1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
4 * using the CPU's debug registers. Derived from
5 * "arch/x86/kernel/hw_breakpoint.c"
6 *
7 * Copyright 2010 IBM Corporation
8 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
9 */
10
11 #include <linux/hw_breakpoint.h>
12 #include <linux/notifier.h>
13 #include <linux/kprobes.h>
14 #include <linux/percpu.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/debugfs.h>
19 #include <linux/init.h>
20
21 #include <asm/hw_breakpoint.h>
22 #include <asm/processor.h>
23 #include <asm/sstep.h>
24 #include <asm/debug.h>
25 #include <asm/debugfs.h>
26 #include <asm/hvcall.h>
27 #include <asm/inst.h>
28 #include <linux/uaccess.h>
29
30 /*
31 * Stores the breakpoints currently in use on each breakpoint address
32 * register for every cpu
33 */
34 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
35
36 /*
37 * Returns total number of data or instruction breakpoints available.
38 */
hw_breakpoint_slots(int type)39 int hw_breakpoint_slots(int type)
40 {
41 if (type == TYPE_DATA)
42 return nr_wp_slots();
43 return 0; /* no instruction breakpoints available */
44 }
45
single_step_pending(void)46 static bool single_step_pending(void)
47 {
48 int i;
49
50 for (i = 0; i < nr_wp_slots(); i++) {
51 if (current->thread.last_hit_ubp[i])
52 return true;
53 }
54 return false;
55 }
56
57 /*
58 * Install a perf counter breakpoint.
59 *
60 * We seek a free debug address register and use it for this
61 * breakpoint.
62 *
63 * Atomic: we hold the counter->ctx->lock and we only handle variables
64 * and registers local to this cpu.
65 */
arch_install_hw_breakpoint(struct perf_event * bp)66 int arch_install_hw_breakpoint(struct perf_event *bp)
67 {
68 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
69 struct perf_event **slot;
70 int i;
71
72 for (i = 0; i < nr_wp_slots(); i++) {
73 slot = this_cpu_ptr(&bp_per_reg[i]);
74 if (!*slot) {
75 *slot = bp;
76 break;
77 }
78 }
79
80 if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
81 return -EBUSY;
82
83 /*
84 * Do not install DABR values if the instruction must be single-stepped.
85 * If so, DABR will be populated in single_step_dabr_instruction().
86 */
87 if (!single_step_pending())
88 __set_breakpoint(i, info);
89
90 return 0;
91 }
92
93 /*
94 * Uninstall the breakpoint contained in the given counter.
95 *
96 * First we search the debug address register it uses and then we disable
97 * it.
98 *
99 * Atomic: we hold the counter->ctx->lock and we only handle variables
100 * and registers local to this cpu.
101 */
arch_uninstall_hw_breakpoint(struct perf_event * bp)102 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
103 {
104 struct arch_hw_breakpoint null_brk = {0};
105 struct perf_event **slot;
106 int i;
107
108 for (i = 0; i < nr_wp_slots(); i++) {
109 slot = this_cpu_ptr(&bp_per_reg[i]);
110 if (*slot == bp) {
111 *slot = NULL;
112 break;
113 }
114 }
115
116 if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
117 return;
118
119 __set_breakpoint(i, &null_brk);
120 }
121
is_ptrace_bp(struct perf_event * bp)122 static bool is_ptrace_bp(struct perf_event *bp)
123 {
124 return bp->overflow_handler == ptrace_triggered;
125 }
126
127 struct breakpoint {
128 struct list_head list;
129 struct perf_event *bp;
130 bool ptrace_bp;
131 };
132
133 static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
134 static LIST_HEAD(task_bps);
135
alloc_breakpoint(struct perf_event * bp)136 static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
137 {
138 struct breakpoint *tmp;
139
140 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
141 if (!tmp)
142 return ERR_PTR(-ENOMEM);
143 tmp->bp = bp;
144 tmp->ptrace_bp = is_ptrace_bp(bp);
145 return tmp;
146 }
147
bp_addr_range_overlap(struct perf_event * bp1,struct perf_event * bp2)148 static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
149 {
150 __u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
151
152 bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
153 bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
154 bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
155 bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
156
157 return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
158 }
159
alternate_infra_bp(struct breakpoint * b,struct perf_event * bp)160 static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
161 {
162 return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
163 }
164
can_co_exist(struct breakpoint * b,struct perf_event * bp)165 static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
166 {
167 return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
168 }
169
task_bps_add(struct perf_event * bp)170 static int task_bps_add(struct perf_event *bp)
171 {
172 struct breakpoint *tmp;
173
174 tmp = alloc_breakpoint(bp);
175 if (IS_ERR(tmp))
176 return PTR_ERR(tmp);
177
178 list_add(&tmp->list, &task_bps);
179 return 0;
180 }
181
task_bps_remove(struct perf_event * bp)182 static void task_bps_remove(struct perf_event *bp)
183 {
184 struct list_head *pos, *q;
185
186 list_for_each_safe(pos, q, &task_bps) {
187 struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
188
189 if (tmp->bp == bp) {
190 list_del(&tmp->list);
191 kfree(tmp);
192 break;
193 }
194 }
195 }
196
197 /*
198 * If any task has breakpoint from alternate infrastructure,
199 * return true. Otherwise return false.
200 */
all_task_bps_check(struct perf_event * bp)201 static bool all_task_bps_check(struct perf_event *bp)
202 {
203 struct breakpoint *tmp;
204
205 list_for_each_entry(tmp, &task_bps, list) {
206 if (!can_co_exist(tmp, bp))
207 return true;
208 }
209 return false;
210 }
211
212 /*
213 * If same task has breakpoint from alternate infrastructure,
214 * return true. Otherwise return false.
215 */
same_task_bps_check(struct perf_event * bp)216 static bool same_task_bps_check(struct perf_event *bp)
217 {
218 struct breakpoint *tmp;
219
220 list_for_each_entry(tmp, &task_bps, list) {
221 if (tmp->bp->hw.target == bp->hw.target &&
222 !can_co_exist(tmp, bp))
223 return true;
224 }
225 return false;
226 }
227
cpu_bps_add(struct perf_event * bp)228 static int cpu_bps_add(struct perf_event *bp)
229 {
230 struct breakpoint **cpu_bp;
231 struct breakpoint *tmp;
232 int i = 0;
233
234 tmp = alloc_breakpoint(bp);
235 if (IS_ERR(tmp))
236 return PTR_ERR(tmp);
237
238 cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
239 for (i = 0; i < nr_wp_slots(); i++) {
240 if (!cpu_bp[i]) {
241 cpu_bp[i] = tmp;
242 break;
243 }
244 }
245 return 0;
246 }
247
cpu_bps_remove(struct perf_event * bp)248 static void cpu_bps_remove(struct perf_event *bp)
249 {
250 struct breakpoint **cpu_bp;
251 int i = 0;
252
253 cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
254 for (i = 0; i < nr_wp_slots(); i++) {
255 if (!cpu_bp[i])
256 continue;
257
258 if (cpu_bp[i]->bp == bp) {
259 kfree(cpu_bp[i]);
260 cpu_bp[i] = NULL;
261 break;
262 }
263 }
264 }
265
cpu_bps_check(int cpu,struct perf_event * bp)266 static bool cpu_bps_check(int cpu, struct perf_event *bp)
267 {
268 struct breakpoint **cpu_bp;
269 int i;
270
271 cpu_bp = per_cpu_ptr(cpu_bps, cpu);
272 for (i = 0; i < nr_wp_slots(); i++) {
273 if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp))
274 return true;
275 }
276 return false;
277 }
278
all_cpu_bps_check(struct perf_event * bp)279 static bool all_cpu_bps_check(struct perf_event *bp)
280 {
281 int cpu;
282
283 for_each_online_cpu(cpu) {
284 if (cpu_bps_check(cpu, bp))
285 return true;
286 }
287 return false;
288 }
289
290 /*
291 * We don't use any locks to serialize accesses to cpu_bps or task_bps
292 * because are already inside nr_bp_mutex.
293 */
arch_reserve_bp_slot(struct perf_event * bp)294 int arch_reserve_bp_slot(struct perf_event *bp)
295 {
296 int ret;
297
298 /* ptrace breakpoint */
299 if (is_ptrace_bp(bp)) {
300 if (all_cpu_bps_check(bp))
301 return -ENOSPC;
302
303 if (same_task_bps_check(bp))
304 return -ENOSPC;
305
306 return task_bps_add(bp);
307 }
308
309 /* perf breakpoint */
310 if (is_kernel_addr(bp->attr.bp_addr))
311 return 0;
312
313 if (bp->hw.target && bp->cpu == -1) {
314 if (same_task_bps_check(bp))
315 return -ENOSPC;
316
317 return task_bps_add(bp);
318 } else if (!bp->hw.target && bp->cpu != -1) {
319 if (all_task_bps_check(bp))
320 return -ENOSPC;
321
322 return cpu_bps_add(bp);
323 }
324
325 if (same_task_bps_check(bp))
326 return -ENOSPC;
327
328 ret = cpu_bps_add(bp);
329 if (ret)
330 return ret;
331 ret = task_bps_add(bp);
332 if (ret)
333 cpu_bps_remove(bp);
334
335 return ret;
336 }
337
arch_release_bp_slot(struct perf_event * bp)338 void arch_release_bp_slot(struct perf_event *bp)
339 {
340 if (!is_kernel_addr(bp->attr.bp_addr)) {
341 if (bp->hw.target)
342 task_bps_remove(bp);
343 if (bp->cpu != -1)
344 cpu_bps_remove(bp);
345 }
346 }
347
348 /*
349 * Perform cleanup of arch-specific counters during unregistration
350 * of the perf-event
351 */
arch_unregister_hw_breakpoint(struct perf_event * bp)352 void arch_unregister_hw_breakpoint(struct perf_event *bp)
353 {
354 /*
355 * If the breakpoint is unregistered between a hw_breakpoint_handler()
356 * and the single_step_dabr_instruction(), then cleanup the breakpoint
357 * restoration variables to prevent dangling pointers.
358 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
359 */
360 if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
361 int i;
362
363 for (i = 0; i < nr_wp_slots(); i++) {
364 if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
365 bp->ctx->task->thread.last_hit_ubp[i] = NULL;
366 }
367 }
368 }
369
370 /*
371 * Check for virtual address in kernel space.
372 */
arch_check_bp_in_kernelspace(struct arch_hw_breakpoint * hw)373 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
374 {
375 return is_kernel_addr(hw->address);
376 }
377
arch_bp_generic_fields(int type,int * gen_bp_type)378 int arch_bp_generic_fields(int type, int *gen_bp_type)
379 {
380 *gen_bp_type = 0;
381 if (type & HW_BRK_TYPE_READ)
382 *gen_bp_type |= HW_BREAKPOINT_R;
383 if (type & HW_BRK_TYPE_WRITE)
384 *gen_bp_type |= HW_BREAKPOINT_W;
385 if (*gen_bp_type == 0)
386 return -EINVAL;
387 return 0;
388 }
389
390 /*
391 * Watchpoint match range is always doubleword(8 bytes) aligned on
392 * powerpc. If the given range is crossing doubleword boundary, we
393 * need to increase the length such that next doubleword also get
394 * covered. Ex,
395 *
396 * address len = 6 bytes
397 * |=========.
398 * |------------v--|------v--------|
399 * | | | | | | | | | | | | | | | | |
400 * |---------------|---------------|
401 * <---8 bytes--->
402 *
403 * In this case, we should configure hw as:
404 * start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
405 * len = 16 bytes
406 *
407 * @start_addr is inclusive but @end_addr is exclusive.
408 */
hw_breakpoint_validate_len(struct arch_hw_breakpoint * hw)409 static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
410 {
411 u16 max_len = DABR_MAX_LEN;
412 u16 hw_len;
413 unsigned long start_addr, end_addr;
414
415 start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
416 end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
417 hw_len = end_addr - start_addr;
418
419 if (dawr_enabled()) {
420 max_len = DAWR_MAX_LEN;
421 /* DAWR region can't cross 512 bytes boundary on p10 predecessors */
422 if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
423 (ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
424 return -EINVAL;
425 } else if (IS_ENABLED(CONFIG_PPC_8xx)) {
426 /* 8xx can setup a range without limitation */
427 max_len = U16_MAX;
428 }
429
430 if (hw_len > max_len)
431 return -EINVAL;
432
433 hw->hw_len = hw_len;
434 return 0;
435 }
436
437 /*
438 * Validate the arch-specific HW Breakpoint register settings
439 */
hw_breakpoint_arch_parse(struct perf_event * bp,const struct perf_event_attr * attr,struct arch_hw_breakpoint * hw)440 int hw_breakpoint_arch_parse(struct perf_event *bp,
441 const struct perf_event_attr *attr,
442 struct arch_hw_breakpoint *hw)
443 {
444 int ret = -EINVAL;
445
446 if (!bp || !attr->bp_len)
447 return ret;
448
449 hw->type = HW_BRK_TYPE_TRANSLATE;
450 if (attr->bp_type & HW_BREAKPOINT_R)
451 hw->type |= HW_BRK_TYPE_READ;
452 if (attr->bp_type & HW_BREAKPOINT_W)
453 hw->type |= HW_BRK_TYPE_WRITE;
454 if (hw->type == HW_BRK_TYPE_TRANSLATE)
455 /* must set alteast read or write */
456 return ret;
457 if (!attr->exclude_user)
458 hw->type |= HW_BRK_TYPE_USER;
459 if (!attr->exclude_kernel)
460 hw->type |= HW_BRK_TYPE_KERNEL;
461 if (!attr->exclude_hv)
462 hw->type |= HW_BRK_TYPE_HYP;
463 hw->address = attr->bp_addr;
464 hw->len = attr->bp_len;
465
466 if (!ppc_breakpoint_available())
467 return -ENODEV;
468
469 return hw_breakpoint_validate_len(hw);
470 }
471
472 /*
473 * Restores the breakpoint on the debug registers.
474 * Invoke this function if it is known that the execution context is
475 * about to change to cause loss of MSR_SE settings.
476 */
thread_change_pc(struct task_struct * tsk,struct pt_regs * regs)477 void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
478 {
479 struct arch_hw_breakpoint *info;
480 int i;
481
482 for (i = 0; i < nr_wp_slots(); i++) {
483 if (unlikely(tsk->thread.last_hit_ubp[i]))
484 goto reset;
485 }
486 return;
487
488 reset:
489 regs->msr &= ~MSR_SE;
490 for (i = 0; i < nr_wp_slots(); i++) {
491 info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
492 __set_breakpoint(i, info);
493 tsk->thread.last_hit_ubp[i] = NULL;
494 }
495 }
496
is_larx_stcx_instr(int type)497 static bool is_larx_stcx_instr(int type)
498 {
499 return type == LARX || type == STCX;
500 }
501
502 /*
503 * We've failed in reliably handling the hw-breakpoint. Unregister
504 * it and throw a warning message to let the user know about it.
505 */
handler_error(struct perf_event * bp,struct arch_hw_breakpoint * info)506 static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
507 {
508 WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
509 info->address);
510 perf_event_disable_inatomic(bp);
511 }
512
larx_stcx_err(struct perf_event * bp,struct arch_hw_breakpoint * info)513 static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
514 {
515 printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
516 info->address);
517 perf_event_disable_inatomic(bp);
518 }
519
stepping_handler(struct pt_regs * regs,struct perf_event ** bp,struct arch_hw_breakpoint ** info,int * hit,struct ppc_inst instr)520 static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
521 struct arch_hw_breakpoint **info, int *hit,
522 struct ppc_inst instr)
523 {
524 int i;
525 int stepped;
526
527 /* Do not emulate user-space instructions, instead single-step them */
528 if (user_mode(regs)) {
529 for (i = 0; i < nr_wp_slots(); i++) {
530 if (!hit[i])
531 continue;
532 current->thread.last_hit_ubp[i] = bp[i];
533 info[i] = NULL;
534 }
535 regs->msr |= MSR_SE;
536 return false;
537 }
538
539 stepped = emulate_step(regs, instr);
540 if (!stepped) {
541 for (i = 0; i < nr_wp_slots(); i++) {
542 if (!hit[i])
543 continue;
544 handler_error(bp[i], info[i]);
545 info[i] = NULL;
546 }
547 return false;
548 }
549 return true;
550 }
551
hw_breakpoint_handler(struct die_args * args)552 int hw_breakpoint_handler(struct die_args *args)
553 {
554 bool err = false;
555 int rc = NOTIFY_STOP;
556 struct perf_event *bp[HBP_NUM_MAX] = { NULL };
557 struct pt_regs *regs = args->regs;
558 struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
559 int i;
560 int hit[HBP_NUM_MAX] = {0};
561 int nr_hit = 0;
562 bool ptrace_bp = false;
563 struct ppc_inst instr = ppc_inst(0);
564 int type = 0;
565 int size = 0;
566 unsigned long ea;
567
568 /* Disable breakpoints during exception handling */
569 hw_breakpoint_disable();
570
571 /*
572 * The counter may be concurrently released but that can only
573 * occur from a call_rcu() path. We can then safely fetch
574 * the breakpoint, use its callback, touch its counter
575 * while we are in an rcu_read_lock() path.
576 */
577 rcu_read_lock();
578
579 if (!IS_ENABLED(CONFIG_PPC_8xx))
580 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
581
582 for (i = 0; i < nr_wp_slots(); i++) {
583 bp[i] = __this_cpu_read(bp_per_reg[i]);
584 if (!bp[i])
585 continue;
586
587 info[i] = counter_arch_bp(bp[i]);
588 info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
589
590 if (wp_check_constraints(regs, instr, ea, type, size, info[i])) {
591 if (!IS_ENABLED(CONFIG_PPC_8xx) &&
592 ppc_inst_equal(instr, ppc_inst(0))) {
593 handler_error(bp[i], info[i]);
594 info[i] = NULL;
595 err = 1;
596 continue;
597 }
598
599 if (is_ptrace_bp(bp[i]))
600 ptrace_bp = true;
601 hit[i] = 1;
602 nr_hit++;
603 }
604 }
605
606 if (err)
607 goto reset;
608
609 if (!nr_hit) {
610 rc = NOTIFY_DONE;
611 goto out;
612 }
613
614 /*
615 * Return early after invoking user-callback function without restoring
616 * DABR if the breakpoint is from ptrace which always operates in
617 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
618 * generated in do_dabr().
619 */
620 if (ptrace_bp) {
621 for (i = 0; i < nr_wp_slots(); i++) {
622 if (!hit[i])
623 continue;
624 perf_bp_event(bp[i], regs);
625 info[i] = NULL;
626 }
627 rc = NOTIFY_DONE;
628 goto reset;
629 }
630
631 if (!IS_ENABLED(CONFIG_PPC_8xx)) {
632 if (is_larx_stcx_instr(type)) {
633 for (i = 0; i < nr_wp_slots(); i++) {
634 if (!hit[i])
635 continue;
636 larx_stcx_err(bp[i], info[i]);
637 info[i] = NULL;
638 }
639 goto reset;
640 }
641
642 if (!stepping_handler(regs, bp, info, hit, instr))
643 goto reset;
644 }
645
646 /*
647 * As a policy, the callback is invoked in a 'trigger-after-execute'
648 * fashion
649 */
650 for (i = 0; i < nr_wp_slots(); i++) {
651 if (!hit[i])
652 continue;
653 if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
654 perf_bp_event(bp[i], regs);
655 }
656
657 reset:
658 for (i = 0; i < nr_wp_slots(); i++) {
659 if (!info[i])
660 continue;
661 __set_breakpoint(i, info[i]);
662 }
663
664 out:
665 rcu_read_unlock();
666 return rc;
667 }
668 NOKPROBE_SYMBOL(hw_breakpoint_handler);
669
670 /*
671 * Handle single-step exceptions following a DABR hit.
672 */
single_step_dabr_instruction(struct die_args * args)673 static int single_step_dabr_instruction(struct die_args *args)
674 {
675 struct pt_regs *regs = args->regs;
676 struct perf_event *bp = NULL;
677 struct arch_hw_breakpoint *info;
678 int i;
679 bool found = false;
680
681 /*
682 * Check if we are single-stepping as a result of a
683 * previous HW Breakpoint exception
684 */
685 for (i = 0; i < nr_wp_slots(); i++) {
686 bp = current->thread.last_hit_ubp[i];
687
688 if (!bp)
689 continue;
690
691 found = true;
692 info = counter_arch_bp(bp);
693
694 /*
695 * We shall invoke the user-defined callback function in the
696 * single stepping handler to confirm to 'trigger-after-execute'
697 * semantics
698 */
699 if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
700 perf_bp_event(bp, regs);
701 current->thread.last_hit_ubp[i] = NULL;
702 }
703
704 if (!found)
705 return NOTIFY_DONE;
706
707 for (i = 0; i < nr_wp_slots(); i++) {
708 bp = __this_cpu_read(bp_per_reg[i]);
709 if (!bp)
710 continue;
711
712 info = counter_arch_bp(bp);
713 __set_breakpoint(i, info);
714 }
715
716 /*
717 * If the process was being single-stepped by ptrace, let the
718 * other single-step actions occur (e.g. generate SIGTRAP).
719 */
720 if (test_thread_flag(TIF_SINGLESTEP))
721 return NOTIFY_DONE;
722
723 return NOTIFY_STOP;
724 }
725 NOKPROBE_SYMBOL(single_step_dabr_instruction);
726
727 /*
728 * Handle debug exception notifications.
729 */
hw_breakpoint_exceptions_notify(struct notifier_block * unused,unsigned long val,void * data)730 int hw_breakpoint_exceptions_notify(
731 struct notifier_block *unused, unsigned long val, void *data)
732 {
733 int ret = NOTIFY_DONE;
734
735 switch (val) {
736 case DIE_DABR_MATCH:
737 ret = hw_breakpoint_handler(data);
738 break;
739 case DIE_SSTEP:
740 ret = single_step_dabr_instruction(data);
741 break;
742 }
743
744 return ret;
745 }
746 NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
747
748 /*
749 * Release the user breakpoints used by ptrace
750 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)751 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
752 {
753 int i;
754 struct thread_struct *t = &tsk->thread;
755
756 for (i = 0; i < nr_wp_slots(); i++) {
757 unregister_hw_breakpoint(t->ptrace_bps[i]);
758 t->ptrace_bps[i] = NULL;
759 }
760 }
761
hw_breakpoint_pmu_read(struct perf_event * bp)762 void hw_breakpoint_pmu_read(struct perf_event *bp)
763 {
764 /* TODO */
765 }
766
ptrace_triggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)767 void ptrace_triggered(struct perf_event *bp,
768 struct perf_sample_data *data, struct pt_regs *regs)
769 {
770 struct perf_event_attr attr;
771
772 /*
773 * Disable the breakpoint request here since ptrace has defined a
774 * one-shot behaviour for breakpoint exceptions in PPC64.
775 * The SIGTRAP signal is generated automatically for us in do_dabr().
776 * We don't have to do anything about that here
777 */
778 attr = bp->attr;
779 attr.disabled = true;
780 modify_user_hw_breakpoint(bp, &attr);
781 }
782