1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Basic general purpose allocator for managing special purpose
4 * memory, for example, memory that is not managed by the regular
5 * kmalloc/kfree interface. Uses for this includes on-device special
6 * memory, uncached memory etc.
7 *
8 * It is safe to use the allocator in NMI handlers and other special
9 * unblockable contexts that could otherwise deadlock on locks. This
10 * is implemented by using atomic operations and retries on any
11 * conflicts. The disadvantage is that there may be livelocks in
12 * extreme cases. For better scalability, one allocator can be used
13 * for each CPU.
14 *
15 * The lockless operation only works if there is enough memory
16 * available. If new memory is added to the pool a lock has to be
17 * still taken. So any user relying on locklessness has to ensure
18 * that sufficient memory is preallocated.
19 *
20 * The basic atomic operation of this allocator is cmpxchg on long.
21 * On architectures that don't have NMI-safe cmpxchg implementation,
22 * the allocator can NOT be used in NMI handler. So code uses the
23 * allocator in NMI handler should depend on
24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
25 *
26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
27 */
28
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
37
chunk_size(const struct gen_pool_chunk * chunk)38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
39 {
40 return chunk->end_addr - chunk->start_addr + 1;
41 }
42
set_bits_ll(unsigned long * addr,unsigned long mask_to_set)43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
44 {
45 unsigned long val, nval;
46
47 nval = *addr;
48 do {
49 val = nval;
50 if (val & mask_to_set)
51 return -EBUSY;
52 cpu_relax();
53 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
54
55 return 0;
56 }
57
clear_bits_ll(unsigned long * addr,unsigned long mask_to_clear)58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
59 {
60 unsigned long val, nval;
61
62 nval = *addr;
63 do {
64 val = nval;
65 if ((val & mask_to_clear) != mask_to_clear)
66 return -EBUSY;
67 cpu_relax();
68 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
69
70 return 0;
71 }
72
73 /*
74 * bitmap_set_ll - set the specified number of bits at the specified position
75 * @map: pointer to a bitmap
76 * @start: a bit position in @map
77 * @nr: number of bits to set
78 *
79 * Set @nr bits start from @start in @map lock-lessly. Several users
80 * can set/clear the same bitmap simultaneously without lock. If two
81 * users set the same bit, one user will return remain bits, otherwise
82 * return 0.
83 */
bitmap_set_ll(unsigned long * map,unsigned long start,unsigned long nr)84 static int bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
85 {
86 unsigned long *p = map + BIT_WORD(start);
87 const unsigned long size = start + nr;
88 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
89 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
90
91 while (nr >= bits_to_set) {
92 if (set_bits_ll(p, mask_to_set))
93 return nr;
94 nr -= bits_to_set;
95 bits_to_set = BITS_PER_LONG;
96 mask_to_set = ~0UL;
97 p++;
98 }
99 if (nr) {
100 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
101 if (set_bits_ll(p, mask_to_set))
102 return nr;
103 }
104
105 return 0;
106 }
107
108 /*
109 * bitmap_clear_ll - clear the specified number of bits at the specified position
110 * @map: pointer to a bitmap
111 * @start: a bit position in @map
112 * @nr: number of bits to set
113 *
114 * Clear @nr bits start from @start in @map lock-lessly. Several users
115 * can set/clear the same bitmap simultaneously without lock. If two
116 * users clear the same bit, one user will return remain bits,
117 * otherwise return 0.
118 */
119 static unsigned long
bitmap_clear_ll(unsigned long * map,unsigned long start,unsigned long nr)120 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
121 {
122 unsigned long *p = map + BIT_WORD(start);
123 const unsigned long size = start + nr;
124 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126
127 while (nr >= bits_to_clear) {
128 if (clear_bits_ll(p, mask_to_clear))
129 return nr;
130 nr -= bits_to_clear;
131 bits_to_clear = BITS_PER_LONG;
132 mask_to_clear = ~0UL;
133 p++;
134 }
135 if (nr) {
136 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137 if (clear_bits_ll(p, mask_to_clear))
138 return nr;
139 }
140
141 return 0;
142 }
143
144 /**
145 * gen_pool_create - create a new special memory pool
146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147 * @nid: node id of the node the pool structure should be allocated on, or -1
148 *
149 * Create a new special memory pool that can be used to manage special purpose
150 * memory not managed by the regular kmalloc/kfree interface.
151 */
gen_pool_create(int min_alloc_order,int nid)152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153 {
154 struct gen_pool *pool;
155
156 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157 if (pool != NULL) {
158 spin_lock_init(&pool->lock);
159 INIT_LIST_HEAD(&pool->chunks);
160 pool->min_alloc_order = min_alloc_order;
161 pool->algo = gen_pool_first_fit;
162 pool->data = NULL;
163 pool->name = NULL;
164 }
165 return pool;
166 }
167 EXPORT_SYMBOL(gen_pool_create);
168
169 /**
170 * gen_pool_add_owner- add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 * allocated on, or -1
177 * @owner: private data the publisher would like to recall at alloc time
178 *
179 * Add a new chunk of special memory to the specified pool.
180 *
181 * Returns 0 on success or a -ve errno on failure.
182 */
gen_pool_add_owner(struct gen_pool * pool,unsigned long virt,phys_addr_t phys,size_t size,int nid,void * owner)183 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
184 size_t size, int nid, void *owner)
185 {
186 struct gen_pool_chunk *chunk;
187 unsigned long nbits = size >> pool->min_alloc_order;
188 unsigned long nbytes = sizeof(struct gen_pool_chunk) +
189 BITS_TO_LONGS(nbits) * sizeof(long);
190
191 chunk = vzalloc_node(nbytes, nid);
192 if (unlikely(chunk == NULL))
193 return -ENOMEM;
194
195 chunk->phys_addr = phys;
196 chunk->start_addr = virt;
197 chunk->end_addr = virt + size - 1;
198 chunk->owner = owner;
199 atomic_long_set(&chunk->avail, size);
200
201 spin_lock(&pool->lock);
202 list_add_rcu(&chunk->next_chunk, &pool->chunks);
203 spin_unlock(&pool->lock);
204
205 return 0;
206 }
207 EXPORT_SYMBOL(gen_pool_add_owner);
208
209 /**
210 * gen_pool_virt_to_phys - return the physical address of memory
211 * @pool: pool to allocate from
212 * @addr: starting address of memory
213 *
214 * Returns the physical address on success, or -1 on error.
215 */
gen_pool_virt_to_phys(struct gen_pool * pool,unsigned long addr)216 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
217 {
218 struct gen_pool_chunk *chunk;
219 phys_addr_t paddr = -1;
220
221 rcu_read_lock();
222 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
223 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
224 paddr = chunk->phys_addr + (addr - chunk->start_addr);
225 break;
226 }
227 }
228 rcu_read_unlock();
229
230 return paddr;
231 }
232 EXPORT_SYMBOL(gen_pool_virt_to_phys);
233
234 /**
235 * gen_pool_destroy - destroy a special memory pool
236 * @pool: pool to destroy
237 *
238 * Destroy the specified special memory pool. Verifies that there are no
239 * outstanding allocations.
240 */
gen_pool_destroy(struct gen_pool * pool)241 void gen_pool_destroy(struct gen_pool *pool)
242 {
243 struct list_head *_chunk, *_next_chunk;
244 struct gen_pool_chunk *chunk;
245 int order = pool->min_alloc_order;
246 unsigned long bit, end_bit;
247
248 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
249 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
250 list_del(&chunk->next_chunk);
251
252 end_bit = chunk_size(chunk) >> order;
253 bit = find_next_bit(chunk->bits, end_bit, 0);
254 BUG_ON(bit < end_bit);
255
256 vfree(chunk);
257 }
258 kfree_const(pool->name);
259 kfree(pool);
260 }
261 EXPORT_SYMBOL(gen_pool_destroy);
262
263 /**
264 * gen_pool_alloc_algo_owner - allocate special memory from the pool
265 * @pool: pool to allocate from
266 * @size: number of bytes to allocate from the pool
267 * @algo: algorithm passed from caller
268 * @data: data passed to algorithm
269 * @owner: optionally retrieve the chunk owner
270 *
271 * Allocate the requested number of bytes from the specified pool.
272 * Uses the pool allocation function (with first-fit algorithm by default).
273 * Can not be used in NMI handler on architectures without
274 * NMI-safe cmpxchg implementation.
275 */
gen_pool_alloc_algo_owner(struct gen_pool * pool,size_t size,genpool_algo_t algo,void * data,void ** owner)276 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
277 genpool_algo_t algo, void *data, void **owner)
278 {
279 struct gen_pool_chunk *chunk;
280 unsigned long addr = 0;
281 int order = pool->min_alloc_order;
282 unsigned long nbits, start_bit, end_bit, remain;
283
284 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
285 BUG_ON(in_nmi());
286 #endif
287
288 if (owner)
289 *owner = NULL;
290
291 if (size == 0)
292 return 0;
293
294 nbits = (size + (1UL << order) - 1) >> order;
295 rcu_read_lock();
296 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
297 if (size > atomic_long_read(&chunk->avail))
298 continue;
299
300 start_bit = 0;
301 end_bit = chunk_size(chunk) >> order;
302 retry:
303 start_bit = algo(chunk->bits, end_bit, start_bit,
304 nbits, data, pool, chunk->start_addr);
305 if (start_bit >= end_bit)
306 continue;
307 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
308 if (remain) {
309 remain = bitmap_clear_ll(chunk->bits, start_bit,
310 nbits - remain);
311 BUG_ON(remain);
312 goto retry;
313 }
314
315 addr = chunk->start_addr + ((unsigned long)start_bit << order);
316 size = nbits << order;
317 atomic_long_sub(size, &chunk->avail);
318 if (owner)
319 *owner = chunk->owner;
320 break;
321 }
322 rcu_read_unlock();
323 return addr;
324 }
325 EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
326
327 /**
328 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
329 * @pool: pool to allocate from
330 * @size: number of bytes to allocate from the pool
331 * @dma: dma-view physical address return value. Use %NULL if unneeded.
332 *
333 * Allocate the requested number of bytes from the specified pool.
334 * Uses the pool allocation function (with first-fit algorithm by default).
335 * Can not be used in NMI handler on architectures without
336 * NMI-safe cmpxchg implementation.
337 *
338 * Return: virtual address of the allocated memory, or %NULL on failure
339 */
gen_pool_dma_alloc(struct gen_pool * pool,size_t size,dma_addr_t * dma)340 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
341 {
342 return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
343 }
344 EXPORT_SYMBOL(gen_pool_dma_alloc);
345
346 /**
347 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
348 * usage with the given pool algorithm
349 * @pool: pool to allocate from
350 * @size: number of bytes to allocate from the pool
351 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
352 * @algo: algorithm passed from caller
353 * @data: data passed to algorithm
354 *
355 * Allocate the requested number of bytes from the specified pool. Uses the
356 * given pool allocation function. Can not be used in NMI handler on
357 * architectures without NMI-safe cmpxchg implementation.
358 *
359 * Return: virtual address of the allocated memory, or %NULL on failure
360 */
gen_pool_dma_alloc_algo(struct gen_pool * pool,size_t size,dma_addr_t * dma,genpool_algo_t algo,void * data)361 void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
362 dma_addr_t *dma, genpool_algo_t algo, void *data)
363 {
364 unsigned long vaddr;
365
366 if (!pool)
367 return NULL;
368
369 vaddr = gen_pool_alloc_algo(pool, size, algo, data);
370 if (!vaddr)
371 return NULL;
372
373 if (dma)
374 *dma = gen_pool_virt_to_phys(pool, vaddr);
375
376 return (void *)vaddr;
377 }
378 EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
379
380 /**
381 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
382 * usage with the given alignment
383 * @pool: pool to allocate from
384 * @size: number of bytes to allocate from the pool
385 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
386 * @align: alignment in bytes for starting address
387 *
388 * Allocate the requested number bytes from the specified pool, with the given
389 * alignment restriction. Can not be used in NMI handler on architectures
390 * without NMI-safe cmpxchg implementation.
391 *
392 * Return: virtual address of the allocated memory, or %NULL on failure
393 */
gen_pool_dma_alloc_align(struct gen_pool * pool,size_t size,dma_addr_t * dma,int align)394 void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
395 dma_addr_t *dma, int align)
396 {
397 struct genpool_data_align data = { .align = align };
398
399 return gen_pool_dma_alloc_algo(pool, size, dma,
400 gen_pool_first_fit_align, &data);
401 }
402 EXPORT_SYMBOL(gen_pool_dma_alloc_align);
403
404 /**
405 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
406 * DMA usage
407 * @pool: pool to allocate from
408 * @size: number of bytes to allocate from the pool
409 * @dma: dma-view physical address return value. Use %NULL if unneeded.
410 *
411 * Allocate the requested number of zeroed bytes from the specified pool.
412 * Uses the pool allocation function (with first-fit algorithm by default).
413 * Can not be used in NMI handler on architectures without
414 * NMI-safe cmpxchg implementation.
415 *
416 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
417 */
gen_pool_dma_zalloc(struct gen_pool * pool,size_t size,dma_addr_t * dma)418 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
419 {
420 return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
421 }
422 EXPORT_SYMBOL(gen_pool_dma_zalloc);
423
424 /**
425 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
426 * DMA usage with the given pool algorithm
427 * @pool: pool to allocate from
428 * @size: number of bytes to allocate from the pool
429 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
430 * @algo: algorithm passed from caller
431 * @data: data passed to algorithm
432 *
433 * Allocate the requested number of zeroed bytes from the specified pool. Uses
434 * the given pool allocation function. Can not be used in NMI handler on
435 * architectures without NMI-safe cmpxchg implementation.
436 *
437 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
438 */
gen_pool_dma_zalloc_algo(struct gen_pool * pool,size_t size,dma_addr_t * dma,genpool_algo_t algo,void * data)439 void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
440 dma_addr_t *dma, genpool_algo_t algo, void *data)
441 {
442 void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
443
444 if (vaddr)
445 memset(vaddr, 0, size);
446
447 return vaddr;
448 }
449 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
450
451 /**
452 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
453 * DMA usage with the given alignment
454 * @pool: pool to allocate from
455 * @size: number of bytes to allocate from the pool
456 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
457 * @align: alignment in bytes for starting address
458 *
459 * Allocate the requested number of zeroed bytes from the specified pool,
460 * with the given alignment restriction. Can not be used in NMI handler on
461 * architectures without NMI-safe cmpxchg implementation.
462 *
463 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
464 */
gen_pool_dma_zalloc_align(struct gen_pool * pool,size_t size,dma_addr_t * dma,int align)465 void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
466 dma_addr_t *dma, int align)
467 {
468 struct genpool_data_align data = { .align = align };
469
470 return gen_pool_dma_zalloc_algo(pool, size, dma,
471 gen_pool_first_fit_align, &data);
472 }
473 EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
474
475 /**
476 * gen_pool_free_owner - free allocated special memory back to the pool
477 * @pool: pool to free to
478 * @addr: starting address of memory to free back to pool
479 * @size: size in bytes of memory to free
480 * @owner: private data stashed at gen_pool_add() time
481 *
482 * Free previously allocated special memory back to the specified
483 * pool. Can not be used in NMI handler on architectures without
484 * NMI-safe cmpxchg implementation.
485 */
gen_pool_free_owner(struct gen_pool * pool,unsigned long addr,size_t size,void ** owner)486 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
487 void **owner)
488 {
489 struct gen_pool_chunk *chunk;
490 int order = pool->min_alloc_order;
491 unsigned long start_bit, nbits, remain;
492
493 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
494 BUG_ON(in_nmi());
495 #endif
496
497 if (owner)
498 *owner = NULL;
499
500 nbits = (size + (1UL << order) - 1) >> order;
501 rcu_read_lock();
502 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
503 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
504 BUG_ON(addr + size - 1 > chunk->end_addr);
505 start_bit = (addr - chunk->start_addr) >> order;
506 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
507 BUG_ON(remain);
508 size = nbits << order;
509 atomic_long_add(size, &chunk->avail);
510 if (owner)
511 *owner = chunk->owner;
512 rcu_read_unlock();
513 return;
514 }
515 }
516 rcu_read_unlock();
517 BUG();
518 }
519 EXPORT_SYMBOL(gen_pool_free_owner);
520
521 /**
522 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
523 * @pool: the generic memory pool
524 * @func: func to call
525 * @data: additional data used by @func
526 *
527 * Call @func for every chunk of generic memory pool. The @func is
528 * called with rcu_read_lock held.
529 */
gen_pool_for_each_chunk(struct gen_pool * pool,void (* func)(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data),void * data)530 void gen_pool_for_each_chunk(struct gen_pool *pool,
531 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
532 void *data)
533 {
534 struct gen_pool_chunk *chunk;
535
536 rcu_read_lock();
537 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
538 func(pool, chunk, data);
539 rcu_read_unlock();
540 }
541 EXPORT_SYMBOL(gen_pool_for_each_chunk);
542
543 /**
544 * gen_pool_has_addr - checks if an address falls within the range of a pool
545 * @pool: the generic memory pool
546 * @start: start address
547 * @size: size of the region
548 *
549 * Check if the range of addresses falls within the specified pool. Returns
550 * true if the entire range is contained in the pool and false otherwise.
551 */
gen_pool_has_addr(struct gen_pool * pool,unsigned long start,size_t size)552 bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
553 size_t size)
554 {
555 bool found = false;
556 unsigned long end = start + size - 1;
557 struct gen_pool_chunk *chunk;
558
559 rcu_read_lock();
560 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
561 if (start >= chunk->start_addr && start <= chunk->end_addr) {
562 if (end <= chunk->end_addr) {
563 found = true;
564 break;
565 }
566 }
567 }
568 rcu_read_unlock();
569 return found;
570 }
571 EXPORT_SYMBOL(gen_pool_has_addr);
572
573 /**
574 * gen_pool_avail - get available free space of the pool
575 * @pool: pool to get available free space
576 *
577 * Return available free space of the specified pool.
578 */
gen_pool_avail(struct gen_pool * pool)579 size_t gen_pool_avail(struct gen_pool *pool)
580 {
581 struct gen_pool_chunk *chunk;
582 size_t avail = 0;
583
584 rcu_read_lock();
585 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
586 avail += atomic_long_read(&chunk->avail);
587 rcu_read_unlock();
588 return avail;
589 }
590 EXPORT_SYMBOL_GPL(gen_pool_avail);
591
592 /**
593 * gen_pool_size - get size in bytes of memory managed by the pool
594 * @pool: pool to get size
595 *
596 * Return size in bytes of memory managed by the pool.
597 */
gen_pool_size(struct gen_pool * pool)598 size_t gen_pool_size(struct gen_pool *pool)
599 {
600 struct gen_pool_chunk *chunk;
601 size_t size = 0;
602
603 rcu_read_lock();
604 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
605 size += chunk_size(chunk);
606 rcu_read_unlock();
607 return size;
608 }
609 EXPORT_SYMBOL_GPL(gen_pool_size);
610
611 /**
612 * gen_pool_set_algo - set the allocation algorithm
613 * @pool: pool to change allocation algorithm
614 * @algo: custom algorithm function
615 * @data: additional data used by @algo
616 *
617 * Call @algo for each memory allocation in the pool.
618 * If @algo is NULL use gen_pool_first_fit as default
619 * memory allocation function.
620 */
gen_pool_set_algo(struct gen_pool * pool,genpool_algo_t algo,void * data)621 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
622 {
623 rcu_read_lock();
624
625 pool->algo = algo;
626 if (!pool->algo)
627 pool->algo = gen_pool_first_fit;
628
629 pool->data = data;
630
631 rcu_read_unlock();
632 }
633 EXPORT_SYMBOL(gen_pool_set_algo);
634
635 /**
636 * gen_pool_first_fit - find the first available region
637 * of memory matching the size requirement (no alignment constraint)
638 * @map: The address to base the search on
639 * @size: The bitmap size in bits
640 * @start: The bitnumber to start searching at
641 * @nr: The number of zeroed bits we're looking for
642 * @data: additional data - unused
643 * @pool: pool to find the fit region memory from
644 */
gen_pool_first_fit(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)645 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
646 unsigned long start, unsigned int nr, void *data,
647 struct gen_pool *pool, unsigned long start_addr)
648 {
649 return bitmap_find_next_zero_area(map, size, start, nr, 0);
650 }
651 EXPORT_SYMBOL(gen_pool_first_fit);
652
653 /**
654 * gen_pool_first_fit_align - find the first available region
655 * of memory matching the size requirement (alignment constraint)
656 * @map: The address to base the search on
657 * @size: The bitmap size in bits
658 * @start: The bitnumber to start searching at
659 * @nr: The number of zeroed bits we're looking for
660 * @data: data for alignment
661 * @pool: pool to get order from
662 */
gen_pool_first_fit_align(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)663 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
664 unsigned long start, unsigned int nr, void *data,
665 struct gen_pool *pool, unsigned long start_addr)
666 {
667 struct genpool_data_align *alignment;
668 unsigned long align_mask, align_off;
669 int order;
670
671 alignment = data;
672 order = pool->min_alloc_order;
673 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
674 align_off = (start_addr & (alignment->align - 1)) >> order;
675
676 return bitmap_find_next_zero_area_off(map, size, start, nr,
677 align_mask, align_off);
678 }
679 EXPORT_SYMBOL(gen_pool_first_fit_align);
680
681 /**
682 * gen_pool_fixed_alloc - reserve a specific region
683 * @map: The address to base the search on
684 * @size: The bitmap size in bits
685 * @start: The bitnumber to start searching at
686 * @nr: The number of zeroed bits we're looking for
687 * @data: data for alignment
688 * @pool: pool to get order from
689 */
gen_pool_fixed_alloc(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)690 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
691 unsigned long start, unsigned int nr, void *data,
692 struct gen_pool *pool, unsigned long start_addr)
693 {
694 struct genpool_data_fixed *fixed_data;
695 int order;
696 unsigned long offset_bit;
697 unsigned long start_bit;
698
699 fixed_data = data;
700 order = pool->min_alloc_order;
701 offset_bit = fixed_data->offset >> order;
702 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
703 return size;
704
705 start_bit = bitmap_find_next_zero_area(map, size,
706 start + offset_bit, nr, 0);
707 if (start_bit != offset_bit)
708 start_bit = size;
709 return start_bit;
710 }
711 EXPORT_SYMBOL(gen_pool_fixed_alloc);
712
713 /**
714 * gen_pool_first_fit_order_align - find the first available region
715 * of memory matching the size requirement. The region will be aligned
716 * to the order of the size specified.
717 * @map: The address to base the search on
718 * @size: The bitmap size in bits
719 * @start: The bitnumber to start searching at
720 * @nr: The number of zeroed bits we're looking for
721 * @data: additional data - unused
722 * @pool: pool to find the fit region memory from
723 */
gen_pool_first_fit_order_align(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)724 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
725 unsigned long size, unsigned long start,
726 unsigned int nr, void *data, struct gen_pool *pool,
727 unsigned long start_addr)
728 {
729 unsigned long align_mask = roundup_pow_of_two(nr) - 1;
730
731 return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
732 }
733 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
734
735 /**
736 * gen_pool_best_fit - find the best fitting region of memory
737 * macthing the size requirement (no alignment constraint)
738 * @map: The address to base the search on
739 * @size: The bitmap size in bits
740 * @start: The bitnumber to start searching at
741 * @nr: The number of zeroed bits we're looking for
742 * @data: additional data - unused
743 * @pool: pool to find the fit region memory from
744 *
745 * Iterate over the bitmap to find the smallest free region
746 * which we can allocate the memory.
747 */
gen_pool_best_fit(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)748 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
749 unsigned long start, unsigned int nr, void *data,
750 struct gen_pool *pool, unsigned long start_addr)
751 {
752 unsigned long start_bit = size;
753 unsigned long len = size + 1;
754 unsigned long index;
755
756 index = bitmap_find_next_zero_area(map, size, start, nr, 0);
757
758 while (index < size) {
759 unsigned long next_bit = find_next_bit(map, size, index + nr);
760 if ((next_bit - index) < len) {
761 len = next_bit - index;
762 start_bit = index;
763 if (len == nr)
764 return start_bit;
765 }
766 index = bitmap_find_next_zero_area(map, size,
767 next_bit + 1, nr, 0);
768 }
769
770 return start_bit;
771 }
772 EXPORT_SYMBOL(gen_pool_best_fit);
773
devm_gen_pool_release(struct device * dev,void * res)774 static void devm_gen_pool_release(struct device *dev, void *res)
775 {
776 gen_pool_destroy(*(struct gen_pool **)res);
777 }
778
devm_gen_pool_match(struct device * dev,void * res,void * data)779 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
780 {
781 struct gen_pool **p = res;
782
783 /* NULL data matches only a pool without an assigned name */
784 if (!data && !(*p)->name)
785 return 1;
786
787 if (!data || !(*p)->name)
788 return 0;
789
790 return !strcmp((*p)->name, data);
791 }
792
793 /**
794 * gen_pool_get - Obtain the gen_pool (if any) for a device
795 * @dev: device to retrieve the gen_pool from
796 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
797 *
798 * Returns the gen_pool for the device if one is present, or NULL.
799 */
gen_pool_get(struct device * dev,const char * name)800 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
801 {
802 struct gen_pool **p;
803
804 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
805 (void *)name);
806 if (!p)
807 return NULL;
808 return *p;
809 }
810 EXPORT_SYMBOL_GPL(gen_pool_get);
811
812 /**
813 * devm_gen_pool_create - managed gen_pool_create
814 * @dev: device that provides the gen_pool
815 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
816 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
817 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
818 *
819 * Create a new special memory pool that can be used to manage special purpose
820 * memory not managed by the regular kmalloc/kfree interface. The pool will be
821 * automatically destroyed by the device management code.
822 */
devm_gen_pool_create(struct device * dev,int min_alloc_order,int nid,const char * name)823 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
824 int nid, const char *name)
825 {
826 struct gen_pool **ptr, *pool;
827 const char *pool_name = NULL;
828
829 /* Check that genpool to be created is uniquely addressed on device */
830 if (gen_pool_get(dev, name))
831 return ERR_PTR(-EINVAL);
832
833 if (name) {
834 pool_name = kstrdup_const(name, GFP_KERNEL);
835 if (!pool_name)
836 return ERR_PTR(-ENOMEM);
837 }
838
839 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
840 if (!ptr)
841 goto free_pool_name;
842
843 pool = gen_pool_create(min_alloc_order, nid);
844 if (!pool)
845 goto free_devres;
846
847 *ptr = pool;
848 pool->name = pool_name;
849 devres_add(dev, ptr);
850
851 return pool;
852
853 free_devres:
854 devres_free(ptr);
855 free_pool_name:
856 kfree_const(pool_name);
857
858 return ERR_PTR(-ENOMEM);
859 }
860 EXPORT_SYMBOL(devm_gen_pool_create);
861
862 #ifdef CONFIG_OF
863 /**
864 * of_gen_pool_get - find a pool by phandle property
865 * @np: device node
866 * @propname: property name containing phandle(s)
867 * @index: index into the phandle array
868 *
869 * Returns the pool that contains the chunk starting at the physical
870 * address of the device tree node pointed at by the phandle property,
871 * or NULL if not found.
872 */
of_gen_pool_get(struct device_node * np,const char * propname,int index)873 struct gen_pool *of_gen_pool_get(struct device_node *np,
874 const char *propname, int index)
875 {
876 struct platform_device *pdev;
877 struct device_node *np_pool, *parent;
878 const char *name = NULL;
879 struct gen_pool *pool = NULL;
880
881 np_pool = of_parse_phandle(np, propname, index);
882 if (!np_pool)
883 return NULL;
884
885 pdev = of_find_device_by_node(np_pool);
886 if (!pdev) {
887 /* Check if named gen_pool is created by parent node device */
888 parent = of_get_parent(np_pool);
889 pdev = of_find_device_by_node(parent);
890 of_node_put(parent);
891
892 of_property_read_string(np_pool, "label", &name);
893 if (!name)
894 name = np_pool->name;
895 }
896 if (pdev)
897 pool = gen_pool_get(&pdev->dev, name);
898 of_node_put(np_pool);
899
900 return pool;
901 }
902 EXPORT_SYMBOL_GPL(of_gen_pool_get);
903 #endif /* CONFIG_OF */
904