1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Texture utilities.
22 *//*--------------------------------------------------------------------*/
23
24 #include "tcuTextureUtil.hpp"
25 #include "tcuVectorUtil.hpp"
26 #include "deRandom.hpp"
27 #include "deMath.h"
28 #include "deMemory.h"
29
30 #include <limits>
31
32 namespace tcu
33 {
34
sRGBChannelToLinear(float cs)35 float sRGBChannelToLinear (float cs)
36 {
37 if (cs <= 0.04045)
38 return cs / 12.92f;
39 else
40 return deFloatPow((cs + 0.055f) / 1.055f, 2.4f);
41 }
42
43 static const deUint32 s_srgb8Lut[256] =
44 {
45 #include "tcuSRGB8Lut.inl"
46 };
47
sRGB8ChannelToLinear(deUint32 cs)48 static inline float sRGB8ChannelToLinear (deUint32 cs)
49 {
50 DE_ASSERT(cs < 256);
51
52 // \note This triggers UB, but in practice it doesn't cause any problems
53 return ((const float*)s_srgb8Lut)[cs];
54 }
55
linearChannelToSRGB(float cl)56 float linearChannelToSRGB (float cl)
57 {
58 if (cl <= 0.0f)
59 return 0.0f;
60 else if (cl < 0.0031308f)
61 return 12.92f*cl;
62 else if (cl < 1.0f)
63 return 1.055f*deFloatPow(cl, 0.41666f) - 0.055f;
64 else
65 return 1.0f;
66 }
67
68 //! Convert sRGB to linear colorspace
sRGBToLinear(const Vec4 & cs)69 Vec4 sRGBToLinear (const Vec4& cs)
70 {
71 return Vec4(sRGBChannelToLinear(cs[0]),
72 sRGBChannelToLinear(cs[1]),
73 sRGBChannelToLinear(cs[2]),
74 cs[3]);
75 }
76
sRGB8ToLinear(const UVec4 & cs)77 Vec4 sRGB8ToLinear (const UVec4& cs)
78 {
79 return Vec4(sRGB8ChannelToLinear(cs[0]),
80 sRGB8ChannelToLinear(cs[1]),
81 sRGB8ChannelToLinear(cs[2]),
82 1.0f);
83 }
84
sRGBA8ToLinear(const UVec4 & cs)85 Vec4 sRGBA8ToLinear (const UVec4& cs)
86 {
87 return Vec4(sRGB8ChannelToLinear(cs[0]),
88 sRGB8ChannelToLinear(cs[1]),
89 sRGB8ChannelToLinear(cs[2]),
90 (float)cs[3] / 255.0f);
91 }
92
93 //! Convert from linear to sRGB colorspace
linearToSRGB(const Vec4 & cl)94 Vec4 linearToSRGB (const Vec4& cl)
95 {
96 return Vec4(linearChannelToSRGB(cl[0]),
97 linearChannelToSRGB(cl[1]),
98 linearChannelToSRGB(cl[2]),
99 cl[3]);
100 }
101
isSRGB(TextureFormat format)102 bool isSRGB (TextureFormat format)
103 {
104 // make sure to update this if type table is updated
105 DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
106
107 return format.order == TextureFormat::sR ||
108 format.order == TextureFormat::sRG ||
109 format.order == TextureFormat::sRGB ||
110 format.order == TextureFormat::sRGBA ||
111 format.order == TextureFormat::sBGR ||
112 format.order == TextureFormat::sBGRA;
113 }
114
linearToSRGBIfNeeded(const TextureFormat & format,const tcu::Vec4 & color)115 tcu::Vec4 linearToSRGBIfNeeded (const TextureFormat& format, const tcu::Vec4& color)
116 {
117 return isSRGB(format) ? linearToSRGB(color) : color;
118 }
119
isCombinedDepthStencilType(TextureFormat::ChannelType type)120 bool isCombinedDepthStencilType (TextureFormat::ChannelType type)
121 {
122 // make sure to update this if type table is updated
123 DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
124
125 return type == TextureFormat::UNSIGNED_INT_16_8_8 ||
126 type == TextureFormat::UNSIGNED_INT_24_8 ||
127 type == TextureFormat::UNSIGNED_INT_24_8_REV ||
128 type == TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV;
129 }
130
hasStencilComponent(TextureFormat::ChannelOrder order)131 bool hasStencilComponent (TextureFormat::ChannelOrder order)
132 {
133 DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
134
135 switch (order)
136 {
137 case TextureFormat::S:
138 case TextureFormat::DS:
139 return true;
140
141 default:
142 return false;
143 }
144 }
145
hasDepthComponent(TextureFormat::ChannelOrder order)146 bool hasDepthComponent (TextureFormat::ChannelOrder order)
147 {
148 DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
149
150 switch (order)
151 {
152 case TextureFormat::D:
153 case TextureFormat::DS:
154 return true;
155
156 default:
157 return false;
158 }
159 }
160
161 //! Get texture channel class for format - how the values are stored (not how they are sampled)
getTextureChannelClass(TextureFormat::ChannelType channelType)162 TextureChannelClass getTextureChannelClass (TextureFormat::ChannelType channelType)
163 {
164 // make sure this table is updated if format table is updated
165 DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
166
167 switch (channelType)
168 {
169 case TextureFormat::SNORM_INT8: return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
170 case TextureFormat::SNORM_INT16: return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
171 case TextureFormat::SNORM_INT32: return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
172 case TextureFormat::UNORM_INT8: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
173 case TextureFormat::UNORM_INT16: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
174 case TextureFormat::UNORM_INT24: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
175 case TextureFormat::UNORM_INT32: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
176 case TextureFormat::UNORM_BYTE_44: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
177 case TextureFormat::UNORM_SHORT_565: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
178 case TextureFormat::UNORM_SHORT_555: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
179 case TextureFormat::UNORM_SHORT_4444: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
180 case TextureFormat::UNORM_SHORT_5551: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
181 case TextureFormat::UNORM_SHORT_1555: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
182 case TextureFormat::UNSIGNED_BYTE_44: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
183 case TextureFormat::UNSIGNED_SHORT_565: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
184 case TextureFormat::UNSIGNED_SHORT_4444: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
185 case TextureFormat::UNSIGNED_SHORT_5551: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
186 case TextureFormat::UNORM_INT_101010: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
187 case TextureFormat::SNORM_INT_1010102_REV: return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
188 case TextureFormat::UNORM_INT_1010102_REV: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
189 case TextureFormat::SIGNED_INT_1010102_REV: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
190 case TextureFormat::UNSIGNED_INT_1010102_REV: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
191 case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return TEXTURECHANNELCLASS_FLOATING_POINT;
192 case TextureFormat::UNSIGNED_INT_999_E5_REV: return TEXTURECHANNELCLASS_FLOATING_POINT;
193 case TextureFormat::UNSIGNED_INT_16_8_8: return TEXTURECHANNELCLASS_LAST; //!< packed unorm16-x8-uint8
194 case TextureFormat::UNSIGNED_INT_24_8: return TEXTURECHANNELCLASS_LAST; //!< packed unorm24-uint8
195 case TextureFormat::UNSIGNED_INT_24_8_REV: return TEXTURECHANNELCLASS_LAST; //!< packed unorm24-uint8
196 case TextureFormat::SIGNED_INT8: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
197 case TextureFormat::SIGNED_INT16: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
198 case TextureFormat::SIGNED_INT32: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
199 case TextureFormat::SIGNED_INT64: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
200 case TextureFormat::UNSIGNED_INT8: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
201 case TextureFormat::UNSIGNED_INT16: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
202 case TextureFormat::UNSIGNED_INT24: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
203 case TextureFormat::UNSIGNED_INT32: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
204 case TextureFormat::UNSIGNED_INT64: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
205 case TextureFormat::HALF_FLOAT: return TEXTURECHANNELCLASS_FLOATING_POINT;
206 case TextureFormat::FLOAT: return TEXTURECHANNELCLASS_FLOATING_POINT;
207 case TextureFormat::FLOAT64: return TEXTURECHANNELCLASS_FLOATING_POINT;
208 case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: return TEXTURECHANNELCLASS_LAST; //!< packed float32-pad24-uint8
209 case TextureFormat::UNORM_SHORT_10: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
210 case TextureFormat::UNORM_SHORT_12: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
211 case TextureFormat::USCALED_INT8: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
212 case TextureFormat::USCALED_INT16: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
213 case TextureFormat::SSCALED_INT8: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
214 case TextureFormat::SSCALED_INT16: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
215 case TextureFormat::USCALED_INT_1010102_REV: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
216 case TextureFormat::SSCALED_INT_1010102_REV: return TEXTURECHANNELCLASS_SIGNED_INTEGER;
217 default:
218 DE_FATAL("Unknown channel type");
219 return TEXTURECHANNELCLASS_LAST;
220 }
221 }
222
isAccessValid(TextureFormat format,TextureAccessType type)223 bool isAccessValid (TextureFormat format, TextureAccessType type)
224 {
225 DE_ASSERT(isValid(format));
226
227 if (format.order == TextureFormat::DS)
228 {
229 // It is never allowed to access combined depth-stencil format with getPixel().
230 // Instead either getPixDepth() or getPixStencil(), or effective depth- or stencil-
231 // access must be used.
232 return false;
233 }
234 else if (format.order == TextureFormat::D)
235 return type == TEXTUREACCESSTYPE_FLOAT;
236 else if (format.order == TextureFormat::S)
237 return type == TEXTUREACCESSTYPE_UNSIGNED_INT;
238 else
239 {
240 // A few packed color formats have access type restrictions
241 if (format.type == TextureFormat::UNSIGNED_INT_11F_11F_10F_REV ||
242 format.type == TextureFormat::UNSIGNED_INT_999_E5_REV)
243 return type == TEXTUREACCESSTYPE_FLOAT;
244 else
245 return true;
246 }
247 }
248
249 /*--------------------------------------------------------------------*//*!
250 * \brief Get access to subregion of pixel buffer
251 * \param access Parent access object
252 * \param x X offset
253 * \param y Y offset
254 * \param z Z offset
255 * \param width Width
256 * \param height Height
257 * \param depth Depth
258 * \return Access object that targets given subregion of parent access object
259 *//*--------------------------------------------------------------------*/
getSubregion(const ConstPixelBufferAccess & access,int x,int y,int z,int width,int height,int depth)260 ConstPixelBufferAccess getSubregion (const ConstPixelBufferAccess& access, int x, int y, int z, int width, int height, int depth)
261 {
262 DE_ASSERT(de::inBounds(x, 0, access.getWidth()));
263 DE_ASSERT(de::inRange(x+width, x+1, access.getWidth()));
264
265 DE_ASSERT(de::inBounds(y, 0, access.getHeight()));
266 DE_ASSERT(de::inRange(y+height, y+1, access.getHeight()));
267
268 DE_ASSERT(de::inBounds(z, 0, access.getDepth()));
269 DE_ASSERT(de::inRange(z+depth, z+1, access.getDepth()));
270
271 return ConstPixelBufferAccess(access.getFormat(), tcu::IVec3(width, height, depth), access.getPitch(),
272 (const deUint8*)access.getDataPtr() + access.getPixelPitch()*x + access.getRowPitch()*y + access.getSlicePitch()*z);
273 }
274
275 /*--------------------------------------------------------------------*//*!
276 * \brief Get access to subregion of pixel buffer
277 * \param access Parent access object
278 * \param x X offset
279 * \param y Y offset
280 * \param z Z offset
281 * \param width Width
282 * \param height Height
283 * \param depth Depth
284 * \return Access object that targets given subregion of parent access object
285 *//*--------------------------------------------------------------------*/
getSubregion(const PixelBufferAccess & access,int x,int y,int z,int width,int height,int depth)286 PixelBufferAccess getSubregion (const PixelBufferAccess& access, int x, int y, int z, int width, int height, int depth)
287 {
288 DE_ASSERT(de::inBounds(x, 0, access.getWidth()));
289 DE_ASSERT(de::inRange(x+width, x+1, access.getWidth()));
290
291 DE_ASSERT(de::inBounds(y, 0, access.getHeight()));
292 DE_ASSERT(de::inRange(y+height, y+1, access.getHeight()));
293
294 DE_ASSERT(de::inBounds(z, 0, access.getDepth()));
295 DE_ASSERT(de::inRange(z+depth, z+1, access.getDepth()));
296
297 return PixelBufferAccess(access.getFormat(), tcu::IVec3(width, height, depth), access.getPitch(),
298 (deUint8*)access.getDataPtr() + access.getPixelPitch()*x + access.getRowPitch()*y + access.getSlicePitch()*z);
299 }
300
301 /*--------------------------------------------------------------------*//*!
302 * \brief Get access to subregion of pixel buffer
303 * \param access Parent access object
304 * \param x X offset
305 * \param y Y offset
306 * \param width Width
307 * \param height Height
308 * \return Access object that targets given subregion of parent access object
309 *//*--------------------------------------------------------------------*/
getSubregion(const PixelBufferAccess & access,int x,int y,int width,int height)310 PixelBufferAccess getSubregion (const PixelBufferAccess& access, int x, int y, int width, int height)
311 {
312 return getSubregion(access, x, y, 0, width, height, 1);
313 }
314
315 /*--------------------------------------------------------------------*//*!
316 * \brief Get access to subregion of pixel buffer
317 * \param access Parent access object
318 * \param x X offset
319 * \param y Y offset
320 * \param width Width
321 * \param height Height
322 * \return Access object that targets given subregion of parent access object
323 *//*--------------------------------------------------------------------*/
getSubregion(const ConstPixelBufferAccess & access,int x,int y,int width,int height)324 ConstPixelBufferAccess getSubregion (const ConstPixelBufferAccess& access, int x, int y, int width, int height)
325 {
326 return getSubregion(access, x, y, 0, width, height, 1);
327 }
328
329 /*--------------------------------------------------------------------*//*!
330 * \brief Flip rows in Y direction
331 * \param access Access object
332 * \return Modified access object where Y coordinates are reversed
333 *//*--------------------------------------------------------------------*/
flipYAccess(const PixelBufferAccess & access)334 PixelBufferAccess flipYAccess (const PixelBufferAccess& access)
335 {
336 const int rowPitch = access.getRowPitch();
337 const int offsetToLast = rowPitch*(access.getHeight()-1);
338 const tcu::IVec3 pitch (access.getPixelPitch(), -rowPitch, access.getSlicePitch());
339
340 return PixelBufferAccess(access.getFormat(), access.getSize(), pitch, (deUint8*)access.getDataPtr() + offsetToLast);
341 }
342
343 /*--------------------------------------------------------------------*//*!
344 * \brief Flip rows in Y direction
345 * \param access Access object
346 * \return Modified access object where Y coordinates are reversed
347 *//*--------------------------------------------------------------------*/
flipYAccess(const ConstPixelBufferAccess & access)348 ConstPixelBufferAccess flipYAccess (const ConstPixelBufferAccess& access)
349 {
350 const int rowPitch = access.getRowPitch();
351 const int offsetToLast = rowPitch*(access.getHeight()-1);
352 const tcu::IVec3 pitch (access.getPixelPitch(), -rowPitch, access.getSlicePitch());
353
354 return ConstPixelBufferAccess(access.getFormat(), access.getSize(), pitch, (deUint8*)access.getDataPtr() + offsetToLast);
355 }
356
getFloatChannelValueRange(TextureFormat::ChannelType channelType)357 static Vec2 getFloatChannelValueRange (TextureFormat::ChannelType channelType)
358 {
359 // make sure this table is updated if format table is updated
360 DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
361
362 float cMin = 0.0f;
363 float cMax = 0.0f;
364
365 switch (channelType)
366 {
367 // Signed normalized formats.
368 case TextureFormat::SNORM_INT8:
369 case TextureFormat::SNORM_INT16:
370 case TextureFormat::SNORM_INT32:
371 case TextureFormat::SNORM_INT_1010102_REV: cMin = -1.0f; cMax = 1.0f; break;
372
373 // Unsigned normalized formats.
374 case TextureFormat::UNORM_INT8:
375 case TextureFormat::UNORM_INT16:
376 case TextureFormat::UNORM_INT24:
377 case TextureFormat::UNORM_INT32:
378 case TextureFormat::UNORM_BYTE_44:
379 case TextureFormat::UNORM_SHORT_565:
380 case TextureFormat::UNORM_SHORT_555:
381 case TextureFormat::UNORM_SHORT_4444:
382 case TextureFormat::UNORM_SHORT_5551:
383 case TextureFormat::UNORM_SHORT_1555:
384 case TextureFormat::UNORM_INT_101010:
385 case TextureFormat::UNORM_INT_1010102_REV:
386 case TextureFormat::UNORM_SHORT_10:
387 case TextureFormat::UNORM_SHORT_12: cMin = 0.0f; cMax = 1.0f; break;
388
389 // Misc formats.
390 case TextureFormat::SIGNED_INT8: cMin = -128.0f; cMax = 127.0f; break;
391 case TextureFormat::SIGNED_INT16: cMin = -32768.0f; cMax = 32767.0f; break;
392 case TextureFormat::SIGNED_INT32: cMin = -2147483520.0f; cMax = 2147483520.0f; break; // Maximum exactly representable 31-bit integer: (2^24 - 1) * 2^7
393 case TextureFormat::UNSIGNED_INT8: cMin = 0.0f; cMax = 255.0f; break;
394 case TextureFormat::UNSIGNED_INT16: cMin = 0.0f; cMax = 65535.0f; break;
395 case TextureFormat::UNSIGNED_INT24: cMin = 0.0f; cMax = 16777215.0f; break;
396 case TextureFormat::UNSIGNED_INT32: cMin = 0.0f; cMax = 4294967040.f; break; // Maximum exactly representable 32-bit integer: (2^24 - 1) * 2^8
397 case TextureFormat::HALF_FLOAT: cMin = -1e3f; cMax = 1e3f; break;
398 case TextureFormat::FLOAT: cMin = -1e5f; cMax = 1e5f; break;
399 case TextureFormat::FLOAT64: cMin = -1e5f; cMax = 1e5f; break;
400 case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: cMin = 0.0f; cMax = 1e4f; break;
401 case TextureFormat::UNSIGNED_INT_999_E5_REV: cMin = 0.0f; cMax = 0.5e5f; break;
402 case TextureFormat::UNSIGNED_BYTE_44: cMin = 0.0f; cMax = 15.f; break;
403 case TextureFormat::UNSIGNED_SHORT_4444: cMin = 0.0f; cMax = 15.f; break;
404 case TextureFormat::USCALED_INT8: cMin = 0.0f; cMax = 255.0f; break;
405 case TextureFormat::USCALED_INT16: cMin = 0.0f; cMax = 65535.0f; break;
406 case TextureFormat::SSCALED_INT8: cMin = -128.0f; cMax = 127.0f; break;
407 case TextureFormat::SSCALED_INT16: cMin = -32768.0f; cMax = 32767.0f; break;
408 case TextureFormat::USCALED_INT_1010102_REV: cMin = 0.0f; cMax = 1023.0f; break;
409 case TextureFormat::SSCALED_INT_1010102_REV: cMin = -512.0f; cMax = 511.0f; break;
410
411 default:
412 DE_ASSERT(false);
413 }
414
415 return Vec2(cMin, cMax);
416 }
417
418 /*--------------------------------------------------------------------*//*!
419 * \brief Get standard parameters for testing texture format
420 *
421 * Returns TextureFormatInfo that describes good parameters for exercising
422 * given TextureFormat. Parameters include value ranges per channel and
423 * suitable lookup scaling and bias in order to reduce result back to
424 * 0..1 range.
425 *//*--------------------------------------------------------------------*/
getTextureFormatInfo(const TextureFormat & format)426 TextureFormatInfo getTextureFormatInfo (const TextureFormat& format)
427 {
428 // Special cases.
429 if (format.type == TextureFormat::UNSIGNED_INT_1010102_REV)
430 return TextureFormatInfo(Vec4( 0.0f, 0.0f, 0.0f, 0.0f),
431 Vec4( 1023.0f, 1023.0f, 1023.0f, 3.0f),
432 Vec4(1.0f/1023.f, 1.0f/1023.0f, 1.0f/1023.0f, 1.0f/3.0f),
433 Vec4( 0.0f, 0.0f, 0.0f, 0.0f));
434 if (format.type == TextureFormat::SIGNED_INT_1010102_REV)
435 return TextureFormatInfo(Vec4( -512.0f, -512.0f, -512.0f, -2.0f),
436 Vec4( 511.0f, 511.0f, 511.0f, 1.0f),
437 Vec4(1.0f/1023.f, 1.0f/1023.0f, 1.0f/1023.0f, 1.0f/3.0f),
438 Vec4( 0.5f, 0.5f, 0.5f, 0.5f));
439 else if (format.order == TextureFormat::D || format.order == TextureFormat::DS)
440 return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.0f),
441 Vec4(1.0f, 1.0f, 1.0f, 0.0f),
442 Vec4(1.0f, 1.0f, 1.0f, 1.0f),
443 Vec4(0.0f, 0.0f, 0.0f, 0.0f)); // Depth / stencil formats.
444 else if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_SHORT_5551))
445 return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.5f),
446 Vec4(1.0f, 1.0f, 1.0f, 1.5f),
447 Vec4(1.0f, 1.0f, 1.0f, 1.0f),
448 Vec4(0.0f, 0.0f, 0.0f, 0.0f));
449 else if (format.type == TextureFormat::UNSIGNED_SHORT_5551)
450 return TextureFormatInfo(Vec4( 0.0f, 0.0f, 0.0f, 0.0f),
451 Vec4( 31.0f, 31.0f, 31.0f, 1.0f),
452 Vec4(1.0f/31.f, 1.0f/31.0f, 1.0f/31.0f, 1.0f),
453 Vec4( 0.0f, 0.0f, 0.0f, 0.0f));
454 else if (format.type == TextureFormat::UNSIGNED_SHORT_565)
455 return TextureFormatInfo(Vec4( 0.0f, 0.0f, 0.0f, 0.0f),
456 Vec4( 31.0f, 63.0f, 31.0f, 0.0f),
457 Vec4(1.0f/31.f, 1.0f/63.0f, 1.0f/31.0f, 1.0f),
458 Vec4( 0.0f, 0.0f, 0.0f, 0.0f));
459
460 const Vec2 cRange = getFloatChannelValueRange(format.type);
461 const TextureSwizzle::Channel* map = getChannelReadSwizzle(format.order).components;
462 const BVec4 chnMask = BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
463 deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
464 deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
465 deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE);
466 const float scale = 1.0f / (cRange[1] - cRange[0]);
467 const float bias = -cRange[0] * scale;
468
469 return TextureFormatInfo(select(cRange[0], 0.0f, chnMask),
470 select(cRange[1], 0.0f, chnMask),
471 select(scale, 1.0f, chnMask),
472 select(bias, 0.0f, chnMask));
473 }
474
getFormatMinIntValue(const TextureFormat & format)475 IVec4 getFormatMinIntValue (const TextureFormat& format)
476 {
477 DE_ASSERT(getTextureChannelClass(format.type) == TEXTURECHANNELCLASS_SIGNED_INTEGER);
478
479 switch (format.type)
480 {
481 case TextureFormat::SIGNED_INT8: return IVec4(std::numeric_limits<deInt8>::min());
482 case TextureFormat::SIGNED_INT16: return IVec4(std::numeric_limits<deInt16>::min());
483 case TextureFormat::SIGNED_INT32: return IVec4(std::numeric_limits<deInt32>::min());
484
485 default:
486 DE_FATAL("Invalid channel type");
487 return IVec4(0);
488 }
489 }
490
getFormatMaxIntValue(const TextureFormat & format)491 IVec4 getFormatMaxIntValue (const TextureFormat& format)
492 {
493 DE_ASSERT(getTextureChannelClass(format.type) == TEXTURECHANNELCLASS_SIGNED_INTEGER);
494
495 if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::SIGNED_INT_1010102_REV) ||
496 format == TextureFormat(TextureFormat::BGRA, TextureFormat::SSCALED_INT_1010102_REV) ||
497 format == TextureFormat(TextureFormat::RGBA, TextureFormat::SSCALED_INT_1010102_REV) ||
498 format == TextureFormat(TextureFormat::BGRA, TextureFormat::SIGNED_INT_1010102_REV))
499 return IVec4(511, 511, 511, 1);
500
501 switch (format.type)
502 {
503 case TextureFormat::SIGNED_INT8: return IVec4(std::numeric_limits<deInt8>::max());
504 case TextureFormat::SIGNED_INT16: return IVec4(std::numeric_limits<deInt16>::max());
505 case TextureFormat::SIGNED_INT32: return IVec4(std::numeric_limits<deInt32>::max());
506
507 case TextureFormat::SSCALED_INT8: return IVec4(std::numeric_limits<deInt8>::max());
508 case TextureFormat::SSCALED_INT16: return IVec4(std::numeric_limits<deInt16>::max());
509
510 default:
511 DE_FATAL("Invalid channel type");
512 return IVec4(0);
513 }
514 }
515
getFormatMaxUintValue(const TextureFormat & format)516 UVec4 getFormatMaxUintValue (const TextureFormat& format)
517 {
518 DE_ASSERT(getTextureChannelClass(format.type) == TEXTURECHANNELCLASS_UNSIGNED_INTEGER);
519
520 if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::UNSIGNED_INT_1010102_REV) ||
521 format == TextureFormat(TextureFormat::RGBA, TextureFormat::USCALED_INT_1010102_REV) ||
522 format == TextureFormat(TextureFormat::BGRA, TextureFormat::USCALED_INT_1010102_REV) ||
523 format == TextureFormat(TextureFormat::BGRA, TextureFormat::UNSIGNED_INT_1010102_REV))
524 return UVec4(1023u, 1023u, 1023u, 3u);
525
526 switch (format.type)
527 {
528 case TextureFormat::UNSIGNED_INT8: return UVec4(std::numeric_limits<deUint8>::max());
529 case TextureFormat::UNSIGNED_INT16: return UVec4(std::numeric_limits<deUint16>::max());
530 case TextureFormat::UNSIGNED_INT24: return UVec4(0xffffffu);
531 case TextureFormat::UNSIGNED_INT32: return UVec4(std::numeric_limits<deUint32>::max());
532
533 case TextureFormat::USCALED_INT8: return UVec4(std::numeric_limits<deUint8>::max());
534 case TextureFormat::USCALED_INT16: return UVec4(std::numeric_limits<deUint16>::max());
535
536 default:
537 DE_FATAL("Invalid channel type");
538 return UVec4(0);
539 }
540 }
541
getChannelBitDepth(TextureFormat::ChannelType channelType)542 static IVec4 getChannelBitDepth (TextureFormat::ChannelType channelType)
543 {
544 // make sure this table is updated if format table is updated
545 DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
546
547 switch (channelType)
548 {
549 case TextureFormat::SNORM_INT8: return IVec4(8);
550 case TextureFormat::SNORM_INT16: return IVec4(16);
551 case TextureFormat::SNORM_INT32: return IVec4(32);
552 case TextureFormat::UNORM_INT8: return IVec4(8);
553 case TextureFormat::UNORM_INT16: return IVec4(16);
554 case TextureFormat::UNORM_INT24: return IVec4(24);
555 case TextureFormat::UNORM_INT32: return IVec4(32);
556 case TextureFormat::UNORM_BYTE_44: return IVec4(4,4,0,0);
557 case TextureFormat::UNORM_SHORT_565: return IVec4(5,6,5,0);
558 case TextureFormat::UNORM_SHORT_4444: return IVec4(4);
559 case TextureFormat::UNORM_SHORT_555: return IVec4(5,5,5,0);
560 case TextureFormat::UNORM_SHORT_5551: return IVec4(5,5,5,1);
561 case TextureFormat::UNORM_SHORT_1555: return IVec4(1,5,5,5);
562 case TextureFormat::UNSIGNED_BYTE_44: return IVec4(4,4,0,0);
563 case TextureFormat::UNSIGNED_SHORT_565: return IVec4(5,6,5,0);
564 case TextureFormat::UNSIGNED_SHORT_4444: return IVec4(4);
565 case TextureFormat::UNSIGNED_SHORT_5551: return IVec4(5,5,5,1);
566 case TextureFormat::UNORM_INT_101010: return IVec4(10,10,10,0);
567 case TextureFormat::SNORM_INT_1010102_REV: return IVec4(10,10,10,2);
568 case TextureFormat::UNORM_INT_1010102_REV: return IVec4(10,10,10,2);
569 case TextureFormat::SIGNED_INT8: return IVec4(8);
570 case TextureFormat::SIGNED_INT16: return IVec4(16);
571 case TextureFormat::SIGNED_INT32: return IVec4(32);
572 case TextureFormat::SIGNED_INT64: return IVec4(64);
573 case TextureFormat::UNSIGNED_INT8: return IVec4(8);
574 case TextureFormat::UNSIGNED_INT16: return IVec4(16);
575 case TextureFormat::UNSIGNED_INT24: return IVec4(24);
576 case TextureFormat::UNSIGNED_INT32: return IVec4(32);
577 case TextureFormat::UNSIGNED_INT64: return IVec4(64);
578 case TextureFormat::SIGNED_INT_1010102_REV: return IVec4(10,10,10,2);
579 case TextureFormat::UNSIGNED_INT_1010102_REV: return IVec4(10,10,10,2);
580 case TextureFormat::UNSIGNED_INT_16_8_8: return IVec4(16,8,0,0);
581 case TextureFormat::UNSIGNED_INT_24_8: return IVec4(24,8,0,0);
582 case TextureFormat::UNSIGNED_INT_24_8_REV: return IVec4(24,8,0,0);
583 case TextureFormat::HALF_FLOAT: return IVec4(16);
584 case TextureFormat::FLOAT: return IVec4(32);
585 case TextureFormat::FLOAT64: return IVec4(64);
586 case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return IVec4(11,11,10,0);
587 case TextureFormat::UNSIGNED_INT_999_E5_REV: return IVec4(9,9,9,0);
588 case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: return IVec4(32,8,0,0);
589 case TextureFormat::UNORM_SHORT_10: return IVec4(10);
590 case TextureFormat::UNORM_SHORT_12: return IVec4(12);
591 case TextureFormat::USCALED_INT8: return IVec4(8);
592 case TextureFormat::USCALED_INT16: return IVec4(16);
593 case TextureFormat::SSCALED_INT8: return IVec4(8);
594 case TextureFormat::SSCALED_INT16: return IVec4(16);
595 case TextureFormat::USCALED_INT_1010102_REV: return IVec4(10,10,10,2);
596 case TextureFormat::SSCALED_INT_1010102_REV: return IVec4(10,10,10,2);
597 default:
598 DE_ASSERT(false);
599 return IVec4(0);
600 }
601 }
602
getTextureFormatBitDepth(const TextureFormat & format)603 IVec4 getTextureFormatBitDepth (const TextureFormat& format)
604 {
605 const IVec4 chnBits = getChannelBitDepth(format.type);
606 const TextureSwizzle::Channel* map = getChannelReadSwizzle(format.order).components;
607 const BVec4 chnMask = BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
608 deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
609 deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
610 deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE);
611 const IVec4 chnSwz = IVec4((chnMask[0]) ? ((int)map[0]) : (0),
612 (chnMask[1]) ? ((int)map[1]) : (0),
613 (chnMask[2]) ? ((int)map[2]) : (0),
614 (chnMask[3]) ? ((int)map[3]) : (0));
615
616 return select(chnBits.swizzle(chnSwz.x(), chnSwz.y(), chnSwz.z(), chnSwz.w()), IVec4(0), chnMask);
617 }
618
getChannelMantissaBitDepth(TextureFormat::ChannelType channelType)619 static IVec4 getChannelMantissaBitDepth (TextureFormat::ChannelType channelType)
620 {
621 // make sure this table is updated if format table is updated
622 DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
623
624 switch (channelType)
625 {
626 case TextureFormat::SNORM_INT8:
627 case TextureFormat::SNORM_INT16:
628 case TextureFormat::SNORM_INT32:
629 case TextureFormat::UNORM_INT8:
630 case TextureFormat::UNORM_INT16:
631 case TextureFormat::UNORM_INT24:
632 case TextureFormat::UNORM_INT32:
633 case TextureFormat::UNORM_BYTE_44:
634 case TextureFormat::UNORM_SHORT_565:
635 case TextureFormat::UNORM_SHORT_4444:
636 case TextureFormat::UNORM_SHORT_555:
637 case TextureFormat::UNORM_SHORT_5551:
638 case TextureFormat::UNORM_SHORT_1555:
639 case TextureFormat::UNSIGNED_BYTE_44:
640 case TextureFormat::UNSIGNED_SHORT_565:
641 case TextureFormat::UNSIGNED_SHORT_4444:
642 case TextureFormat::UNSIGNED_SHORT_5551:
643 case TextureFormat::UNORM_INT_101010:
644 case TextureFormat::SNORM_INT_1010102_REV:
645 case TextureFormat::UNORM_INT_1010102_REV:
646 case TextureFormat::SIGNED_INT8:
647 case TextureFormat::SIGNED_INT16:
648 case TextureFormat::SIGNED_INT32:
649 case TextureFormat::UNSIGNED_INT8:
650 case TextureFormat::UNSIGNED_INT16:
651 case TextureFormat::UNSIGNED_INT24:
652 case TextureFormat::UNSIGNED_INT32:
653 case TextureFormat::SIGNED_INT_1010102_REV:
654 case TextureFormat::UNSIGNED_INT_1010102_REV:
655 case TextureFormat::UNSIGNED_INT_16_8_8:
656 case TextureFormat::UNSIGNED_INT_24_8:
657 case TextureFormat::UNSIGNED_INT_24_8_REV:
658 case TextureFormat::UNSIGNED_INT_999_E5_REV:
659 case TextureFormat::UNORM_SHORT_10:
660 case TextureFormat::UNORM_SHORT_12:
661 case TextureFormat::USCALED_INT8:
662 case TextureFormat::USCALED_INT16:
663 case TextureFormat::SSCALED_INT8:
664 case TextureFormat::SSCALED_INT16:
665 case TextureFormat::USCALED_INT_1010102_REV:
666 case TextureFormat::SSCALED_INT_1010102_REV:
667 return getChannelBitDepth(channelType);
668
669 case TextureFormat::HALF_FLOAT: return IVec4(10);
670 case TextureFormat::FLOAT: return IVec4(23);
671 case TextureFormat::FLOAT64: return IVec4(52);
672 case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return IVec4(6,6,5,0);
673 case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: return IVec4(23,8,0,0);
674 default:
675 DE_ASSERT(false);
676 return IVec4(0);
677 }
678 }
679
getTextureFormatMantissaBitDepth(const TextureFormat & format)680 IVec4 getTextureFormatMantissaBitDepth (const TextureFormat& format)
681 {
682 const IVec4 chnBits = getChannelMantissaBitDepth(format.type);
683 const TextureSwizzle::Channel* map = getChannelReadSwizzle(format.order).components;
684 const BVec4 chnMask = BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
685 deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
686 deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
687 deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE);
688 const IVec4 chnSwz = IVec4((chnMask[0]) ? ((int)map[0]) : (0),
689 (chnMask[1]) ? ((int)map[1]) : (0),
690 (chnMask[2]) ? ((int)map[2]) : (0),
691 (chnMask[3]) ? ((int)map[3]) : (0));
692
693 return select(chnBits.swizzle(chnSwz.x(), chnSwz.y(), chnSwz.z(), chnSwz.w()), IVec4(0), chnMask);
694 }
695
getTextureFormatChannelMask(const TextureFormat & format)696 BVec4 getTextureFormatChannelMask (const TextureFormat& format)
697 {
698 const TextureSwizzle::Channel* const map = getChannelReadSwizzle(format.order).components;
699 return BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
700 deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
701 deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE,
702 deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE);
703 }
704
linearInterpolate(float t,float minVal,float maxVal)705 static inline float linearInterpolate (float t, float minVal, float maxVal)
706 {
707 return minVal + (maxVal - minVal) * t;
708 }
709
linearInterpolate(float t,const Vec4 & a,const Vec4 & b)710 static inline Vec4 linearInterpolate (float t, const Vec4& a, const Vec4& b)
711 {
712 return a + (b - a) * t;
713 }
714
715 enum
716 {
717 CLEAR_OPTIMIZE_THRESHOLD = 128,
718 CLEAR_OPTIMIZE_MAX_PIXEL_SIZE = 8
719 };
720
fillRow(const PixelBufferAccess & dst,int y,int z,int pixelSize,const deUint8 * pixel)721 inline void fillRow (const PixelBufferAccess& dst, int y, int z, int pixelSize, const deUint8* pixel)
722 {
723 DE_ASSERT(dst.getPixelPitch() == pixelSize); // only tightly packed
724
725 deUint8* dstPtr = (deUint8*)dst.getPixelPtr(0, y, z);
726 int width = dst.getWidth();
727
728 if (pixelSize == 8 && deIsAlignedPtr(dstPtr, pixelSize))
729 {
730 deUint64 val;
731 memcpy(&val, pixel, sizeof(val));
732
733 for (int i = 0; i < width; i++)
734 ((deUint64*)dstPtr)[i] = val;
735 }
736 else if (pixelSize == 4 && deIsAlignedPtr(dstPtr, pixelSize))
737 {
738 deUint32 val;
739 memcpy(&val, pixel, sizeof(val));
740
741 for (int i = 0; i < width; i++)
742 ((deUint32*)dstPtr)[i] = val;
743 }
744 else
745 {
746 for (int i = 0; i < width; i++)
747 for (int j = 0; j < pixelSize; j++)
748 dstPtr[i*pixelSize+j] = pixel[j];
749 }
750 }
751
clear(const PixelBufferAccess & access,const Vec4 & color)752 void clear (const PixelBufferAccess& access, const Vec4& color)
753 {
754 const int pixelSize = access.getFormat().getPixelSize();
755 const int pixelPitch = access.getPixelPitch();
756 const bool rowPixelsTightlyPacked = (pixelSize == pixelPitch);
757
758 if (access.getWidth()*access.getHeight()*access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD &&
759 pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE && rowPixelsTightlyPacked)
760 {
761 // Convert to destination format.
762 union
763 {
764 deUint8 u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE];
765 deUint64 u64; // Forces 64-bit alignment.
766 } pixel;
767 DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE);
768 PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixel(color, 0, 0);
769
770 for (int z = 0; z < access.getDepth(); z++)
771 for (int y = 0; y < access.getHeight(); y++)
772 fillRow(access, y, z, pixelSize, &pixel.u8[0]);
773 }
774 else
775 {
776 for (int z = 0; z < access.getDepth(); z++)
777 for (int y = 0; y < access.getHeight(); y++)
778 for (int x = 0; x < access.getWidth(); x++)
779 access.setPixel(color, x, y, z);
780 }
781 }
782
clear(const PixelBufferAccess & access,const IVec4 & color)783 void clear (const PixelBufferAccess& access, const IVec4& color)
784 {
785 const int pixelSize = access.getFormat().getPixelSize();
786 const int pixelPitch = access.getPixelPitch();
787 const bool rowPixelsTightlyPacked = (pixelSize == pixelPitch);
788
789 if (access.getWidth()*access.getHeight()*access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD &&
790 pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE && rowPixelsTightlyPacked)
791 {
792 // Convert to destination format.
793 union
794 {
795 deUint8 u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE];
796 deUint64 u64; // Forces 64-bit alignment.
797 } pixel;
798 DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE);
799 PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixel(color, 0, 0);
800
801 for (int z = 0; z < access.getDepth(); z++)
802 for (int y = 0; y < access.getHeight(); y++)
803 fillRow(access, y, z, pixelSize, &pixel.u8[0]);
804 }
805 else
806 {
807 for (int z = 0; z < access.getDepth(); z++)
808 for (int y = 0; y < access.getHeight(); y++)
809 for (int x = 0; x < access.getWidth(); x++)
810 access.setPixel(color, x, y, z);
811 }
812 }
813
clear(const PixelBufferAccess & access,const UVec4 & color)814 void clear (const PixelBufferAccess& access, const UVec4& color)
815 {
816 clear(access, color.cast<deInt32>());
817 }
818
clearDepth(const PixelBufferAccess & access,float depth)819 void clearDepth (const PixelBufferAccess& access, float depth)
820 {
821 DE_ASSERT(access.getFormat().order == TextureFormat::DS || access.getFormat().order == TextureFormat::D);
822
823 clear(getEffectiveDepthStencilAccess(access, Sampler::MODE_DEPTH), tcu::Vec4(depth, 0.0f, 0.0f, 0.0f));
824 }
825
clearStencil(const PixelBufferAccess & access,int stencil)826 void clearStencil (const PixelBufferAccess& access, int stencil)
827 {
828 DE_ASSERT(access.getFormat().order == TextureFormat::DS || access.getFormat().order == TextureFormat::S);
829
830 clear(getEffectiveDepthStencilAccess(access, Sampler::MODE_STENCIL), tcu::UVec4(stencil, 0u, 0u, 0u));
831 }
832
833 enum GradientStyle
834 {
835 GRADIENT_STYLE_OLD = 0,
836 GRADIENT_STYLE_NEW = 1,
837 GRADIENT_STYLE_PYRAMID = 2
838 };
839
fillWithComponentGradients1D(const PixelBufferAccess & access,const Vec4 & minVal,const Vec4 & maxVal,GradientStyle)840 static void fillWithComponentGradients1D (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal, GradientStyle)
841 {
842 DE_ASSERT(access.getHeight() == 1);
843 for (int x = 0; x < access.getWidth(); x++)
844 {
845 float s = ((float)x + 0.5f) / (float)access.getWidth();
846
847 float r = linearInterpolate(s, minVal.x(), maxVal.x());
848 float g = linearInterpolate(s, minVal.y(), maxVal.y());
849 float b = linearInterpolate(s, minVal.z(), maxVal.z());
850 float a = linearInterpolate(s, minVal.w(), maxVal.w());
851
852 access.setPixel(tcu::Vec4(r, g, b, a), x, 0);
853 }
854 }
855
fillWithComponentGradients2D(const PixelBufferAccess & access,const Vec4 & minVal,const Vec4 & maxVal,GradientStyle style)856 static void fillWithComponentGradients2D (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal, GradientStyle style)
857 {
858 if (style == GRADIENT_STYLE_PYRAMID)
859 {
860 int xedge = deFloorFloatToInt32(float(access.getWidth()) * 0.6f);
861 int yedge = deFloorFloatToInt32(float(access.getHeight()) * 0.6f);
862
863 for (int y = 0; y < access.getHeight(); y++)
864 {
865 for (int x = 0; x < access.getWidth(); x++)
866 {
867 float s = ((float)x + 0.5f) / (float)access.getWidth();
868 float t = ((float)y + 0.5f) / (float)access.getHeight();
869 float coefR = 0.0f;
870 float coefG = 0.0f;
871 float coefB = 0.0f;
872 float coefA = 0.0f;
873
874 coefR = (x < xedge) ? s * 0.4f : (1 - s) * 0.6f;
875 coefG = (x < xedge) ? s * 0.4f : (1 - s) * 0.6f;
876 coefB = (x < xedge) ? (1.0f - s) * 0.4f : s * 0.6f - 0.2f;
877 coefA = (x < xedge) ? (1.0f - s) * 0.4f : s * 0.6f - 0.2f;
878
879 coefR += (y < yedge) ? t * 0.4f : (1 - t) * 0.6f;
880 coefG += (y < yedge) ? (1.0f - t) * 0.4f : t * 0.6f - 0.2f;
881 coefB += (y < yedge) ? t * 0.4f : (1 - t) * 0.6f;
882 coefA += (y < yedge) ? (1.0f - t) * 0.4f : t * 0.6f - 0.2f;
883
884 float r = linearInterpolate(coefR, minVal.x(), maxVal.x());
885 float g = linearInterpolate(coefG, minVal.y(), maxVal.y());
886 float b = linearInterpolate(coefB, minVal.z(), maxVal.z());
887 float a = linearInterpolate(coefA, minVal.w(), maxVal.w());
888
889 access.setPixel(tcu::Vec4(r, g, b, a), x, y);
890 }
891 }
892 }
893 else
894 {
895 for (int y = 0; y < access.getHeight(); y++)
896 {
897 for (int x = 0; x < access.getWidth(); x++)
898 {
899 float s = ((float)x + 0.5f) / (float)access.getWidth();
900 float t = ((float)y + 0.5f) / (float)access.getHeight();
901
902 float r = linearInterpolate((s + t) *0.5f, minVal.x(), maxVal.x());
903 float g = linearInterpolate((s + (1.0f - t))*0.5f, minVal.y(), maxVal.y());
904 float b = linearInterpolate(((1.0f - s) + t) *0.5f, minVal.z(), maxVal.z());
905 float a = linearInterpolate(((1.0f - s) + (1.0f - t))*0.5f, minVal.w(), maxVal.w());
906
907 access.setPixel(tcu::Vec4(r, g, b, a), x, y);
908 }
909 }
910 }
911 }
912
fillWithComponentGradients3D(const PixelBufferAccess & dst,const Vec4 & minVal,const Vec4 & maxVal,GradientStyle style)913 static void fillWithComponentGradients3D (const PixelBufferAccess& dst, const Vec4& minVal, const Vec4& maxVal, GradientStyle style)
914 {
915 for (int z = 0; z < dst.getDepth(); z++)
916 {
917 for (int y = 0; y < dst.getHeight(); y++)
918 {
919 for (int x = 0; x < dst.getWidth(); x++)
920 {
921 float s = ((float)x + 0.5f) / (float)dst.getWidth();
922 float t = ((float)y + 0.5f) / (float)dst.getHeight();
923 float p = ((float)z + 0.5f) / (float)dst.getDepth();
924
925 float r, g, b, a;
926
927 if (style == GRADIENT_STYLE_NEW)
928 {
929 // R, G, B and A all depend on every coordinate.
930 r = linearInterpolate((s+t+p)/3.0f, minVal.x(), maxVal.x());
931 g = linearInterpolate((s + (1.0f - (t+p)*0.5f)*2.0f)/3.0f, minVal.y(), maxVal.y());
932 b = linearInterpolate(((1.0f - (s+t)*0.5f)*2.0f + p)/3.0f, minVal.z(), maxVal.z());
933 a = linearInterpolate(1.0f - (s+t+p)/3.0f, minVal.w(), maxVal.w());
934 }
935 else // GRADIENT_STYLE_OLD
936 {
937 // Each of R, G and B only depend on X, Y and Z, respectively.
938 r = linearInterpolate(s, minVal.x(), maxVal.x());
939 g = linearInterpolate(t, minVal.y(), maxVal.y());
940 b = linearInterpolate(p, minVal.z(), maxVal.z());
941 a = linearInterpolate(1.0f - (s+t+p)/3.0f, minVal.w(), maxVal.w());
942 }
943
944 dst.setPixel(tcu::Vec4(r, g, b, a), x, y, z);
945 }
946 }
947 }
948 }
949
fillWithComponentGradientsStyled(const PixelBufferAccess & access,const Vec4 & minVal,const Vec4 & maxVal,GradientStyle style)950 void fillWithComponentGradientsStyled (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal, GradientStyle style)
951 {
952 if (isCombinedDepthStencilType(access.getFormat().type))
953 {
954 const bool hasDepth = access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::D;
955 const bool hasStencil = access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::S;
956
957 DE_ASSERT(hasDepth || hasStencil);
958
959 // For combined formats, treat D and S as separate channels
960 if (hasDepth)
961 fillWithComponentGradientsStyled(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_DEPTH), minVal, maxVal, style);
962 if (hasStencil)
963 fillWithComponentGradientsStyled(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_STENCIL), minVal.swizzle(3,2,1,0), maxVal.swizzle(3,2,1,0), style);
964 }
965 else
966 {
967 if (access.getHeight() == 1 && access.getDepth() == 1)
968 fillWithComponentGradients1D(access, minVal, maxVal, style);
969 else if (access.getDepth() == 1)
970 fillWithComponentGradients2D(access, minVal, maxVal, style);
971 else
972 fillWithComponentGradients3D(access, minVal, maxVal, style);
973 }
974 }
975
fillWithComponentGradients(const PixelBufferAccess & access,const Vec4 & minVal,const Vec4 & maxVal)976 void fillWithComponentGradients (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal)
977 {
978 fillWithComponentGradientsStyled(access, minVal, maxVal, GRADIENT_STYLE_OLD);
979 }
980
fillWithComponentGradients2(const PixelBufferAccess & access,const Vec4 & minVal,const Vec4 & maxVal)981 void fillWithComponentGradients2 (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal)
982 {
983 fillWithComponentGradientsStyled(access, minVal, maxVal, GRADIENT_STYLE_NEW);
984 }
985
fillWithComponentGradients3(const PixelBufferAccess & access,const Vec4 & minVal,const Vec4 & maxVal)986 void fillWithComponentGradients3(const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal)
987 {
988 fillWithComponentGradientsStyled(access, minVal, maxVal, GRADIENT_STYLE_PYRAMID);
989 }
990
fillWithGrid1D(const PixelBufferAccess & access,int cellSize,const Vec4 & colorA,const Vec4 & colorB)991 static void fillWithGrid1D (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB)
992 {
993 for (int x = 0; x < access.getWidth(); x++)
994 {
995 int mx = (x / cellSize) % 2;
996
997 if (mx)
998 access.setPixel(colorB, x, 0);
999 else
1000 access.setPixel(colorA, x, 0);
1001 }
1002 }
1003
fillWithGrid2D(const PixelBufferAccess & access,int cellSize,const Vec4 & colorA,const Vec4 & colorB)1004 static void fillWithGrid2D (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB)
1005 {
1006 for (int y = 0; y < access.getHeight(); y++)
1007 {
1008 for (int x = 0; x < access.getWidth(); x++)
1009 {
1010 int mx = (x / cellSize) % 2;
1011 int my = (y / cellSize) % 2;
1012
1013 if (mx ^ my)
1014 access.setPixel(colorB, x, y);
1015 else
1016 access.setPixel(colorA, x, y);
1017 }
1018 }
1019 }
1020
fillWithGrid3D(const PixelBufferAccess & access,int cellSize,const Vec4 & colorA,const Vec4 & colorB)1021 static void fillWithGrid3D (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB)
1022 {
1023 for (int z = 0; z < access.getDepth(); z++)
1024 {
1025 for (int y = 0; y < access.getHeight(); y++)
1026 {
1027 for (int x = 0; x < access.getWidth(); x++)
1028 {
1029 int mx = (x / cellSize) % 2;
1030 int my = (y / cellSize) % 2;
1031 int mz = (z / cellSize) % 2;
1032
1033 if (mx ^ my ^ mz)
1034 access.setPixel(colorB, x, y, z);
1035 else
1036 access.setPixel(colorA, x, y, z);
1037 }
1038 }
1039 }
1040 }
1041
fillWithGrid(const PixelBufferAccess & access,int cellSize,const Vec4 & colorA,const Vec4 & colorB)1042 void fillWithGrid (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB)
1043 {
1044 if (isCombinedDepthStencilType(access.getFormat().type))
1045 {
1046 const bool hasDepth = access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::D;
1047 const bool hasStencil = access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::S;
1048
1049 DE_ASSERT(hasDepth || hasStencil);
1050
1051 // For combined formats, treat D and S as separate channels
1052 if (hasDepth)
1053 fillWithGrid(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_DEPTH), cellSize, colorA, colorB);
1054 if (hasStencil)
1055 fillWithGrid(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_STENCIL), cellSize, colorA.swizzle(3,2,1,0), colorB.swizzle(3,2,1,0));
1056 }
1057 else
1058 {
1059 if (access.getHeight() == 1 && access.getDepth() == 1)
1060 fillWithGrid1D(access, cellSize, colorA, colorB);
1061 else if (access.getDepth() == 1)
1062 fillWithGrid2D(access, cellSize, colorA, colorB);
1063 else
1064 fillWithGrid3D(access, cellSize, colorA, colorB);
1065 }
1066 }
1067
fillWithRepeatableGradient(const PixelBufferAccess & access,const Vec4 & colorA,const Vec4 & colorB)1068 void fillWithRepeatableGradient (const PixelBufferAccess& access, const Vec4& colorA, const Vec4& colorB)
1069 {
1070 for (int y = 0; y < access.getHeight(); y++)
1071 {
1072 for (int x = 0; x < access.getWidth(); x++)
1073 {
1074 float s = ((float)x + 0.5f) / (float)access.getWidth();
1075 float t = ((float)y + 0.5f) / (float)access.getHeight();
1076
1077 float a = s > 0.5f ? (2.0f - 2.0f*s) : 2.0f*s;
1078 float b = t > 0.5f ? (2.0f - 2.0f*t) : 2.0f*t;
1079
1080 float p = deFloatClamp(deFloatSqrt(a*a + b*b), 0.0f, 1.0f);
1081 access.setPixel(linearInterpolate(p, colorA, colorB), x, y);
1082 }
1083 }
1084 }
1085
fillWithRGBAQuads(const PixelBufferAccess & dst)1086 void fillWithRGBAQuads (const PixelBufferAccess& dst)
1087 {
1088 TCU_CHECK_INTERNAL(dst.getDepth() == 1);
1089 int width = dst.getWidth();
1090 int height = dst.getHeight();
1091 int left = width/2;
1092 int top = height/2;
1093
1094 clear(getSubregion(dst, 0, 0, 0, left, top, 1), Vec4(1.0f, 0.0f, 0.0f, 1.0f));
1095 clear(getSubregion(dst, left, 0, 0, width-left, top, 1), Vec4(0.0f, 1.0f, 0.0f, 1.0f));
1096 clear(getSubregion(dst, 0, top, 0, left, height-top, 1), Vec4(0.0f, 0.0f, 1.0f, 0.0f));
1097 clear(getSubregion(dst, left, top, 0, width-left, height-top, 1), Vec4(0.5f, 0.5f, 0.5f, 1.0f));
1098 }
1099
1100 // \todo [2012-11-13 pyry] There is much better metaballs code in CL SIR value generators.
fillWithMetaballs(const PixelBufferAccess & dst,int numBalls,deUint32 seed)1101 void fillWithMetaballs (const PixelBufferAccess& dst, int numBalls, deUint32 seed)
1102 {
1103 TCU_CHECK_INTERNAL(dst.getDepth() == 1);
1104 std::vector<Vec2> points(numBalls);
1105 de::Random rnd(seed);
1106
1107 for (int i = 0; i < numBalls; i++)
1108 {
1109 float x = rnd.getFloat();
1110 float y = rnd.getFloat();
1111 points[i] = (Vec2(x, y));
1112 }
1113
1114 for (int y = 0; y < dst.getHeight(); y++)
1115 for (int x = 0; x < dst.getWidth(); x++)
1116 {
1117 Vec2 p((float)x/(float)dst.getWidth(), (float)y/(float)dst.getHeight());
1118
1119 float sum = 0.0f;
1120 for (std::vector<Vec2>::const_iterator i = points.begin(); i != points.end(); i++)
1121 {
1122 Vec2 d = p - *i;
1123 float f = 0.01f / (d.x()*d.x() + d.y()*d.y());
1124
1125 sum += f;
1126 }
1127
1128 dst.setPixel(Vec4(sum), x, y);
1129 }
1130 }
1131
copy(const PixelBufferAccess & dst,const ConstPixelBufferAccess & src,const bool clearUnused)1132 void copy (const PixelBufferAccess& dst, const ConstPixelBufferAccess& src, const bool clearUnused)
1133 {
1134 DE_ASSERT(src.getSize() == dst.getSize());
1135
1136 const int width = dst.getWidth();
1137 const int height = dst.getHeight();
1138 const int depth = dst.getDepth();
1139
1140 const int srcPixelSize = src.getFormat().getPixelSize();
1141 const int dstPixelSize = dst.getFormat().getPixelSize();
1142 const int srcPixelPitch = src.getPixelPitch();
1143 const int dstPixelPitch = dst.getPixelPitch();
1144 const bool srcTightlyPacked = (srcPixelSize == srcPixelPitch);
1145 const bool dstTightlyPacked = (dstPixelSize == dstPixelPitch);
1146
1147 const bool srcHasDepth = (src.getFormat().order == tcu::TextureFormat::DS || src.getFormat().order == tcu::TextureFormat::D);
1148 const bool srcHasStencil = (src.getFormat().order == tcu::TextureFormat::DS || src.getFormat().order == tcu::TextureFormat::S);
1149 const bool dstHasDepth = (dst.getFormat().order == tcu::TextureFormat::DS || dst.getFormat().order == tcu::TextureFormat::D);
1150 const bool dstHasStencil = (dst.getFormat().order == tcu::TextureFormat::DS || dst.getFormat().order == tcu::TextureFormat::S);
1151
1152 if (src.getFormat() == dst.getFormat() && srcTightlyPacked && dstTightlyPacked)
1153 {
1154 // Fast-path for matching formats.
1155 for (int z = 0; z < depth; z++)
1156 for (int y = 0; y < height; y++)
1157 deMemcpy(dst.getPixelPtr(0, y, z), src.getPixelPtr(0, y, z), srcPixelSize*width);
1158 }
1159 else if (src.getFormat() == dst.getFormat())
1160 {
1161 // Bit-exact copy for matching formats.
1162 for (int z = 0; z < depth; z++)
1163 for (int y = 0; y < height; y++)
1164 for (int x = 0; x < width; x++)
1165 deMemcpy(dst.getPixelPtr(x, y, z), src.getPixelPtr(x, y, z), srcPixelSize);
1166 }
1167 else if (srcHasDepth || srcHasStencil || dstHasDepth || dstHasStencil)
1168 {
1169 DE_ASSERT((srcHasDepth && dstHasDepth) || (srcHasStencil && dstHasStencil)); // must have at least one common channel
1170
1171 if (dstHasDepth && srcHasDepth)
1172 {
1173 for (int z = 0; z < depth; z++)
1174 for (int y = 0; y < height; y++)
1175 for (int x = 0; x < width; x++)
1176 dst.setPixDepth(src.getPixDepth(x, y, z), x, y, z);
1177 }
1178 else if (dstHasDepth && !srcHasDepth && clearUnused)
1179 {
1180 // consistency with color copies
1181 tcu::clearDepth(dst, 0.0f);
1182 }
1183
1184 if (dstHasStencil && srcHasStencil)
1185 {
1186 for (int z = 0; z < depth; z++)
1187 for (int y = 0; y < height; y++)
1188 for (int x = 0; x < width; x++)
1189 dst.setPixStencil(src.getPixStencil(x, y, z), x, y, z);
1190 }
1191 else if (dstHasStencil && !srcHasStencil && clearUnused)
1192 {
1193 // consistency with color copies
1194 tcu::clearStencil(dst, 0u);
1195 }
1196 }
1197 else
1198 {
1199 TextureChannelClass srcClass = getTextureChannelClass(src.getFormat().type);
1200 TextureChannelClass dstClass = getTextureChannelClass(dst.getFormat().type);
1201 bool srcIsInt = srcClass == TEXTURECHANNELCLASS_SIGNED_INTEGER || srcClass == TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
1202 bool dstIsInt = dstClass == TEXTURECHANNELCLASS_SIGNED_INTEGER || dstClass == TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
1203
1204 if (srcIsInt && dstIsInt)
1205 {
1206 for (int z = 0; z < depth; z++)
1207 for (int y = 0; y < height; y++)
1208 for (int x = 0; x < width; x++)
1209 dst.setPixel(src.getPixelInt(x, y, z), x, y, z);
1210 }
1211 else
1212 {
1213 for (int z = 0; z < depth; z++)
1214 for (int y = 0; y < height; y++)
1215 for (int x = 0; x < width; x++)
1216 dst.setPixel(src.getPixel(x, y, z), x, y, z);
1217 }
1218 }
1219 }
1220
scale(const PixelBufferAccess & dst,const ConstPixelBufferAccess & src,Sampler::FilterMode filter)1221 void scale (const PixelBufferAccess& dst, const ConstPixelBufferAccess& src, Sampler::FilterMode filter)
1222 {
1223 DE_ASSERT(filter == Sampler::NEAREST || filter == Sampler::LINEAR);
1224
1225 Sampler sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE,
1226 filter, filter, 0.0f, false);
1227
1228 float sX = (float)src.getWidth() / (float)dst.getWidth();
1229 float sY = (float)src.getHeight() / (float)dst.getHeight();
1230 float sZ = (float)src.getDepth() / (float)dst.getDepth();
1231
1232 if (dst.getDepth() == 1 && src.getDepth() == 1)
1233 {
1234 for (int y = 0; y < dst.getHeight(); y++)
1235 for (int x = 0; x < dst.getWidth(); x++)
1236 dst.setPixel(linearToSRGBIfNeeded(dst.getFormat(), src.sample2D(sampler, filter, ((float)x+0.5f)*sX, ((float)y+0.5f)*sY, 0)), x, y);
1237 }
1238 else
1239 {
1240 for (int z = 0; z < dst.getDepth(); z++)
1241 for (int y = 0; y < dst.getHeight(); y++)
1242 for (int x = 0; x < dst.getWidth(); x++)
1243 dst.setPixel(linearToSRGBIfNeeded(dst.getFormat(), src.sample3D(sampler, filter, ((float)x+0.5f)*sX, ((float)y+0.5f)*sY, ((float)z+0.5f)*sZ)), x, y, z);
1244 }
1245 }
1246
estimatePixelValueRange(const ConstPixelBufferAccess & access,Vec4 & minVal,Vec4 & maxVal)1247 void estimatePixelValueRange (const ConstPixelBufferAccess& access, Vec4& minVal, Vec4& maxVal)
1248 {
1249 const TextureFormat& format = access.getFormat();
1250
1251 switch (getTextureChannelClass(format.type))
1252 {
1253 case TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
1254 // Normalized unsigned formats.
1255 minVal = Vec4(0.0f);
1256 maxVal = Vec4(1.0f);
1257 break;
1258
1259 case TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
1260 // Normalized signed formats.
1261 minVal = Vec4(-1.0f);
1262 maxVal = Vec4(+1.0f);
1263 break;
1264
1265 default:
1266 // \note Samples every 4/8th pixel.
1267 minVal = Vec4(std::numeric_limits<float>::max());
1268 maxVal = Vec4(std::numeric_limits<float>::min());
1269
1270 for (int z = 0; z < access.getDepth(); z += 2)
1271 {
1272 for (int y = 0; y < access.getHeight(); y += 2)
1273 {
1274 for (int x = 0; x < access.getWidth(); x += 2)
1275 {
1276 Vec4 p = access.getPixel(x, y, z);
1277
1278 minVal[0] = (deFloatIsNaN(p[0]) ? minVal[0] : de::min(minVal[0], p[0]));
1279 minVal[1] = (deFloatIsNaN(p[1]) ? minVal[1] : de::min(minVal[1], p[1]));
1280 minVal[2] = (deFloatIsNaN(p[2]) ? minVal[2] : de::min(minVal[2], p[2]));
1281 minVal[3] = (deFloatIsNaN(p[3]) ? minVal[3] : de::min(minVal[3], p[3]));
1282
1283 maxVal[0] = (deFloatIsNaN(p[0]) ? maxVal[0] : de::max(maxVal[0], p[0]));
1284 maxVal[1] = (deFloatIsNaN(p[1]) ? maxVal[1] : de::max(maxVal[1], p[1]));
1285 maxVal[2] = (deFloatIsNaN(p[2]) ? maxVal[2] : de::max(maxVal[2], p[2]));
1286 maxVal[3] = (deFloatIsNaN(p[3]) ? maxVal[3] : de::max(maxVal[3], p[3]));
1287 }
1288 }
1289 }
1290 break;
1291 }
1292 }
1293
computePixelScaleBias(const ConstPixelBufferAccess & access,Vec4 & scale,Vec4 & bias)1294 void computePixelScaleBias (const ConstPixelBufferAccess& access, Vec4& scale, Vec4& bias)
1295 {
1296 Vec4 minVal, maxVal;
1297 estimatePixelValueRange(access, minVal, maxVal);
1298
1299 const float eps = 0.0001f;
1300
1301 for (int c = 0; c < 4; c++)
1302 {
1303 if (maxVal[c] - minVal[c] < eps)
1304 {
1305 scale[c] = (maxVal[c] < eps) ? 1.0f : (1.0f / maxVal[c]);
1306 bias[c] = (c == 3) ? (1.0f - maxVal[c]*scale[c]) : (0.0f - minVal[c]*scale[c]);
1307 }
1308 else
1309 {
1310 scale[c] = 1.0f / (maxVal[c] - minVal[c]);
1311 bias[c] = 0.0f - minVal[c]*scale[c];
1312 }
1313 }
1314 }
1315
getCubeArrayFaceIndex(CubeFace face)1316 int getCubeArrayFaceIndex (CubeFace face)
1317 {
1318 DE_ASSERT((int)face >= 0 && face < CUBEFACE_LAST);
1319
1320 switch (face)
1321 {
1322 case CUBEFACE_POSITIVE_X: return 0;
1323 case CUBEFACE_NEGATIVE_X: return 1;
1324 case CUBEFACE_POSITIVE_Y: return 2;
1325 case CUBEFACE_NEGATIVE_Y: return 3;
1326 case CUBEFACE_POSITIVE_Z: return 4;
1327 case CUBEFACE_NEGATIVE_Z: return 5;
1328
1329 default:
1330 return -1;
1331 }
1332 }
1333
packRGB999E5(const tcu::Vec4 & color)1334 deUint32 packRGB999E5 (const tcu::Vec4& color)
1335 {
1336 const int mBits = 9;
1337 const int eBits = 5;
1338 const int eBias = 15;
1339 const int eMax = (1<<eBits)-1;
1340 const float maxVal = (float)(((1<<mBits) - 1) * (1<<(eMax-eBias))) / (float)(1<<mBits);
1341
1342 float rc = deFloatClamp(color[0], 0.0f, maxVal);
1343 float gc = deFloatClamp(color[1], 0.0f, maxVal);
1344 float bc = deFloatClamp(color[2], 0.0f, maxVal);
1345 float maxc = de::max(rc, de::max(gc, bc));
1346 float log2c = deFloatLog2(maxc);
1347 deInt32 floorc = deIsInf(log2c) ? std::numeric_limits<deInt32>::min() : deFloorFloatToInt32(log2c);
1348 int exps = de::max(-eBias - 1, floorc) + 1 + eBias;
1349 float e = deFloatPow(2.0f, (float)(exps-eBias-mBits));
1350 int maxs = deFloorFloatToInt32(maxc / e + 0.5f);
1351
1352 if (maxs == (1<<mBits))
1353 {
1354 exps++;
1355 e *= 2.0f;
1356 }
1357
1358 deUint32 rs = (deUint32)deFloorFloatToInt32(rc / e + 0.5f);
1359 deUint32 gs = (deUint32)deFloorFloatToInt32(gc / e + 0.5f);
1360 deUint32 bs = (deUint32)deFloorFloatToInt32(bc / e + 0.5f);
1361
1362 DE_ASSERT((exps & ~((1<<5)-1)) == 0);
1363 DE_ASSERT((rs & ~((1<<9)-1)) == 0);
1364 DE_ASSERT((gs & ~((1<<9)-1)) == 0);
1365 DE_ASSERT((bs & ~((1<<9)-1)) == 0);
1366
1367 return rs | (gs << 9) | (bs << 18) | (exps << 27);
1368 }
1369
1370 // Sampler utils
1371
addOffset(const void * ptr,int numBytes)1372 static const void* addOffset (const void* ptr, int numBytes)
1373 {
1374 return (const deUint8*)ptr + numBytes;
1375 }
1376
addOffset(void * ptr,int numBytes)1377 static void* addOffset (void* ptr, int numBytes)
1378 {
1379 return (deUint8*)ptr + numBytes;
1380 }
1381
1382 template <typename AccessType>
toSamplerAccess(const AccessType & baseAccess,Sampler::DepthStencilMode mode)1383 static AccessType toSamplerAccess (const AccessType& baseAccess, Sampler::DepthStencilMode mode)
1384 {
1385 // make sure to update this if type table is updated
1386 DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
1387
1388 if (!isCombinedDepthStencilType(baseAccess.getFormat().type))
1389 return baseAccess;
1390 else
1391 {
1392 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
1393 const deUint32 uint32ByteOffsetBits0To8 = 0; //!< least significant byte in the lowest address
1394 const deUint32 uint32ByteOffsetBits0To24 = 0;
1395 const deUint32 uint32ByteOffsetBits8To32 = 1;
1396 const deUint32 uint32ByteOffsetBits16To32 = 2;
1397 const deUint32 uint32ByteOffsetBits24To32 = 3;
1398 #else
1399 const deUint32 uint32ByteOffsetBits0To8 = 3; //!< least significant byte in the highest address
1400 const deUint32 uint32ByteOffsetBits0To24 = 1;
1401 const deUint32 uint32ByteOffsetBits8To32 = 0;
1402 const deUint32 uint32ByteOffsetBits16To32 = 0;
1403 const deUint32 uint32ByteOffsetBits24To32 = 0;
1404 #endif
1405
1406 // Sampled channel must exist
1407 DE_ASSERT(baseAccess.getFormat().order == TextureFormat::DS ||
1408 (mode == Sampler::MODE_DEPTH && baseAccess.getFormat().order == TextureFormat::D) ||
1409 (mode == Sampler::MODE_STENCIL && baseAccess.getFormat().order == TextureFormat::S));
1410
1411 // combined formats have multiple channel classes, detect on sampler settings
1412 switch (baseAccess.getFormat().type)
1413 {
1414 case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
1415 {
1416 if (mode == Sampler::MODE_DEPTH)
1417 {
1418 // select the float component
1419 return AccessType(TextureFormat(TextureFormat::D, TextureFormat::FLOAT),
1420 baseAccess.getSize(),
1421 baseAccess.getPitch(),
1422 baseAccess.getDataPtr());
1423 }
1424 else if (mode == Sampler::MODE_STENCIL)
1425 {
1426 // select the uint 8 component
1427 return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8),
1428 baseAccess.getSize(),
1429 baseAccess.getPitch(),
1430 addOffset(baseAccess.getDataPtr(), 4 + uint32ByteOffsetBits0To8));
1431 }
1432 else
1433 {
1434 // unknown sampler mode
1435 DE_ASSERT(false);
1436 return AccessType();
1437 }
1438 }
1439
1440 case TextureFormat::UNSIGNED_INT_16_8_8:
1441 {
1442 if (mode == Sampler::MODE_DEPTH)
1443 {
1444 // select the unorm16 component
1445 return AccessType(TextureFormat(TextureFormat::D, TextureFormat::UNORM_INT16),
1446 baseAccess.getSize(),
1447 baseAccess.getPitch(),
1448 addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits16To32));
1449 }
1450 else if (mode == Sampler::MODE_STENCIL)
1451 {
1452 // select the uint 8 component
1453 return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8),
1454 baseAccess.getSize(),
1455 baseAccess.getPitch(),
1456 addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits0To8));
1457 }
1458 else
1459 {
1460 // unknown sampler mode
1461 DE_ASSERT(false);
1462 return AccessType();
1463 }
1464 }
1465
1466 case TextureFormat::UNSIGNED_INT_24_8:
1467 {
1468 if (mode == Sampler::MODE_DEPTH)
1469 {
1470 // select the unorm24 component
1471 return AccessType(TextureFormat(TextureFormat::D, TextureFormat::UNORM_INT24),
1472 baseAccess.getSize(),
1473 baseAccess.getPitch(),
1474 addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits8To32));
1475 }
1476 else if (mode == Sampler::MODE_STENCIL)
1477 {
1478 // select the uint 8 component
1479 return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8),
1480 baseAccess.getSize(),
1481 baseAccess.getPitch(),
1482 addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits0To8));
1483 }
1484 else
1485 {
1486 // unknown sampler mode
1487 DE_ASSERT(false);
1488 return AccessType();
1489 }
1490 }
1491
1492 case TextureFormat::UNSIGNED_INT_24_8_REV:
1493 {
1494 if (mode == Sampler::MODE_DEPTH)
1495 {
1496 // select the unorm24 component
1497 return AccessType(TextureFormat(TextureFormat::D, TextureFormat::UNORM_INT24),
1498 baseAccess.getSize(),
1499 baseAccess.getPitch(),
1500 addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits0To24));
1501 }
1502 else if (mode == Sampler::MODE_STENCIL)
1503 {
1504 // select the uint 8 component
1505 return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8),
1506 baseAccess.getSize(),
1507 baseAccess.getPitch(),
1508 addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits24To32));
1509 }
1510 else
1511 {
1512 // unknown sampler mode
1513 DE_ASSERT(false);
1514 return AccessType();
1515 }
1516 }
1517
1518 default:
1519 {
1520 // unknown combined format
1521 DE_ASSERT(false);
1522 return AccessType();
1523 }
1524 }
1525 }
1526 }
1527
getEffectiveDepthStencilAccess(const PixelBufferAccess & baseAccess,Sampler::DepthStencilMode mode)1528 PixelBufferAccess getEffectiveDepthStencilAccess (const PixelBufferAccess& baseAccess, Sampler::DepthStencilMode mode)
1529 {
1530 return toSamplerAccess<PixelBufferAccess>(baseAccess, mode);
1531 }
1532
getEffectiveDepthStencilAccess(const ConstPixelBufferAccess & baseAccess,Sampler::DepthStencilMode mode)1533 ConstPixelBufferAccess getEffectiveDepthStencilAccess (const ConstPixelBufferAccess& baseAccess, Sampler::DepthStencilMode mode)
1534 {
1535 return toSamplerAccess<ConstPixelBufferAccess>(baseAccess, mode);
1536 }
1537
getEffectiveDepthStencilTextureFormat(const TextureFormat & baseFormat,Sampler::DepthStencilMode mode)1538 TextureFormat getEffectiveDepthStencilTextureFormat (const TextureFormat& baseFormat, Sampler::DepthStencilMode mode)
1539 {
1540 return toSamplerAccess(ConstPixelBufferAccess(baseFormat, IVec3(0, 0, 0), DE_NULL), mode).getFormat();
1541 }
1542
1543 template <typename ViewType>
getEffectiveTView(const ViewType & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1544 ViewType getEffectiveTView (const ViewType& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1545 {
1546 storage.resize(src.getNumLevels());
1547
1548 ViewType view = ViewType(src.getNumLevels(), &storage[0], src.isES2());
1549
1550 for (int levelNdx = 0; levelNdx < src.getNumLevels(); ++levelNdx)
1551 storage[levelNdx] = tcu::getEffectiveDepthStencilAccess(src.getLevel(levelNdx), sampler.depthStencilMode);
1552
1553 return view;
1554 }
1555
getEffectiveTView(const tcu::TextureCubeView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1556 tcu::TextureCubeView getEffectiveTView (const tcu::TextureCubeView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1557 {
1558 storage.resize(tcu::CUBEFACE_LAST * src.getNumLevels());
1559
1560 const tcu::ConstPixelBufferAccess* storagePtrs[tcu::CUBEFACE_LAST] =
1561 {
1562 &storage[0 * src.getNumLevels()],
1563 &storage[1 * src.getNumLevels()],
1564 &storage[2 * src.getNumLevels()],
1565 &storage[3 * src.getNumLevels()],
1566 &storage[4 * src.getNumLevels()],
1567 &storage[5 * src.getNumLevels()],
1568 };
1569
1570 tcu::TextureCubeView view = tcu::TextureCubeView(src.getNumLevels(), storagePtrs, false);
1571
1572 for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
1573 for (int levelNdx = 0; levelNdx < src.getNumLevels(); ++levelNdx)
1574 storage[faceNdx * src.getNumLevels() + levelNdx] = tcu::getEffectiveDepthStencilAccess(src.getLevelFace(levelNdx, (tcu::CubeFace)faceNdx), sampler.depthStencilMode);
1575
1576 return view;
1577 }
1578
getEffectiveTextureView(const tcu::Texture1DView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1579 tcu::Texture1DView getEffectiveTextureView (const tcu::Texture1DView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1580 {
1581 return getEffectiveTView(src, storage, sampler);
1582 }
1583
getEffectiveTextureView(const tcu::Texture2DView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1584 tcu::Texture2DView getEffectiveTextureView (const tcu::Texture2DView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1585 {
1586 return getEffectiveTView(src, storage, sampler);
1587 }
1588
getEffectiveTextureView(const tcu::Texture3DView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1589 tcu::Texture3DView getEffectiveTextureView (const tcu::Texture3DView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1590 {
1591 return getEffectiveTView(src, storage, sampler);
1592 }
1593
getEffectiveTextureView(const tcu::Texture1DArrayView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1594 tcu::Texture1DArrayView getEffectiveTextureView (const tcu::Texture1DArrayView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1595 {
1596 return getEffectiveTView(src, storage, sampler);
1597 }
1598
getEffectiveTextureView(const tcu::Texture2DArrayView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1599 tcu::Texture2DArrayView getEffectiveTextureView (const tcu::Texture2DArrayView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1600 {
1601 return getEffectiveTView(src, storage, sampler);
1602 }
1603
getEffectiveTextureView(const tcu::TextureCubeView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1604 tcu::TextureCubeView getEffectiveTextureView (const tcu::TextureCubeView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1605 {
1606 return getEffectiveTView(src, storage, sampler);
1607 }
1608
getEffectiveTextureView(const tcu::TextureCubeArrayView & src,std::vector<tcu::ConstPixelBufferAccess> & storage,const tcu::Sampler & sampler)1609 tcu::TextureCubeArrayView getEffectiveTextureView (const tcu::TextureCubeArrayView& src, std::vector<tcu::ConstPixelBufferAccess>& storage, const tcu::Sampler& sampler)
1610 {
1611 return getEffectiveTView(src, storage, sampler);
1612 }
1613
1614 //! Returns the effective swizzle of a border color. The effective swizzle is the
1615 //! equal to first writing an RGBA color with a write swizzle and then reading
1616 //! it back using a read swizzle, i.e. BorderSwizzle(c) == readSwizzle(writeSwizzle(C))
getBorderColorReadSwizzle(TextureFormat::ChannelOrder order)1617 static const TextureSwizzle& getBorderColorReadSwizzle (TextureFormat::ChannelOrder order)
1618 {
1619 // make sure to update these tables when channel orders are updated
1620 DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
1621
1622 static const TextureSwizzle INV = {{ TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }};
1623 static const TextureSwizzle R = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }};
1624 static const TextureSwizzle A = {{ TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_3 }};
1625 static const TextureSwizzle I = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0 }};
1626 static const TextureSwizzle L = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ONE }};
1627 static const TextureSwizzle LA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3 }};
1628 static const TextureSwizzle RG = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }};
1629 static const TextureSwizzle RA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_3 }};
1630 static const TextureSwizzle RGB = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_ONE }};
1631 static const TextureSwizzle RGBA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_3 }};
1632 static const TextureSwizzle D = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }};
1633 static const TextureSwizzle S = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }};
1634
1635 const TextureSwizzle* swizzle;
1636
1637 switch (order)
1638 {
1639 case TextureFormat::R: swizzle = &R; break;
1640 case TextureFormat::A: swizzle = &A; break;
1641 case TextureFormat::I: swizzle = &I; break;
1642 case TextureFormat::L: swizzle = &L; break;
1643 case TextureFormat::LA: swizzle = &LA; break;
1644 case TextureFormat::RG: swizzle = &RG; break;
1645 case TextureFormat::RA: swizzle = &RA; break;
1646 case TextureFormat::RGB: swizzle = &RGB; break;
1647 case TextureFormat::RGBA: swizzle = &RGBA; break;
1648 case TextureFormat::ARGB: swizzle = &RGBA; break;
1649 case TextureFormat::ABGR: swizzle = &RGBA; break;
1650 case TextureFormat::BGR: swizzle = &RGB; break;
1651 case TextureFormat::BGRA: swizzle = &RGBA; break;
1652 case TextureFormat::sR: swizzle = &R; break;
1653 case TextureFormat::sRG: swizzle = &RG; break;
1654 case TextureFormat::sRGB: swizzle = &RGB; break;
1655 case TextureFormat::sRGBA: swizzle = &RGBA; break;
1656 case TextureFormat::sBGR: swizzle = &RGB; break;
1657 case TextureFormat::sBGRA: swizzle = &RGBA; break;
1658 case TextureFormat::D: swizzle = &D; break;
1659 case TextureFormat::S: swizzle = &S; break;
1660
1661 case TextureFormat::DS:
1662 DE_ASSERT(false); // combined depth-stencil border color?
1663 swizzle = &INV;
1664 break;
1665
1666 default:
1667 DE_ASSERT(false);
1668 swizzle = &INV;
1669 break;
1670 }
1671
1672 #ifdef DE_DEBUG
1673
1674 {
1675 // check that BorderSwizzle(c) == readSwizzle(writeSwizzle(C))
1676 const TextureSwizzle& readSwizzle = getChannelReadSwizzle(order);
1677 const TextureSwizzle& writeSwizzle = getChannelWriteSwizzle(order);
1678
1679 for (int ndx = 0; ndx < 4; ++ndx)
1680 {
1681 TextureSwizzle::Channel writeRead = readSwizzle.components[ndx];
1682 if (deInRange32(writeRead, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == DE_TRUE)
1683 writeRead = writeSwizzle.components[(int)writeRead];
1684 DE_ASSERT(writeRead == swizzle->components[ndx]);
1685 }
1686 }
1687
1688 #endif
1689
1690 return *swizzle;
1691 }
1692
getNBitUnsignedIntegerVec4MaxValue(const tcu::IVec4 & numBits)1693 static tcu::UVec4 getNBitUnsignedIntegerVec4MaxValue (const tcu::IVec4& numBits)
1694 {
1695 return tcu::UVec4((numBits[0] > 0) ? (deUintMaxValue32(numBits[0])) : (0),
1696 (numBits[1] > 0) ? (deUintMaxValue32(numBits[1])) : (0),
1697 (numBits[2] > 0) ? (deUintMaxValue32(numBits[2])) : (0),
1698 (numBits[3] > 0) ? (deUintMaxValue32(numBits[3])) : (0));
1699 }
1700
getNBitSignedIntegerVec4MaxValue(const tcu::IVec4 & numBits)1701 static tcu::IVec4 getNBitSignedIntegerVec4MaxValue (const tcu::IVec4& numBits)
1702 {
1703 return tcu::IVec4((numBits[0] > 0) ? (deIntMaxValue32(numBits[0])) : (0),
1704 (numBits[1] > 0) ? (deIntMaxValue32(numBits[1])) : (0),
1705 (numBits[2] > 0) ? (deIntMaxValue32(numBits[2])) : (0),
1706 (numBits[3] > 0) ? (deIntMaxValue32(numBits[3])) : (0));
1707 }
1708
getNBitSignedIntegerVec4MinValue(const tcu::IVec4 & numBits)1709 static tcu::IVec4 getNBitSignedIntegerVec4MinValue (const tcu::IVec4& numBits)
1710 {
1711 return tcu::IVec4((numBits[0] > 0) ? (deIntMinValue32(numBits[0])) : (0),
1712 (numBits[1] > 0) ? (deIntMinValue32(numBits[1])) : (0),
1713 (numBits[2] > 0) ? (deIntMinValue32(numBits[2])) : (0),
1714 (numBits[3] > 0) ? (deIntMinValue32(numBits[3])) : (0));
1715 }
1716
getTextureBorderColorFloat(const TextureFormat & format,const Sampler & sampler)1717 static tcu::Vec4 getTextureBorderColorFloat (const TextureFormat& format, const Sampler& sampler)
1718 {
1719 const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
1720 const TextureSwizzle::Channel* channelMap = getBorderColorReadSwizzle(format.order).components;
1721 const bool isFloat = channelClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT;
1722 const bool isSigned = channelClass != tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
1723 const float valueMin = (isSigned) ? (-1.0f) : (0.0f);
1724 const float valueMax = 1.0f;
1725 Vec4 result;
1726
1727 DE_ASSERT(channelClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT ||
1728 channelClass == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ||
1729 channelClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT);
1730
1731 for (int c = 0; c < 4; c++)
1732 {
1733 const TextureSwizzle::Channel map = channelMap[c];
1734 if (map == TextureSwizzle::CHANNEL_ZERO)
1735 result[c] = 0.0f;
1736 else if (map == TextureSwizzle::CHANNEL_ONE)
1737 result[c] = 1.0f;
1738 else if (isFloat)
1739 {
1740 // floating point values are not clamped
1741 result[c] = sampler.borderColor.getAccess<float>()[(int)map];
1742 }
1743 else
1744 {
1745 // fixed point values are clamped to a representable range
1746 result[c] = de::clamp(sampler.borderColor.getAccess<float>()[(int)map], valueMin, valueMax);
1747 }
1748 }
1749
1750 return result;
1751 }
1752
getTextureBorderColorInt(const TextureFormat & format,const Sampler & sampler)1753 static tcu::IVec4 getTextureBorderColorInt (const TextureFormat& format, const Sampler& sampler)
1754 {
1755 const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
1756 const TextureSwizzle::Channel* channelMap = getBorderColorReadSwizzle(format.order).components;
1757 const IVec4 channelBits = getChannelBitDepth(format.type);
1758 const IVec4 valueMin = getNBitSignedIntegerVec4MinValue(channelBits);
1759 const IVec4 valueMax = getNBitSignedIntegerVec4MaxValue(channelBits);
1760 IVec4 result;
1761
1762 DE_ASSERT(channelClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER);
1763 DE_UNREF(channelClass);
1764
1765 for (int c = 0; c < 4; c++)
1766 {
1767 const TextureSwizzle::Channel map = channelMap[c];
1768 if (map == TextureSwizzle::CHANNEL_ZERO)
1769 result[c] = 0;
1770 else if (map == TextureSwizzle::CHANNEL_ONE)
1771 result[c] = 1;
1772 else
1773 {
1774 // integer values are clamped to a representable range
1775 result[c] = de::clamp(sampler.borderColor.getAccess<deInt32>()[(int)map], valueMin[(int)map], valueMax[(int)map]);
1776 }
1777 }
1778
1779 return result;
1780 }
1781
getTextureBorderColorUint(const TextureFormat & format,const Sampler & sampler)1782 static tcu::UVec4 getTextureBorderColorUint (const TextureFormat& format, const Sampler& sampler)
1783 {
1784 const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
1785 const TextureSwizzle::Channel* channelMap = getBorderColorReadSwizzle(format.order).components;
1786 const IVec4 channelBits = getChannelBitDepth(format.type);
1787 const UVec4 valueMax = getNBitUnsignedIntegerVec4MaxValue(channelBits);
1788 UVec4 result;
1789
1790 DE_ASSERT(channelClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER);
1791 DE_UNREF(channelClass);
1792
1793 for (int c = 0; c < 4; c++)
1794 {
1795 const TextureSwizzle::Channel map = channelMap[c];
1796 if (map == TextureSwizzle::CHANNEL_ZERO)
1797 result[c] = 0;
1798 else if (map == TextureSwizzle::CHANNEL_ONE)
1799 result[c] = 1;
1800 else
1801 {
1802 // integer values are clamped to a representable range
1803 result[c] = de::min(sampler.borderColor.getAccess<deUint32>()[(int)map], valueMax[(int)map]);
1804 }
1805 }
1806
1807 return result;
1808 }
1809
1810 template <typename ScalarType>
sampleTextureBorder(const TextureFormat & format,const Sampler & sampler)1811 tcu::Vector<ScalarType, 4> sampleTextureBorder (const TextureFormat& format, const Sampler& sampler)
1812 {
1813 const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
1814
1815 switch (channelClass)
1816 {
1817 case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
1818 case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
1819 case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
1820 return getTextureBorderColorFloat(format, sampler).cast<ScalarType>();
1821
1822 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
1823 return getTextureBorderColorInt(format, sampler).cast<ScalarType>();
1824
1825 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
1826 return getTextureBorderColorUint(format, sampler).cast<ScalarType>();
1827
1828 default:
1829 DE_ASSERT(false);
1830 return tcu::Vector<ScalarType, 4>();
1831 }
1832 }
1833
1834 // instantiation
1835 template tcu::Vector<float, 4> sampleTextureBorder (const TextureFormat& format, const Sampler& sampler);
1836 template tcu::Vector<deInt32, 4> sampleTextureBorder (const TextureFormat& format, const Sampler& sampler);
1837 template tcu::Vector<deUint32, 4> sampleTextureBorder (const TextureFormat& format, const Sampler& sampler);
1838
1839 } // tcu
1840