• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2007, 2008 Ryan Lortie
3  * Copyright © 2010 Codethink Limited
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
17  *
18  * Author: Ryan Lortie <desrt@desrt.ca>
19  */
20 
21 /* Prologue {{{1 */
22 
23 #include "config.h"
24 
25 #include <glib/gvariant-serialiser.h>
26 #include "gvariant-internal.h"
27 #include <glib/gvariant-core.h>
28 #include <glib/gtestutils.h>
29 #include <glib/gstrfuncs.h>
30 #include <glib/gslice.h>
31 #include <glib/ghash.h>
32 #include <glib/gmem.h>
33 
34 #include <string.h>
35 
36 
37 /**
38  * SECTION:gvariant
39  * @title: GVariant
40  * @short_description: strongly typed value datatype
41  * @see_also: GVariantType
42  *
43  * #GVariant is a variant datatype; it can contain one or more values
44  * along with information about the type of the values.
45  *
46  * A #GVariant may contain simple types, like an integer, or a boolean value;
47  * or complex types, like an array of two strings, or a dictionary of key
48  * value pairs. A #GVariant is also immutable: once it's been created neither
49  * its type nor its content can be modified further.
50  *
51  * GVariant is useful whenever data needs to be serialized, for example when
52  * sending method parameters in D-Bus, or when saving settings using GSettings.
53  *
54  * When creating a new #GVariant, you pass the data you want to store in it
55  * along with a string representing the type of data you wish to pass to it.
56  *
57  * For instance, if you want to create a #GVariant holding an integer value you
58  * can use:
59  *
60  * |[<!-- language="C" -->
61  *   GVariant *v = g_variant_new ("u", 40);
62  * ]|
63  *
64  * The string "u" in the first argument tells #GVariant that the data passed to
65  * the constructor (40) is going to be an unsigned integer.
66  *
67  * More advanced examples of #GVariant in use can be found in documentation for
68  * [GVariant format strings][gvariant-format-strings-pointers].
69  *
70  * The range of possible values is determined by the type.
71  *
72  * The type system used by #GVariant is #GVariantType.
73  *
74  * #GVariant instances always have a type and a value (which are given
75  * at construction time).  The type and value of a #GVariant instance
76  * can never change other than by the #GVariant itself being
77  * destroyed.  A #GVariant cannot contain a pointer.
78  *
79  * #GVariant is reference counted using g_variant_ref() and
80  * g_variant_unref().  #GVariant also has floating reference counts --
81  * see g_variant_ref_sink().
82  *
83  * #GVariant is completely threadsafe.  A #GVariant instance can be
84  * concurrently accessed in any way from any number of threads without
85  * problems.
86  *
87  * #GVariant is heavily optimised for dealing with data in serialised
88  * form.  It works particularly well with data located in memory-mapped
89  * files.  It can perform nearly all deserialisation operations in a
90  * small constant time, usually touching only a single memory page.
91  * Serialised #GVariant data can also be sent over the network.
92  *
93  * #GVariant is largely compatible with D-Bus.  Almost all types of
94  * #GVariant instances can be sent over D-Bus.  See #GVariantType for
95  * exceptions.  (However, #GVariant's serialisation format is not the same
96  * as the serialisation format of a D-Bus message body: use #GDBusMessage,
97  * in the gio library, for those.)
98  *
99  * For space-efficiency, the #GVariant serialisation format does not
100  * automatically include the variant's length, type or endianness,
101  * which must either be implied from context (such as knowledge that a
102  * particular file format always contains a little-endian
103  * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
104  * or supplied out-of-band (for instance, a length, type and/or endianness
105  * indicator could be placed at the beginning of a file, network message
106  * or network stream).
107  *
108  * A #GVariant's size is limited mainly by any lower level operating
109  * system constraints, such as the number of bits in #gsize.  For
110  * example, it is reasonable to have a 2GB file mapped into memory
111  * with #GMappedFile, and call g_variant_new_from_data() on it.
112  *
113  * For convenience to C programmers, #GVariant features powerful
114  * varargs-based value construction and destruction.  This feature is
115  * designed to be embedded in other libraries.
116  *
117  * There is a Python-inspired text language for describing #GVariant
118  * values.  #GVariant includes a printer for this language and a parser
119  * with type inferencing.
120  *
121  * ## Memory Use
122  *
123  * #GVariant tries to be quite efficient with respect to memory use.
124  * This section gives a rough idea of how much memory is used by the
125  * current implementation.  The information here is subject to change
126  * in the future.
127  *
128  * The memory allocated by #GVariant can be grouped into 4 broad
129  * purposes: memory for serialised data, memory for the type
130  * information cache, buffer management memory and memory for the
131  * #GVariant structure itself.
132  *
133  * ## Serialised Data Memory
134  *
135  * This is the memory that is used for storing GVariant data in
136  * serialised form.  This is what would be sent over the network or
137  * what would end up on disk, not counting any indicator of the
138  * endianness, or of the length or type of the top-level variant.
139  *
140  * The amount of memory required to store a boolean is 1 byte. 16,
141  * 32 and 64 bit integers and double precision floating point numbers
142  * use their "natural" size.  Strings (including object path and
143  * signature strings) are stored with a nul terminator, and as such
144  * use the length of the string plus 1 byte.
145  *
146  * Maybe types use no space at all to represent the null value and
147  * use the same amount of space (sometimes plus one byte) as the
148  * equivalent non-maybe-typed value to represent the non-null case.
149  *
150  * Arrays use the amount of space required to store each of their
151  * members, concatenated.  Additionally, if the items stored in an
152  * array are not of a fixed-size (ie: strings, other arrays, etc)
153  * then an additional framing offset is stored for each item.  The
154  * size of this offset is either 1, 2 or 4 bytes depending on the
155  * overall size of the container.  Additionally, extra padding bytes
156  * are added as required for alignment of child values.
157  *
158  * Tuples (including dictionary entries) use the amount of space
159  * required to store each of their members, concatenated, plus one
160  * framing offset (as per arrays) for each non-fixed-sized item in
161  * the tuple, except for the last one.  Additionally, extra padding
162  * bytes are added as required for alignment of child values.
163  *
164  * Variants use the same amount of space as the item inside of the
165  * variant, plus 1 byte, plus the length of the type string for the
166  * item inside the variant.
167  *
168  * As an example, consider a dictionary mapping strings to variants.
169  * In the case that the dictionary is empty, 0 bytes are required for
170  * the serialisation.
171  *
172  * If we add an item "width" that maps to the int32 value of 500 then
173  * we will use 4 byte to store the int32 (so 6 for the variant
174  * containing it) and 6 bytes for the string.  The variant must be
175  * aligned to 8 after the 6 bytes of the string, so that's 2 extra
176  * bytes.  6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
177  * for the dictionary entry.  An additional 1 byte is added to the
178  * array as a framing offset making a total of 15 bytes.
179  *
180  * If we add another entry, "title" that maps to a nullable string
181  * that happens to have a value of null, then we use 0 bytes for the
182  * null value (and 3 bytes for the variant to contain it along with
183  * its type string) plus 6 bytes for the string.  Again, we need 2
184  * padding bytes.  That makes a total of 6 + 2 + 3 = 11 bytes.
185  *
186  * We now require extra padding between the two items in the array.
187  * After the 14 bytes of the first item, that's 2 bytes required.
188  * We now require 2 framing offsets for an extra two
189  * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
190  * dictionary.
191  *
192  * ## Type Information Cache
193  *
194  * For each GVariant type that currently exists in the program a type
195  * information structure is kept in the type information cache.  The
196  * type information structure is required for rapid deserialisation.
197  *
198  * Continuing with the above example, if a #GVariant exists with the
199  * type "a{sv}" then a type information struct will exist for
200  * "a{sv}", "{sv}", "s", and "v".  Multiple uses of the same type
201  * will share the same type information.  Additionally, all
202  * single-digit types are stored in read-only static memory and do
203  * not contribute to the writable memory footprint of a program using
204  * #GVariant.
205  *
206  * Aside from the type information structures stored in read-only
207  * memory, there are two forms of type information.  One is used for
208  * container types where there is a single element type: arrays and
209  * maybe types.  The other is used for container types where there
210  * are multiple element types: tuples and dictionary entries.
211  *
212  * Array type info structures are 6 * sizeof (void *), plus the
213  * memory required to store the type string itself.  This means that
214  * on 32-bit systems, the cache entry for "a{sv}" would require 30
215  * bytes of memory (plus malloc overhead).
216  *
217  * Tuple type info structures are 6 * sizeof (void *), plus 4 *
218  * sizeof (void *) for each item in the tuple, plus the memory
219  * required to store the type string itself.  A 2-item tuple, for
220  * example, would have a type information structure that consumed
221  * writable memory in the size of 14 * sizeof (void *) (plus type
222  * string)  This means that on 32-bit systems, the cache entry for
223  * "{sv}" would require 61 bytes of memory (plus malloc overhead).
224  *
225  * This means that in total, for our "a{sv}" example, 91 bytes of
226  * type information would be allocated.
227  *
228  * The type information cache, additionally, uses a #GHashTable to
229  * store and look up the cached items and stores a pointer to this
230  * hash table in static storage.  The hash table is freed when there
231  * are zero items in the type cache.
232  *
233  * Although these sizes may seem large it is important to remember
234  * that a program will probably only have a very small number of
235  * different types of values in it and that only one type information
236  * structure is required for many different values of the same type.
237  *
238  * ## Buffer Management Memory
239  *
240  * #GVariant uses an internal buffer management structure to deal
241  * with the various different possible sources of serialised data
242  * that it uses.  The buffer is responsible for ensuring that the
243  * correct call is made when the data is no longer in use by
244  * #GVariant.  This may involve a g_free() or a g_slice_free() or
245  * even g_mapped_file_unref().
246  *
247  * One buffer management structure is used for each chunk of
248  * serialised data.  The size of the buffer management structure
249  * is 4 * (void *).  On 32-bit systems, that's 16 bytes.
250  *
251  * ## GVariant structure
252  *
253  * The size of a #GVariant structure is 6 * (void *).  On 32-bit
254  * systems, that's 24 bytes.
255  *
256  * #GVariant structures only exist if they are explicitly created
257  * with API calls.  For example, if a #GVariant is constructed out of
258  * serialised data for the example given above (with the dictionary)
259  * then although there are 9 individual values that comprise the
260  * entire dictionary (two keys, two values, two variants containing
261  * the values, two dictionary entries, plus the dictionary itself),
262  * only 1 #GVariant instance exists -- the one referring to the
263  * dictionary.
264  *
265  * If calls are made to start accessing the other values then
266  * #GVariant instances will exist for those values only for as long
267  * as they are in use (ie: until you call g_variant_unref()).  The
268  * type information is shared.  The serialised data and the buffer
269  * management structure for that serialised data is shared by the
270  * child.
271  *
272  * ## Summary
273  *
274  * To put the entire example together, for our dictionary mapping
275  * strings to variants (with two entries, as given above), we are
276  * using 91 bytes of memory for type information, 29 bytes of memory
277  * for the serialised data, 16 bytes for buffer management and 24
278  * bytes for the #GVariant instance, or a total of 160 bytes, plus
279  * malloc overhead.  If we were to use g_variant_get_child_value() to
280  * access the two dictionary entries, we would use an additional 48
281  * bytes.  If we were to have other dictionaries of the same type, we
282  * would use more memory for the serialised data and buffer
283  * management for those dictionaries, but the type information would
284  * be shared.
285  */
286 
287 /* definition of GVariant structure is in gvariant-core.c */
288 
289 /* this is a g_return_val_if_fail() for making
290  * sure a (GVariant *) has the required type.
291  */
292 #define TYPE_CHECK(value, TYPE, val) \
293   if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) {           \
294     g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC,            \
295                               "g_variant_is_of_type (" #value     \
296                               ", " #TYPE ")");                    \
297     return val;                                                   \
298   }
299 
300 /* Numeric Type Constructor/Getters {{{1 */
301 /* < private >
302  * g_variant_new_from_trusted:
303  * @type: the #GVariantType
304  * @data: the data to use
305  * @size: the size of @data
306  *
307  * Constructs a new trusted #GVariant instance from the provided data.
308  * This is used to implement g_variant_new_* for all the basic types.
309  *
310  * Note: @data must be backed by memory that is aligned appropriately for the
311  * @type being loaded. Otherwise this function will internally create a copy of
312  * the memory (since GLib 2.60) or (in older versions) fail and exit the
313  * process.
314  *
315  * Returns: a new floating #GVariant
316  */
317 static GVariant *
g_variant_new_from_trusted(const GVariantType * type,gconstpointer data,gsize size)318 g_variant_new_from_trusted (const GVariantType *type,
319                             gconstpointer       data,
320                             gsize               size)
321 {
322   GVariant *value;
323   GBytes *bytes;
324 
325   bytes = g_bytes_new (data, size);
326   value = g_variant_new_from_bytes (type, bytes, TRUE);
327   g_bytes_unref (bytes);
328 
329   return value;
330 }
331 
332 /**
333  * g_variant_new_boolean:
334  * @value: a #gboolean value
335  *
336  * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
337  *
338  * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
339  *
340  * Since: 2.24
341  **/
342 GVariant *
g_variant_new_boolean(gboolean value)343 g_variant_new_boolean (gboolean value)
344 {
345   guchar v = value;
346 
347   return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
348 }
349 
350 /**
351  * g_variant_get_boolean:
352  * @value: a boolean #GVariant instance
353  *
354  * Returns the boolean value of @value.
355  *
356  * It is an error to call this function with a @value of any type
357  * other than %G_VARIANT_TYPE_BOOLEAN.
358  *
359  * Returns: %TRUE or %FALSE
360  *
361  * Since: 2.24
362  **/
363 gboolean
g_variant_get_boolean(GVariant * value)364 g_variant_get_boolean (GVariant *value)
365 {
366   const guchar *data;
367 
368   TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
369 
370   data = g_variant_get_data (value);
371 
372   return data != NULL ? *data != 0 : FALSE;
373 }
374 
375 /* the constructors and accessors for byte, int{16,32,64}, handles and
376  * doubles all look pretty much exactly the same, so we reduce
377  * copy/pasting here.
378  */
379 #define NUMERIC_TYPE(TYPE, type, ctype) \
380   GVariant *g_variant_new_##type (ctype value) {                \
381     return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE,   \
382                                        &value, sizeof value);   \
383   }                                                             \
384   ctype g_variant_get_##type (GVariant *value) {                \
385     const ctype *data;                                          \
386     TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0);             \
387     data = g_variant_get_data (value);                          \
388     return data != NULL ? *data : 0;                            \
389   }
390 
391 
392 /**
393  * g_variant_new_byte:
394  * @value: a #guint8 value
395  *
396  * Creates a new byte #GVariant instance.
397  *
398  * Returns: (transfer none): a floating reference to a new byte #GVariant instance
399  *
400  * Since: 2.24
401  **/
402 /**
403  * g_variant_get_byte:
404  * @value: a byte #GVariant instance
405  *
406  * Returns the byte value of @value.
407  *
408  * It is an error to call this function with a @value of any type
409  * other than %G_VARIANT_TYPE_BYTE.
410  *
411  * Returns: a #guint8
412  *
413  * Since: 2.24
414  **/
NUMERIC_TYPE(BYTE,byte,guint8)415 NUMERIC_TYPE (BYTE, byte, guint8)
416 
417 /**
418  * g_variant_new_int16:
419  * @value: a #gint16 value
420  *
421  * Creates a new int16 #GVariant instance.
422  *
423  * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
424  *
425  * Since: 2.24
426  **/
427 /**
428  * g_variant_get_int16:
429  * @value: an int16 #GVariant instance
430  *
431  * Returns the 16-bit signed integer value of @value.
432  *
433  * It is an error to call this function with a @value of any type
434  * other than %G_VARIANT_TYPE_INT16.
435  *
436  * Returns: a #gint16
437  *
438  * Since: 2.24
439  **/
440 NUMERIC_TYPE (INT16, int16, gint16)
441 
442 /**
443  * g_variant_new_uint16:
444  * @value: a #guint16 value
445  *
446  * Creates a new uint16 #GVariant instance.
447  *
448  * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
449  *
450  * Since: 2.24
451  **/
452 /**
453  * g_variant_get_uint16:
454  * @value: a uint16 #GVariant instance
455  *
456  * Returns the 16-bit unsigned integer value of @value.
457  *
458  * It is an error to call this function with a @value of any type
459  * other than %G_VARIANT_TYPE_UINT16.
460  *
461  * Returns: a #guint16
462  *
463  * Since: 2.24
464  **/
465 NUMERIC_TYPE (UINT16, uint16, guint16)
466 
467 /**
468  * g_variant_new_int32:
469  * @value: a #gint32 value
470  *
471  * Creates a new int32 #GVariant instance.
472  *
473  * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
474  *
475  * Since: 2.24
476  **/
477 /**
478  * g_variant_get_int32:
479  * @value: an int32 #GVariant instance
480  *
481  * Returns the 32-bit signed integer value of @value.
482  *
483  * It is an error to call this function with a @value of any type
484  * other than %G_VARIANT_TYPE_INT32.
485  *
486  * Returns: a #gint32
487  *
488  * Since: 2.24
489  **/
490 NUMERIC_TYPE (INT32, int32, gint32)
491 
492 /**
493  * g_variant_new_uint32:
494  * @value: a #guint32 value
495  *
496  * Creates a new uint32 #GVariant instance.
497  *
498  * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
499  *
500  * Since: 2.24
501  **/
502 /**
503  * g_variant_get_uint32:
504  * @value: a uint32 #GVariant instance
505  *
506  * Returns the 32-bit unsigned integer value of @value.
507  *
508  * It is an error to call this function with a @value of any type
509  * other than %G_VARIANT_TYPE_UINT32.
510  *
511  * Returns: a #guint32
512  *
513  * Since: 2.24
514  **/
515 NUMERIC_TYPE (UINT32, uint32, guint32)
516 
517 /**
518  * g_variant_new_int64:
519  * @value: a #gint64 value
520  *
521  * Creates a new int64 #GVariant instance.
522  *
523  * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
524  *
525  * Since: 2.24
526  **/
527 /**
528  * g_variant_get_int64:
529  * @value: an int64 #GVariant instance
530  *
531  * Returns the 64-bit signed integer value of @value.
532  *
533  * It is an error to call this function with a @value of any type
534  * other than %G_VARIANT_TYPE_INT64.
535  *
536  * Returns: a #gint64
537  *
538  * Since: 2.24
539  **/
540 NUMERIC_TYPE (INT64, int64, gint64)
541 
542 /**
543  * g_variant_new_uint64:
544  * @value: a #guint64 value
545  *
546  * Creates a new uint64 #GVariant instance.
547  *
548  * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
549  *
550  * Since: 2.24
551  **/
552 /**
553  * g_variant_get_uint64:
554  * @value: a uint64 #GVariant instance
555  *
556  * Returns the 64-bit unsigned integer value of @value.
557  *
558  * It is an error to call this function with a @value of any type
559  * other than %G_VARIANT_TYPE_UINT64.
560  *
561  * Returns: a #guint64
562  *
563  * Since: 2.24
564  **/
565 NUMERIC_TYPE (UINT64, uint64, guint64)
566 
567 /**
568  * g_variant_new_handle:
569  * @value: a #gint32 value
570  *
571  * Creates a new handle #GVariant instance.
572  *
573  * By convention, handles are indexes into an array of file descriptors
574  * that are sent alongside a D-Bus message.  If you're not interacting
575  * with D-Bus, you probably don't need them.
576  *
577  * Returns: (transfer none): a floating reference to a new handle #GVariant instance
578  *
579  * Since: 2.24
580  **/
581 /**
582  * g_variant_get_handle:
583  * @value: a handle #GVariant instance
584  *
585  * Returns the 32-bit signed integer value of @value.
586  *
587  * It is an error to call this function with a @value of any type other
588  * than %G_VARIANT_TYPE_HANDLE.
589  *
590  * By convention, handles are indexes into an array of file descriptors
591  * that are sent alongside a D-Bus message.  If you're not interacting
592  * with D-Bus, you probably don't need them.
593  *
594  * Returns: a #gint32
595  *
596  * Since: 2.24
597  **/
598 NUMERIC_TYPE (HANDLE, handle, gint32)
599 
600 /**
601  * g_variant_new_double:
602  * @value: a #gdouble floating point value
603  *
604  * Creates a new double #GVariant instance.
605  *
606  * Returns: (transfer none): a floating reference to a new double #GVariant instance
607  *
608  * Since: 2.24
609  **/
610 /**
611  * g_variant_get_double:
612  * @value: a double #GVariant instance
613  *
614  * Returns the double precision floating point value of @value.
615  *
616  * It is an error to call this function with a @value of any type
617  * other than %G_VARIANT_TYPE_DOUBLE.
618  *
619  * Returns: a #gdouble
620  *
621  * Since: 2.24
622  **/
623 NUMERIC_TYPE (DOUBLE, double, gdouble)
624 
625 /* Container type Constructor / Deconstructors {{{1 */
626 /**
627  * g_variant_new_maybe:
628  * @child_type: (nullable): the #GVariantType of the child, or %NULL
629  * @child: (nullable): the child value, or %NULL
630  *
631  * Depending on if @child is %NULL, either wraps @child inside of a
632  * maybe container or creates a Nothing instance for the given @type.
633  *
634  * At least one of @child_type and @child must be non-%NULL.
635  * If @child_type is non-%NULL then it must be a definite type.
636  * If they are both non-%NULL then @child_type must be the type
637  * of @child.
638  *
639  * If @child is a floating reference (see g_variant_ref_sink()), the new
640  * instance takes ownership of @child.
641  *
642  * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
643  *
644  * Since: 2.24
645  **/
646 GVariant *
647 g_variant_new_maybe (const GVariantType *child_type,
648                      GVariant           *child)
649 {
650   GVariantType *maybe_type;
651   GVariant *value;
652 
653   g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
654                         (child_type), 0);
655   g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
656   g_return_val_if_fail (child_type == NULL || child == NULL ||
657                         g_variant_is_of_type (child, child_type),
658                         NULL);
659 
660   if (child_type == NULL)
661     child_type = g_variant_get_type (child);
662 
663   maybe_type = g_variant_type_new_maybe (child_type);
664 
665   if (child != NULL)
666     {
667       GVariant **children;
668       gboolean trusted;
669 
670       children = g_new (GVariant *, 1);
671       children[0] = g_variant_ref_sink (child);
672       trusted = g_variant_is_trusted (children[0]);
673 
674       value = g_variant_new_from_children (maybe_type, children, 1, trusted);
675     }
676   else
677     value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
678 
679   g_variant_type_free (maybe_type);
680 
681   return value;
682 }
683 
684 /**
685  * g_variant_get_maybe:
686  * @value: a maybe-typed value
687  *
688  * Given a maybe-typed #GVariant instance, extract its value.  If the
689  * value is Nothing, then this function returns %NULL.
690  *
691  * Returns: (nullable) (transfer full): the contents of @value, or %NULL
692  *
693  * Since: 2.24
694  **/
695 GVariant *
g_variant_get_maybe(GVariant * value)696 g_variant_get_maybe (GVariant *value)
697 {
698   TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
699 
700   if (g_variant_n_children (value))
701     return g_variant_get_child_value (value, 0);
702 
703   return NULL;
704 }
705 
706 /**
707  * g_variant_new_variant: (constructor)
708  * @value: a #GVariant instance
709  *
710  * Boxes @value.  The result is a #GVariant instance representing a
711  * variant containing the original value.
712  *
713  * If @child is a floating reference (see g_variant_ref_sink()), the new
714  * instance takes ownership of @child.
715  *
716  * Returns: (transfer none): a floating reference to a new variant #GVariant instance
717  *
718  * Since: 2.24
719  **/
720 GVariant *
g_variant_new_variant(GVariant * value)721 g_variant_new_variant (GVariant *value)
722 {
723   g_return_val_if_fail (value != NULL, NULL);
724 
725   g_variant_ref_sink (value);
726 
727   return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
728                                       g_memdup2 (&value, sizeof value),
729                                       1, g_variant_is_trusted (value));
730 }
731 
732 /**
733  * g_variant_get_variant:
734  * @value: a variant #GVariant instance
735  *
736  * Unboxes @value.  The result is the #GVariant instance that was
737  * contained in @value.
738  *
739  * Returns: (transfer full): the item contained in the variant
740  *
741  * Since: 2.24
742  **/
743 GVariant *
g_variant_get_variant(GVariant * value)744 g_variant_get_variant (GVariant *value)
745 {
746   TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
747 
748   return g_variant_get_child_value (value, 0);
749 }
750 
751 /**
752  * g_variant_new_array:
753  * @child_type: (nullable): the element type of the new array
754  * @children: (nullable) (array length=n_children): an array of
755  *            #GVariant pointers, the children
756  * @n_children: the length of @children
757  *
758  * Creates a new #GVariant array from @children.
759  *
760  * @child_type must be non-%NULL if @n_children is zero.  Otherwise, the
761  * child type is determined by inspecting the first element of the
762  * @children array.  If @child_type is non-%NULL then it must be a
763  * definite type.
764  *
765  * The items of the array are taken from the @children array.  No entry
766  * in the @children array may be %NULL.
767  *
768  * All items in the array must have the same type, which must be the
769  * same as @child_type, if given.
770  *
771  * If the @children are floating references (see g_variant_ref_sink()), the
772  * new instance takes ownership of them as if via g_variant_ref_sink().
773  *
774  * Returns: (transfer none): a floating reference to a new #GVariant array
775  *
776  * Since: 2.24
777  **/
778 GVariant *
g_variant_new_array(const GVariantType * child_type,GVariant * const * children,gsize n_children)779 g_variant_new_array (const GVariantType *child_type,
780                      GVariant * const   *children,
781                      gsize               n_children)
782 {
783   GVariantType *array_type;
784   GVariant **my_children;
785   gboolean trusted;
786   GVariant *value;
787   gsize i;
788 
789   g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
790   g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
791   g_return_val_if_fail (child_type == NULL ||
792                         g_variant_type_is_definite (child_type), NULL);
793 
794   my_children = g_new (GVariant *, n_children);
795   trusted = TRUE;
796 
797   if (child_type == NULL)
798     child_type = g_variant_get_type (children[0]);
799   array_type = g_variant_type_new_array (child_type);
800 
801   for (i = 0; i < n_children; i++)
802     {
803       TYPE_CHECK (children[i], child_type, NULL);
804       my_children[i] = g_variant_ref_sink (children[i]);
805       trusted &= g_variant_is_trusted (children[i]);
806     }
807 
808   value = g_variant_new_from_children (array_type, my_children,
809                                        n_children, trusted);
810   g_variant_type_free (array_type);
811 
812   return value;
813 }
814 
815 /*< private >
816  * g_variant_make_tuple_type:
817  * @children: (array length=n_children): an array of GVariant *
818  * @n_children: the length of @children
819  *
820  * Return the type of a tuple containing @children as its items.
821  **/
822 static GVariantType *
g_variant_make_tuple_type(GVariant * const * children,gsize n_children)823 g_variant_make_tuple_type (GVariant * const *children,
824                            gsize             n_children)
825 {
826   const GVariantType **types;
827   GVariantType *type;
828   gsize i;
829 
830   types = g_new (const GVariantType *, n_children);
831 
832   for (i = 0; i < n_children; i++)
833     types[i] = g_variant_get_type (children[i]);
834 
835   type = g_variant_type_new_tuple (types, n_children);
836   g_free (types);
837 
838   return type;
839 }
840 
841 /**
842  * g_variant_new_tuple:
843  * @children: (array length=n_children): the items to make the tuple out of
844  * @n_children: the length of @children
845  *
846  * Creates a new tuple #GVariant out of the items in @children.  The
847  * type is determined from the types of @children.  No entry in the
848  * @children array may be %NULL.
849  *
850  * If @n_children is 0 then the unit tuple is constructed.
851  *
852  * If the @children are floating references (see g_variant_ref_sink()), the
853  * new instance takes ownership of them as if via g_variant_ref_sink().
854  *
855  * Returns: (transfer none): a floating reference to a new #GVariant tuple
856  *
857  * Since: 2.24
858  **/
859 GVariant *
g_variant_new_tuple(GVariant * const * children,gsize n_children)860 g_variant_new_tuple (GVariant * const *children,
861                      gsize             n_children)
862 {
863   GVariantType *tuple_type;
864   GVariant **my_children;
865   gboolean trusted;
866   GVariant *value;
867   gsize i;
868 
869   g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
870 
871   my_children = g_new (GVariant *, n_children);
872   trusted = TRUE;
873 
874   for (i = 0; i < n_children; i++)
875     {
876       my_children[i] = g_variant_ref_sink (children[i]);
877       trusted &= g_variant_is_trusted (children[i]);
878     }
879 
880   tuple_type = g_variant_make_tuple_type (children, n_children);
881   value = g_variant_new_from_children (tuple_type, my_children,
882                                        n_children, trusted);
883   g_variant_type_free (tuple_type);
884 
885   return value;
886 }
887 
888 /*< private >
889  * g_variant_make_dict_entry_type:
890  * @key: a #GVariant, the key
891  * @val: a #GVariant, the value
892  *
893  * Return the type of a dictionary entry containing @key and @val as its
894  * children.
895  **/
896 static GVariantType *
g_variant_make_dict_entry_type(GVariant * key,GVariant * val)897 g_variant_make_dict_entry_type (GVariant *key,
898                                 GVariant *val)
899 {
900   return g_variant_type_new_dict_entry (g_variant_get_type (key),
901                                         g_variant_get_type (val));
902 }
903 
904 /**
905  * g_variant_new_dict_entry: (constructor)
906  * @key: a basic #GVariant, the key
907  * @value: a #GVariant, the value
908  *
909  * Creates a new dictionary entry #GVariant. @key and @value must be
910  * non-%NULL. @key must be a value of a basic type (ie: not a container).
911  *
912  * If the @key or @value are floating references (see g_variant_ref_sink()),
913  * the new instance takes ownership of them as if via g_variant_ref_sink().
914  *
915  * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
916  *
917  * Since: 2.24
918  **/
919 GVariant *
g_variant_new_dict_entry(GVariant * key,GVariant * value)920 g_variant_new_dict_entry (GVariant *key,
921                           GVariant *value)
922 {
923   GVariantType *dict_type;
924   GVariant **children;
925   gboolean trusted;
926 
927   g_return_val_if_fail (key != NULL && value != NULL, NULL);
928   g_return_val_if_fail (!g_variant_is_container (key), NULL);
929 
930   children = g_new (GVariant *, 2);
931   children[0] = g_variant_ref_sink (key);
932   children[1] = g_variant_ref_sink (value);
933   trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
934 
935   dict_type = g_variant_make_dict_entry_type (key, value);
936   value = g_variant_new_from_children (dict_type, children, 2, trusted);
937   g_variant_type_free (dict_type);
938 
939   return value;
940 }
941 
942 /**
943  * g_variant_lookup: (skip)
944  * @dictionary: a dictionary #GVariant
945  * @key: the key to look up in the dictionary
946  * @format_string: a GVariant format string
947  * @...: the arguments to unpack the value into
948  *
949  * Looks up a value in a dictionary #GVariant.
950  *
951  * This function is a wrapper around g_variant_lookup_value() and
952  * g_variant_get().  In the case that %NULL would have been returned,
953  * this function returns %FALSE.  Otherwise, it unpacks the returned
954  * value and returns %TRUE.
955  *
956  * @format_string determines the C types that are used for unpacking
957  * the values and also determines if the values are copied or borrowed,
958  * see the section on
959  * [GVariant format strings][gvariant-format-strings-pointers].
960  *
961  * This function is currently implemented with a linear scan.  If you
962  * plan to do many lookups then #GVariantDict may be more efficient.
963  *
964  * Returns: %TRUE if a value was unpacked
965  *
966  * Since: 2.28
967  */
968 gboolean
g_variant_lookup(GVariant * dictionary,const gchar * key,const gchar * format_string,...)969 g_variant_lookup (GVariant    *dictionary,
970                   const gchar *key,
971                   const gchar *format_string,
972                   ...)
973 {
974   GVariantType *type;
975   GVariant *value;
976 
977   /* flatten */
978   g_variant_get_data (dictionary);
979 
980   type = g_variant_format_string_scan_type (format_string, NULL, NULL);
981   value = g_variant_lookup_value (dictionary, key, type);
982   g_variant_type_free (type);
983 
984   if (value)
985     {
986       va_list ap;
987 
988       va_start (ap, format_string);
989       g_variant_get_va (value, format_string, NULL, &ap);
990       g_variant_unref (value);
991       va_end (ap);
992 
993       return TRUE;
994     }
995 
996   else
997     return FALSE;
998 }
999 
1000 /**
1001  * g_variant_lookup_value:
1002  * @dictionary: a dictionary #GVariant
1003  * @key: the key to look up in the dictionary
1004  * @expected_type: (nullable): a #GVariantType, or %NULL
1005  *
1006  * Looks up a value in a dictionary #GVariant.
1007  *
1008  * This function works with dictionaries of the type a{s*} (and equally
1009  * well with type a{o*}, but we only further discuss the string case
1010  * for sake of clarity).
1011  *
1012  * In the event that @dictionary has the type a{sv}, the @expected_type
1013  * string specifies what type of value is expected to be inside of the
1014  * variant. If the value inside the variant has a different type then
1015  * %NULL is returned. In the event that @dictionary has a value type other
1016  * than v then @expected_type must directly match the value type and it is
1017  * used to unpack the value directly or an error occurs.
1018  *
1019  * In either case, if @key is not found in @dictionary, %NULL is returned.
1020  *
1021  * If the key is found and the value has the correct type, it is
1022  * returned.  If @expected_type was specified then any non-%NULL return
1023  * value will have this type.
1024  *
1025  * This function is currently implemented with a linear scan.  If you
1026  * plan to do many lookups then #GVariantDict may be more efficient.
1027  *
1028  * Returns: (transfer full): the value of the dictionary key, or %NULL
1029  *
1030  * Since: 2.28
1031  */
1032 GVariant *
g_variant_lookup_value(GVariant * dictionary,const gchar * key,const GVariantType * expected_type)1033 g_variant_lookup_value (GVariant           *dictionary,
1034                         const gchar        *key,
1035                         const GVariantType *expected_type)
1036 {
1037   GVariantIter iter;
1038   GVariant *entry;
1039   GVariant *value;
1040 
1041   g_return_val_if_fail (g_variant_is_of_type (dictionary,
1042                                               G_VARIANT_TYPE ("a{s*}")) ||
1043                         g_variant_is_of_type (dictionary,
1044                                               G_VARIANT_TYPE ("a{o*}")),
1045                         NULL);
1046 
1047   g_variant_iter_init (&iter, dictionary);
1048 
1049   while ((entry = g_variant_iter_next_value (&iter)))
1050     {
1051       GVariant *entry_key;
1052       gboolean matches;
1053 
1054       entry_key = g_variant_get_child_value (entry, 0);
1055       matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1056       g_variant_unref (entry_key);
1057 
1058       if (matches)
1059         break;
1060 
1061       g_variant_unref (entry);
1062     }
1063 
1064   if (entry == NULL)
1065     return NULL;
1066 
1067   value = g_variant_get_child_value (entry, 1);
1068   g_variant_unref (entry);
1069 
1070   if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1071     {
1072       GVariant *tmp;
1073 
1074       tmp = g_variant_get_variant (value);
1075       g_variant_unref (value);
1076 
1077       if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1078         {
1079           g_variant_unref (tmp);
1080           tmp = NULL;
1081         }
1082 
1083       value = tmp;
1084     }
1085 
1086   g_return_val_if_fail (expected_type == NULL || value == NULL ||
1087                         g_variant_is_of_type (value, expected_type), NULL);
1088 
1089   return value;
1090 }
1091 
1092 /**
1093  * g_variant_get_fixed_array:
1094  * @value: a #GVariant array with fixed-sized elements
1095  * @n_elements: (out): a pointer to the location to store the number of items
1096  * @element_size: the size of each element
1097  *
1098  * Provides access to the serialised data for an array of fixed-sized
1099  * items.
1100  *
1101  * @value must be an array with fixed-sized elements.  Numeric types are
1102  * fixed-size, as are tuples containing only other fixed-sized types.
1103  *
1104  * @element_size must be the size of a single element in the array,
1105  * as given by the section on
1106  * [serialized data memory][gvariant-serialised-data-memory].
1107  *
1108  * In particular, arrays of these fixed-sized types can be interpreted
1109  * as an array of the given C type, with @element_size set to the size
1110  * the appropriate type:
1111  * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1112  * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1113  * - %G_VARIANT_TYPE_BYTE: #guint8
1114  * - %G_VARIANT_TYPE_HANDLE: #guint32
1115  * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1116  *
1117  * For example, if calling this function for an array of 32-bit integers,
1118  * you might say `sizeof(gint32)`. This value isn't used except for the purpose
1119  * of a double-check that the form of the serialised data matches the caller's
1120  * expectation.
1121  *
1122  * @n_elements, which must be non-%NULL, is set equal to the number of
1123  * items in the array.
1124  *
1125  * Returns: (array length=n_elements) (transfer none): a pointer to
1126  *     the fixed array
1127  *
1128  * Since: 2.24
1129  **/
1130 gconstpointer
g_variant_get_fixed_array(GVariant * value,gsize * n_elements,gsize element_size)1131 g_variant_get_fixed_array (GVariant *value,
1132                            gsize    *n_elements,
1133                            gsize     element_size)
1134 {
1135   GVariantTypeInfo *array_info;
1136   gsize array_element_size;
1137   gconstpointer data;
1138   gsize size;
1139 
1140   TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1141 
1142   g_return_val_if_fail (n_elements != NULL, NULL);
1143   g_return_val_if_fail (element_size > 0, NULL);
1144 
1145   array_info = g_variant_get_type_info (value);
1146   g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1147 
1148   g_return_val_if_fail (array_element_size, NULL);
1149 
1150   if G_UNLIKELY (array_element_size != element_size)
1151     {
1152       if (array_element_size)
1153         g_critical ("g_variant_get_fixed_array: assertion "
1154                     "'g_variant_array_has_fixed_size (value, element_size)' "
1155                     "failed: array size %"G_GSIZE_FORMAT" does not match "
1156                     "given element_size %"G_GSIZE_FORMAT".",
1157                     array_element_size, element_size);
1158       else
1159         g_critical ("g_variant_get_fixed_array: assertion "
1160                     "'g_variant_array_has_fixed_size (value, element_size)' "
1161                     "failed: array does not have fixed size.");
1162     }
1163 
1164   data = g_variant_get_data (value);
1165   size = g_variant_get_size (value);
1166 
1167   if (size % element_size)
1168     *n_elements = 0;
1169   else
1170     *n_elements = size / element_size;
1171 
1172   if (*n_elements)
1173     return data;
1174 
1175   return NULL;
1176 }
1177 
1178 /**
1179  * g_variant_new_fixed_array:
1180  * @element_type: the #GVariantType of each element
1181  * @elements: a pointer to the fixed array of contiguous elements
1182  * @n_elements: the number of elements
1183  * @element_size: the size of each element
1184  *
1185  * Constructs a new array #GVariant instance, where the elements are
1186  * of @element_type type.
1187  *
1188  * @elements must be an array with fixed-sized elements.  Numeric types are
1189  * fixed-size as are tuples containing only other fixed-sized types.
1190  *
1191  * @element_size must be the size of a single element in the array.
1192  * For example, if calling this function for an array of 32-bit integers,
1193  * you might say sizeof(gint32). This value isn't used except for the purpose
1194  * of a double-check that the form of the serialised data matches the caller's
1195  * expectation.
1196  *
1197  * @n_elements must be the length of the @elements array.
1198  *
1199  * Returns: (transfer none): a floating reference to a new array #GVariant instance
1200  *
1201  * Since: 2.32
1202  **/
1203 GVariant *
g_variant_new_fixed_array(const GVariantType * element_type,gconstpointer elements,gsize n_elements,gsize element_size)1204 g_variant_new_fixed_array (const GVariantType  *element_type,
1205                            gconstpointer        elements,
1206                            gsize                n_elements,
1207                            gsize                element_size)
1208 {
1209   GVariantType *array_type;
1210   gsize array_element_size;
1211   GVariantTypeInfo *array_info;
1212   GVariant *value;
1213   gpointer data;
1214 
1215   g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
1216   g_return_val_if_fail (element_size > 0, NULL);
1217 
1218   array_type = g_variant_type_new_array (element_type);
1219   array_info = g_variant_type_info_get (array_type);
1220   g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1221   if G_UNLIKELY (array_element_size != element_size)
1222     {
1223       if (array_element_size)
1224         g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
1225                     " does not match given element_size %" G_GSIZE_FORMAT ".",
1226                     array_element_size, element_size);
1227       else
1228         g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
1229       return NULL;
1230     }
1231 
1232   data = g_memdup2 (elements, n_elements * element_size);
1233   value = g_variant_new_from_data (array_type, data,
1234                                    n_elements * element_size,
1235                                    FALSE, g_free, data);
1236 
1237   g_variant_type_free (array_type);
1238   g_variant_type_info_unref (array_info);
1239 
1240   return value;
1241 }
1242 
1243 /* String type constructor/getters/validation {{{1 */
1244 /**
1245  * g_variant_new_string:
1246  * @string: a normal UTF-8 nul-terminated string
1247  *
1248  * Creates a string #GVariant with the contents of @string.
1249  *
1250  * @string must be valid UTF-8, and must not be %NULL. To encode
1251  * potentially-%NULL strings, use g_variant_new() with `ms` as the
1252  * [format string][gvariant-format-strings-maybe-types].
1253  *
1254  * Returns: (transfer none): a floating reference to a new string #GVariant instance
1255  *
1256  * Since: 2.24
1257  **/
1258 GVariant *
g_variant_new_string(const gchar * string)1259 g_variant_new_string (const gchar *string)
1260 {
1261   g_return_val_if_fail (string != NULL, NULL);
1262   g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1263 
1264   return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1265                                      string, strlen (string) + 1);
1266 }
1267 
1268 /**
1269  * g_variant_new_take_string: (skip)
1270  * @string: a normal UTF-8 nul-terminated string
1271  *
1272  * Creates a string #GVariant with the contents of @string.
1273  *
1274  * @string must be valid UTF-8, and must not be %NULL. To encode
1275  * potentially-%NULL strings, use this with g_variant_new_maybe().
1276  *
1277  * This function consumes @string.  g_free() will be called on @string
1278  * when it is no longer required.
1279  *
1280  * You must not modify or access @string in any other way after passing
1281  * it to this function.  It is even possible that @string is immediately
1282  * freed.
1283  *
1284  * Returns: (transfer none): a floating reference to a new string
1285  *   #GVariant instance
1286  *
1287  * Since: 2.38
1288  **/
1289 GVariant *
g_variant_new_take_string(gchar * string)1290 g_variant_new_take_string (gchar *string)
1291 {
1292   GVariant *value;
1293   GBytes *bytes;
1294 
1295   g_return_val_if_fail (string != NULL, NULL);
1296   g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1297 
1298   bytes = g_bytes_new_take (string, strlen (string) + 1);
1299   value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1300   g_bytes_unref (bytes);
1301 
1302   return value;
1303 }
1304 
1305 /**
1306  * g_variant_new_printf: (skip)
1307  * @format_string: a printf-style format string
1308  * @...: arguments for @format_string
1309  *
1310  * Creates a string-type GVariant using printf formatting.
1311  *
1312  * This is similar to calling g_strdup_printf() and then
1313  * g_variant_new_string() but it saves a temporary variable and an
1314  * unnecessary copy.
1315  *
1316  * Returns: (transfer none): a floating reference to a new string
1317  *   #GVariant instance
1318  *
1319  * Since: 2.38
1320  **/
1321 GVariant *
g_variant_new_printf(const gchar * format_string,...)1322 g_variant_new_printf (const gchar *format_string,
1323                       ...)
1324 {
1325   GVariant *value;
1326   GBytes *bytes;
1327   gchar *string;
1328   va_list ap;
1329 
1330   g_return_val_if_fail (format_string != NULL, NULL);
1331 
1332   va_start (ap, format_string);
1333   string = g_strdup_vprintf (format_string, ap);
1334   va_end (ap);
1335 
1336   bytes = g_bytes_new_take (string, strlen (string) + 1);
1337   value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1338   g_bytes_unref (bytes);
1339 
1340   return value;
1341 }
1342 
1343 /**
1344  * g_variant_new_object_path:
1345  * @object_path: a normal C nul-terminated string
1346  *
1347  * Creates a D-Bus object path #GVariant with the contents of @string.
1348  * @string must be a valid D-Bus object path.  Use
1349  * g_variant_is_object_path() if you're not sure.
1350  *
1351  * Returns: (transfer none): a floating reference to a new object path #GVariant instance
1352  *
1353  * Since: 2.24
1354  **/
1355 GVariant *
g_variant_new_object_path(const gchar * object_path)1356 g_variant_new_object_path (const gchar *object_path)
1357 {
1358   g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1359 
1360   return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1361                                      object_path, strlen (object_path) + 1);
1362 }
1363 
1364 /**
1365  * g_variant_is_object_path:
1366  * @string: a normal C nul-terminated string
1367  *
1368  * Determines if a given string is a valid D-Bus object path.  You
1369  * should ensure that a string is a valid D-Bus object path before
1370  * passing it to g_variant_new_object_path().
1371  *
1372  * A valid object path starts with `/` followed by zero or more
1373  * sequences of characters separated by `/` characters.  Each sequence
1374  * must contain only the characters `[A-Z][a-z][0-9]_`.  No sequence
1375  * (including the one following the final `/` character) may be empty.
1376  *
1377  * Returns: %TRUE if @string is a D-Bus object path
1378  *
1379  * Since: 2.24
1380  **/
1381 gboolean
g_variant_is_object_path(const gchar * string)1382 g_variant_is_object_path (const gchar *string)
1383 {
1384   g_return_val_if_fail (string != NULL, FALSE);
1385 
1386   return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1387 }
1388 
1389 /**
1390  * g_variant_new_signature:
1391  * @signature: a normal C nul-terminated string
1392  *
1393  * Creates a D-Bus type signature #GVariant with the contents of
1394  * @string.  @string must be a valid D-Bus type signature.  Use
1395  * g_variant_is_signature() if you're not sure.
1396  *
1397  * Returns: (transfer none): a floating reference to a new signature #GVariant instance
1398  *
1399  * Since: 2.24
1400  **/
1401 GVariant *
g_variant_new_signature(const gchar * signature)1402 g_variant_new_signature (const gchar *signature)
1403 {
1404   g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1405 
1406   return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1407                                      signature, strlen (signature) + 1);
1408 }
1409 
1410 /**
1411  * g_variant_is_signature:
1412  * @string: a normal C nul-terminated string
1413  *
1414  * Determines if a given string is a valid D-Bus type signature.  You
1415  * should ensure that a string is a valid D-Bus type signature before
1416  * passing it to g_variant_new_signature().
1417  *
1418  * D-Bus type signatures consist of zero or more definite #GVariantType
1419  * strings in sequence.
1420  *
1421  * Returns: %TRUE if @string is a D-Bus type signature
1422  *
1423  * Since: 2.24
1424  **/
1425 gboolean
g_variant_is_signature(const gchar * string)1426 g_variant_is_signature (const gchar *string)
1427 {
1428   g_return_val_if_fail (string != NULL, FALSE);
1429 
1430   return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1431 }
1432 
1433 /**
1434  * g_variant_get_string:
1435  * @value: a string #GVariant instance
1436  * @length: (optional) (default 0) (out): a pointer to a #gsize,
1437  *          to store the length
1438  *
1439  * Returns the string value of a #GVariant instance with a string
1440  * type.  This includes the types %G_VARIANT_TYPE_STRING,
1441  * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1442  *
1443  * The string will always be UTF-8 encoded, will never be %NULL, and will never
1444  * contain nul bytes.
1445  *
1446  * If @length is non-%NULL then the length of the string (in bytes) is
1447  * returned there.  For trusted values, this information is already
1448  * known.  Untrusted values will be validated and, if valid, a strlen() will be
1449  * performed. If invalid, a default value will be returned — for
1450  * %G_VARIANT_TYPE_OBJECT_PATH, this is `"/"`, and for other types it is the
1451  * empty string.
1452  *
1453  * It is an error to call this function with a @value of any type
1454  * other than those three.
1455  *
1456  * The return value remains valid as long as @value exists.
1457  *
1458  * Returns: (transfer none): the constant string, UTF-8 encoded
1459  *
1460  * Since: 2.24
1461  **/
1462 const gchar *
g_variant_get_string(GVariant * value,gsize * length)1463 g_variant_get_string (GVariant *value,
1464                       gsize    *length)
1465 {
1466   gconstpointer data;
1467   gsize size;
1468 
1469   g_return_val_if_fail (value != NULL, NULL);
1470   g_return_val_if_fail (
1471     g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1472     g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1473     g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1474 
1475   data = g_variant_get_data (value);
1476   size = g_variant_get_size (value);
1477 
1478   if (!g_variant_is_trusted (value))
1479     {
1480       switch (g_variant_classify (value))
1481         {
1482         case G_VARIANT_CLASS_STRING:
1483           if (g_variant_serialiser_is_string (data, size))
1484             break;
1485 
1486           data = "";
1487           size = 1;
1488           break;
1489 
1490         case G_VARIANT_CLASS_OBJECT_PATH:
1491           if (g_variant_serialiser_is_object_path (data, size))
1492             break;
1493 
1494           data = "/";
1495           size = 2;
1496           break;
1497 
1498         case G_VARIANT_CLASS_SIGNATURE:
1499           if (g_variant_serialiser_is_signature (data, size))
1500             break;
1501 
1502           data = "";
1503           size = 1;
1504           break;
1505 
1506         default:
1507           g_assert_not_reached ();
1508         }
1509     }
1510 
1511   if (length)
1512     *length = size - 1;
1513 
1514   return data;
1515 }
1516 
1517 /**
1518  * g_variant_dup_string:
1519  * @value: a string #GVariant instance
1520  * @length: (out): a pointer to a #gsize, to store the length
1521  *
1522  * Similar to g_variant_get_string() except that instead of returning
1523  * a constant string, the string is duplicated.
1524  *
1525  * The string will always be UTF-8 encoded.
1526  *
1527  * The return value must be freed using g_free().
1528  *
1529  * Returns: (transfer full): a newly allocated string, UTF-8 encoded
1530  *
1531  * Since: 2.24
1532  **/
1533 gchar *
g_variant_dup_string(GVariant * value,gsize * length)1534 g_variant_dup_string (GVariant *value,
1535                       gsize    *length)
1536 {
1537   return g_strdup (g_variant_get_string (value, length));
1538 }
1539 
1540 /**
1541  * g_variant_new_strv:
1542  * @strv: (array length=length) (element-type utf8): an array of strings
1543  * @length: the length of @strv, or -1
1544  *
1545  * Constructs an array of strings #GVariant from the given array of
1546  * strings.
1547  *
1548  * If @length is -1 then @strv is %NULL-terminated.
1549  *
1550  * Returns: (transfer none): a new floating #GVariant instance
1551  *
1552  * Since: 2.24
1553  **/
1554 GVariant *
g_variant_new_strv(const gchar * const * strv,gssize length)1555 g_variant_new_strv (const gchar * const *strv,
1556                     gssize               length)
1557 {
1558   GVariant **strings;
1559   gsize i, length_unsigned;
1560 
1561   g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1562 
1563   if (length < 0)
1564     length = g_strv_length ((gchar **) strv);
1565   length_unsigned = length;
1566 
1567   strings = g_new (GVariant *, length_unsigned);
1568   for (i = 0; i < length_unsigned; i++)
1569     strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1570 
1571   return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1572                                       strings, length_unsigned, TRUE);
1573 }
1574 
1575 /**
1576  * g_variant_get_strv:
1577  * @value: an array of strings #GVariant
1578  * @length: (out) (optional): the length of the result, or %NULL
1579  *
1580  * Gets the contents of an array of strings #GVariant.  This call
1581  * makes a shallow copy; the return result should be released with
1582  * g_free(), but the individual strings must not be modified.
1583  *
1584  * If @length is non-%NULL then the number of elements in the result
1585  * is stored there.  In any case, the resulting array will be
1586  * %NULL-terminated.
1587  *
1588  * For an empty array, @length will be set to 0 and a pointer to a
1589  * %NULL pointer will be returned.
1590  *
1591  * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1592  *
1593  * Since: 2.24
1594  **/
1595 const gchar **
g_variant_get_strv(GVariant * value,gsize * length)1596 g_variant_get_strv (GVariant *value,
1597                     gsize    *length)
1598 {
1599   const gchar **strv;
1600   gsize n;
1601   gsize i;
1602 
1603   TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1604 
1605   g_variant_get_data (value);
1606   n = g_variant_n_children (value);
1607   strv = g_new (const gchar *, n + 1);
1608 
1609   for (i = 0; i < n; i++)
1610     {
1611       GVariant *string;
1612 
1613       string = g_variant_get_child_value (value, i);
1614       strv[i] = g_variant_get_string (string, NULL);
1615       g_variant_unref (string);
1616     }
1617   strv[i] = NULL;
1618 
1619   if (length)
1620     *length = n;
1621 
1622   return strv;
1623 }
1624 
1625 /**
1626  * g_variant_dup_strv:
1627  * @value: an array of strings #GVariant
1628  * @length: (out) (optional): the length of the result, or %NULL
1629  *
1630  * Gets the contents of an array of strings #GVariant.  This call
1631  * makes a deep copy; the return result should be released with
1632  * g_strfreev().
1633  *
1634  * If @length is non-%NULL then the number of elements in the result
1635  * is stored there.  In any case, the resulting array will be
1636  * %NULL-terminated.
1637  *
1638  * For an empty array, @length will be set to 0 and a pointer to a
1639  * %NULL pointer will be returned.
1640  *
1641  * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1642  *
1643  * Since: 2.24
1644  **/
1645 gchar **
g_variant_dup_strv(GVariant * value,gsize * length)1646 g_variant_dup_strv (GVariant *value,
1647                     gsize    *length)
1648 {
1649   gchar **strv;
1650   gsize n;
1651   gsize i;
1652 
1653   TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1654 
1655   n = g_variant_n_children (value);
1656   strv = g_new (gchar *, n + 1);
1657 
1658   for (i = 0; i < n; i++)
1659     {
1660       GVariant *string;
1661 
1662       string = g_variant_get_child_value (value, i);
1663       strv[i] = g_variant_dup_string (string, NULL);
1664       g_variant_unref (string);
1665     }
1666   strv[i] = NULL;
1667 
1668   if (length)
1669     *length = n;
1670 
1671   return strv;
1672 }
1673 
1674 /**
1675  * g_variant_new_objv:
1676  * @strv: (array length=length) (element-type utf8): an array of strings
1677  * @length: the length of @strv, or -1
1678  *
1679  * Constructs an array of object paths #GVariant from the given array of
1680  * strings.
1681  *
1682  * Each string must be a valid #GVariant object path; see
1683  * g_variant_is_object_path().
1684  *
1685  * If @length is -1 then @strv is %NULL-terminated.
1686  *
1687  * Returns: (transfer none): a new floating #GVariant instance
1688  *
1689  * Since: 2.30
1690  **/
1691 GVariant *
g_variant_new_objv(const gchar * const * strv,gssize length)1692 g_variant_new_objv (const gchar * const *strv,
1693                     gssize               length)
1694 {
1695   GVariant **strings;
1696   gsize i, length_unsigned;
1697 
1698   g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1699 
1700   if (length < 0)
1701     length = g_strv_length ((gchar **) strv);
1702   length_unsigned = length;
1703 
1704   strings = g_new (GVariant *, length_unsigned);
1705   for (i = 0; i < length_unsigned; i++)
1706     strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1707 
1708   return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1709                                       strings, length_unsigned, TRUE);
1710 }
1711 
1712 /**
1713  * g_variant_get_objv:
1714  * @value: an array of object paths #GVariant
1715  * @length: (out) (optional): the length of the result, or %NULL
1716  *
1717  * Gets the contents of an array of object paths #GVariant.  This call
1718  * makes a shallow copy; the return result should be released with
1719  * g_free(), but the individual strings must not be modified.
1720  *
1721  * If @length is non-%NULL then the number of elements in the result
1722  * is stored there.  In any case, the resulting array will be
1723  * %NULL-terminated.
1724  *
1725  * For an empty array, @length will be set to 0 and a pointer to a
1726  * %NULL pointer will be returned.
1727  *
1728  * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1729  *
1730  * Since: 2.30
1731  **/
1732 const gchar **
g_variant_get_objv(GVariant * value,gsize * length)1733 g_variant_get_objv (GVariant *value,
1734                     gsize    *length)
1735 {
1736   const gchar **strv;
1737   gsize n;
1738   gsize i;
1739 
1740   TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1741 
1742   g_variant_get_data (value);
1743   n = g_variant_n_children (value);
1744   strv = g_new (const gchar *, n + 1);
1745 
1746   for (i = 0; i < n; i++)
1747     {
1748       GVariant *string;
1749 
1750       string = g_variant_get_child_value (value, i);
1751       strv[i] = g_variant_get_string (string, NULL);
1752       g_variant_unref (string);
1753     }
1754   strv[i] = NULL;
1755 
1756   if (length)
1757     *length = n;
1758 
1759   return strv;
1760 }
1761 
1762 /**
1763  * g_variant_dup_objv:
1764  * @value: an array of object paths #GVariant
1765  * @length: (out) (optional): the length of the result, or %NULL
1766  *
1767  * Gets the contents of an array of object paths #GVariant.  This call
1768  * makes a deep copy; the return result should be released with
1769  * g_strfreev().
1770  *
1771  * If @length is non-%NULL then the number of elements in the result
1772  * is stored there.  In any case, the resulting array will be
1773  * %NULL-terminated.
1774  *
1775  * For an empty array, @length will be set to 0 and a pointer to a
1776  * %NULL pointer will be returned.
1777  *
1778  * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1779  *
1780  * Since: 2.30
1781  **/
1782 gchar **
g_variant_dup_objv(GVariant * value,gsize * length)1783 g_variant_dup_objv (GVariant *value,
1784                     gsize    *length)
1785 {
1786   gchar **strv;
1787   gsize n;
1788   gsize i;
1789 
1790   TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1791 
1792   n = g_variant_n_children (value);
1793   strv = g_new (gchar *, n + 1);
1794 
1795   for (i = 0; i < n; i++)
1796     {
1797       GVariant *string;
1798 
1799       string = g_variant_get_child_value (value, i);
1800       strv[i] = g_variant_dup_string (string, NULL);
1801       g_variant_unref (string);
1802     }
1803   strv[i] = NULL;
1804 
1805   if (length)
1806     *length = n;
1807 
1808   return strv;
1809 }
1810 
1811 
1812 /**
1813  * g_variant_new_bytestring:
1814  * @string: (array zero-terminated=1) (element-type guint8): a normal
1815  *          nul-terminated string in no particular encoding
1816  *
1817  * Creates an array-of-bytes #GVariant with the contents of @string.
1818  * This function is just like g_variant_new_string() except that the
1819  * string need not be valid UTF-8.
1820  *
1821  * The nul terminator character at the end of the string is stored in
1822  * the array.
1823  *
1824  * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1825  *
1826  * Since: 2.26
1827  **/
1828 GVariant *
g_variant_new_bytestring(const gchar * string)1829 g_variant_new_bytestring (const gchar *string)
1830 {
1831   g_return_val_if_fail (string != NULL, NULL);
1832 
1833   return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1834                                      string, strlen (string) + 1);
1835 }
1836 
1837 /**
1838  * g_variant_get_bytestring:
1839  * @value: an array-of-bytes #GVariant instance
1840  *
1841  * Returns the string value of a #GVariant instance with an
1842  * array-of-bytes type.  The string has no particular encoding.
1843  *
1844  * If the array does not end with a nul terminator character, the empty
1845  * string is returned.  For this reason, you can always trust that a
1846  * non-%NULL nul-terminated string will be returned by this function.
1847  *
1848  * If the array contains a nul terminator character somewhere other than
1849  * the last byte then the returned string is the string, up to the first
1850  * such nul character.
1851  *
1852  * g_variant_get_fixed_array() should be used instead if the array contains
1853  * arbitrary data that could not be nul-terminated or could contain nul bytes.
1854  *
1855  * It is an error to call this function with a @value that is not an
1856  * array of bytes.
1857  *
1858  * The return value remains valid as long as @value exists.
1859  *
1860  * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
1861  *          the constant string
1862  *
1863  * Since: 2.26
1864  **/
1865 const gchar *
g_variant_get_bytestring(GVariant * value)1866 g_variant_get_bytestring (GVariant *value)
1867 {
1868   const gchar *string;
1869   gsize size;
1870 
1871   TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1872 
1873   /* Won't be NULL since this is an array type */
1874   string = g_variant_get_data (value);
1875   size = g_variant_get_size (value);
1876 
1877   if (size && string[size - 1] == '\0')
1878     return string;
1879   else
1880     return "";
1881 }
1882 
1883 /**
1884  * g_variant_dup_bytestring:
1885  * @value: an array-of-bytes #GVariant instance
1886  * @length: (out) (optional) (default NULL): a pointer to a #gsize, to store
1887  *          the length (not including the nul terminator)
1888  *
1889  * Similar to g_variant_get_bytestring() except that instead of
1890  * returning a constant string, the string is duplicated.
1891  *
1892  * The return value must be freed using g_free().
1893  *
1894  * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
1895  *          a newly allocated string
1896  *
1897  * Since: 2.26
1898  **/
1899 gchar *
g_variant_dup_bytestring(GVariant * value,gsize * length)1900 g_variant_dup_bytestring (GVariant *value,
1901                           gsize    *length)
1902 {
1903   const gchar *original = g_variant_get_bytestring (value);
1904   gsize size;
1905 
1906   /* don't crash in case get_bytestring() had an assert failure */
1907   if (original == NULL)
1908     return NULL;
1909 
1910   size = strlen (original);
1911 
1912   if (length)
1913     *length = size;
1914 
1915   return g_memdup2 (original, size + 1);
1916 }
1917 
1918 /**
1919  * g_variant_new_bytestring_array:
1920  * @strv: (array length=length): an array of strings
1921  * @length: the length of @strv, or -1
1922  *
1923  * Constructs an array of bytestring #GVariant from the given array of
1924  * strings.
1925  *
1926  * If @length is -1 then @strv is %NULL-terminated.
1927  *
1928  * Returns: (transfer none): a new floating #GVariant instance
1929  *
1930  * Since: 2.26
1931  **/
1932 GVariant *
g_variant_new_bytestring_array(const gchar * const * strv,gssize length)1933 g_variant_new_bytestring_array (const gchar * const *strv,
1934                                 gssize               length)
1935 {
1936   GVariant **strings;
1937   gsize i, length_unsigned;
1938 
1939   g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1940 
1941   if (length < 0)
1942     length = g_strv_length ((gchar **) strv);
1943   length_unsigned = length;
1944 
1945   strings = g_new (GVariant *, length_unsigned);
1946   for (i = 0; i < length_unsigned; i++)
1947     strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1948 
1949   return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1950                                       strings, length_unsigned, TRUE);
1951 }
1952 
1953 /**
1954  * g_variant_get_bytestring_array:
1955  * @value: an array of array of bytes #GVariant ('aay')
1956  * @length: (out) (optional): the length of the result, or %NULL
1957  *
1958  * Gets the contents of an array of array of bytes #GVariant.  This call
1959  * makes a shallow copy; the return result should be released with
1960  * g_free(), but the individual strings must not be modified.
1961  *
1962  * If @length is non-%NULL then the number of elements in the result is
1963  * stored there.  In any case, the resulting array will be
1964  * %NULL-terminated.
1965  *
1966  * For an empty array, @length will be set to 0 and a pointer to a
1967  * %NULL pointer will be returned.
1968  *
1969  * Returns: (array length=length) (transfer container): an array of constant strings
1970  *
1971  * Since: 2.26
1972  **/
1973 const gchar **
g_variant_get_bytestring_array(GVariant * value,gsize * length)1974 g_variant_get_bytestring_array (GVariant *value,
1975                                 gsize    *length)
1976 {
1977   const gchar **strv;
1978   gsize n;
1979   gsize i;
1980 
1981   TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1982 
1983   g_variant_get_data (value);
1984   n = g_variant_n_children (value);
1985   strv = g_new (const gchar *, n + 1);
1986 
1987   for (i = 0; i < n; i++)
1988     {
1989       GVariant *string;
1990 
1991       string = g_variant_get_child_value (value, i);
1992       strv[i] = g_variant_get_bytestring (string);
1993       g_variant_unref (string);
1994     }
1995   strv[i] = NULL;
1996 
1997   if (length)
1998     *length = n;
1999 
2000   return strv;
2001 }
2002 
2003 /**
2004  * g_variant_dup_bytestring_array:
2005  * @value: an array of array of bytes #GVariant ('aay')
2006  * @length: (out) (optional): the length of the result, or %NULL
2007  *
2008  * Gets the contents of an array of array of bytes #GVariant.  This call
2009  * makes a deep copy; the return result should be released with
2010  * g_strfreev().
2011  *
2012  * If @length is non-%NULL then the number of elements in the result is
2013  * stored there.  In any case, the resulting array will be
2014  * %NULL-terminated.
2015  *
2016  * For an empty array, @length will be set to 0 and a pointer to a
2017  * %NULL pointer will be returned.
2018  *
2019  * Returns: (array length=length) (transfer full): an array of strings
2020  *
2021  * Since: 2.26
2022  **/
2023 gchar **
g_variant_dup_bytestring_array(GVariant * value,gsize * length)2024 g_variant_dup_bytestring_array (GVariant *value,
2025                                 gsize    *length)
2026 {
2027   gchar **strv;
2028   gsize n;
2029   gsize i;
2030 
2031   TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
2032 
2033   g_variant_get_data (value);
2034   n = g_variant_n_children (value);
2035   strv = g_new (gchar *, n + 1);
2036 
2037   for (i = 0; i < n; i++)
2038     {
2039       GVariant *string;
2040 
2041       string = g_variant_get_child_value (value, i);
2042       strv[i] = g_variant_dup_bytestring (string, NULL);
2043       g_variant_unref (string);
2044     }
2045   strv[i] = NULL;
2046 
2047   if (length)
2048     *length = n;
2049 
2050   return strv;
2051 }
2052 
2053 /* Type checking and querying {{{1 */
2054 /**
2055  * g_variant_get_type:
2056  * @value: a #GVariant
2057  *
2058  * Determines the type of @value.
2059  *
2060  * The return value is valid for the lifetime of @value and must not
2061  * be freed.
2062  *
2063  * Returns: a #GVariantType
2064  *
2065  * Since: 2.24
2066  **/
2067 const GVariantType *
g_variant_get_type(GVariant * value)2068 g_variant_get_type (GVariant *value)
2069 {
2070   GVariantTypeInfo *type_info;
2071 
2072   g_return_val_if_fail (value != NULL, NULL);
2073 
2074   type_info = g_variant_get_type_info (value);
2075 
2076   return (GVariantType *) g_variant_type_info_get_type_string (type_info);
2077 }
2078 
2079 /**
2080  * g_variant_get_type_string:
2081  * @value: a #GVariant
2082  *
2083  * Returns the type string of @value.  Unlike the result of calling
2084  * g_variant_type_peek_string(), this string is nul-terminated.  This
2085  * string belongs to #GVariant and must not be freed.
2086  *
2087  * Returns: the type string for the type of @value
2088  *
2089  * Since: 2.24
2090  **/
2091 const gchar *
g_variant_get_type_string(GVariant * value)2092 g_variant_get_type_string (GVariant *value)
2093 {
2094   GVariantTypeInfo *type_info;
2095 
2096   g_return_val_if_fail (value != NULL, NULL);
2097 
2098   type_info = g_variant_get_type_info (value);
2099 
2100   return g_variant_type_info_get_type_string (type_info);
2101 }
2102 
2103 /**
2104  * g_variant_is_of_type:
2105  * @value: a #GVariant instance
2106  * @type: a #GVariantType
2107  *
2108  * Checks if a value has a type matching the provided type.
2109  *
2110  * Returns: %TRUE if the type of @value matches @type
2111  *
2112  * Since: 2.24
2113  **/
2114 gboolean
g_variant_is_of_type(GVariant * value,const GVariantType * type)2115 g_variant_is_of_type (GVariant           *value,
2116                       const GVariantType *type)
2117 {
2118   return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
2119 }
2120 
2121 /**
2122  * g_variant_is_container:
2123  * @value: a #GVariant instance
2124  *
2125  * Checks if @value is a container.
2126  *
2127  * Returns: %TRUE if @value is a container
2128  *
2129  * Since: 2.24
2130  */
2131 gboolean
g_variant_is_container(GVariant * value)2132 g_variant_is_container (GVariant *value)
2133 {
2134   return g_variant_type_is_container (g_variant_get_type (value));
2135 }
2136 
2137 
2138 /**
2139  * g_variant_classify:
2140  * @value: a #GVariant
2141  *
2142  * Classifies @value according to its top-level type.
2143  *
2144  * Returns: the #GVariantClass of @value
2145  *
2146  * Since: 2.24
2147  **/
2148 /**
2149  * GVariantClass:
2150  * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
2151  * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
2152  * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
2153  * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
2154  * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
2155  * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
2156  * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
2157  * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
2158  * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
2159  * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
2160  *                          point value.
2161  * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
2162  * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
2163  *                               string.
2164  * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
2165  * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
2166  * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
2167  * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
2168  * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
2169  * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
2170  *
2171  * The range of possible top-level types of #GVariant instances.
2172  *
2173  * Since: 2.24
2174  **/
2175 GVariantClass
g_variant_classify(GVariant * value)2176 g_variant_classify (GVariant *value)
2177 {
2178   g_return_val_if_fail (value != NULL, 0);
2179 
2180   return *g_variant_get_type_string (value);
2181 }
2182 
2183 /* Pretty printer {{{1 */
2184 /* This function is not introspectable because if @string is NULL,
2185    @returns is (transfer full), otherwise it is (transfer none), which
2186    is not supported by GObjectIntrospection */
2187 /**
2188  * g_variant_print_string: (skip)
2189  * @value: a #GVariant
2190  * @string: (nullable) (default NULL): a #GString, or %NULL
2191  * @type_annotate: %TRUE if type information should be included in
2192  *                 the output
2193  *
2194  * Behaves as g_variant_print(), but operates on a #GString.
2195  *
2196  * If @string is non-%NULL then it is appended to and returned.  Else,
2197  * a new empty #GString is allocated and it is returned.
2198  *
2199  * Returns: a #GString containing the string
2200  *
2201  * Since: 2.24
2202  **/
2203 GString *
g_variant_print_string(GVariant * value,GString * string,gboolean type_annotate)2204 g_variant_print_string (GVariant *value,
2205                         GString  *string,
2206                         gboolean  type_annotate)
2207 {
2208   if G_UNLIKELY (string == NULL)
2209     string = g_string_new (NULL);
2210 
2211   switch (g_variant_classify (value))
2212     {
2213     case G_VARIANT_CLASS_MAYBE:
2214       if (type_annotate)
2215         g_string_append_printf (string, "@%s ",
2216                                 g_variant_get_type_string (value));
2217 
2218       if (g_variant_n_children (value))
2219         {
2220           gchar *printed_child;
2221           GVariant *element;
2222 
2223           /* Nested maybes:
2224            *
2225            * Consider the case of the type "mmi".  In this case we could
2226            * write "just just 4", but "4" alone is totally unambiguous,
2227            * so we try to drop "just" where possible.
2228            *
2229            * We have to be careful not to always drop "just", though,
2230            * since "nothing" needs to be distinguishable from "just
2231            * nothing".  The case where we need to ensure we keep the
2232            * "just" is actually exactly the case where we have a nested
2233            * Nothing.
2234            *
2235            * Instead of searching for that nested Nothing, we just print
2236            * the contained value into a separate string and see if we
2237            * end up with "nothing" at the end of it.  If so, we need to
2238            * add "just" at our level.
2239            */
2240           element = g_variant_get_child_value (value, 0);
2241           printed_child = g_variant_print (element, FALSE);
2242           g_variant_unref (element);
2243 
2244           if (g_str_has_suffix (printed_child, "nothing"))
2245             g_string_append (string, "just ");
2246           g_string_append (string, printed_child);
2247           g_free (printed_child);
2248         }
2249       else
2250         g_string_append (string, "nothing");
2251 
2252       break;
2253 
2254     case G_VARIANT_CLASS_ARRAY:
2255       /* it's an array so the first character of the type string is 'a'
2256        *
2257        * if the first two characters are 'ay' then it's a bytestring.
2258        * under certain conditions we print those as strings.
2259        */
2260       if (g_variant_get_type_string (value)[1] == 'y')
2261         {
2262           const gchar *str;
2263           gsize size;
2264           gsize i;
2265 
2266           /* first determine if it is a byte string.
2267            * that's when there's a single nul character: at the end.
2268            */
2269           str = g_variant_get_data (value);
2270           size = g_variant_get_size (value);
2271 
2272           for (i = 0; i < size; i++)
2273             if (str[i] == '\0')
2274               break;
2275 
2276           /* first nul byte is the last byte -> it's a byte string. */
2277           if (i == size - 1)
2278             {
2279               gchar *escaped = g_strescape (str, NULL);
2280 
2281               /* use double quotes only if a ' is in the string */
2282               if (strchr (str, '\''))
2283                 g_string_append_printf (string, "b\"%s\"", escaped);
2284               else
2285                 g_string_append_printf (string, "b'%s'", escaped);
2286 
2287               g_free (escaped);
2288               break;
2289             }
2290 
2291           else
2292             {
2293               /* fall through and handle normally... */
2294             }
2295         }
2296 
2297       /*
2298        * if the first two characters are 'a{' then it's an array of
2299        * dictionary entries (ie: a dictionary) so we print that
2300        * differently.
2301        */
2302       if (g_variant_get_type_string (value)[1] == '{')
2303         /* dictionary */
2304         {
2305           const gchar *comma = "";
2306           gsize n, i;
2307 
2308           if ((n = g_variant_n_children (value)) == 0)
2309             {
2310               if (type_annotate)
2311                 g_string_append_printf (string, "@%s ",
2312                                         g_variant_get_type_string (value));
2313               g_string_append (string, "{}");
2314               break;
2315             }
2316 
2317           g_string_append_c (string, '{');
2318           for (i = 0; i < n; i++)
2319             {
2320               GVariant *entry, *key, *val;
2321 
2322               g_string_append (string, comma);
2323               comma = ", ";
2324 
2325               entry = g_variant_get_child_value (value, i);
2326               key = g_variant_get_child_value (entry, 0);
2327               val = g_variant_get_child_value (entry, 1);
2328               g_variant_unref (entry);
2329 
2330               g_variant_print_string (key, string, type_annotate);
2331               g_variant_unref (key);
2332               g_string_append (string, ": ");
2333               g_variant_print_string (val, string, type_annotate);
2334               g_variant_unref (val);
2335               type_annotate = FALSE;
2336             }
2337           g_string_append_c (string, '}');
2338         }
2339       else
2340         /* normal (non-dictionary) array */
2341         {
2342           const gchar *comma = "";
2343           gsize n, i;
2344 
2345           if ((n = g_variant_n_children (value)) == 0)
2346             {
2347               if (type_annotate)
2348                 g_string_append_printf (string, "@%s ",
2349                                         g_variant_get_type_string (value));
2350               g_string_append (string, "[]");
2351               break;
2352             }
2353 
2354           g_string_append_c (string, '[');
2355           for (i = 0; i < n; i++)
2356             {
2357               GVariant *element;
2358 
2359               g_string_append (string, comma);
2360               comma = ", ";
2361 
2362               element = g_variant_get_child_value (value, i);
2363 
2364               g_variant_print_string (element, string, type_annotate);
2365               g_variant_unref (element);
2366               type_annotate = FALSE;
2367             }
2368           g_string_append_c (string, ']');
2369         }
2370 
2371       break;
2372 
2373     case G_VARIANT_CLASS_TUPLE:
2374       {
2375         gsize n, i;
2376 
2377         n = g_variant_n_children (value);
2378 
2379         g_string_append_c (string, '(');
2380         for (i = 0; i < n; i++)
2381           {
2382             GVariant *element;
2383 
2384             element = g_variant_get_child_value (value, i);
2385             g_variant_print_string (element, string, type_annotate);
2386             g_string_append (string, ", ");
2387             g_variant_unref (element);
2388           }
2389 
2390         /* for >1 item:  remove final ", "
2391          * for 1 item:   remove final " ", but leave the ","
2392          * for 0 items:  there is only "(", so remove nothing
2393          */
2394         g_string_truncate (string, string->len - (n > 0) - (n > 1));
2395         g_string_append_c (string, ')');
2396       }
2397       break;
2398 
2399     case G_VARIANT_CLASS_DICT_ENTRY:
2400       {
2401         GVariant *element;
2402 
2403         g_string_append_c (string, '{');
2404 
2405         element = g_variant_get_child_value (value, 0);
2406         g_variant_print_string (element, string, type_annotate);
2407         g_variant_unref (element);
2408 
2409         g_string_append (string, ", ");
2410 
2411         element = g_variant_get_child_value (value, 1);
2412         g_variant_print_string (element, string, type_annotate);
2413         g_variant_unref (element);
2414 
2415         g_string_append_c (string, '}');
2416       }
2417       break;
2418 
2419     case G_VARIANT_CLASS_VARIANT:
2420       {
2421         GVariant *child = g_variant_get_variant (value);
2422 
2423         /* Always annotate types in nested variants, because they are
2424          * (by nature) of variable type.
2425          */
2426         g_string_append_c (string, '<');
2427         g_variant_print_string (child, string, TRUE);
2428         g_string_append_c (string, '>');
2429 
2430         g_variant_unref (child);
2431       }
2432       break;
2433 
2434     case G_VARIANT_CLASS_BOOLEAN:
2435       if (g_variant_get_boolean (value))
2436         g_string_append (string, "true");
2437       else
2438         g_string_append (string, "false");
2439       break;
2440 
2441     case G_VARIANT_CLASS_STRING:
2442       {
2443         const gchar *str = g_variant_get_string (value, NULL);
2444         gunichar quote = strchr (str, '\'') ? '"' : '\'';
2445 
2446         g_string_append_c (string, quote);
2447 
2448         while (*str)
2449           {
2450             gunichar c = g_utf8_get_char (str);
2451 
2452             if (c == quote || c == '\\')
2453               g_string_append_c (string, '\\');
2454 
2455             if (g_unichar_isprint (c))
2456               g_string_append_unichar (string, c);
2457 
2458             else
2459               {
2460                 g_string_append_c (string, '\\');
2461                 if (c < 0x10000)
2462                   switch (c)
2463                     {
2464                     case '\a':
2465                       g_string_append_c (string, 'a');
2466                       break;
2467 
2468                     case '\b':
2469                       g_string_append_c (string, 'b');
2470                       break;
2471 
2472                     case '\f':
2473                       g_string_append_c (string, 'f');
2474                       break;
2475 
2476                     case '\n':
2477                       g_string_append_c (string, 'n');
2478                       break;
2479 
2480                     case '\r':
2481                       g_string_append_c (string, 'r');
2482                       break;
2483 
2484                     case '\t':
2485                       g_string_append_c (string, 't');
2486                       break;
2487 
2488                     case '\v':
2489                       g_string_append_c (string, 'v');
2490                       break;
2491 
2492                     default:
2493                       g_string_append_printf (string, "u%04x", c);
2494                       break;
2495                     }
2496                  else
2497                    g_string_append_printf (string, "U%08x", c);
2498               }
2499 
2500             str = g_utf8_next_char (str);
2501           }
2502 
2503         g_string_append_c (string, quote);
2504       }
2505       break;
2506 
2507     case G_VARIANT_CLASS_BYTE:
2508       if (type_annotate)
2509         g_string_append (string, "byte ");
2510       g_string_append_printf (string, "0x%02x",
2511                               g_variant_get_byte (value));
2512       break;
2513 
2514     case G_VARIANT_CLASS_INT16:
2515       if (type_annotate)
2516         g_string_append (string, "int16 ");
2517       g_string_append_printf (string, "%"G_GINT16_FORMAT,
2518                               g_variant_get_int16 (value));
2519       break;
2520 
2521     case G_VARIANT_CLASS_UINT16:
2522       if (type_annotate)
2523         g_string_append (string, "uint16 ");
2524       g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2525                               g_variant_get_uint16 (value));
2526       break;
2527 
2528     case G_VARIANT_CLASS_INT32:
2529       /* Never annotate this type because it is the default for numbers
2530        * (and this is a *pretty* printer)
2531        */
2532       g_string_append_printf (string, "%"G_GINT32_FORMAT,
2533                               g_variant_get_int32 (value));
2534       break;
2535 
2536     case G_VARIANT_CLASS_HANDLE:
2537       if (type_annotate)
2538         g_string_append (string, "handle ");
2539       g_string_append_printf (string, "%"G_GINT32_FORMAT,
2540                               g_variant_get_handle (value));
2541       break;
2542 
2543     case G_VARIANT_CLASS_UINT32:
2544       if (type_annotate)
2545         g_string_append (string, "uint32 ");
2546       g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2547                               g_variant_get_uint32 (value));
2548       break;
2549 
2550     case G_VARIANT_CLASS_INT64:
2551       if (type_annotate)
2552         g_string_append (string, "int64 ");
2553       g_string_append_printf (string, "%"G_GINT64_FORMAT,
2554                               g_variant_get_int64 (value));
2555       break;
2556 
2557     case G_VARIANT_CLASS_UINT64:
2558       if (type_annotate)
2559         g_string_append (string, "uint64 ");
2560       g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2561                               g_variant_get_uint64 (value));
2562       break;
2563 
2564     case G_VARIANT_CLASS_DOUBLE:
2565       {
2566         gchar buffer[100];
2567         gint i;
2568 
2569         g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2570 
2571         for (i = 0; buffer[i]; i++)
2572           if (buffer[i] == '.' || buffer[i] == 'e' ||
2573               buffer[i] == 'n' || buffer[i] == 'N')
2574             break;
2575 
2576         /* if there is no '.' or 'e' in the float then add one */
2577         if (buffer[i] == '\0')
2578           {
2579             buffer[i++] = '.';
2580             buffer[i++] = '0';
2581             buffer[i++] = '\0';
2582           }
2583 
2584         g_string_append (string, buffer);
2585       }
2586       break;
2587 
2588     case G_VARIANT_CLASS_OBJECT_PATH:
2589       if (type_annotate)
2590         g_string_append (string, "objectpath ");
2591       g_string_append_printf (string, "\'%s\'",
2592                               g_variant_get_string (value, NULL));
2593       break;
2594 
2595     case G_VARIANT_CLASS_SIGNATURE:
2596       if (type_annotate)
2597         g_string_append (string, "signature ");
2598       g_string_append_printf (string, "\'%s\'",
2599                               g_variant_get_string (value, NULL));
2600       break;
2601 
2602     default:
2603       g_assert_not_reached ();
2604   }
2605 
2606   return string;
2607 }
2608 
2609 /**
2610  * g_variant_print:
2611  * @value: a #GVariant
2612  * @type_annotate: %TRUE if type information should be included in
2613  *                 the output
2614  *
2615  * Pretty-prints @value in the format understood by g_variant_parse().
2616  *
2617  * The format is described [here][gvariant-text].
2618  *
2619  * If @type_annotate is %TRUE, then type information is included in
2620  * the output.
2621  *
2622  * Returns: (transfer full): a newly-allocated string holding the result.
2623  *
2624  * Since: 2.24
2625  */
2626 gchar *
g_variant_print(GVariant * value,gboolean type_annotate)2627 g_variant_print (GVariant *value,
2628                  gboolean  type_annotate)
2629 {
2630   return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2631                         FALSE);
2632 }
2633 
2634 /* Hash, Equal, Compare {{{1 */
2635 /**
2636  * g_variant_hash:
2637  * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2638  *
2639  * Generates a hash value for a #GVariant instance.
2640  *
2641  * The output of this function is guaranteed to be the same for a given
2642  * value only per-process.  It may change between different processor
2643  * architectures or even different versions of GLib.  Do not use this
2644  * function as a basis for building protocols or file formats.
2645  *
2646  * The type of @value is #gconstpointer only to allow use of this
2647  * function with #GHashTable.  @value must be a #GVariant.
2648  *
2649  * Returns: a hash value corresponding to @value
2650  *
2651  * Since: 2.24
2652  **/
2653 guint
g_variant_hash(gconstpointer value_)2654 g_variant_hash (gconstpointer value_)
2655 {
2656   GVariant *value = (GVariant *) value_;
2657 
2658   switch (g_variant_classify (value))
2659     {
2660     case G_VARIANT_CLASS_STRING:
2661     case G_VARIANT_CLASS_OBJECT_PATH:
2662     case G_VARIANT_CLASS_SIGNATURE:
2663       return g_str_hash (g_variant_get_string (value, NULL));
2664 
2665     case G_VARIANT_CLASS_BOOLEAN:
2666       /* this is a very odd thing to hash... */
2667       return g_variant_get_boolean (value);
2668 
2669     case G_VARIANT_CLASS_BYTE:
2670       return g_variant_get_byte (value);
2671 
2672     case G_VARIANT_CLASS_INT16:
2673     case G_VARIANT_CLASS_UINT16:
2674       {
2675         const guint16 *ptr;
2676 
2677         ptr = g_variant_get_data (value);
2678 
2679         if (ptr)
2680           return *ptr;
2681         else
2682           return 0;
2683       }
2684 
2685     case G_VARIANT_CLASS_INT32:
2686     case G_VARIANT_CLASS_UINT32:
2687     case G_VARIANT_CLASS_HANDLE:
2688       {
2689         const guint *ptr;
2690 
2691         ptr = g_variant_get_data (value);
2692 
2693         if (ptr)
2694           return *ptr;
2695         else
2696           return 0;
2697       }
2698 
2699     case G_VARIANT_CLASS_INT64:
2700     case G_VARIANT_CLASS_UINT64:
2701     case G_VARIANT_CLASS_DOUBLE:
2702       /* need a separate case for these guys because otherwise
2703        * performance could be quite bad on big endian systems
2704        */
2705       {
2706         const guint *ptr;
2707 
2708         ptr = g_variant_get_data (value);
2709 
2710         if (ptr)
2711           return ptr[0] + ptr[1];
2712         else
2713           return 0;
2714       }
2715 
2716     default:
2717       g_return_val_if_fail (!g_variant_is_container (value), 0);
2718       g_assert_not_reached ();
2719     }
2720 }
2721 
2722 /**
2723  * g_variant_equal:
2724  * @one: (type GVariant): a #GVariant instance
2725  * @two: (type GVariant): a #GVariant instance
2726  *
2727  * Checks if @one and @two have the same type and value.
2728  *
2729  * The types of @one and @two are #gconstpointer only to allow use of
2730  * this function with #GHashTable.  They must each be a #GVariant.
2731  *
2732  * Returns: %TRUE if @one and @two are equal
2733  *
2734  * Since: 2.24
2735  **/
2736 gboolean
g_variant_equal(gconstpointer one,gconstpointer two)2737 g_variant_equal (gconstpointer one,
2738                  gconstpointer two)
2739 {
2740   gboolean equal;
2741 
2742   g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2743 
2744   if (g_variant_get_type_info ((GVariant *) one) !=
2745       g_variant_get_type_info ((GVariant *) two))
2746     return FALSE;
2747 
2748   /* if both values are trusted to be in their canonical serialised form
2749    * then a simple memcmp() of their serialised data will answer the
2750    * question.
2751    *
2752    * if not, then this might generate a false negative (since it is
2753    * possible for two different byte sequences to represent the same
2754    * value).  for now we solve this by pretty-printing both values and
2755    * comparing the result.
2756    */
2757   if (g_variant_is_trusted ((GVariant *) one) &&
2758       g_variant_is_trusted ((GVariant *) two))
2759     {
2760       gconstpointer data_one, data_two;
2761       gsize size_one, size_two;
2762 
2763       size_one = g_variant_get_size ((GVariant *) one);
2764       size_two = g_variant_get_size ((GVariant *) two);
2765 
2766       if (size_one != size_two)
2767         return FALSE;
2768 
2769       data_one = g_variant_get_data ((GVariant *) one);
2770       data_two = g_variant_get_data ((GVariant *) two);
2771 
2772       if (size_one)
2773         equal = memcmp (data_one, data_two, size_one) == 0;
2774       else
2775         equal = TRUE;
2776     }
2777   else
2778     {
2779       gchar *strone, *strtwo;
2780 
2781       strone = g_variant_print ((GVariant *) one, FALSE);
2782       strtwo = g_variant_print ((GVariant *) two, FALSE);
2783       equal = strcmp (strone, strtwo) == 0;
2784       g_free (strone);
2785       g_free (strtwo);
2786     }
2787 
2788   return equal;
2789 }
2790 
2791 /**
2792  * g_variant_compare:
2793  * @one: (type GVariant): a basic-typed #GVariant instance
2794  * @two: (type GVariant): a #GVariant instance of the same type
2795  *
2796  * Compares @one and @two.
2797  *
2798  * The types of @one and @two are #gconstpointer only to allow use of
2799  * this function with #GTree, #GPtrArray, etc.  They must each be a
2800  * #GVariant.
2801  *
2802  * Comparison is only defined for basic types (ie: booleans, numbers,
2803  * strings).  For booleans, %FALSE is less than %TRUE.  Numbers are
2804  * ordered in the usual way.  Strings are in ASCII lexographical order.
2805  *
2806  * It is a programmer error to attempt to compare container values or
2807  * two values that have types that are not exactly equal.  For example,
2808  * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2809  * integer.  Also note that this function is not particularly
2810  * well-behaved when it comes to comparison of doubles; in particular,
2811  * the handling of incomparable values (ie: NaN) is undefined.
2812  *
2813  * If you only require an equality comparison, g_variant_equal() is more
2814  * general.
2815  *
2816  * Returns: negative value if a < b;
2817  *          zero if a = b;
2818  *          positive value if a > b.
2819  *
2820  * Since: 2.26
2821  **/
2822 gint
g_variant_compare(gconstpointer one,gconstpointer two)2823 g_variant_compare (gconstpointer one,
2824                    gconstpointer two)
2825 {
2826   GVariant *a = (GVariant *) one;
2827   GVariant *b = (GVariant *) two;
2828 
2829   g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2830 
2831   switch (g_variant_classify (a))
2832     {
2833     case G_VARIANT_CLASS_BOOLEAN:
2834       return g_variant_get_boolean (a) -
2835              g_variant_get_boolean (b);
2836 
2837     case G_VARIANT_CLASS_BYTE:
2838       return ((gint) g_variant_get_byte (a)) -
2839              ((gint) g_variant_get_byte (b));
2840 
2841     case G_VARIANT_CLASS_INT16:
2842       return ((gint) g_variant_get_int16 (a)) -
2843              ((gint) g_variant_get_int16 (b));
2844 
2845     case G_VARIANT_CLASS_UINT16:
2846       return ((gint) g_variant_get_uint16 (a)) -
2847              ((gint) g_variant_get_uint16 (b));
2848 
2849     case G_VARIANT_CLASS_INT32:
2850       {
2851         gint32 a_val = g_variant_get_int32 (a);
2852         gint32 b_val = g_variant_get_int32 (b);
2853 
2854         return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2855       }
2856 
2857     case G_VARIANT_CLASS_UINT32:
2858       {
2859         guint32 a_val = g_variant_get_uint32 (a);
2860         guint32 b_val = g_variant_get_uint32 (b);
2861 
2862         return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2863       }
2864 
2865     case G_VARIANT_CLASS_INT64:
2866       {
2867         gint64 a_val = g_variant_get_int64 (a);
2868         gint64 b_val = g_variant_get_int64 (b);
2869 
2870         return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2871       }
2872 
2873     case G_VARIANT_CLASS_UINT64:
2874       {
2875         guint64 a_val = g_variant_get_uint64 (a);
2876         guint64 b_val = g_variant_get_uint64 (b);
2877 
2878         return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2879       }
2880 
2881     case G_VARIANT_CLASS_DOUBLE:
2882       {
2883         gdouble a_val = g_variant_get_double (a);
2884         gdouble b_val = g_variant_get_double (b);
2885 
2886         return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2887       }
2888 
2889     case G_VARIANT_CLASS_STRING:
2890     case G_VARIANT_CLASS_OBJECT_PATH:
2891     case G_VARIANT_CLASS_SIGNATURE:
2892       return strcmp (g_variant_get_string (a, NULL),
2893                      g_variant_get_string (b, NULL));
2894 
2895     default:
2896       g_return_val_if_fail (!g_variant_is_container (a), 0);
2897       g_assert_not_reached ();
2898     }
2899 }
2900 
2901 /* GVariantIter {{{1 */
2902 /**
2903  * GVariantIter: (skip)
2904  *
2905  * #GVariantIter is an opaque data structure and can only be accessed
2906  * using the following functions.
2907  **/
2908 struct stack_iter
2909 {
2910   GVariant *value;
2911   gssize n, i;
2912 
2913   const gchar *loop_format;
2914 
2915   gsize padding[3];
2916   gsize magic;
2917 };
2918 
2919 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2920 
2921 struct heap_iter
2922 {
2923   struct stack_iter iter;
2924 
2925   GVariant *value_ref;
2926   gsize magic;
2927 };
2928 
2929 #define GVSI(i)                 ((struct stack_iter *) (i))
2930 #define GVHI(i)                 ((struct heap_iter *) (i))
2931 #define GVSI_MAGIC              ((gsize) 3579507750u)
2932 #define GVHI_MAGIC              ((gsize) 1450270775u)
2933 #define is_valid_iter(i)        (i != NULL && \
2934                                  GVSI(i)->magic == GVSI_MAGIC)
2935 #define is_valid_heap_iter(i)   (is_valid_iter(i) && \
2936                                  GVHI(i)->magic == GVHI_MAGIC)
2937 
2938 /**
2939  * g_variant_iter_new:
2940  * @value: a container #GVariant
2941  *
2942  * Creates a heap-allocated #GVariantIter for iterating over the items
2943  * in @value.
2944  *
2945  * Use g_variant_iter_free() to free the return value when you no longer
2946  * need it.
2947  *
2948  * A reference is taken to @value and will be released only when
2949  * g_variant_iter_free() is called.
2950  *
2951  * Returns: (transfer full): a new heap-allocated #GVariantIter
2952  *
2953  * Since: 2.24
2954  **/
2955 GVariantIter *
g_variant_iter_new(GVariant * value)2956 g_variant_iter_new (GVariant *value)
2957 {
2958   GVariantIter *iter;
2959 
2960   iter = (GVariantIter *) g_slice_new (struct heap_iter);
2961   GVHI(iter)->value_ref = g_variant_ref (value);
2962   GVHI(iter)->magic = GVHI_MAGIC;
2963 
2964   g_variant_iter_init (iter, value);
2965 
2966   return iter;
2967 }
2968 
2969 /**
2970  * g_variant_iter_init: (skip)
2971  * @iter: a pointer to a #GVariantIter
2972  * @value: a container #GVariant
2973  *
2974  * Initialises (without allocating) a #GVariantIter.  @iter may be
2975  * completely uninitialised prior to this call; its old value is
2976  * ignored.
2977  *
2978  * The iterator remains valid for as long as @value exists, and need not
2979  * be freed in any way.
2980  *
2981  * Returns: the number of items in @value
2982  *
2983  * Since: 2.24
2984  **/
2985 gsize
g_variant_iter_init(GVariantIter * iter,GVariant * value)2986 g_variant_iter_init (GVariantIter *iter,
2987                      GVariant     *value)
2988 {
2989   GVSI(iter)->magic = GVSI_MAGIC;
2990   GVSI(iter)->value = value;
2991   GVSI(iter)->n = g_variant_n_children (value);
2992   GVSI(iter)->i = -1;
2993   GVSI(iter)->loop_format = NULL;
2994 
2995   return GVSI(iter)->n;
2996 }
2997 
2998 /**
2999  * g_variant_iter_copy:
3000  * @iter: a #GVariantIter
3001  *
3002  * Creates a new heap-allocated #GVariantIter to iterate over the
3003  * container that was being iterated over by @iter.  Iteration begins on
3004  * the new iterator from the current position of the old iterator but
3005  * the two copies are independent past that point.
3006  *
3007  * Use g_variant_iter_free() to free the return value when you no longer
3008  * need it.
3009  *
3010  * A reference is taken to the container that @iter is iterating over
3011  * and will be related only when g_variant_iter_free() is called.
3012  *
3013  * Returns: (transfer full): a new heap-allocated #GVariantIter
3014  *
3015  * Since: 2.24
3016  **/
3017 GVariantIter *
g_variant_iter_copy(GVariantIter * iter)3018 g_variant_iter_copy (GVariantIter *iter)
3019 {
3020   GVariantIter *copy;
3021 
3022   g_return_val_if_fail (is_valid_iter (iter), 0);
3023 
3024   copy = g_variant_iter_new (GVSI(iter)->value);
3025   GVSI(copy)->i = GVSI(iter)->i;
3026 
3027   return copy;
3028 }
3029 
3030 /**
3031  * g_variant_iter_n_children:
3032  * @iter: a #GVariantIter
3033  *
3034  * Queries the number of child items in the container that we are
3035  * iterating over.  This is the total number of items -- not the number
3036  * of items remaining.
3037  *
3038  * This function might be useful for preallocation of arrays.
3039  *
3040  * Returns: the number of children in the container
3041  *
3042  * Since: 2.24
3043  **/
3044 gsize
g_variant_iter_n_children(GVariantIter * iter)3045 g_variant_iter_n_children (GVariantIter *iter)
3046 {
3047   g_return_val_if_fail (is_valid_iter (iter), 0);
3048 
3049   return GVSI(iter)->n;
3050 }
3051 
3052 /**
3053  * g_variant_iter_free:
3054  * @iter: (transfer full): a heap-allocated #GVariantIter
3055  *
3056  * Frees a heap-allocated #GVariantIter.  Only call this function on
3057  * iterators that were returned by g_variant_iter_new() or
3058  * g_variant_iter_copy().
3059  *
3060  * Since: 2.24
3061  **/
3062 void
g_variant_iter_free(GVariantIter * iter)3063 g_variant_iter_free (GVariantIter *iter)
3064 {
3065   g_return_if_fail (is_valid_heap_iter (iter));
3066 
3067   g_variant_unref (GVHI(iter)->value_ref);
3068   GVHI(iter)->magic = 0;
3069 
3070   g_slice_free (struct heap_iter, GVHI(iter));
3071 }
3072 
3073 /**
3074  * g_variant_iter_next_value:
3075  * @iter: a #GVariantIter
3076  *
3077  * Gets the next item in the container.  If no more items remain then
3078  * %NULL is returned.
3079  *
3080  * Use g_variant_unref() to drop your reference on the return value when
3081  * you no longer need it.
3082  *
3083  * Here is an example for iterating with g_variant_iter_next_value():
3084  * |[<!-- language="C" -->
3085  *   // recursively iterate a container
3086  *   void
3087  *   iterate_container_recursive (GVariant *container)
3088  *   {
3089  *     GVariantIter iter;
3090  *     GVariant *child;
3091  *
3092  *     g_variant_iter_init (&iter, container);
3093  *     while ((child = g_variant_iter_next_value (&iter)))
3094  *       {
3095  *         g_print ("type '%s'\n", g_variant_get_type_string (child));
3096  *
3097  *         if (g_variant_is_container (child))
3098  *           iterate_container_recursive (child);
3099  *
3100  *         g_variant_unref (child);
3101  *       }
3102  *   }
3103  * ]|
3104  *
3105  * Returns: (nullable) (transfer full): a #GVariant, or %NULL
3106  *
3107  * Since: 2.24
3108  **/
3109 GVariant *
g_variant_iter_next_value(GVariantIter * iter)3110 g_variant_iter_next_value (GVariantIter *iter)
3111 {
3112   g_return_val_if_fail (is_valid_iter (iter), FALSE);
3113 
3114   if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
3115     {
3116       g_critical ("g_variant_iter_next_value: must not be called again "
3117                   "after NULL has already been returned.");
3118       return NULL;
3119     }
3120 
3121   GVSI(iter)->i++;
3122 
3123   if (GVSI(iter)->i < GVSI(iter)->n)
3124     return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
3125 
3126   return NULL;
3127 }
3128 
3129 /* GVariantBuilder {{{1 */
3130 /**
3131  * GVariantBuilder:
3132  *
3133  * A utility type for constructing container-type #GVariant instances.
3134  *
3135  * This is an opaque structure and may only be accessed using the
3136  * following functions.
3137  *
3138  * #GVariantBuilder is not threadsafe in any way.  Do not attempt to
3139  * access it from more than one thread.
3140  **/
3141 
3142 struct stack_builder
3143 {
3144   GVariantBuilder *parent;
3145   GVariantType *type;
3146 
3147   /* type constraint explicitly specified by 'type'.
3148    * for tuple types, this moves along as we add more items.
3149    */
3150   const GVariantType *expected_type;
3151 
3152   /* type constraint implied by previous array item.
3153    */
3154   const GVariantType *prev_item_type;
3155 
3156   /* constraints on the number of children.  max = -1 for unlimited. */
3157   gsize min_items;
3158   gsize max_items;
3159 
3160   /* dynamically-growing pointer array */
3161   GVariant **children;
3162   gsize allocated_children;
3163   gsize offset;
3164 
3165   /* set to '1' if all items in the container will have the same type
3166    * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
3167    */
3168   guint uniform_item_types : 1;
3169 
3170   /* set to '1' initially and changed to '0' if an untrusted value is
3171    * added
3172    */
3173   guint trusted : 1;
3174 
3175   gsize magic;
3176 };
3177 
3178 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
3179 
3180 struct heap_builder
3181 {
3182   GVariantBuilder builder;
3183   gsize magic;
3184 
3185   gint ref_count;
3186 };
3187 
3188 #define GVSB(b)                  ((struct stack_builder *) (b))
3189 #define GVHB(b)                  ((struct heap_builder *) (b))
3190 #define GVSB_MAGIC               ((gsize) 1033660112u)
3191 #define GVSB_MAGIC_PARTIAL       ((gsize) 2942751021u)
3192 #define GVHB_MAGIC               ((gsize) 3087242682u)
3193 #define is_valid_builder(b)      (b != NULL && \
3194                                   GVSB(b)->magic == GVSB_MAGIC)
3195 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
3196 
3197 /* Just to make sure that by adding a union to GVariantBuilder, we
3198  * didn't accidentally change ABI. */
3199 G_STATIC_ASSERT (sizeof (GVariantBuilder) == sizeof (gsize[16]));
3200 
3201 static gboolean
ensure_valid_builder(GVariantBuilder * builder)3202 ensure_valid_builder (GVariantBuilder *builder)
3203 {
3204   if (is_valid_builder (builder))
3205     return TRUE;
3206   if (builder->u.s.partial_magic == GVSB_MAGIC_PARTIAL)
3207     {
3208       static GVariantBuilder cleared_builder;
3209 
3210       /* Make sure that only first two fields were set and the rest is
3211        * zeroed to avoid messing up the builder that had parent
3212        * address equal to GVSB_MAGIC_PARTIAL. */
3213       if (memcmp (cleared_builder.u.s.y, builder->u.s.y, sizeof cleared_builder.u.s.y))
3214         return FALSE;
3215 
3216       g_variant_builder_init (builder, builder->u.s.type);
3217     }
3218   return is_valid_builder (builder);
3219 }
3220 
3221 /**
3222  * g_variant_builder_new:
3223  * @type: a container type
3224  *
3225  * Allocates and initialises a new #GVariantBuilder.
3226  *
3227  * You should call g_variant_builder_unref() on the return value when it
3228  * is no longer needed.  The memory will not be automatically freed by
3229  * any other call.
3230  *
3231  * In most cases it is easier to place a #GVariantBuilder directly on
3232  * the stack of the calling function and initialise it with
3233  * g_variant_builder_init().
3234  *
3235  * Returns: (transfer full): a #GVariantBuilder
3236  *
3237  * Since: 2.24
3238  **/
3239 GVariantBuilder *
g_variant_builder_new(const GVariantType * type)3240 g_variant_builder_new (const GVariantType *type)
3241 {
3242   GVariantBuilder *builder;
3243 
3244   builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
3245   g_variant_builder_init (builder, type);
3246   GVHB(builder)->magic = GVHB_MAGIC;
3247   GVHB(builder)->ref_count = 1;
3248 
3249   return builder;
3250 }
3251 
3252 /**
3253  * g_variant_builder_unref:
3254  * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
3255  *
3256  * Decreases the reference count on @builder.
3257  *
3258  * In the event that there are no more references, releases all memory
3259  * associated with the #GVariantBuilder.
3260  *
3261  * Don't call this on stack-allocated #GVariantBuilder instances or bad
3262  * things will happen.
3263  *
3264  * Since: 2.24
3265  **/
3266 void
g_variant_builder_unref(GVariantBuilder * builder)3267 g_variant_builder_unref (GVariantBuilder *builder)
3268 {
3269   g_return_if_fail (is_valid_heap_builder (builder));
3270 
3271   if (--GVHB(builder)->ref_count)
3272     return;
3273 
3274   g_variant_builder_clear (builder);
3275   GVHB(builder)->magic = 0;
3276 
3277   g_slice_free (struct heap_builder, GVHB(builder));
3278 }
3279 
3280 /**
3281  * g_variant_builder_ref:
3282  * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
3283  *
3284  * Increases the reference count on @builder.
3285  *
3286  * Don't call this on stack-allocated #GVariantBuilder instances or bad
3287  * things will happen.
3288  *
3289  * Returns: (transfer full): a new reference to @builder
3290  *
3291  * Since: 2.24
3292  **/
3293 GVariantBuilder *
g_variant_builder_ref(GVariantBuilder * builder)3294 g_variant_builder_ref (GVariantBuilder *builder)
3295 {
3296   g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3297 
3298   GVHB(builder)->ref_count++;
3299 
3300   return builder;
3301 }
3302 
3303 /**
3304  * g_variant_builder_clear: (skip)
3305  * @builder: a #GVariantBuilder
3306  *
3307  * Releases all memory associated with a #GVariantBuilder without
3308  * freeing the #GVariantBuilder structure itself.
3309  *
3310  * It typically only makes sense to do this on a stack-allocated
3311  * #GVariantBuilder if you want to abort building the value part-way
3312  * through.  This function need not be called if you call
3313  * g_variant_builder_end() and it also doesn't need to be called on
3314  * builders allocated with g_variant_builder_new() (see
3315  * g_variant_builder_unref() for that).
3316  *
3317  * This function leaves the #GVariantBuilder structure set to all-zeros.
3318  * It is valid to call this function on either an initialised
3319  * #GVariantBuilder or one that is set to all-zeros but it is not valid
3320  * to call this function on uninitialised memory.
3321  *
3322  * Since: 2.24
3323  **/
3324 void
g_variant_builder_clear(GVariantBuilder * builder)3325 g_variant_builder_clear (GVariantBuilder *builder)
3326 {
3327   gsize i;
3328 
3329   if (GVSB(builder)->magic == 0)
3330     /* all-zeros or partial case */
3331     return;
3332 
3333   g_return_if_fail (ensure_valid_builder (builder));
3334 
3335   g_variant_type_free (GVSB(builder)->type);
3336 
3337   for (i = 0; i < GVSB(builder)->offset; i++)
3338     g_variant_unref (GVSB(builder)->children[i]);
3339 
3340   g_free (GVSB(builder)->children);
3341 
3342   if (GVSB(builder)->parent)
3343     {
3344       g_variant_builder_clear (GVSB(builder)->parent);
3345       g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3346     }
3347 
3348   memset (builder, 0, sizeof (GVariantBuilder));
3349 }
3350 
3351 /**
3352  * g_variant_builder_init: (skip)
3353  * @builder: a #GVariantBuilder
3354  * @type: a container type
3355  *
3356  * Initialises a #GVariantBuilder structure.
3357  *
3358  * @type must be non-%NULL.  It specifies the type of container to
3359  * construct.  It can be an indefinite type such as
3360  * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3361  * Maybe, array, tuple, dictionary entry and variant-typed values may be
3362  * constructed.
3363  *
3364  * After the builder is initialised, values are added using
3365  * g_variant_builder_add_value() or g_variant_builder_add().
3366  *
3367  * After all the child values are added, g_variant_builder_end() frees
3368  * the memory associated with the builder and returns the #GVariant that
3369  * was created.
3370  *
3371  * This function completely ignores the previous contents of @builder.
3372  * On one hand this means that it is valid to pass in completely
3373  * uninitialised memory.  On the other hand, this means that if you are
3374  * initialising over top of an existing #GVariantBuilder you need to
3375  * first call g_variant_builder_clear() in order to avoid leaking
3376  * memory.
3377  *
3378  * You must not call g_variant_builder_ref() or
3379  * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3380  * with this function.  If you ever pass a reference to a
3381  * #GVariantBuilder outside of the control of your own code then you
3382  * should assume that the person receiving that reference may try to use
3383  * reference counting; you should use g_variant_builder_new() instead of
3384  * this function.
3385  *
3386  * Since: 2.24
3387  **/
3388 void
g_variant_builder_init(GVariantBuilder * builder,const GVariantType * type)3389 g_variant_builder_init (GVariantBuilder    *builder,
3390                         const GVariantType *type)
3391 {
3392   g_return_if_fail (type != NULL);
3393   g_return_if_fail (g_variant_type_is_container (type));
3394 
3395   memset (builder, 0, sizeof (GVariantBuilder));
3396 
3397   GVSB(builder)->type = g_variant_type_copy (type);
3398   GVSB(builder)->magic = GVSB_MAGIC;
3399   GVSB(builder)->trusted = TRUE;
3400 
3401   switch (*(const gchar *) type)
3402     {
3403     case G_VARIANT_CLASS_VARIANT:
3404       GVSB(builder)->uniform_item_types = TRUE;
3405       GVSB(builder)->allocated_children = 1;
3406       GVSB(builder)->expected_type = NULL;
3407       GVSB(builder)->min_items = 1;
3408       GVSB(builder)->max_items = 1;
3409       break;
3410 
3411     case G_VARIANT_CLASS_ARRAY:
3412       GVSB(builder)->uniform_item_types = TRUE;
3413       GVSB(builder)->allocated_children = 8;
3414       GVSB(builder)->expected_type =
3415         g_variant_type_element (GVSB(builder)->type);
3416       GVSB(builder)->min_items = 0;
3417       GVSB(builder)->max_items = -1;
3418       break;
3419 
3420     case G_VARIANT_CLASS_MAYBE:
3421       GVSB(builder)->uniform_item_types = TRUE;
3422       GVSB(builder)->allocated_children = 1;
3423       GVSB(builder)->expected_type =
3424         g_variant_type_element (GVSB(builder)->type);
3425       GVSB(builder)->min_items = 0;
3426       GVSB(builder)->max_items = 1;
3427       break;
3428 
3429     case G_VARIANT_CLASS_DICT_ENTRY:
3430       GVSB(builder)->uniform_item_types = FALSE;
3431       GVSB(builder)->allocated_children = 2;
3432       GVSB(builder)->expected_type =
3433         g_variant_type_key (GVSB(builder)->type);
3434       GVSB(builder)->min_items = 2;
3435       GVSB(builder)->max_items = 2;
3436       break;
3437 
3438     case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3439       GVSB(builder)->uniform_item_types = FALSE;
3440       GVSB(builder)->allocated_children = 8;
3441       GVSB(builder)->expected_type = NULL;
3442       GVSB(builder)->min_items = 0;
3443       GVSB(builder)->max_items = -1;
3444       break;
3445 
3446     case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3447       GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3448       GVSB(builder)->expected_type =
3449         g_variant_type_first (GVSB(builder)->type);
3450       GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3451       GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3452       GVSB(builder)->uniform_item_types = FALSE;
3453       break;
3454 
3455     default:
3456       g_assert_not_reached ();
3457    }
3458 
3459   GVSB(builder)->children = g_new (GVariant *,
3460                                    GVSB(builder)->allocated_children);
3461 }
3462 
3463 static void
g_variant_builder_make_room(struct stack_builder * builder)3464 g_variant_builder_make_room (struct stack_builder *builder)
3465 {
3466   if (builder->offset == builder->allocated_children)
3467     {
3468       builder->allocated_children *= 2;
3469       builder->children = g_renew (GVariant *, builder->children,
3470                                    builder->allocated_children);
3471     }
3472 }
3473 
3474 /**
3475  * g_variant_builder_add_value:
3476  * @builder: a #GVariantBuilder
3477  * @value: a #GVariant
3478  *
3479  * Adds @value to @builder.
3480  *
3481  * It is an error to call this function in any way that would create an
3482  * inconsistent value to be constructed.  Some examples of this are
3483  * putting different types of items into an array, putting the wrong
3484  * types or number of items in a tuple, putting more than one value into
3485  * a variant, etc.
3486  *
3487  * If @value is a floating reference (see g_variant_ref_sink()),
3488  * the @builder instance takes ownership of @value.
3489  *
3490  * Since: 2.24
3491  **/
3492 void
g_variant_builder_add_value(GVariantBuilder * builder,GVariant * value)3493 g_variant_builder_add_value (GVariantBuilder *builder,
3494                              GVariant        *value)
3495 {
3496   g_return_if_fail (ensure_valid_builder (builder));
3497   g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3498   g_return_if_fail (!GVSB(builder)->expected_type ||
3499                     g_variant_is_of_type (value,
3500                                           GVSB(builder)->expected_type));
3501   g_return_if_fail (!GVSB(builder)->prev_item_type ||
3502                     g_variant_is_of_type (value,
3503                                           GVSB(builder)->prev_item_type));
3504 
3505   GVSB(builder)->trusted &= g_variant_is_trusted (value);
3506 
3507   if (!GVSB(builder)->uniform_item_types)
3508     {
3509       /* advance our expected type pointers */
3510       if (GVSB(builder)->expected_type)
3511         GVSB(builder)->expected_type =
3512           g_variant_type_next (GVSB(builder)->expected_type);
3513 
3514       if (GVSB(builder)->prev_item_type)
3515         GVSB(builder)->prev_item_type =
3516           g_variant_type_next (GVSB(builder)->prev_item_type);
3517     }
3518   else
3519     GVSB(builder)->prev_item_type = g_variant_get_type (value);
3520 
3521   g_variant_builder_make_room (GVSB(builder));
3522 
3523   GVSB(builder)->children[GVSB(builder)->offset++] =
3524     g_variant_ref_sink (value);
3525 }
3526 
3527 /**
3528  * g_variant_builder_open:
3529  * @builder: a #GVariantBuilder
3530  * @type: the #GVariantType of the container
3531  *
3532  * Opens a subcontainer inside the given @builder.  When done adding
3533  * items to the subcontainer, g_variant_builder_close() must be called. @type
3534  * is the type of the container: so to build a tuple of several values, @type
3535  * must include the tuple itself.
3536  *
3537  * It is an error to call this function in any way that would cause an
3538  * inconsistent value to be constructed (ie: adding too many values or
3539  * a value of an incorrect type).
3540  *
3541  * Example of building a nested variant:
3542  * |[<!-- language="C" -->
3543  * GVariantBuilder builder;
3544  * guint32 some_number = get_number ();
3545  * g_autoptr (GHashTable) some_dict = get_dict ();
3546  * GHashTableIter iter;
3547  * const gchar *key;
3548  * const GVariant *value;
3549  * g_autoptr (GVariant) output = NULL;
3550  *
3551  * g_variant_builder_init (&builder, G_VARIANT_TYPE ("(ua{sv})"));
3552  * g_variant_builder_add (&builder, "u", some_number);
3553  * g_variant_builder_open (&builder, G_VARIANT_TYPE ("a{sv}"));
3554  *
3555  * g_hash_table_iter_init (&iter, some_dict);
3556  * while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value))
3557  *   {
3558  *     g_variant_builder_open (&builder, G_VARIANT_TYPE ("{sv}"));
3559  *     g_variant_builder_add (&builder, "s", key);
3560  *     g_variant_builder_add (&builder, "v", value);
3561  *     g_variant_builder_close (&builder);
3562  *   }
3563  *
3564  * g_variant_builder_close (&builder);
3565  *
3566  * output = g_variant_builder_end (&builder);
3567  * ]|
3568  *
3569  * Since: 2.24
3570  **/
3571 void
g_variant_builder_open(GVariantBuilder * builder,const GVariantType * type)3572 g_variant_builder_open (GVariantBuilder    *builder,
3573                         const GVariantType *type)
3574 {
3575   GVariantBuilder *parent;
3576 
3577   g_return_if_fail (ensure_valid_builder (builder));
3578   g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3579   g_return_if_fail (!GVSB(builder)->expected_type ||
3580                     g_variant_type_is_subtype_of (type,
3581                                                   GVSB(builder)->expected_type));
3582   g_return_if_fail (!GVSB(builder)->prev_item_type ||
3583                     g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3584                                                   type));
3585 
3586   parent = g_slice_dup (GVariantBuilder, builder);
3587   g_variant_builder_init (builder, type);
3588   GVSB(builder)->parent = parent;
3589 
3590   /* push the prev_item_type down into the subcontainer */
3591   if (GVSB(parent)->prev_item_type)
3592     {
3593       if (!GVSB(builder)->uniform_item_types)
3594         /* tuples and dict entries */
3595         GVSB(builder)->prev_item_type =
3596           g_variant_type_first (GVSB(parent)->prev_item_type);
3597 
3598       else if (!g_variant_type_is_variant (GVSB(builder)->type))
3599         /* maybes and arrays */
3600         GVSB(builder)->prev_item_type =
3601           g_variant_type_element (GVSB(parent)->prev_item_type);
3602     }
3603 }
3604 
3605 /**
3606  * g_variant_builder_close:
3607  * @builder: a #GVariantBuilder
3608  *
3609  * Closes the subcontainer inside the given @builder that was opened by
3610  * the most recent call to g_variant_builder_open().
3611  *
3612  * It is an error to call this function in any way that would create an
3613  * inconsistent value to be constructed (ie: too few values added to the
3614  * subcontainer).
3615  *
3616  * Since: 2.24
3617  **/
3618 void
g_variant_builder_close(GVariantBuilder * builder)3619 g_variant_builder_close (GVariantBuilder *builder)
3620 {
3621   GVariantBuilder *parent;
3622 
3623   g_return_if_fail (ensure_valid_builder (builder));
3624   g_return_if_fail (GVSB(builder)->parent != NULL);
3625 
3626   parent = GVSB(builder)->parent;
3627   GVSB(builder)->parent = NULL;
3628 
3629   g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3630   *builder = *parent;
3631 
3632   g_slice_free (GVariantBuilder, parent);
3633 }
3634 
3635 /*< private >
3636  * g_variant_make_maybe_type:
3637  * @element: a #GVariant
3638  *
3639  * Return the type of a maybe containing @element.
3640  */
3641 static GVariantType *
g_variant_make_maybe_type(GVariant * element)3642 g_variant_make_maybe_type (GVariant *element)
3643 {
3644   return g_variant_type_new_maybe (g_variant_get_type (element));
3645 }
3646 
3647 /*< private >
3648  * g_variant_make_array_type:
3649  * @element: a #GVariant
3650  *
3651  * Return the type of an array containing @element.
3652  */
3653 static GVariantType *
g_variant_make_array_type(GVariant * element)3654 g_variant_make_array_type (GVariant *element)
3655 {
3656   return g_variant_type_new_array (g_variant_get_type (element));
3657 }
3658 
3659 /**
3660  * g_variant_builder_end:
3661  * @builder: a #GVariantBuilder
3662  *
3663  * Ends the builder process and returns the constructed value.
3664  *
3665  * It is not permissible to use @builder in any way after this call
3666  * except for reference counting operations (in the case of a
3667  * heap-allocated #GVariantBuilder) or by reinitialising it with
3668  * g_variant_builder_init() (in the case of stack-allocated). This
3669  * means that for the stack-allocated builders there is no need to
3670  * call g_variant_builder_clear() after the call to
3671  * g_variant_builder_end().
3672  *
3673  * It is an error to call this function in any way that would create an
3674  * inconsistent value to be constructed (ie: insufficient number of
3675  * items added to a container with a specific number of children
3676  * required).  It is also an error to call this function if the builder
3677  * was created with an indefinite array or maybe type and no children
3678  * have been added; in this case it is impossible to infer the type of
3679  * the empty array.
3680  *
3681  * Returns: (transfer none): a new, floating, #GVariant
3682  *
3683  * Since: 2.24
3684  **/
3685 GVariant *
g_variant_builder_end(GVariantBuilder * builder)3686 g_variant_builder_end (GVariantBuilder *builder)
3687 {
3688   GVariantType *my_type;
3689   GVariant *value;
3690 
3691   g_return_val_if_fail (ensure_valid_builder (builder), NULL);
3692   g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3693                         NULL);
3694   g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3695                         GVSB(builder)->prev_item_type != NULL ||
3696                         g_variant_type_is_definite (GVSB(builder)->type),
3697                         NULL);
3698 
3699   if (g_variant_type_is_definite (GVSB(builder)->type))
3700     my_type = g_variant_type_copy (GVSB(builder)->type);
3701 
3702   else if (g_variant_type_is_maybe (GVSB(builder)->type))
3703     my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3704 
3705   else if (g_variant_type_is_array (GVSB(builder)->type))
3706     my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3707 
3708   else if (g_variant_type_is_tuple (GVSB(builder)->type))
3709     my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3710                                          GVSB(builder)->offset);
3711 
3712   else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3713     my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3714                                               GVSB(builder)->children[1]);
3715   else
3716     g_assert_not_reached ();
3717 
3718   value = g_variant_new_from_children (my_type,
3719                                        g_renew (GVariant *,
3720                                                 GVSB(builder)->children,
3721                                                 GVSB(builder)->offset),
3722                                        GVSB(builder)->offset,
3723                                        GVSB(builder)->trusted);
3724   GVSB(builder)->children = NULL;
3725   GVSB(builder)->offset = 0;
3726 
3727   g_variant_builder_clear (builder);
3728   g_variant_type_free (my_type);
3729 
3730   return value;
3731 }
3732 
3733 /* GVariantDict {{{1 */
3734 
3735 /**
3736  * GVariantDict:
3737  *
3738  * #GVariantDict is a mutable interface to #GVariant dictionaries.
3739  *
3740  * It can be used for doing a sequence of dictionary lookups in an
3741  * efficient way on an existing #GVariant dictionary or it can be used
3742  * to construct new dictionaries with a hashtable-like interface.  It
3743  * can also be used for taking existing dictionaries and modifying them
3744  * in order to create new ones.
3745  *
3746  * #GVariantDict can only be used with %G_VARIANT_TYPE_VARDICT
3747  * dictionaries.
3748  *
3749  * It is possible to use #GVariantDict allocated on the stack or on the
3750  * heap.  When using a stack-allocated #GVariantDict, you begin with a
3751  * call to g_variant_dict_init() and free the resources with a call to
3752  * g_variant_dict_clear().
3753  *
3754  * Heap-allocated #GVariantDict follows normal refcounting rules: you
3755  * allocate it with g_variant_dict_new() and use g_variant_dict_ref()
3756  * and g_variant_dict_unref().
3757  *
3758  * g_variant_dict_end() is used to convert the #GVariantDict back into a
3759  * dictionary-type #GVariant.  When used with stack-allocated instances,
3760  * this also implicitly frees all associated memory, but for
3761  * heap-allocated instances, you must still call g_variant_dict_unref()
3762  * afterwards.
3763  *
3764  * You will typically want to use a heap-allocated #GVariantDict when
3765  * you expose it as part of an API.  For most other uses, the
3766  * stack-allocated form will be more convenient.
3767  *
3768  * Consider the following two examples that do the same thing in each
3769  * style: take an existing dictionary and look up the "count" uint32
3770  * key, adding 1 to it if it is found, or returning an error if the
3771  * key is not found.  Each returns the new dictionary as a floating
3772  * #GVariant.
3773  *
3774  * ## Using a stack-allocated GVariantDict
3775  *
3776  * |[<!-- language="C" -->
3777  *   GVariant *
3778  *   add_to_count (GVariant  *orig,
3779  *                 GError   **error)
3780  *   {
3781  *     GVariantDict dict;
3782  *     guint32 count;
3783  *
3784  *     g_variant_dict_init (&dict, orig);
3785  *     if (!g_variant_dict_lookup (&dict, "count", "u", &count))
3786  *       {
3787  *         g_set_error (...);
3788  *         g_variant_dict_clear (&dict);
3789  *         return NULL;
3790  *       }
3791  *
3792  *     g_variant_dict_insert (&dict, "count", "u", count + 1);
3793  *
3794  *     return g_variant_dict_end (&dict);
3795  *   }
3796  * ]|
3797  *
3798  * ## Using heap-allocated GVariantDict
3799  *
3800  * |[<!-- language="C" -->
3801  *   GVariant *
3802  *   add_to_count (GVariant  *orig,
3803  *                 GError   **error)
3804  *   {
3805  *     GVariantDict *dict;
3806  *     GVariant *result;
3807  *     guint32 count;
3808  *
3809  *     dict = g_variant_dict_new (orig);
3810  *
3811  *     if (g_variant_dict_lookup (dict, "count", "u", &count))
3812  *       {
3813  *         g_variant_dict_insert (dict, "count", "u", count + 1);
3814  *         result = g_variant_dict_end (dict);
3815  *       }
3816  *     else
3817  *       {
3818  *         g_set_error (...);
3819  *         result = NULL;
3820  *       }
3821  *
3822  *     g_variant_dict_unref (dict);
3823  *
3824  *     return result;
3825  *   }
3826  * ]|
3827  *
3828  * Since: 2.40
3829  **/
3830 struct stack_dict
3831 {
3832   GHashTable *values;
3833   gsize magic;
3834 };
3835 
3836 G_STATIC_ASSERT (sizeof (struct stack_dict) <= sizeof (GVariantDict));
3837 
3838 struct heap_dict
3839 {
3840   struct stack_dict dict;
3841   gint ref_count;
3842   gsize magic;
3843 };
3844 
3845 #define GVSD(d)                 ((struct stack_dict *) (d))
3846 #define GVHD(d)                 ((struct heap_dict *) (d))
3847 #define GVSD_MAGIC              ((gsize) 2579507750u)
3848 #define GVSD_MAGIC_PARTIAL      ((gsize) 3488698669u)
3849 #define GVHD_MAGIC              ((gsize) 2450270775u)
3850 #define is_valid_dict(d)        (d != NULL && \
3851                                  GVSD(d)->magic == GVSD_MAGIC)
3852 #define is_valid_heap_dict(d)   (GVHD(d)->magic == GVHD_MAGIC)
3853 
3854 /* Just to make sure that by adding a union to GVariantDict, we didn't
3855  * accidentally change ABI. */
3856 G_STATIC_ASSERT (sizeof (GVariantDict) == sizeof (gsize[16]));
3857 
3858 static gboolean
ensure_valid_dict(GVariantDict * dict)3859 ensure_valid_dict (GVariantDict *dict)
3860 {
3861   if (is_valid_dict (dict))
3862     return TRUE;
3863   if (dict->u.s.partial_magic == GVSD_MAGIC_PARTIAL)
3864     {
3865       static GVariantDict cleared_dict;
3866 
3867       /* Make sure that only first two fields were set and the rest is
3868        * zeroed to avoid messing up the builder that had parent
3869        * address equal to GVSB_MAGIC_PARTIAL. */
3870       if (memcmp (cleared_dict.u.s.y, dict->u.s.y, sizeof cleared_dict.u.s.y))
3871         return FALSE;
3872 
3873       g_variant_dict_init (dict, dict->u.s.asv);
3874     }
3875   return is_valid_dict (dict);
3876 }
3877 
3878 /**
3879  * g_variant_dict_new:
3880  * @from_asv: (nullable): the #GVariant with which to initialise the
3881  *   dictionary
3882  *
3883  * Allocates and initialises a new #GVariantDict.
3884  *
3885  * You should call g_variant_dict_unref() on the return value when it
3886  * is no longer needed.  The memory will not be automatically freed by
3887  * any other call.
3888  *
3889  * In some cases it may be easier to place a #GVariantDict directly on
3890  * the stack of the calling function and initialise it with
3891  * g_variant_dict_init().  This is particularly useful when you are
3892  * using #GVariantDict to construct a #GVariant.
3893  *
3894  * Returns: (transfer full): a #GVariantDict
3895  *
3896  * Since: 2.40
3897  **/
3898 GVariantDict *
g_variant_dict_new(GVariant * from_asv)3899 g_variant_dict_new (GVariant *from_asv)
3900 {
3901   GVariantDict *dict;
3902 
3903   dict = g_slice_alloc (sizeof (struct heap_dict));
3904   g_variant_dict_init (dict, from_asv);
3905   GVHD(dict)->magic = GVHD_MAGIC;
3906   GVHD(dict)->ref_count = 1;
3907 
3908   return dict;
3909 }
3910 
3911 /**
3912  * g_variant_dict_init: (skip)
3913  * @dict: a #GVariantDict
3914  * @from_asv: (nullable): the initial value for @dict
3915  *
3916  * Initialises a #GVariantDict structure.
3917  *
3918  * If @from_asv is given, it is used to initialise the dictionary.
3919  *
3920  * This function completely ignores the previous contents of @dict.  On
3921  * one hand this means that it is valid to pass in completely
3922  * uninitialised memory.  On the other hand, this means that if you are
3923  * initialising over top of an existing #GVariantDict you need to first
3924  * call g_variant_dict_clear() in order to avoid leaking memory.
3925  *
3926  * You must not call g_variant_dict_ref() or g_variant_dict_unref() on a
3927  * #GVariantDict that was initialised with this function.  If you ever
3928  * pass a reference to a #GVariantDict outside of the control of your
3929  * own code then you should assume that the person receiving that
3930  * reference may try to use reference counting; you should use
3931  * g_variant_dict_new() instead of this function.
3932  *
3933  * Since: 2.40
3934  **/
3935 void
g_variant_dict_init(GVariantDict * dict,GVariant * from_asv)3936 g_variant_dict_init (GVariantDict *dict,
3937                      GVariant     *from_asv)
3938 {
3939   GVariantIter iter;
3940   gchar *key;
3941   GVariant *value;
3942 
3943   GVSD(dict)->values = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
3944   GVSD(dict)->magic = GVSD_MAGIC;
3945 
3946   if (from_asv)
3947     {
3948       g_variant_iter_init (&iter, from_asv);
3949       while (g_variant_iter_next (&iter, "{sv}", &key, &value))
3950         g_hash_table_insert (GVSD(dict)->values, key, value);
3951     }
3952 }
3953 
3954 /**
3955  * g_variant_dict_lookup:
3956  * @dict: a #GVariantDict
3957  * @key: the key to look up in the dictionary
3958  * @format_string: a GVariant format string
3959  * @...: the arguments to unpack the value into
3960  *
3961  * Looks up a value in a #GVariantDict.
3962  *
3963  * This function is a wrapper around g_variant_dict_lookup_value() and
3964  * g_variant_get().  In the case that %NULL would have been returned,
3965  * this function returns %FALSE.  Otherwise, it unpacks the returned
3966  * value and returns %TRUE.
3967  *
3968  * @format_string determines the C types that are used for unpacking the
3969  * values and also determines if the values are copied or borrowed, see the
3970  * section on [GVariant format strings][gvariant-format-strings-pointers].
3971  *
3972  * Returns: %TRUE if a value was unpacked
3973  *
3974  * Since: 2.40
3975  **/
3976 gboolean
g_variant_dict_lookup(GVariantDict * dict,const gchar * key,const gchar * format_string,...)3977 g_variant_dict_lookup (GVariantDict *dict,
3978                        const gchar  *key,
3979                        const gchar  *format_string,
3980                        ...)
3981 {
3982   GVariant *value;
3983   va_list ap;
3984 
3985   g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
3986   g_return_val_if_fail (key != NULL, FALSE);
3987   g_return_val_if_fail (format_string != NULL, FALSE);
3988 
3989   value = g_hash_table_lookup (GVSD(dict)->values, key);
3990 
3991   if (value == NULL || !g_variant_check_format_string (value, format_string, FALSE))
3992     return FALSE;
3993 
3994   va_start (ap, format_string);
3995   g_variant_get_va (value, format_string, NULL, &ap);
3996   va_end (ap);
3997 
3998   return TRUE;
3999 }
4000 
4001 /**
4002  * g_variant_dict_lookup_value:
4003  * @dict: a #GVariantDict
4004  * @key: the key to look up in the dictionary
4005  * @expected_type: (nullable): a #GVariantType, or %NULL
4006  *
4007  * Looks up a value in a #GVariantDict.
4008  *
4009  * If @key is not found in @dictionary, %NULL is returned.
4010  *
4011  * The @expected_type string specifies what type of value is expected.
4012  * If the value associated with @key has a different type then %NULL is
4013  * returned.
4014  *
4015  * If the key is found and the value has the correct type, it is
4016  * returned.  If @expected_type was specified then any non-%NULL return
4017  * value will have this type.
4018  *
4019  * Returns: (transfer full): the value of the dictionary key, or %NULL
4020  *
4021  * Since: 2.40
4022  **/
4023 GVariant *
g_variant_dict_lookup_value(GVariantDict * dict,const gchar * key,const GVariantType * expected_type)4024 g_variant_dict_lookup_value (GVariantDict       *dict,
4025                              const gchar        *key,
4026                              const GVariantType *expected_type)
4027 {
4028   GVariant *result;
4029 
4030   g_return_val_if_fail (ensure_valid_dict (dict), NULL);
4031   g_return_val_if_fail (key != NULL, NULL);
4032 
4033   result = g_hash_table_lookup (GVSD(dict)->values, key);
4034 
4035   if (result && (!expected_type || g_variant_is_of_type (result, expected_type)))
4036     return g_variant_ref (result);
4037 
4038   return NULL;
4039 }
4040 
4041 /**
4042  * g_variant_dict_contains:
4043  * @dict: a #GVariantDict
4044  * @key: the key to look up in the dictionary
4045  *
4046  * Checks if @key exists in @dict.
4047  *
4048  * Returns: %TRUE if @key is in @dict
4049  *
4050  * Since: 2.40
4051  **/
4052 gboolean
g_variant_dict_contains(GVariantDict * dict,const gchar * key)4053 g_variant_dict_contains (GVariantDict *dict,
4054                          const gchar  *key)
4055 {
4056   g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
4057   g_return_val_if_fail (key != NULL, FALSE);
4058 
4059   return g_hash_table_contains (GVSD(dict)->values, key);
4060 }
4061 
4062 /**
4063  * g_variant_dict_insert:
4064  * @dict: a #GVariantDict
4065  * @key: the key to insert a value for
4066  * @format_string: a #GVariant varargs format string
4067  * @...: arguments, as per @format_string
4068  *
4069  * Inserts a value into a #GVariantDict.
4070  *
4071  * This call is a convenience wrapper that is exactly equivalent to
4072  * calling g_variant_new() followed by g_variant_dict_insert_value().
4073  *
4074  * Since: 2.40
4075  **/
4076 void
g_variant_dict_insert(GVariantDict * dict,const gchar * key,const gchar * format_string,...)4077 g_variant_dict_insert (GVariantDict *dict,
4078                        const gchar  *key,
4079                        const gchar  *format_string,
4080                        ...)
4081 {
4082   va_list ap;
4083 
4084   g_return_if_fail (ensure_valid_dict (dict));
4085   g_return_if_fail (key != NULL);
4086   g_return_if_fail (format_string != NULL);
4087 
4088   va_start (ap, format_string);
4089   g_variant_dict_insert_value (dict, key, g_variant_new_va (format_string, NULL, &ap));
4090   va_end (ap);
4091 }
4092 
4093 /**
4094  * g_variant_dict_insert_value:
4095  * @dict: a #GVariantDict
4096  * @key: the key to insert a value for
4097  * @value: the value to insert
4098  *
4099  * Inserts (or replaces) a key in a #GVariantDict.
4100  *
4101  * @value is consumed if it is floating.
4102  *
4103  * Since: 2.40
4104  **/
4105 void
g_variant_dict_insert_value(GVariantDict * dict,const gchar * key,GVariant * value)4106 g_variant_dict_insert_value (GVariantDict *dict,
4107                              const gchar  *key,
4108                              GVariant     *value)
4109 {
4110   g_return_if_fail (ensure_valid_dict (dict));
4111   g_return_if_fail (key != NULL);
4112   g_return_if_fail (value != NULL);
4113 
4114   g_hash_table_insert (GVSD(dict)->values, g_strdup (key), g_variant_ref_sink (value));
4115 }
4116 
4117 /**
4118  * g_variant_dict_remove:
4119  * @dict: a #GVariantDict
4120  * @key: the key to remove
4121  *
4122  * Removes a key and its associated value from a #GVariantDict.
4123  *
4124  * Returns: %TRUE if the key was found and removed
4125  *
4126  * Since: 2.40
4127  **/
4128 gboolean
g_variant_dict_remove(GVariantDict * dict,const gchar * key)4129 g_variant_dict_remove (GVariantDict *dict,
4130                        const gchar  *key)
4131 {
4132   g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
4133   g_return_val_if_fail (key != NULL, FALSE);
4134 
4135   return g_hash_table_remove (GVSD(dict)->values, key);
4136 }
4137 
4138 /**
4139  * g_variant_dict_clear:
4140  * @dict: a #GVariantDict
4141  *
4142  * Releases all memory associated with a #GVariantDict without freeing
4143  * the #GVariantDict structure itself.
4144  *
4145  * It typically only makes sense to do this on a stack-allocated
4146  * #GVariantDict if you want to abort building the value part-way
4147  * through.  This function need not be called if you call
4148  * g_variant_dict_end() and it also doesn't need to be called on dicts
4149  * allocated with g_variant_dict_new (see g_variant_dict_unref() for
4150  * that).
4151  *
4152  * It is valid to call this function on either an initialised
4153  * #GVariantDict or one that was previously cleared by an earlier call
4154  * to g_variant_dict_clear() but it is not valid to call this function
4155  * on uninitialised memory.
4156  *
4157  * Since: 2.40
4158  **/
4159 void
g_variant_dict_clear(GVariantDict * dict)4160 g_variant_dict_clear (GVariantDict *dict)
4161 {
4162   if (GVSD(dict)->magic == 0)
4163     /* all-zeros case */
4164     return;
4165 
4166   g_return_if_fail (ensure_valid_dict (dict));
4167 
4168   g_hash_table_unref (GVSD(dict)->values);
4169   GVSD(dict)->values = NULL;
4170 
4171   GVSD(dict)->magic = 0;
4172 }
4173 
4174 /**
4175  * g_variant_dict_end:
4176  * @dict: a #GVariantDict
4177  *
4178  * Returns the current value of @dict as a #GVariant of type
4179  * %G_VARIANT_TYPE_VARDICT, clearing it in the process.
4180  *
4181  * It is not permissible to use @dict in any way after this call except
4182  * for reference counting operations (in the case of a heap-allocated
4183  * #GVariantDict) or by reinitialising it with g_variant_dict_init() (in
4184  * the case of stack-allocated).
4185  *
4186  * Returns: (transfer none): a new, floating, #GVariant
4187  *
4188  * Since: 2.40
4189  **/
4190 GVariant *
g_variant_dict_end(GVariantDict * dict)4191 g_variant_dict_end (GVariantDict *dict)
4192 {
4193   GVariantBuilder builder;
4194   GHashTableIter iter;
4195   gpointer key, value;
4196 
4197   g_return_val_if_fail (ensure_valid_dict (dict), NULL);
4198 
4199   g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
4200 
4201   g_hash_table_iter_init (&iter, GVSD(dict)->values);
4202   while (g_hash_table_iter_next (&iter, &key, &value))
4203     g_variant_builder_add (&builder, "{sv}", (const gchar *) key, (GVariant *) value);
4204 
4205   g_variant_dict_clear (dict);
4206 
4207   return g_variant_builder_end (&builder);
4208 }
4209 
4210 /**
4211  * g_variant_dict_ref:
4212  * @dict: a heap-allocated #GVariantDict
4213  *
4214  * Increases the reference count on @dict.
4215  *
4216  * Don't call this on stack-allocated #GVariantDict instances or bad
4217  * things will happen.
4218  *
4219  * Returns: (transfer full): a new reference to @dict
4220  *
4221  * Since: 2.40
4222  **/
4223 GVariantDict *
g_variant_dict_ref(GVariantDict * dict)4224 g_variant_dict_ref (GVariantDict *dict)
4225 {
4226   g_return_val_if_fail (is_valid_heap_dict (dict), NULL);
4227 
4228   GVHD(dict)->ref_count++;
4229 
4230   return dict;
4231 }
4232 
4233 /**
4234  * g_variant_dict_unref:
4235  * @dict: (transfer full): a heap-allocated #GVariantDict
4236  *
4237  * Decreases the reference count on @dict.
4238  *
4239  * In the event that there are no more references, releases all memory
4240  * associated with the #GVariantDict.
4241  *
4242  * Don't call this on stack-allocated #GVariantDict instances or bad
4243  * things will happen.
4244  *
4245  * Since: 2.40
4246  **/
4247 void
g_variant_dict_unref(GVariantDict * dict)4248 g_variant_dict_unref (GVariantDict *dict)
4249 {
4250   g_return_if_fail (is_valid_heap_dict (dict));
4251 
4252   if (--GVHD(dict)->ref_count == 0)
4253     {
4254       g_variant_dict_clear (dict);
4255       g_slice_free (struct heap_dict, (struct heap_dict *) dict);
4256     }
4257 }
4258 
4259 
4260 /* Format strings {{{1 */
4261 /*< private >
4262  * g_variant_format_string_scan:
4263  * @string: a string that may be prefixed with a format string
4264  * @limit: (nullable) (default NULL): a pointer to the end of @string,
4265  *         or %NULL
4266  * @endptr: (nullable) (default NULL): location to store the end pointer,
4267  *          or %NULL
4268  *
4269  * Checks the string pointed to by @string for starting with a properly
4270  * formed #GVariant varargs format string.  If no valid format string is
4271  * found then %FALSE is returned.
4272  *
4273  * If @string does start with a valid format string then %TRUE is
4274  * returned.  If @endptr is non-%NULL then it is updated to point to the
4275  * first character after the format string.
4276  *
4277  * If @limit is non-%NULL then @limit (and any character after it) will
4278  * not be accessed and the effect is otherwise equivalent to if the
4279  * character at @limit were nul.
4280  *
4281  * See the section on [GVariant format strings][gvariant-format-strings].
4282  *
4283  * Returns: %TRUE if there was a valid format string
4284  *
4285  * Since: 2.24
4286  */
4287 gboolean
g_variant_format_string_scan(const gchar * string,const gchar * limit,const gchar ** endptr)4288 g_variant_format_string_scan (const gchar  *string,
4289                               const gchar  *limit,
4290                               const gchar **endptr)
4291 {
4292 #define next_char() (string == limit ? '\0' : *(string++))
4293 #define peek_char() (string == limit ? '\0' : *string)
4294   char c;
4295 
4296   switch (next_char())
4297     {
4298     case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
4299     case 'x': case 't': case 'h': case 'd': case 's': case 'o':
4300     case 'g': case 'v': case '*': case '?': case 'r':
4301       break;
4302 
4303     case 'm':
4304       return g_variant_format_string_scan (string, limit, endptr);
4305 
4306     case 'a':
4307     case '@':
4308       return g_variant_type_string_scan (string, limit, endptr);
4309 
4310     case '(':
4311       while (peek_char() != ')')
4312         if (!g_variant_format_string_scan (string, limit, &string))
4313           return FALSE;
4314 
4315       next_char(); /* consume ')' */
4316       break;
4317 
4318     case '{':
4319       c = next_char();
4320 
4321       if (c == '&')
4322         {
4323           c = next_char ();
4324 
4325           if (c != 's' && c != 'o' && c != 'g')
4326             return FALSE;
4327         }
4328       else
4329         {
4330           if (c == '@')
4331             c = next_char ();
4332 
4333           /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
4334            *    The terminating null character is considered to be
4335            *    part of the string.
4336            */
4337           if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
4338             return FALSE;
4339         }
4340 
4341       if (!g_variant_format_string_scan (string, limit, &string))
4342         return FALSE;
4343 
4344       if (next_char() != '}')
4345         return FALSE;
4346 
4347       break;
4348 
4349     case '^':
4350       if ((c = next_char()) == 'a')
4351         {
4352           if ((c = next_char()) == '&')
4353             {
4354               if ((c = next_char()) == 'a')
4355                 {
4356                   if ((c = next_char()) == 'y')
4357                     break;      /* '^a&ay' */
4358                 }
4359 
4360               else if (c == 's' || c == 'o')
4361                 break;          /* '^a&s', '^a&o' */
4362             }
4363 
4364           else if (c == 'a')
4365             {
4366               if ((c = next_char()) == 'y')
4367                 break;          /* '^aay' */
4368             }
4369 
4370           else if (c == 's' || c == 'o')
4371             break;              /* '^as', '^ao' */
4372 
4373           else if (c == 'y')
4374             break;              /* '^ay' */
4375         }
4376       else if (c == '&')
4377         {
4378           if ((c = next_char()) == 'a')
4379             {
4380               if ((c = next_char()) == 'y')
4381                 break;          /* '^&ay' */
4382             }
4383         }
4384 
4385       return FALSE;
4386 
4387     case '&':
4388       c = next_char();
4389 
4390       if (c != 's' && c != 'o' && c != 'g')
4391         return FALSE;
4392 
4393       break;
4394 
4395     default:
4396       return FALSE;
4397     }
4398 
4399   if (endptr != NULL)
4400     *endptr = string;
4401 
4402 #undef next_char
4403 #undef peek_char
4404 
4405   return TRUE;
4406 }
4407 
4408 /**
4409  * g_variant_check_format_string:
4410  * @value: a #GVariant
4411  * @format_string: a valid #GVariant format string
4412  * @copy_only: %TRUE to ensure the format string makes deep copies
4413  *
4414  * Checks if calling g_variant_get() with @format_string on @value would
4415  * be valid from a type-compatibility standpoint.  @format_string is
4416  * assumed to be a valid format string (from a syntactic standpoint).
4417  *
4418  * If @copy_only is %TRUE then this function additionally checks that it
4419  * would be safe to call g_variant_unref() on @value immediately after
4420  * the call to g_variant_get() without invalidating the result.  This is
4421  * only possible if deep copies are made (ie: there are no pointers to
4422  * the data inside of the soon-to-be-freed #GVariant instance).  If this
4423  * check fails then a g_critical() is printed and %FALSE is returned.
4424  *
4425  * This function is meant to be used by functions that wish to provide
4426  * varargs accessors to #GVariant values of uncertain values (eg:
4427  * g_variant_lookup() or g_menu_model_get_item_attribute()).
4428  *
4429  * Returns: %TRUE if @format_string is safe to use
4430  *
4431  * Since: 2.34
4432  */
4433 gboolean
g_variant_check_format_string(GVariant * value,const gchar * format_string,gboolean copy_only)4434 g_variant_check_format_string (GVariant    *value,
4435                                const gchar *format_string,
4436                                gboolean     copy_only)
4437 {
4438   const gchar *original_format = format_string;
4439   const gchar *type_string;
4440 
4441   /* Interesting factoid: assuming a format string is valid, it can be
4442    * converted to a type string by removing all '@' '&' and '^'
4443    * characters.
4444    *
4445    * Instead of doing that, we can just skip those characters when
4446    * comparing it to the type string of @value.
4447    *
4448    * For the copy-only case we can just drop the '&' from the list of
4449    * characters to skip over.  A '&' will never appear in a type string
4450    * so we know that it won't be possible to return %TRUE if it is in a
4451    * format string.
4452    */
4453   type_string = g_variant_get_type_string (value);
4454 
4455   while (*type_string || *format_string)
4456     {
4457       gchar format = *format_string++;
4458 
4459       switch (format)
4460         {
4461         case '&':
4462           if G_UNLIKELY (copy_only)
4463             {
4464               /* for the love of all that is good, please don't mark this string for translation... */
4465               g_critical ("g_variant_check_format_string() is being called by a function with a GVariant varargs "
4466                           "interface to validate the passed format string for type safety.  The passed format "
4467                           "(%s) contains a '&' character which would result in a pointer being returned to the "
4468                           "data inside of a GVariant instance that may no longer exist by the time the function "
4469                           "returns.  Modify your code to use a format string without '&'.", original_format);
4470               return FALSE;
4471             }
4472 
4473           G_GNUC_FALLTHROUGH;
4474         case '^':
4475         case '@':
4476           /* ignore these 2 (or 3) */
4477           continue;
4478 
4479         case '?':
4480           /* attempt to consume one of 'bynqiuxthdsog' */
4481           {
4482             char s = *type_string++;
4483 
4484             if (s == '\0' || strchr ("bynqiuxthdsog", s) == NULL)
4485               return FALSE;
4486           }
4487           continue;
4488 
4489         case 'r':
4490           /* ensure it's a tuple */
4491           if (*type_string != '(')
4492             return FALSE;
4493 
4494           G_GNUC_FALLTHROUGH;
4495         case '*':
4496           /* consume a full type string for the '*' or 'r' */
4497           if (!g_variant_type_string_scan (type_string, NULL, &type_string))
4498             return FALSE;
4499 
4500           continue;
4501 
4502         default:
4503           /* attempt to consume exactly one character equal to the format */
4504           if (format != *type_string++)
4505             return FALSE;
4506         }
4507     }
4508 
4509   return TRUE;
4510 }
4511 
4512 /*< private >
4513  * g_variant_format_string_scan_type:
4514  * @string: a string that may be prefixed with a format string
4515  * @limit: (nullable) (default NULL): a pointer to the end of @string,
4516  *         or %NULL
4517  * @endptr: (nullable) (default NULL): location to store the end pointer,
4518  *          or %NULL
4519  *
4520  * If @string starts with a valid format string then this function will
4521  * return the type that the format string corresponds to.  Otherwise
4522  * this function returns %NULL.
4523  *
4524  * Use g_variant_type_free() to free the return value when you no longer
4525  * need it.
4526  *
4527  * This function is otherwise exactly like
4528  * g_variant_format_string_scan().
4529  *
4530  * Returns: (nullable): a #GVariantType if there was a valid format string
4531  *
4532  * Since: 2.24
4533  */
4534 GVariantType *
g_variant_format_string_scan_type(const gchar * string,const gchar * limit,const gchar ** endptr)4535 g_variant_format_string_scan_type (const gchar  *string,
4536                                    const gchar  *limit,
4537                                    const gchar **endptr)
4538 {
4539   const gchar *my_end;
4540   gchar *dest;
4541   gchar *new;
4542 
4543   if (endptr == NULL)
4544     endptr = &my_end;
4545 
4546   if (!g_variant_format_string_scan (string, limit, endptr))
4547     return NULL;
4548 
4549   dest = new = g_malloc (*endptr - string + 1);
4550   while (string != *endptr)
4551     {
4552       if (*string != '@' && *string != '&' && *string != '^')
4553         *dest++ = *string;
4554       string++;
4555     }
4556   *dest = '\0';
4557 
4558   return (GVariantType *) G_VARIANT_TYPE (new);
4559 }
4560 
4561 static gboolean
valid_format_string(const gchar * format_string,gboolean single,GVariant * value)4562 valid_format_string (const gchar *format_string,
4563                      gboolean     single,
4564                      GVariant    *value)
4565 {
4566   const gchar *endptr;
4567   GVariantType *type;
4568 
4569   type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
4570 
4571   if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
4572     {
4573       if (single)
4574         g_critical ("'%s' is not a valid GVariant format string",
4575                     format_string);
4576       else
4577         g_critical ("'%s' does not have a valid GVariant format "
4578                     "string as a prefix", format_string);
4579 
4580       if (type != NULL)
4581         g_variant_type_free (type);
4582 
4583       return FALSE;
4584     }
4585 
4586   if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
4587     {
4588       gchar *fragment;
4589       gchar *typestr;
4590 
4591       fragment = g_strndup (format_string, endptr - format_string);
4592       typestr = g_variant_type_dup_string (type);
4593 
4594       g_critical ("the GVariant format string '%s' has a type of "
4595                   "'%s' but the given value has a type of '%s'",
4596                   fragment, typestr, g_variant_get_type_string (value));
4597 
4598       g_variant_type_free (type);
4599       g_free (fragment);
4600       g_free (typestr);
4601 
4602       return FALSE;
4603     }
4604 
4605   g_variant_type_free (type);
4606 
4607   return TRUE;
4608 }
4609 
4610 /* Variable Arguments {{{1 */
4611 /* We consider 2 main classes of format strings:
4612  *
4613  *   - recursive format strings
4614  *      these are ones that result in recursion and the collection of
4615  *      possibly more than one argument.  Maybe types, tuples,
4616  *      dictionary entries.
4617  *
4618  *   - leaf format string
4619  *      these result in the collection of a single argument.
4620  *
4621  * Leaf format strings are further subdivided into two categories:
4622  *
4623  *   - single non-null pointer ("nnp")
4624  *      these either collect or return a single non-null pointer.
4625  *
4626  *   - other
4627  *      these collect or return something else (bool, number, etc).
4628  *
4629  * Based on the above, the varargs handling code is split into 4 main parts:
4630  *
4631  *   - nnp handling code
4632  *   - leaf handling code (which may invoke nnp code)
4633  *   - generic handling code (may be recursive, may invoke leaf code)
4634  *   - user-facing API (which invokes the generic code)
4635  *
4636  * Each section implements some of the following functions:
4637  *
4638  *   - skip:
4639  *      collect the arguments for the format string as if
4640  *      g_variant_new() had been called, but do nothing with them.  used
4641  *      for skipping over arguments when constructing a Nothing maybe
4642  *      type.
4643  *
4644  *   - new:
4645  *      create a GVariant *
4646  *
4647  *   - get:
4648  *      unpack a GVariant *
4649  *
4650  *   - free (nnp only):
4651  *      free a previously allocated item
4652  */
4653 
4654 static gboolean
g_variant_format_string_is_leaf(const gchar * str)4655 g_variant_format_string_is_leaf (const gchar *str)
4656 {
4657   return str[0] != 'm' && str[0] != '(' && str[0] != '{';
4658 }
4659 
4660 static gboolean
g_variant_format_string_is_nnp(const gchar * str)4661 g_variant_format_string_is_nnp (const gchar *str)
4662 {
4663   return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
4664          str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
4665          str[0] == 'r' || str[0] == 'v' || str[0] == '&';
4666 }
4667 
4668 /* Single non-null pointer ("nnp") {{{2 */
4669 static void
g_variant_valist_free_nnp(const gchar * str,gpointer ptr)4670 g_variant_valist_free_nnp (const gchar *str,
4671                            gpointer     ptr)
4672 {
4673   switch (*str)
4674     {
4675     case 'a':
4676       g_variant_iter_free (ptr);
4677       break;
4678 
4679     case '^':
4680       if (g_str_has_suffix (str, "y"))
4681         {
4682           if (str[2] != 'a') /* '^a&ay', '^ay' */
4683             g_free (ptr);
4684           else if (str[1] == 'a') /* '^aay' */
4685             g_strfreev (ptr);
4686           break; /* '^&ay' */
4687         }
4688       else if (str[2] != '&') /* '^as', '^ao' */
4689         g_strfreev (ptr);
4690       else                      /* '^a&s', '^a&o' */
4691         g_free (ptr);
4692       break;
4693 
4694     case 's':
4695     case 'o':
4696     case 'g':
4697       g_free (ptr);
4698       break;
4699 
4700     case '@':
4701     case '*':
4702     case '?':
4703     case 'v':
4704       g_variant_unref (ptr);
4705       break;
4706 
4707     case '&':
4708       break;
4709 
4710     default:
4711       g_assert_not_reached ();
4712     }
4713 }
4714 
4715 static gchar
g_variant_scan_convenience(const gchar ** str,gboolean * constant,guint * arrays)4716 g_variant_scan_convenience (const gchar **str,
4717                             gboolean     *constant,
4718                             guint        *arrays)
4719 {
4720   *constant = FALSE;
4721   *arrays = 0;
4722 
4723   for (;;)
4724     {
4725       char c = *(*str)++;
4726 
4727       if (c == '&')
4728         *constant = TRUE;
4729 
4730       else if (c == 'a')
4731         (*arrays)++;
4732 
4733       else
4734         return c;
4735     }
4736 }
4737 
4738 static GVariant *
g_variant_valist_new_nnp(const gchar ** str,gpointer ptr)4739 g_variant_valist_new_nnp (const gchar **str,
4740                           gpointer      ptr)
4741 {
4742   if (**str == '&')
4743     (*str)++;
4744 
4745   switch (*(*str)++)
4746     {
4747     case 'a':
4748       if (ptr != NULL)
4749         {
4750           const GVariantType *type;
4751           GVariant *value;
4752 
4753           value = g_variant_builder_end (ptr);
4754           type = g_variant_get_type (value);
4755 
4756           if G_UNLIKELY (!g_variant_type_is_array (type))
4757             g_error ("g_variant_new: expected array GVariantBuilder but "
4758                      "the built value has type '%s'",
4759                      g_variant_get_type_string (value));
4760 
4761           type = g_variant_type_element (type);
4762 
4763           if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
4764             {
4765               gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4766               g_error ("g_variant_new: expected GVariantBuilder array element "
4767                        "type '%s' but the built value has element type '%s'",
4768                        type_string, g_variant_get_type_string (value) + 1);
4769               g_free (type_string);
4770             }
4771 
4772           g_variant_type_string_scan (*str, NULL, str);
4773 
4774           return value;
4775         }
4776       else
4777 
4778         /* special case: NULL pointer for empty array */
4779         {
4780           const GVariantType *type = (GVariantType *) *str;
4781 
4782           g_variant_type_string_scan (*str, NULL, str);
4783 
4784           if G_UNLIKELY (!g_variant_type_is_definite (type))
4785             g_error ("g_variant_new: NULL pointer given with indefinite "
4786                      "array type; unable to determine which type of empty "
4787                      "array to construct.");
4788 
4789           return g_variant_new_array (type, NULL, 0);
4790         }
4791 
4792     case 's':
4793       {
4794         GVariant *value;
4795 
4796         value = g_variant_new_string (ptr);
4797 
4798         if (value == NULL)
4799           value = g_variant_new_string ("[Invalid UTF-8]");
4800 
4801         return value;
4802       }
4803 
4804     case 'o':
4805       return g_variant_new_object_path (ptr);
4806 
4807     case 'g':
4808       return g_variant_new_signature (ptr);
4809 
4810     case '^':
4811       {
4812         gboolean constant;
4813         guint arrays;
4814         gchar type;
4815 
4816         type = g_variant_scan_convenience (str, &constant, &arrays);
4817 
4818         if (type == 's')
4819           return g_variant_new_strv (ptr, -1);
4820 
4821         if (type == 'o')
4822           return g_variant_new_objv (ptr, -1);
4823 
4824         if (arrays > 1)
4825           return g_variant_new_bytestring_array (ptr, -1);
4826 
4827         return g_variant_new_bytestring (ptr);
4828       }
4829 
4830     case '@':
4831       if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
4832         {
4833           gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4834           g_error ("g_variant_new: expected GVariant of type '%s' but "
4835                    "received value has type '%s'",
4836                    type_string, g_variant_get_type_string (ptr));
4837           g_free (type_string);
4838         }
4839 
4840       g_variant_type_string_scan (*str, NULL, str);
4841 
4842       return ptr;
4843 
4844     case '*':
4845       return ptr;
4846 
4847     case '?':
4848       if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
4849         g_error ("g_variant_new: format string '?' expects basic-typed "
4850                  "GVariant, but received value has type '%s'",
4851                  g_variant_get_type_string (ptr));
4852 
4853       return ptr;
4854 
4855     case 'r':
4856       if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
4857         g_error ("g_variant_new: format string 'r' expects tuple-typed "
4858                  "GVariant, but received value has type '%s'",
4859                  g_variant_get_type_string (ptr));
4860 
4861       return ptr;
4862 
4863     case 'v':
4864       return g_variant_new_variant (ptr);
4865 
4866     default:
4867       g_assert_not_reached ();
4868     }
4869 }
4870 
4871 static gpointer
g_variant_valist_get_nnp(const gchar ** str,GVariant * value)4872 g_variant_valist_get_nnp (const gchar **str,
4873                           GVariant     *value)
4874 {
4875   switch (*(*str)++)
4876     {
4877     case 'a':
4878       g_variant_type_string_scan (*str, NULL, str);
4879       return g_variant_iter_new (value);
4880 
4881     case '&':
4882       (*str)++;
4883       return (gchar *) g_variant_get_string (value, NULL);
4884 
4885     case 's':
4886     case 'o':
4887     case 'g':
4888       return g_variant_dup_string (value, NULL);
4889 
4890     case '^':
4891       {
4892         gboolean constant;
4893         guint arrays;
4894         gchar type;
4895 
4896         type = g_variant_scan_convenience (str, &constant, &arrays);
4897 
4898         if (type == 's')
4899           {
4900             if (constant)
4901               return g_variant_get_strv (value, NULL);
4902             else
4903               return g_variant_dup_strv (value, NULL);
4904           }
4905 
4906         else if (type == 'o')
4907           {
4908             if (constant)
4909               return g_variant_get_objv (value, NULL);
4910             else
4911               return g_variant_dup_objv (value, NULL);
4912           }
4913 
4914         else if (arrays > 1)
4915           {
4916             if (constant)
4917               return g_variant_get_bytestring_array (value, NULL);
4918             else
4919               return g_variant_dup_bytestring_array (value, NULL);
4920           }
4921 
4922         else
4923           {
4924             if (constant)
4925               return (gchar *) g_variant_get_bytestring (value);
4926             else
4927               return g_variant_dup_bytestring (value, NULL);
4928           }
4929       }
4930 
4931     case '@':
4932       g_variant_type_string_scan (*str, NULL, str);
4933       G_GNUC_FALLTHROUGH;
4934 
4935     case '*':
4936     case '?':
4937     case 'r':
4938       return g_variant_ref (value);
4939 
4940     case 'v':
4941       return g_variant_get_variant (value);
4942 
4943     default:
4944       g_assert_not_reached ();
4945     }
4946 }
4947 
4948 /* Leaves {{{2 */
4949 static void
g_variant_valist_skip_leaf(const gchar ** str,va_list * app)4950 g_variant_valist_skip_leaf (const gchar **str,
4951                             va_list      *app)
4952 {
4953   if (g_variant_format_string_is_nnp (*str))
4954     {
4955       g_variant_format_string_scan (*str, NULL, str);
4956       va_arg (*app, gpointer);
4957       return;
4958     }
4959 
4960   switch (*(*str)++)
4961     {
4962     case 'b':
4963     case 'y':
4964     case 'n':
4965     case 'q':
4966     case 'i':
4967     case 'u':
4968     case 'h':
4969       va_arg (*app, int);
4970       return;
4971 
4972     case 'x':
4973     case 't':
4974       va_arg (*app, guint64);
4975       return;
4976 
4977     case 'd':
4978       va_arg (*app, gdouble);
4979       return;
4980 
4981     default:
4982       g_assert_not_reached ();
4983     }
4984 }
4985 
4986 static GVariant *
g_variant_valist_new_leaf(const gchar ** str,va_list * app)4987 g_variant_valist_new_leaf (const gchar **str,
4988                            va_list      *app)
4989 {
4990   if (g_variant_format_string_is_nnp (*str))
4991     return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
4992 
4993   switch (*(*str)++)
4994     {
4995     case 'b':
4996       return g_variant_new_boolean (va_arg (*app, gboolean));
4997 
4998     case 'y':
4999       return g_variant_new_byte (va_arg (*app, guint));
5000 
5001     case 'n':
5002       return g_variant_new_int16 (va_arg (*app, gint));
5003 
5004     case 'q':
5005       return g_variant_new_uint16 (va_arg (*app, guint));
5006 
5007     case 'i':
5008       return g_variant_new_int32 (va_arg (*app, gint));
5009 
5010     case 'u':
5011       return g_variant_new_uint32 (va_arg (*app, guint));
5012 
5013     case 'x':
5014       return g_variant_new_int64 (va_arg (*app, gint64));
5015 
5016     case 't':
5017       return g_variant_new_uint64 (va_arg (*app, guint64));
5018 
5019     case 'h':
5020       return g_variant_new_handle (va_arg (*app, gint));
5021 
5022     case 'd':
5023       return g_variant_new_double (va_arg (*app, gdouble));
5024 
5025     default:
5026       g_assert_not_reached ();
5027     }
5028 }
5029 
5030 /* The code below assumes this */
5031 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
5032 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
5033 
5034 static void
g_variant_valist_get_leaf(const gchar ** str,GVariant * value,gboolean free,va_list * app)5035 g_variant_valist_get_leaf (const gchar **str,
5036                            GVariant     *value,
5037                            gboolean      free,
5038                            va_list      *app)
5039 {
5040   gpointer ptr = va_arg (*app, gpointer);
5041 
5042   if (ptr == NULL)
5043     {
5044       g_variant_format_string_scan (*str, NULL, str);
5045       return;
5046     }
5047 
5048   if (g_variant_format_string_is_nnp (*str))
5049     {
5050       gpointer *nnp = (gpointer *) ptr;
5051 
5052       if (free && *nnp != NULL)
5053         g_variant_valist_free_nnp (*str, *nnp);
5054 
5055       *nnp = NULL;
5056 
5057       if (value != NULL)
5058         *nnp = g_variant_valist_get_nnp (str, value);
5059       else
5060         g_variant_format_string_scan (*str, NULL, str);
5061 
5062       return;
5063     }
5064 
5065   if (value != NULL)
5066     {
5067       switch (*(*str)++)
5068         {
5069         case 'b':
5070           *(gboolean *) ptr = g_variant_get_boolean (value);
5071           return;
5072 
5073         case 'y':
5074           *(guint8 *) ptr = g_variant_get_byte (value);
5075           return;
5076 
5077         case 'n':
5078           *(gint16 *) ptr = g_variant_get_int16 (value);
5079           return;
5080 
5081         case 'q':
5082           *(guint16 *) ptr = g_variant_get_uint16 (value);
5083           return;
5084 
5085         case 'i':
5086           *(gint32 *) ptr = g_variant_get_int32 (value);
5087           return;
5088 
5089         case 'u':
5090           *(guint32 *) ptr = g_variant_get_uint32 (value);
5091           return;
5092 
5093         case 'x':
5094           *(gint64 *) ptr = g_variant_get_int64 (value);
5095           return;
5096 
5097         case 't':
5098           *(guint64 *) ptr = g_variant_get_uint64 (value);
5099           return;
5100 
5101         case 'h':
5102           *(gint32 *) ptr = g_variant_get_handle (value);
5103           return;
5104 
5105         case 'd':
5106           *(gdouble *) ptr = g_variant_get_double (value);
5107           return;
5108         }
5109     }
5110   else
5111     {
5112       switch (*(*str)++)
5113         {
5114         case 'y':
5115           *(guint8 *) ptr = 0;
5116           return;
5117 
5118         case 'n':
5119         case 'q':
5120           *(guint16 *) ptr = 0;
5121           return;
5122 
5123         case 'i':
5124         case 'u':
5125         case 'h':
5126         case 'b':
5127           *(guint32 *) ptr = 0;
5128           return;
5129 
5130         case 'x':
5131         case 't':
5132         case 'd':
5133           *(guint64 *) ptr = 0;
5134           return;
5135         }
5136     }
5137 
5138   g_assert_not_reached ();
5139 }
5140 
5141 /* Generic (recursive) {{{2 */
5142 static void
g_variant_valist_skip(const gchar ** str,va_list * app)5143 g_variant_valist_skip (const gchar **str,
5144                        va_list      *app)
5145 {
5146   if (g_variant_format_string_is_leaf (*str))
5147     g_variant_valist_skip_leaf (str, app);
5148 
5149   else if (**str == 'm') /* maybe */
5150     {
5151       (*str)++;
5152 
5153       if (!g_variant_format_string_is_nnp (*str))
5154         va_arg (*app, gboolean);
5155 
5156       g_variant_valist_skip (str, app);
5157     }
5158   else /* tuple, dictionary entry */
5159     {
5160       g_assert (**str == '(' || **str == '{');
5161       (*str)++;
5162       while (**str != ')' && **str != '}')
5163         g_variant_valist_skip (str, app);
5164       (*str)++;
5165     }
5166 }
5167 
5168 static GVariant *
g_variant_valist_new(const gchar ** str,va_list * app)5169 g_variant_valist_new (const gchar **str,
5170                       va_list      *app)
5171 {
5172   if (g_variant_format_string_is_leaf (*str))
5173     return g_variant_valist_new_leaf (str, app);
5174 
5175   if (**str == 'm') /* maybe */
5176     {
5177       GVariantType *type = NULL;
5178       GVariant *value = NULL;
5179 
5180       (*str)++;
5181 
5182       if (g_variant_format_string_is_nnp (*str))
5183         {
5184           gpointer nnp = va_arg (*app, gpointer);
5185 
5186           if (nnp != NULL)
5187             value = g_variant_valist_new_nnp (str, nnp);
5188           else
5189             type = g_variant_format_string_scan_type (*str, NULL, str);
5190         }
5191       else
5192         {
5193           gboolean just = va_arg (*app, gboolean);
5194 
5195           if (just)
5196             value = g_variant_valist_new (str, app);
5197           else
5198             {
5199               type = g_variant_format_string_scan_type (*str, NULL, NULL);
5200               g_variant_valist_skip (str, app);
5201             }
5202         }
5203 
5204       value = g_variant_new_maybe (type, value);
5205 
5206       if (type != NULL)
5207         g_variant_type_free (type);
5208 
5209       return value;
5210     }
5211   else /* tuple, dictionary entry */
5212     {
5213       GVariantBuilder b;
5214 
5215       if (**str == '(')
5216         g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
5217       else
5218         {
5219           g_assert (**str == '{');
5220           g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
5221         }
5222 
5223       (*str)++; /* '(' */
5224       while (**str != ')' && **str != '}')
5225         g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
5226       (*str)++; /* ')' */
5227 
5228       return g_variant_builder_end (&b);
5229     }
5230 }
5231 
5232 static void
g_variant_valist_get(const gchar ** str,GVariant * value,gboolean free,va_list * app)5233 g_variant_valist_get (const gchar **str,
5234                       GVariant     *value,
5235                       gboolean      free,
5236                       va_list      *app)
5237 {
5238   if (g_variant_format_string_is_leaf (*str))
5239     g_variant_valist_get_leaf (str, value, free, app);
5240 
5241   else if (**str == 'm')
5242     {
5243       (*str)++;
5244 
5245       if (value != NULL)
5246         value = g_variant_get_maybe (value);
5247 
5248       if (!g_variant_format_string_is_nnp (*str))
5249         {
5250           gboolean *ptr = va_arg (*app, gboolean *);
5251 
5252           if (ptr != NULL)
5253             *ptr = value != NULL;
5254         }
5255 
5256       g_variant_valist_get (str, value, free, app);
5257 
5258       if (value != NULL)
5259         g_variant_unref (value);
5260     }
5261 
5262   else /* tuple, dictionary entry */
5263     {
5264       gint index = 0;
5265 
5266       g_assert (**str == '(' || **str == '{');
5267 
5268       (*str)++;
5269       while (**str != ')' && **str != '}')
5270         {
5271           if (value != NULL)
5272             {
5273               GVariant *child = g_variant_get_child_value (value, index++);
5274               g_variant_valist_get (str, child, free, app);
5275               g_variant_unref (child);
5276             }
5277           else
5278             g_variant_valist_get (str, NULL, free, app);
5279         }
5280       (*str)++;
5281     }
5282 }
5283 
5284 /* User-facing API {{{2 */
5285 /**
5286  * g_variant_new: (skip)
5287  * @format_string: a #GVariant format string
5288  * @...: arguments, as per @format_string
5289  *
5290  * Creates a new #GVariant instance.
5291  *
5292  * Think of this function as an analogue to g_strdup_printf().
5293  *
5294  * The type of the created instance and the arguments that are expected
5295  * by this function are determined by @format_string. See the section on
5296  * [GVariant format strings][gvariant-format-strings]. Please note that
5297  * the syntax of the format string is very likely to be extended in the
5298  * future.
5299  *
5300  * The first character of the format string must not be '*' '?' '@' or
5301  * 'r'; in essence, a new #GVariant must always be constructed by this
5302  * function (and not merely passed through it unmodified).
5303  *
5304  * Note that the arguments must be of the correct width for their types
5305  * specified in @format_string. This can be achieved by casting them. See
5306  * the [GVariant varargs documentation][gvariant-varargs].
5307  *
5308  * |[<!-- language="C" -->
5309  * MyFlags some_flags = FLAG_ONE | FLAG_TWO;
5310  * const gchar *some_strings[] = { "a", "b", "c", NULL };
5311  * GVariant *new_variant;
5312  *
5313  * new_variant = g_variant_new ("(t^as)",
5314  *                              // This cast is required.
5315  *                              (guint64) some_flags,
5316  *                              some_strings);
5317  * ]|
5318  *
5319  * Returns: a new floating #GVariant instance
5320  *
5321  * Since: 2.24
5322  **/
5323 GVariant *
g_variant_new(const gchar * format_string,...)5324 g_variant_new (const gchar *format_string,
5325                ...)
5326 {
5327   GVariant *value;
5328   va_list ap;
5329 
5330   g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
5331                         format_string[0] != '?' && format_string[0] != '@' &&
5332                         format_string[0] != '*' && format_string[0] != 'r',
5333                         NULL);
5334 
5335   va_start (ap, format_string);
5336   value = g_variant_new_va (format_string, NULL, &ap);
5337   va_end (ap);
5338 
5339   return value;
5340 }
5341 
5342 /**
5343  * g_variant_new_va: (skip)
5344  * @format_string: a string that is prefixed with a format string
5345  * @endptr: (nullable) (default NULL): location to store the end pointer,
5346  *          or %NULL
5347  * @app: a pointer to a #va_list
5348  *
5349  * This function is intended to be used by libraries based on
5350  * #GVariant that want to provide g_variant_new()-like functionality
5351  * to their users.
5352  *
5353  * The API is more general than g_variant_new() to allow a wider range
5354  * of possible uses.
5355  *
5356  * @format_string must still point to a valid format string, but it only
5357  * needs to be nul-terminated if @endptr is %NULL.  If @endptr is
5358  * non-%NULL then it is updated to point to the first character past the
5359  * end of the format string.
5360  *
5361  * @app is a pointer to a #va_list.  The arguments, according to
5362  * @format_string, are collected from this #va_list and the list is left
5363  * pointing to the argument following the last.
5364  *
5365  * Note that the arguments in @app must be of the correct width for their
5366  * types specified in @format_string when collected into the #va_list.
5367  * See the [GVariant varargs documentation][gvariant-varargs].
5368  *
5369  * These two generalisations allow mixing of multiple calls to
5370  * g_variant_new_va() and g_variant_get_va() within a single actual
5371  * varargs call by the user.
5372  *
5373  * The return value will be floating if it was a newly created GVariant
5374  * instance (for example, if the format string was "(ii)").  In the case
5375  * that the format_string was '*', '?', 'r', or a format starting with
5376  * '@' then the collected #GVariant pointer will be returned unmodified,
5377  * without adding any additional references.
5378  *
5379  * In order to behave correctly in all cases it is necessary for the
5380  * calling function to g_variant_ref_sink() the return result before
5381  * returning control to the user that originally provided the pointer.
5382  * At this point, the caller will have their own full reference to the
5383  * result.  This can also be done by adding the result to a container,
5384  * or by passing it to another g_variant_new() call.
5385  *
5386  * Returns: a new, usually floating, #GVariant
5387  *
5388  * Since: 2.24
5389  **/
5390 GVariant *
g_variant_new_va(const gchar * format_string,const gchar ** endptr,va_list * app)5391 g_variant_new_va (const gchar  *format_string,
5392                   const gchar **endptr,
5393                   va_list      *app)
5394 {
5395   GVariant *value;
5396 
5397   g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
5398                         NULL);
5399   g_return_val_if_fail (app != NULL, NULL);
5400 
5401   value = g_variant_valist_new (&format_string, app);
5402 
5403   if (endptr != NULL)
5404     *endptr = format_string;
5405 
5406   return value;
5407 }
5408 
5409 /**
5410  * g_variant_get: (skip)
5411  * @value: a #GVariant instance
5412  * @format_string: a #GVariant format string
5413  * @...: arguments, as per @format_string
5414  *
5415  * Deconstructs a #GVariant instance.
5416  *
5417  * Think of this function as an analogue to scanf().
5418  *
5419  * The arguments that are expected by this function are entirely
5420  * determined by @format_string.  @format_string also restricts the
5421  * permissible types of @value.  It is an error to give a value with
5422  * an incompatible type.  See the section on
5423  * [GVariant format strings][gvariant-format-strings].
5424  * Please note that the syntax of the format string is very likely to be
5425  * extended in the future.
5426  *
5427  * @format_string determines the C types that are used for unpacking
5428  * the values and also determines if the values are copied or borrowed,
5429  * see the section on
5430  * [GVariant format strings][gvariant-format-strings-pointers].
5431  *
5432  * Since: 2.24
5433  **/
5434 void
g_variant_get(GVariant * value,const gchar * format_string,...)5435 g_variant_get (GVariant    *value,
5436                const gchar *format_string,
5437                ...)
5438 {
5439   va_list ap;
5440 
5441   g_return_if_fail (value != NULL);
5442   g_return_if_fail (valid_format_string (format_string, TRUE, value));
5443 
5444   /* if any direct-pointer-access formats are in use, flatten first */
5445   if (strchr (format_string, '&'))
5446     g_variant_get_data (value);
5447 
5448   va_start (ap, format_string);
5449   g_variant_get_va (value, format_string, NULL, &ap);
5450   va_end (ap);
5451 }
5452 
5453 /**
5454  * g_variant_get_va: (skip)
5455  * @value: a #GVariant
5456  * @format_string: a string that is prefixed with a format string
5457  * @endptr: (nullable) (default NULL): location to store the end pointer,
5458  *          or %NULL
5459  * @app: a pointer to a #va_list
5460  *
5461  * This function is intended to be used by libraries based on #GVariant
5462  * that want to provide g_variant_get()-like functionality to their
5463  * users.
5464  *
5465  * The API is more general than g_variant_get() to allow a wider range
5466  * of possible uses.
5467  *
5468  * @format_string must still point to a valid format string, but it only
5469  * need to be nul-terminated if @endptr is %NULL.  If @endptr is
5470  * non-%NULL then it is updated to point to the first character past the
5471  * end of the format string.
5472  *
5473  * @app is a pointer to a #va_list.  The arguments, according to
5474  * @format_string, are collected from this #va_list and the list is left
5475  * pointing to the argument following the last.
5476  *
5477  * These two generalisations allow mixing of multiple calls to
5478  * g_variant_new_va() and g_variant_get_va() within a single actual
5479  * varargs call by the user.
5480  *
5481  * @format_string determines the C types that are used for unpacking
5482  * the values and also determines if the values are copied or borrowed,
5483  * see the section on
5484  * [GVariant format strings][gvariant-format-strings-pointers].
5485  *
5486  * Since: 2.24
5487  **/
5488 void
g_variant_get_va(GVariant * value,const gchar * format_string,const gchar ** endptr,va_list * app)5489 g_variant_get_va (GVariant     *value,
5490                   const gchar  *format_string,
5491                   const gchar **endptr,
5492                   va_list      *app)
5493 {
5494   g_return_if_fail (valid_format_string (format_string, !endptr, value));
5495   g_return_if_fail (value != NULL);
5496   g_return_if_fail (app != NULL);
5497 
5498   /* if any direct-pointer-access formats are in use, flatten first */
5499   if (strchr (format_string, '&'))
5500     g_variant_get_data (value);
5501 
5502   g_variant_valist_get (&format_string, value, FALSE, app);
5503 
5504   if (endptr != NULL)
5505     *endptr = format_string;
5506 }
5507 
5508 /* Varargs-enabled Utility Functions {{{1 */
5509 
5510 /**
5511  * g_variant_builder_add: (skip)
5512  * @builder: a #GVariantBuilder
5513  * @format_string: a #GVariant varargs format string
5514  * @...: arguments, as per @format_string
5515  *
5516  * Adds to a #GVariantBuilder.
5517  *
5518  * This call is a convenience wrapper that is exactly equivalent to
5519  * calling g_variant_new() followed by g_variant_builder_add_value().
5520  *
5521  * Note that the arguments must be of the correct width for their types
5522  * specified in @format_string. This can be achieved by casting them. See
5523  * the [GVariant varargs documentation][gvariant-varargs].
5524  *
5525  * This function might be used as follows:
5526  *
5527  * |[<!-- language="C" -->
5528  * GVariant *
5529  * make_pointless_dictionary (void)
5530  * {
5531  *   GVariantBuilder builder;
5532  *   int i;
5533  *
5534  *   g_variant_builder_init (&builder, G_VARIANT_TYPE_ARRAY);
5535  *   for (i = 0; i < 16; i++)
5536  *     {
5537  *       gchar buf[3];
5538  *
5539  *       sprintf (buf, "%d", i);
5540  *       g_variant_builder_add (&builder, "{is}", i, buf);
5541  *     }
5542  *
5543  *   return g_variant_builder_end (&builder);
5544  * }
5545  * ]|
5546  *
5547  * Since: 2.24
5548  */
5549 void
g_variant_builder_add(GVariantBuilder * builder,const gchar * format_string,...)5550 g_variant_builder_add (GVariantBuilder *builder,
5551                        const gchar     *format_string,
5552                        ...)
5553 {
5554   GVariant *variant;
5555   va_list ap;
5556 
5557   va_start (ap, format_string);
5558   variant = g_variant_new_va (format_string, NULL, &ap);
5559   va_end (ap);
5560 
5561   g_variant_builder_add_value (builder, variant);
5562 }
5563 
5564 /**
5565  * g_variant_get_child: (skip)
5566  * @value: a container #GVariant
5567  * @index_: the index of the child to deconstruct
5568  * @format_string: a #GVariant format string
5569  * @...: arguments, as per @format_string
5570  *
5571  * Reads a child item out of a container #GVariant instance and
5572  * deconstructs it according to @format_string.  This call is
5573  * essentially a combination of g_variant_get_child_value() and
5574  * g_variant_get().
5575  *
5576  * @format_string determines the C types that are used for unpacking
5577  * the values and also determines if the values are copied or borrowed,
5578  * see the section on
5579  * [GVariant format strings][gvariant-format-strings-pointers].
5580  *
5581  * Since: 2.24
5582  **/
5583 void
g_variant_get_child(GVariant * value,gsize index_,const gchar * format_string,...)5584 g_variant_get_child (GVariant    *value,
5585                      gsize        index_,
5586                      const gchar *format_string,
5587                      ...)
5588 {
5589   GVariant *child;
5590   va_list ap;
5591 
5592   /* if any direct-pointer-access formats are in use, flatten first */
5593   if (strchr (format_string, '&'))
5594     g_variant_get_data (value);
5595 
5596   child = g_variant_get_child_value (value, index_);
5597   g_return_if_fail (valid_format_string (format_string, TRUE, child));
5598 
5599   va_start (ap, format_string);
5600   g_variant_get_va (child, format_string, NULL, &ap);
5601   va_end (ap);
5602 
5603   g_variant_unref (child);
5604 }
5605 
5606 /**
5607  * g_variant_iter_next: (skip)
5608  * @iter: a #GVariantIter
5609  * @format_string: a GVariant format string
5610  * @...: the arguments to unpack the value into
5611  *
5612  * Gets the next item in the container and unpacks it into the variable
5613  * argument list according to @format_string, returning %TRUE.
5614  *
5615  * If no more items remain then %FALSE is returned.
5616  *
5617  * All of the pointers given on the variable arguments list of this
5618  * function are assumed to point at uninitialised memory.  It is the
5619  * responsibility of the caller to free all of the values returned by
5620  * the unpacking process.
5621  *
5622  * Here is an example for memory management with g_variant_iter_next():
5623  * |[<!-- language="C" -->
5624  *   // Iterates a dictionary of type 'a{sv}'
5625  *   void
5626  *   iterate_dictionary (GVariant *dictionary)
5627  *   {
5628  *     GVariantIter iter;
5629  *     GVariant *value;
5630  *     gchar *key;
5631  *
5632  *     g_variant_iter_init (&iter, dictionary);
5633  *     while (g_variant_iter_next (&iter, "{sv}", &key, &value))
5634  *       {
5635  *         g_print ("Item '%s' has type '%s'\n", key,
5636  *                  g_variant_get_type_string (value));
5637  *
5638  *         // must free data for ourselves
5639  *         g_variant_unref (value);
5640  *         g_free (key);
5641  *       }
5642  *   }
5643  * ]|
5644  *
5645  * For a solution that is likely to be more convenient to C programmers
5646  * when dealing with loops, see g_variant_iter_loop().
5647  *
5648  * @format_string determines the C types that are used for unpacking
5649  * the values and also determines if the values are copied or borrowed.
5650  *
5651  * See the section on
5652  * [GVariant format strings][gvariant-format-strings-pointers].
5653  *
5654  * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
5655  *
5656  * Since: 2.24
5657  **/
5658 gboolean
g_variant_iter_next(GVariantIter * iter,const gchar * format_string,...)5659 g_variant_iter_next (GVariantIter *iter,
5660                      const gchar  *format_string,
5661                      ...)
5662 {
5663   GVariant *value;
5664 
5665   value = g_variant_iter_next_value (iter);
5666 
5667   g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
5668                         FALSE);
5669 
5670   if (value != NULL)
5671     {
5672       va_list ap;
5673 
5674       va_start (ap, format_string);
5675       g_variant_valist_get (&format_string, value, FALSE, &ap);
5676       va_end (ap);
5677 
5678       g_variant_unref (value);
5679     }
5680 
5681   return value != NULL;
5682 }
5683 
5684 /**
5685  * g_variant_iter_loop: (skip)
5686  * @iter: a #GVariantIter
5687  * @format_string: a GVariant format string
5688  * @...: the arguments to unpack the value into
5689  *
5690  * Gets the next item in the container and unpacks it into the variable
5691  * argument list according to @format_string, returning %TRUE.
5692  *
5693  * If no more items remain then %FALSE is returned.
5694  *
5695  * On the first call to this function, the pointers appearing on the
5696  * variable argument list are assumed to point at uninitialised memory.
5697  * On the second and later calls, it is assumed that the same pointers
5698  * will be given and that they will point to the memory as set by the
5699  * previous call to this function.  This allows the previous values to
5700  * be freed, as appropriate.
5701  *
5702  * This function is intended to be used with a while loop as
5703  * demonstrated in the following example.  This function can only be
5704  * used when iterating over an array.  It is only valid to call this
5705  * function with a string constant for the format string and the same
5706  * string constant must be used each time.  Mixing calls to this
5707  * function and g_variant_iter_next() or g_variant_iter_next_value() on
5708  * the same iterator causes undefined behavior.
5709  *
5710  * If you break out of a such a while loop using g_variant_iter_loop() then
5711  * you must free or unreference all the unpacked values as you would with
5712  * g_variant_get(). Failure to do so will cause a memory leak.
5713  *
5714  * Here is an example for memory management with g_variant_iter_loop():
5715  * |[<!-- language="C" -->
5716  *   // Iterates a dictionary of type 'a{sv}'
5717  *   void
5718  *   iterate_dictionary (GVariant *dictionary)
5719  *   {
5720  *     GVariantIter iter;
5721  *     GVariant *value;
5722  *     gchar *key;
5723  *
5724  *     g_variant_iter_init (&iter, dictionary);
5725  *     while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
5726  *       {
5727  *         g_print ("Item '%s' has type '%s'\n", key,
5728  *                  g_variant_get_type_string (value));
5729  *
5730  *         // no need to free 'key' and 'value' here
5731  *         // unless breaking out of this loop
5732  *       }
5733  *   }
5734  * ]|
5735  *
5736  * For most cases you should use g_variant_iter_next().
5737  *
5738  * This function is really only useful when unpacking into #GVariant or
5739  * #GVariantIter in order to allow you to skip the call to
5740  * g_variant_unref() or g_variant_iter_free().
5741  *
5742  * For example, if you are only looping over simple integer and string
5743  * types, g_variant_iter_next() is definitely preferred.  For string
5744  * types, use the '&' prefix to avoid allocating any memory at all (and
5745  * thereby avoiding the need to free anything as well).
5746  *
5747  * @format_string determines the C types that are used for unpacking
5748  * the values and also determines if the values are copied or borrowed.
5749  *
5750  * See the section on
5751  * [GVariant format strings][gvariant-format-strings-pointers].
5752  *
5753  * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
5754  *          value
5755  *
5756  * Since: 2.24
5757  **/
5758 gboolean
g_variant_iter_loop(GVariantIter * iter,const gchar * format_string,...)5759 g_variant_iter_loop (GVariantIter *iter,
5760                      const gchar  *format_string,
5761                      ...)
5762 {
5763   gboolean first_time = GVSI(iter)->loop_format == NULL;
5764   GVariant *value;
5765   va_list ap;
5766 
5767   g_return_val_if_fail (first_time ||
5768                         format_string == GVSI(iter)->loop_format,
5769                         FALSE);
5770 
5771   if (first_time)
5772     {
5773       TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
5774       GVSI(iter)->loop_format = format_string;
5775 
5776       if (strchr (format_string, '&'))
5777         g_variant_get_data (GVSI(iter)->value);
5778     }
5779 
5780   value = g_variant_iter_next_value (iter);
5781 
5782   g_return_val_if_fail (!first_time ||
5783                         valid_format_string (format_string, TRUE, value),
5784                         FALSE);
5785 
5786   va_start (ap, format_string);
5787   g_variant_valist_get (&format_string, value, !first_time, &ap);
5788   va_end (ap);
5789 
5790   if (value != NULL)
5791     g_variant_unref (value);
5792 
5793   return value != NULL;
5794 }
5795 
5796 /* Serialised data {{{1 */
5797 static GVariant *
g_variant_deep_copy(GVariant * value,gboolean byteswap)5798 g_variant_deep_copy (GVariant *value,
5799                      gboolean  byteswap)
5800 {
5801   switch (g_variant_classify (value))
5802     {
5803     case G_VARIANT_CLASS_MAYBE:
5804     case G_VARIANT_CLASS_TUPLE:
5805     case G_VARIANT_CLASS_DICT_ENTRY:
5806     case G_VARIANT_CLASS_VARIANT:
5807       {
5808         GVariantBuilder builder;
5809         gsize i, n_children;
5810 
5811         g_variant_builder_init (&builder, g_variant_get_type (value));
5812 
5813         for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
5814           {
5815             GVariant *child = g_variant_get_child_value (value, i);
5816             g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
5817             g_variant_unref (child);
5818           }
5819 
5820         return g_variant_builder_end (&builder);
5821       }
5822 
5823     case G_VARIANT_CLASS_ARRAY:
5824       {
5825         GVariantBuilder builder;
5826         gsize i, n_children;
5827         GVariant *first_invalid_child_deep_copy = NULL;
5828 
5829         /* Arrays are in theory treated the same as maybes, tuples, dict entries
5830          * and variants, and could be another case in the above block of code.
5831          *
5832          * However, they have the property that when dealing with non-normal
5833          * data (which is the only time g_variant_deep_copy() is currently
5834          * called) in a variable-sized array, the code above can easily end up
5835          * creating many default child values in order to return an array which
5836          * is of the right length and type, but without containing non-normal
5837          * data. This can happen if the offset table for the array is malformed.
5838          *
5839          * In this case, the code above would end up allocating the same default
5840          * value for each one of the child indexes beyond the first malformed
5841          * entry in the offset table. This can end up being a lot of identical
5842          * allocations of default values, particularly if the non-normal array
5843          * is crafted maliciously.
5844          *
5845          * Avoid that problem by returning a new reference to the same default
5846          * value for every child after the first invalid one. This results in
5847          * returning an equivalent array, in normal form and trusted — but with
5848          * significantly fewer memory allocations.
5849          *
5850          * See https://gitlab.gnome.org/GNOME/glib/-/issues/2540 */
5851 
5852         g_variant_builder_init (&builder, g_variant_get_type (value));
5853 
5854         for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
5855           {
5856             /* Try maybe_get_child_value() first; if it returns NULL, this child
5857              * is non-normal. get_child_value() would have constructed and
5858              * returned a default value in that case. */
5859             GVariant *child = g_variant_maybe_get_child_value (value, i);
5860 
5861             if (child != NULL)
5862               {
5863                 /* Non-normal children may not always be contiguous, as they may
5864                  * be non-normal for reasons other than invalid offset table
5865                  * entries. As they are all the same type, they will all have
5866                  * the same default value though, so keep that around. */
5867                 g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
5868               }
5869             else if (child == NULL && first_invalid_child_deep_copy != NULL)
5870               {
5871                 g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
5872               }
5873             else if (child == NULL)
5874               {
5875                 child = g_variant_get_child_value (value, i);
5876                 first_invalid_child_deep_copy = g_variant_ref_sink (g_variant_deep_copy (child, byteswap));
5877                 g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
5878               }
5879 
5880             g_clear_pointer (&child, g_variant_unref);
5881           }
5882 
5883         g_clear_pointer (&first_invalid_child_deep_copy, g_variant_unref);
5884 
5885         return g_variant_builder_end (&builder);
5886       }
5887 
5888     case G_VARIANT_CLASS_BOOLEAN:
5889       return g_variant_new_boolean (g_variant_get_boolean (value));
5890 
5891     case G_VARIANT_CLASS_BYTE:
5892       return g_variant_new_byte (g_variant_get_byte (value));
5893 
5894     case G_VARIANT_CLASS_INT16:
5895       if (byteswap)
5896         return g_variant_new_int16 (GUINT16_SWAP_LE_BE (g_variant_get_int16 (value)));
5897       else
5898         return g_variant_new_int16 (g_variant_get_int16 (value));
5899 
5900     case G_VARIANT_CLASS_UINT16:
5901       if (byteswap)
5902         return g_variant_new_uint16 (GUINT16_SWAP_LE_BE (g_variant_get_uint16 (value)));
5903       else
5904         return g_variant_new_uint16 (g_variant_get_uint16 (value));
5905 
5906     case G_VARIANT_CLASS_INT32:
5907       if (byteswap)
5908         return g_variant_new_int32 (GUINT32_SWAP_LE_BE (g_variant_get_int32 (value)));
5909       else
5910         return g_variant_new_int32 (g_variant_get_int32 (value));
5911 
5912     case G_VARIANT_CLASS_UINT32:
5913       if (byteswap)
5914         return g_variant_new_uint32 (GUINT32_SWAP_LE_BE (g_variant_get_uint32 (value)));
5915       else
5916         return g_variant_new_uint32 (g_variant_get_uint32 (value));
5917 
5918     case G_VARIANT_CLASS_INT64:
5919       if (byteswap)
5920         return g_variant_new_int64 (GUINT64_SWAP_LE_BE (g_variant_get_int64 (value)));
5921       else
5922         return g_variant_new_int64 (g_variant_get_int64 (value));
5923 
5924     case G_VARIANT_CLASS_UINT64:
5925       if (byteswap)
5926         return g_variant_new_uint64 (GUINT64_SWAP_LE_BE (g_variant_get_uint64 (value)));
5927       else
5928         return g_variant_new_uint64 (g_variant_get_uint64 (value));
5929 
5930     case G_VARIANT_CLASS_HANDLE:
5931       if (byteswap)
5932         return g_variant_new_handle (GUINT32_SWAP_LE_BE (g_variant_get_handle (value)));
5933       else
5934         return g_variant_new_handle (g_variant_get_handle (value));
5935 
5936     case G_VARIANT_CLASS_DOUBLE:
5937       if (byteswap)
5938         {
5939           /* We have to convert the double to a uint64 here using a union,
5940            * because a cast will round it numerically. */
5941           union
5942             {
5943               guint64 u64;
5944               gdouble dbl;
5945             } u1, u2;
5946           u1.dbl = g_variant_get_double (value);
5947           u2.u64 = GUINT64_SWAP_LE_BE (u1.u64);
5948           return g_variant_new_double (u2.dbl);
5949         }
5950       else
5951         return g_variant_new_double (g_variant_get_double (value));
5952 
5953     case G_VARIANT_CLASS_STRING:
5954       return g_variant_new_string (g_variant_get_string (value, NULL));
5955 
5956     case G_VARIANT_CLASS_OBJECT_PATH:
5957       return g_variant_new_object_path (g_variant_get_string (value, NULL));
5958 
5959     case G_VARIANT_CLASS_SIGNATURE:
5960       return g_variant_new_signature (g_variant_get_string (value, NULL));
5961     }
5962 
5963   g_assert_not_reached ();
5964 }
5965 
5966 /**
5967  * g_variant_get_normal_form:
5968  * @value: a #GVariant
5969  *
5970  * Gets a #GVariant instance that has the same value as @value and is
5971  * trusted to be in normal form.
5972  *
5973  * If @value is already trusted to be in normal form then a new
5974  * reference to @value is returned.
5975  *
5976  * If @value is not already trusted, then it is scanned to check if it
5977  * is in normal form.  If it is found to be in normal form then it is
5978  * marked as trusted and a new reference to it is returned.
5979  *
5980  * If @value is found not to be in normal form then a new trusted
5981  * #GVariant is created with the same value as @value. The non-normal parts of
5982  * @value will be replaced with default values which are guaranteed to be in
5983  * normal form.
5984  *
5985  * It makes sense to call this function if you've received #GVariant
5986  * data from untrusted sources and you want to ensure your serialised
5987  * output is definitely in normal form.
5988  *
5989  * If @value is already in normal form, a new reference will be returned
5990  * (which will be floating if @value is floating). If it is not in normal form,
5991  * the newly created #GVariant will be returned with a single non-floating
5992  * reference. Typically, g_variant_take_ref() should be called on the return
5993  * value from this function to guarantee ownership of a single non-floating
5994  * reference to it.
5995  *
5996  * Returns: (transfer full): a trusted #GVariant
5997  *
5998  * Since: 2.24
5999  **/
6000 GVariant *
g_variant_get_normal_form(GVariant * value)6001 g_variant_get_normal_form (GVariant *value)
6002 {
6003   GVariant *trusted;
6004 
6005   if (g_variant_is_normal_form (value))
6006     return g_variant_ref (value);
6007 
6008   trusted = g_variant_deep_copy (value, FALSE);
6009   g_assert (g_variant_is_trusted (trusted));
6010 
6011   return g_variant_ref_sink (trusted);
6012 }
6013 
6014 /**
6015  * g_variant_byteswap:
6016  * @value: a #GVariant
6017  *
6018  * Performs a byteswapping operation on the contents of @value.  The
6019  * result is that all multi-byte numeric data contained in @value is
6020  * byteswapped.  That includes 16, 32, and 64bit signed and unsigned
6021  * integers as well as file handles and double precision floating point
6022  * values.
6023  *
6024  * This function is an identity mapping on any value that does not
6025  * contain multi-byte numeric data.  That include strings, booleans,
6026  * bytes and containers containing only these things (recursively).
6027  *
6028  * While this function can safely handle untrusted, non-normal data, it is
6029  * recommended to check whether the input is in normal form beforehand, using
6030  * g_variant_is_normal_form(), and to reject non-normal inputs if your
6031  * application can be strict about what inputs it rejects.
6032  *
6033  * The returned value is always in normal form and is marked as trusted.
6034  *
6035  * Returns: (transfer full): the byteswapped form of @value
6036  *
6037  * Since: 2.24
6038  **/
6039 GVariant *
g_variant_byteswap(GVariant * value)6040 g_variant_byteswap (GVariant *value)
6041 {
6042   GVariantTypeInfo *type_info;
6043   guint alignment;
6044   GVariant *new;
6045 
6046   type_info = g_variant_get_type_info (value);
6047 
6048   g_variant_type_info_query (type_info, &alignment, NULL);
6049 
6050   if (alignment && g_variant_is_normal_form (value))
6051     {
6052       /* (potentially) contains multi-byte numeric data, but is also already in
6053        * normal form so we can use a faster byteswapping codepath on the
6054        * serialised data */
6055       GVariantSerialised serialised = { 0, };
6056       GBytes *bytes;
6057 
6058       serialised.type_info = g_variant_get_type_info (value);
6059       serialised.size = g_variant_get_size (value);
6060       serialised.data = g_malloc (serialised.size);
6061       serialised.depth = g_variant_get_depth (value);
6062       serialised.ordered_offsets_up_to = G_MAXSIZE;  /* operating on the normal form */
6063       serialised.checked_offsets_up_to = G_MAXSIZE;
6064       g_variant_store (value, serialised.data);
6065 
6066       g_variant_serialised_byteswap (serialised);
6067 
6068       bytes = g_bytes_new_take (serialised.data, serialised.size);
6069       new = g_variant_ref_sink (g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE));
6070       g_bytes_unref (bytes);
6071     }
6072   else if (alignment)
6073     /* (potentially) contains multi-byte numeric data */
6074     new = g_variant_ref_sink (g_variant_deep_copy (value, TRUE));
6075   else
6076     /* contains no multi-byte data */
6077     new = g_variant_get_normal_form (value);
6078 
6079   g_assert (g_variant_is_trusted (new));
6080 
6081   return g_steal_pointer (&new);
6082 }
6083 
6084 /**
6085  * g_variant_new_from_data:
6086  * @type: a definite #GVariantType
6087  * @data: (array length=size) (element-type guint8): the serialised data
6088  * @size: the size of @data
6089  * @trusted: %TRUE if @data is definitely in normal form
6090  * @notify: (scope async): function to call when @data is no longer needed
6091  * @user_data: data for @notify
6092  *
6093  * Creates a new #GVariant instance from serialised data.
6094  *
6095  * @type is the type of #GVariant instance that will be constructed.
6096  * The interpretation of @data depends on knowing the type.
6097  *
6098  * @data is not modified by this function and must remain valid with an
6099  * unchanging value until such a time as @notify is called with
6100  * @user_data.  If the contents of @data change before that time then
6101  * the result is undefined.
6102  *
6103  * If @data is trusted to be serialised data in normal form then
6104  * @trusted should be %TRUE.  This applies to serialised data created
6105  * within this process or read from a trusted location on the disk (such
6106  * as a file installed in /usr/lib alongside your application).  You
6107  * should set trusted to %FALSE if @data is read from the network, a
6108  * file in the user's home directory, etc.
6109  *
6110  * If @data was not stored in this machine's native endianness, any multi-byte
6111  * numeric values in the returned variant will also be in non-native
6112  * endianness. g_variant_byteswap() can be used to recover the original values.
6113  *
6114  * @notify will be called with @user_data when @data is no longer
6115  * needed.  The exact time of this call is unspecified and might even be
6116  * before this function returns.
6117  *
6118  * Note: @data must be backed by memory that is aligned appropriately for the
6119  * @type being loaded. Otherwise this function will internally create a copy of
6120  * the memory (since GLib 2.60) or (in older versions) fail and exit the
6121  * process.
6122  *
6123  * Returns: (transfer none): a new floating #GVariant of type @type
6124  *
6125  * Since: 2.24
6126  **/
6127 GVariant *
g_variant_new_from_data(const GVariantType * type,gconstpointer data,gsize size,gboolean trusted,GDestroyNotify notify,gpointer user_data)6128 g_variant_new_from_data (const GVariantType *type,
6129                          gconstpointer       data,
6130                          gsize               size,
6131                          gboolean            trusted,
6132                          GDestroyNotify      notify,
6133                          gpointer            user_data)
6134 {
6135   GVariant *value;
6136   GBytes *bytes;
6137 
6138   g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
6139   g_return_val_if_fail (data != NULL || size == 0, NULL);
6140 
6141   if (notify)
6142     bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
6143   else
6144     bytes = g_bytes_new_static (data, size);
6145 
6146   value = g_variant_new_from_bytes (type, bytes, trusted);
6147   g_bytes_unref (bytes);
6148 
6149   return value;
6150 }
6151 
6152 /* Epilogue {{{1 */
6153 /* vim:set foldmethod=marker: */
6154