
5565 * g_variant_get_child: (skip)
5566 * @value: a container #GVariant
5567 * @index_: the index of the child to deconstruct
5568 * @format_string: a #GVariant format string
5569 * @...: arguments, as per @format_string
5570 *
5571 * Reads a child item out of a container #GVariant instance and
5572 * deconstructs it according to @format_string. This call is
5573 * essentially a combination of g_variant_get_child_value() and
5574 * g_variant_get().
5575 *
5576 * @format_string determines the C types that are used for unpacking
5577 * the values and also determines if the values are copied or borrowed,
5578 * see the section on
5579 * [GVariant format strings][gvariant-format-strings-pointers].
5580 *
5581 * Since: 2.24
5582 **/
5583 void
g_variant_get_child(GVariant * value,gsize index_,const gchar * format_string,...)5584 g_variant_get_child (GVariant *value,
5585 gsize index_,
5586 const gchar *format_string,
5587 ...)
5588 {
5589 GVariant *child;
5590 va_list ap;
5591
5592 /* if any direct-pointer-access formats are in use, flatten first */
5593 if (strchr (format_string, '&'))
5594 g_variant_get_data (value);
5595
5596 child = g_variant_get_child_value (value, index_);
5597 g_return_if_fail (valid_format_string (format_string, TRUE, child));
5598
5599 va_start (ap, format_string);
5600 g_variant_get_va (child, format_string, NULL, &ap);
5601 va_end (ap);
5602
5603 g_variant_unref (child);
5604 }
5605
5606 /**
5607 * g_variant_iter_next: (skip)
5608 * @iter: a #GVariantIter
5609 * @format_string: a GVariant format string
5610 * @...: the arguments to unpack the value into
5611 *
5612 * Gets the next item in the container and unpacks it into the variable
5613 * argument list according to @format_string, returning %TRUE.
5614 *
5615 * If no more items remain then %FALSE is returned.
5616 *
5617 * All of the pointers given on the variable arguments list of this
5618 * function are assumed to point at uninitialised memory. It is the
5619 * responsibility of the caller to free all of the values returned by
5620 * the unpacking process.
5621 *
5622 * Here is an example for memory management with g_variant_iter_next():
5623 * |[<!-- language="C" -->
5624 * // Iterates a dictionary of type 'a{sv}'
5625 * void
5626 * iterate_dictionary (GVariant *dictionary)
5627 * {
5628 * GVariantIter iter;
5629 * GVariant *value;
5630 * gchar *key;
5631 *
5632 * g_variant_iter_init (&iter, dictionary);
5633 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
5634 * {
5635 * g_print ("Item '%s' has type '%s'\n", key,
5636 * g_variant_get_type_string (value));
5637 *
5638 * // must free data for ourselves
5639 * g_variant_unref (value);
5640 * g_free (key);
5641 * }
5642 * }
5643 * ]|
5644 *
5645 * For a solution that is likely to be more convenient to C programmers
5646 * when dealing with loops, see g_variant_iter_loop().
5647 *
5648 * @format_string determines the C types that are used for unpacking
5649 * the values and also determines if the values are copied or borrowed.
5650 *
5651 * See the section on
5652 * [GVariant format strings][gvariant-format-strings-pointers].
5653 *
5654 * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
5655 *
5656 * Since: 2.24
5657 **/
5658 gboolean
g_variant_iter_next(GVariantIter * iter,const gchar * format_string,...)5659 g_variant_iter_next (GVariantIter *iter,
5660 const gchar *format_string,
5661 ...)
5662 {
5663 GVariant *value;
5664
5665 value = g_variant_iter_next_value (iter);
5666
5667 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
5668 FALSE);
5669
5670 if (value != NULL)
5671 {
5672 va_list ap;
5673
5674 va_start (ap, format_string);
5675 g_variant_valist_get (&format_string, value, FALSE, &ap);
5676 va_end (ap);
5677
5678 g_variant_unref (value);
5679 }
5680
5681 return value != NULL;
5682 }
5683
5684 /**
5685 * g_variant_iter_loop: (skip)
5686 * @iter: a #GVariantIter
5687 * @format_string: a GVariant format string
5688 * @...: the arguments to unpack the value into
5689 *
5690 * Gets the next item in the container and unpacks it into the variable
5691 * argument list according to @format_string, returning %TRUE.
5692 *
5693 * If no more items remain then %FALSE is returned.
5694 *
5695 * On the first call to this function, the pointers appearing on the
5696 * variable argument list are assumed to point at uninitialised memory.
5697 * On the second and later calls, it is assumed that the same pointers
5698 * will be given and that they will point to the memory as set by the
5699 * previous call to this function. This allows the previous values to
5700 * be freed, as appropriate.
5701 *
5702 * This function is intended to be used with a while loop as
5703 * demonstrated in the following example. This function can only be
5704 * used when iterating over an array. It is only valid to call this
5705 * function with a string constant for the format string and the same
5706 * string constant must be used each time. Mixing calls to this
5707 * function and g_variant_iter_next() or g_variant_iter_next_value() on
5708 * the same iterator causes undefined behavior.
5709 *
5710 * If you break out of a such a while loop using g_variant_iter_loop() then
5711 * you must free or unreference all the unpacked values as you would with
5712 * g_variant_get(). Failure to do so will cause a memory leak.
5713 *
5714 * Here is an example for memory management with g_variant_iter_loop():
5715 * |[<!-- language="C" -->
5716 * // Iterates a dictionary of type 'a{sv}'
5717 * void
5718 * iterate_dictionary (GVariant *dictionary)
5719 * {
5720 * GVariantIter iter;
5721 * GVariant *value;
5722 * gchar *key;
5723 *
5724 * g_variant_iter_init (&iter, dictionary);
5725 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
5726 * {
5727 * g_print ("Item '%s' has type '%s'\n", key,
5728 * g_variant_get_type_string (value));
5729 *
5730 * // no need to free 'key' and 'value' here
5731 * // unless breaking out of this loop
5732 * }
5733 * }
5734 * ]|
5735 *
5736 * For most cases you should use g_variant_iter_next().
5737 *
5738 * This function is really only useful when unpacking into #GVariant or
5739 * #GVariantIter in order to allow you to skip the call to
5740 * g_variant_unref() or g_variant_iter_free().
5741 *
5742 * For example, if you are only looping over simple integer and string
5743 * types, g_variant_iter_next() is definitely preferred. For string
5744 * types, use the '&' prefix to avoid allocating any memory at all (and
5745 * thereby avoiding the need to free anything as well).
5746 *
5747 * @format_string determines the C types that are used for unpacking
5748 * the values and also determines if the values are copied or borrowed.
5749 *
5750 * See the section on
5751 * [GVariant format strings][gvariant-format-strings-pointers].
5752 *
5753 * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
5754 * value
5755 *
5756 * Since: 2.24
5757 **/
5758 gboolean
g_variant_iter_loop(GVariantIter * iter,const gchar * format_string,...)5759 g_variant_iter_loop (GVariantIter *iter,
5760 const gchar *format_string,
5761 ...)
5762 {
5763 gboolean first_time = GVSI(iter)->loop_format == NULL;
5764 GVariant *value;
5765 va_list ap;
5766
5767 g_return_val_if_fail (first_time ||
5768 format_string == GVSI(iter)->loop_format,
5769 FALSE);
5770
5771 if (first_time)
5772 {
5773 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
5774 GVSI(iter)->loop_format = format_string;
5775
5776 if (strchr (format_string, '&'))
5777 g_variant_get_data (GVSI(iter)->value);
5778 }
5779
5780 value = g_variant_iter_next_value (iter);
5781
5782 g_return_val_if_fail (!first_time ||
5783 valid_format_string (format_string, TRUE, value),
5784 FALSE);
5785
5786 va_start (ap, format_string);
5787 g_variant_valist_get (&format_string, value, !first_time, &ap);
5788 va_end (ap);
5789
5790 if (value != NULL)
5791 g_variant_unref (value);
5792
5793 return value != NULL;
5794 }
5795
5796 /* Serialised data {{{1 */
5797 static GVariant *
g_variant_deep_copy(GVariant * value,gboolean byteswap)5798 g_variant_deep_copy (GVariant *value,
5799 gboolean byteswap)
5800 {
5801 switch (g_variant_classify (value))
5802 {
5803 case G_VARIANT_CLASS_MAYBE:
5804 case G_VARIANT_CLASS_TUPLE:
5805 case G_VARIANT_CLASS_DICT_ENTRY:
5806 case G_VARIANT_CLASS_VARIANT:
5807 {
5808 GVariantBuilder builder;
5809 gsize i, n_children;
5810
5811 g_variant_builder_init (&builder, g_variant_get_type (value));
5812
5813 for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
5814 {
5815 GVariant *child = g_variant_get_child_value (value, i);
5816 g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
5817 g_variant_unref (child);
5818 }
5819
5820 return g_variant_builder_end (&builder);
5821 }
5822
5823 case G_VARIANT_CLASS_ARRAY:
5824 {
5825 GVariantBuilder builder;
5826 gsize i, n_children;
5827 GVariant *first_invalid_child_deep_copy = NULL;
5828
5829 /* Arrays are in theory treated the same as maybes, tuples, dict entries
5830 * and variants, and could be another case in the above block of code.
5831 *
5832 * However, they have the property that when dealing with non-normal
5833 * data (which is the only time g_variant_deep_copy() is currently
5834 * called) in a variable-sized array, the code above can easily end up
5835 * creating many default child values in order to return an array which
5836 * is of the right length and type, but without containing non-normal
5837 * data. This can happen if the offset table for the array is malformed.
5838 *
5839 * In this case, the code above would end up allocating the same default
5840 * value for each one of the child indexes beyond the first malformed
5841 * entry in the offset table. This can end up being a lot of identical
5842 * allocations of default values, particularly if the non-normal array
5843 * is crafted maliciously.
5844 *
5845 * Avoid that problem by returning a new reference to the same default
5846 * value for every child after the first invalid one. This results in
5847 * returning an equivalent array, in normal form and trusted — but with
5848 * significantly fewer memory allocations.
5849 *
5850 * See https://gitlab.gnome.org/GNOME/glib/-/issues/2540 */
5851
5852 g_variant_builder_init (&builder, g_variant_get_type (value));
5853
5854 for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
5855 {
5856 /* Try maybe_get_child_value() first; if it returns NULL, this child
5857 * is non-normal. get_child_value() would have constructed and
5858 * returned a default value in that case. */
5859 GVariant *child = g_variant_maybe_get_child_value (value, i);
5860
5861 if (child != NULL)
5862 {
5863 /* Non-normal children may not always be contiguous, as they may
5864 * be non-normal for reasons other than invalid offset table
5865 * entries. As they are all the same type, they will all have
5866 * the same default value though, so keep that around. */
5867 g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
5868 }
5869 else if (child == NULL && first_invalid_child_deep_copy != NULL)
5870 {
5871 g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
5872 }
5873 else if (child == NULL)
5874 {
5875 child = g_variant_get_child_value (value, i);
5876 first_invalid_child_deep_copy = g_variant_ref_sink (g_variant_deep_copy (child, byteswap));
5877 g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
5878 }
5879
5880 g_clear_pointer (&child, g_variant_unref);
5881 }
5882
5883 g_clear_pointer (&first_invalid_child_deep_copy, g_variant_unref);
5884
5885 return g_variant_builder_end (&builder);
5886 }
5887
5888 case G_VARIANT_CLASS_BOOLEAN:
5889 return g_variant_new_boolean (g_variant_get_boolean (value));
5890
5891 case G_VARIANT_CLASS_BYTE:
5892 return g_variant_new_byte (g_variant_get_byte (value));
5893
5894 case G_VARIANT_CLASS_INT16:
5895 if (byteswap)
5896 return g_variant_new_int16 (GUINT16_SWAP_LE_BE (g_variant_get_int16 (value)));
5897 else
5898 return g_variant_new_int16 (g_variant_get_int16 (value));
5899
5900 case G_VARIANT_CLASS_UINT16:
5901 if (byteswap)
5902 return g_variant_new_uint16 (GUINT16_SWAP_LE_BE (g_variant_get_uint16 (value)));
5903 else
5904 return g_variant_new_uint16 (g_variant_get_uint16 (value));
5905
5906 case G_VARIANT_CLASS_INT32:
5907 if (byteswap)
5908 return g_variant_new_int32 (GUINT32_SWAP_LE_BE (g_variant_get_int32 (value)));
5909 else
5910 return g_variant_new_int32 (g_variant_get_int32 (value));
5911
5912 case G_VARIANT_CLASS_UINT32:
5913 if (byteswap)
5914 return g_variant_new_uint32 (GUINT32_SWAP_LE_BE (g_variant_get_uint32 (value)));
5915 else
5916 return g_variant_new_uint32 (g_variant_get_uint32 (value));
5917
5918 case G_VARIANT_CLASS_INT64:
5919 if (byteswap)
5920 return g_variant_new_int64 (GUINT64_SWAP_LE_BE (g_variant_get_int64 (value)));
5921 else
5922 return g_variant_new_int64 (g_variant_get_int64 (value));
5923
5924 case G_VARIANT_CLASS_UINT64:
5925 if (byteswap)
5926 return g_variant_new_uint64 (GUINT64_SWAP_LE_BE (g_variant_get_uint64 (value)));
5927 else
5928 return g_variant_new_uint64 (g_variant_get_uint64 (value));
5929
5930 case G_VARIANT_CLASS_HANDLE:
5931 if (byteswap)
5932 return g_variant_new_handle (GUINT32_SWAP_LE_BE (g_variant_get_handle (value)));
5933 else
5934 return g_variant_new_handle (g_variant_get_handle (value));
5935
5936 case G_VARIANT_CLASS_DOUBLE:
5937 if (byteswap)
5938 {
5939 /* We have to convert the double to a uint64 here using a union,
5940 * because a cast will round it numerically. */
5941 union
5942 {
5943 guint64 u64;
5944 gdouble dbl;
5945 } u1, u2;
5946 u1.dbl = g_variant_get_double (value);
5947 u2.u64 = GUINT64_SWAP_LE_BE (u1.u64);
5948 return g_variant_new_double (u2.dbl);
5949 }
5950 else
5951 return g_variant_new_double (g_variant_get_double (value));
5952
5953 case G_VARIANT_CLASS_STRING:
5954 return g_variant_new_string (g_variant_get_string (value, NULL));
5955
5956 case G_VARIANT_CLASS_OBJECT_PATH:
5957 return g_variant_new_object_path (g_variant_get_string (value, NULL));
5958
5959 case G_VARIANT_CLASS_SIGNATURE:
5960 return g_variant_new_signature (g_variant_get_string (value, NULL));
5961 }
5962
5963 g_assert_not_reached ();
5964 }
5965
5966 /**
5967 * g_variant_get_normal_form:
5968 * @value: a #GVariant
5969 *
5970 * Gets a #GVariant instance that has the same value as @value and is
5971 * trusted to be in normal form.
5972 *
5973 * If @value is already trusted to be in normal form then a new
5974 * reference to @value is returned.
5975 *
5976 * If @value is not already trusted, then it is scanned to check if it
5977 * is in normal form. If it is found to be in normal form then it is
5978 * marked as trusted and a new reference to it is returned.
5979 *
5980 * If @value is found not to be in normal form then a new trusted
5981 * #GVariant is created with the same value as @value. The non-normal parts of
5982 * @value will be replaced with default values which are guaranteed to be in
5983 * normal form.
5984 *
5985 * It makes sense to call this function if you've received #GVariant
5986 * data from untrusted sources and you want to ensure your serialised
5987 * output is definitely in normal form.
5988 *
5989 * If @value is already in normal form, a new reference will be returned
5990 * (which will be floating if @value is floating). If it is not in normal form,
5991 * the newly created #GVariant will be returned with a single non-floating
5992 * reference. Typically, g_variant_take_ref() should be called on the return
5993 * value from this function to guarantee ownership of a single non-floating
5994 * reference to it.
5995 *
5996 * Returns: (transfer full): a trusted #GVariant
5997 *
5998 * Since: 2.24
5999 **/
6000 GVariant *
g_variant_get_normal_form(GVariant * value)6001 g_variant_get_normal_form (GVariant *value)
6002 {
6003 GVariant *trusted;
6004
6005 if (g_variant_is_normal_form (value))
6006 return g_variant_ref (value);
6007
6008 trusted = g_variant_deep_copy (value, FALSE);
6009 g_assert (g_variant_is_trusted (trusted));
6010
6011 return g_variant_ref_sink (trusted);
6012 }
6013
6014 /**
6015 * g_variant_byteswap:
6016 * @value: a #GVariant
6017 *
6018 * Performs a byteswapping operation on the contents of @value. The
6019 * result is that all multi-byte numeric data contained in @value is
6020 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
6021 * integers as well as file handles and double precision floating point
6022 * values.
6023 *
6024 * This function is an identity mapping on any value that does not
6025 * contain multi-byte numeric data. That include strings, booleans,
6026 * bytes and containers containing only these things (recursively).
6027 *
6028 * While this function can safely handle untrusted, non-normal data, it is
6029 * recommended to check whether the input is in normal form beforehand, using
6030 * g_variant_is_normal_form(), and to reject non-normal inputs if your
6031 * application can be strict about what inputs it rejects.
6032 *
6033 * The returned value is always in normal form and is marked as trusted.
6034 *
6035 * Returns: (transfer full): the byteswapped form of @value
6036 *
6037 * Since: 2.24
6038 **/
6039 GVariant *
g_variant_byteswap(GVariant * value)6040 g_variant_byteswap (GVariant *value)
6041 {
6042 GVariantTypeInfo *type_info;
6043 guint alignment;
6044 GVariant *new;
6045
6046 type_info = g_variant_get_type_info (value);
6047
6048 g_variant_type_info_query (type_info, &alignment, NULL);
6049
6050 if (alignment && g_variant_is_normal_form (value))
6051 {
6052 /* (potentially) contains multi-byte numeric data, but is also already in
6053 * normal form so we can use a faster byteswapping codepath on the
6054 * serialised data */
6055 GVariantSerialised serialised = { 0, };
6056 GBytes *bytes;
6057
6058 serialised.type_info = g_variant_get_type_info (value);
6059 serialised.size = g_variant_get_size (value);
6060 serialised.data = g_malloc (serialised.size);
6061 serialised.depth = g_variant_get_depth (value);
6062 serialised.ordered_offsets_up_to = G_MAXSIZE; /* operating on the normal form */
6063 serialised.checked_offsets_up_to = G_MAXSIZE;
6064 g_variant_store (value, serialised.data);
6065
6066 g_variant_serialised_byteswap (serialised);
6067
6068 bytes = g_bytes_new_take (serialised.data, serialised.size);
6069 new = g_variant_ref_sink (g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE));
6070 g_bytes_unref (bytes);
6071 }
6072 else if (alignment)
6073 /* (potentially) contains multi-byte numeric data */
6074 new = g_variant_ref_sink (g_variant_deep_copy (value, TRUE));
6075 else
6076 /* contains no multi-byte data */
6077 new = g_variant_get_normal_form (value);
6078
6079 g_assert (g_variant_is_trusted (new));
6080
6081 return g_steal_pointer (&new);
6082 }
6083
6084 /**
6085 * g_variant_new_from_data:
6086 * @type: a definite #GVariantType
6087 * @data: (array length=size) (element-type guint8): the serialised data
6088 * @size: the size of @data
6089 * @trusted: %TRUE if @data is definitely in normal form
6090 * @notify: (scope async): function to call when @data is no longer needed
6091 * @user_data: data for @notify
6092 *
6093 * Creates a new #GVariant instance from serialised data.
6094 *
6095 * @type is the type of #GVariant instance that will be constructed.
6096 * The interpretation of @data depends on knowing the type.
6097 *
6098 * @data is not modified by this function and must remain valid with an
6099 * unchanging value until such a time as @notify is called with
6100 * @user_data. If the contents of @data change before that time then
6101 * the result is undefined.
6102 *
6103 * If @data is trusted to be serialised data in normal form then
6104 * @trusted should be %TRUE. This applies to serialised data created
6105 * within this process or read from a trusted location on the disk (such
6106 * as a file installed in /usr/lib alongside your application). You
6107 * should set trusted to %FALSE if @data is read from the network, a
6108 * file in the user's home directory, etc.
6109 *
6110 * If @data was not stored in this machine's native endianness, any multi-byte
6111 * numeric values in the returned variant will also be in non-native
6112 * endianness. g_variant_byteswap() can be used to recover the original values.
6113 *
6114 * @notify will be called with @user_data when @data is no longer
6115 * needed. The exact time of this call is unspecified and might even be
6116 * before this function returns.
6117 *
6118 * Note: @data must be backed by memory that is aligned appropriately for the
6119 * @type being loaded. Otherwise this function will internally create a copy of
6120 * the memory (since GLib 2.60) or (in older versions) fail and exit the
6121 * process.
6122 *
6123 * Returns: (transfer none): a new floating #GVariant of type @type
6124 *
6125 * Since: 2.24
6126 **/
6127 GVariant *
g_variant_new_from_data(const GVariantType * type,gconstpointer data,gsize size,gboolean trusted,GDestroyNotify notify,gpointer user_data)6128 g_variant_new_from_data (const GVariantType *type,
6129 gconstpointer data,
6130 gsize size,
6131 gboolean trusted,
6132 GDestroyNotify notify,
6133 gpointer user_data)
6134 {
6135 GVariant *value;
6136 GBytes *bytes;
6137
6138 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
6139 g_return_val_if_fail (data != NULL || size == 0, NULL);
6140
6141 if (notify)
6142 bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
6143 else
6144 bytes = g_bytes_new_static (data, size);
6145
6146 value = g_variant_new_from_bytes (type, bytes, trusted);
6147 g_bytes_unref (bytes);
6148
6149 return value;
6150 }
6151
6152 /* Epilogue {{{1 */
6153 /* vim:set foldmethod=marker: */
6154