• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46 
47 #include "process.h"
48 
49 /*
50  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51  * no more per-task TSS's. The TSS size is kept cacheline-aligned
52  * so they are allowed to end up in the .data..cacheline_aligned
53  * section. Since TSS's are completely CPU-local, we want them
54  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55  */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 	.x86_tss = {
58 		/*
59 		 * .sp0 is only used when entering ring 0 from a lower
60 		 * privilege level.  Since the init task never runs anything
61 		 * but ring 0 code, there is no need for a valid value here.
62 		 * Poison it.
63 		 */
64 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65 
66 		/*
67 		 * .sp1 is cpu_current_top_of_stack.  The init task never
68 		 * runs user code, but cpu_current_top_of_stack should still
69 		 * be well defined before the first context switch.
70 		 */
71 		.sp1 = TOP_OF_INIT_STACK,
72 
73 #ifdef CONFIG_X86_32
74 		.ss0 = __KERNEL_DS,
75 		.ss1 = __KERNEL_CS,
76 #endif
77 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
78 	 },
79 };
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81 
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84 
85 /*
86  * this gets called so that we can store lazy state into memory and copy the
87  * current task into the new thread.
88  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 	memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 	dst->thread.vm86 = NULL;
94 #endif
95 
96 	return fpu__copy(dst, src);
97 }
98 
99 /*
100  * Free thread data structures etc..
101  */
exit_thread(struct task_struct * tsk)102 void exit_thread(struct task_struct *tsk)
103 {
104 	struct thread_struct *t = &tsk->thread;
105 	struct fpu *fpu = &t->fpu;
106 
107 	if (test_thread_flag(TIF_IO_BITMAP))
108 		io_bitmap_exit(tsk);
109 
110 	free_vm86(t);
111 
112 	fpu__drop(fpu);
113 }
114 
set_new_tls(struct task_struct * p,unsigned long tls)115 static int set_new_tls(struct task_struct *p, unsigned long tls)
116 {
117 	struct user_desc __user *utls = (struct user_desc __user *)tls;
118 
119 	if (in_ia32_syscall())
120 		return do_set_thread_area(p, -1, utls, 0);
121 	else
122 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123 }
124 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)125 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126 		struct task_struct *p, unsigned long tls)
127 {
128 	struct inactive_task_frame *frame;
129 	struct fork_frame *fork_frame;
130 	struct pt_regs *childregs;
131 	int ret = 0;
132 
133 	childregs = task_pt_regs(p);
134 	fork_frame = container_of(childregs, struct fork_frame, regs);
135 	frame = &fork_frame->frame;
136 
137 	frame->bp = encode_frame_pointer(childregs);
138 	frame->ret_addr = (unsigned long) ret_from_fork;
139 	p->thread.sp = (unsigned long) fork_frame;
140 	p->thread.io_bitmap = NULL;
141 	p->thread.iopl_warn = 0;
142 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
143 
144 #ifdef CONFIG_X86_64
145 	current_save_fsgs();
146 	p->thread.fsindex = current->thread.fsindex;
147 	p->thread.fsbase = current->thread.fsbase;
148 	p->thread.gsindex = current->thread.gsindex;
149 	p->thread.gsbase = current->thread.gsbase;
150 
151 	savesegment(es, p->thread.es);
152 	savesegment(ds, p->thread.ds);
153 #else
154 	p->thread.sp0 = (unsigned long) (childregs + 1);
155 	/*
156 	 * Clear all status flags including IF and set fixed bit. 64bit
157 	 * does not have this initialization as the frame does not contain
158 	 * flags. The flags consistency (especially vs. AC) is there
159 	 * ensured via objtool, which lacks 32bit support.
160 	 */
161 	frame->flags = X86_EFLAGS_FIXED;
162 #endif
163 
164 	/* Kernel thread ? */
165 	if (unlikely(p->flags & PF_KTHREAD)) {
166 		memset(childregs, 0, sizeof(struct pt_regs));
167 		kthread_frame_init(frame, sp, arg);
168 		return 0;
169 	}
170 
171 	frame->bx = 0;
172 	*childregs = *current_pt_regs();
173 	childregs->ax = 0;
174 	if (sp)
175 		childregs->sp = sp;
176 
177 #ifdef CONFIG_X86_32
178 	task_user_gs(p) = get_user_gs(current_pt_regs());
179 #endif
180 
181 	/* Set a new TLS for the child thread? */
182 	if (clone_flags & CLONE_SETTLS)
183 		ret = set_new_tls(p, tls);
184 
185 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
186 		io_bitmap_share(p);
187 
188 	return ret;
189 }
190 
flush_thread(void)191 void flush_thread(void)
192 {
193 	struct task_struct *tsk = current;
194 
195 	flush_ptrace_hw_breakpoint(tsk);
196 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
197 
198 	fpu__clear_all(&tsk->thread.fpu);
199 }
200 
disable_TSC(void)201 void disable_TSC(void)
202 {
203 	preempt_disable();
204 	if (!test_and_set_thread_flag(TIF_NOTSC))
205 		/*
206 		 * Must flip the CPU state synchronously with
207 		 * TIF_NOTSC in the current running context.
208 		 */
209 		cr4_set_bits(X86_CR4_TSD);
210 	preempt_enable();
211 }
212 
enable_TSC(void)213 static void enable_TSC(void)
214 {
215 	preempt_disable();
216 	if (test_and_clear_thread_flag(TIF_NOTSC))
217 		/*
218 		 * Must flip the CPU state synchronously with
219 		 * TIF_NOTSC in the current running context.
220 		 */
221 		cr4_clear_bits(X86_CR4_TSD);
222 	preempt_enable();
223 }
224 
get_tsc_mode(unsigned long adr)225 int get_tsc_mode(unsigned long adr)
226 {
227 	unsigned int val;
228 
229 	if (test_thread_flag(TIF_NOTSC))
230 		val = PR_TSC_SIGSEGV;
231 	else
232 		val = PR_TSC_ENABLE;
233 
234 	return put_user(val, (unsigned int __user *)adr);
235 }
236 
set_tsc_mode(unsigned int val)237 int set_tsc_mode(unsigned int val)
238 {
239 	if (val == PR_TSC_SIGSEGV)
240 		disable_TSC();
241 	else if (val == PR_TSC_ENABLE)
242 		enable_TSC();
243 	else
244 		return -EINVAL;
245 
246 	return 0;
247 }
248 
249 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
250 
set_cpuid_faulting(bool on)251 static void set_cpuid_faulting(bool on)
252 {
253 	u64 msrval;
254 
255 	msrval = this_cpu_read(msr_misc_features_shadow);
256 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
257 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
258 	this_cpu_write(msr_misc_features_shadow, msrval);
259 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
260 }
261 
disable_cpuid(void)262 static void disable_cpuid(void)
263 {
264 	preempt_disable();
265 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
266 		/*
267 		 * Must flip the CPU state synchronously with
268 		 * TIF_NOCPUID in the current running context.
269 		 */
270 		set_cpuid_faulting(true);
271 	}
272 	preempt_enable();
273 }
274 
enable_cpuid(void)275 static void enable_cpuid(void)
276 {
277 	preempt_disable();
278 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
279 		/*
280 		 * Must flip the CPU state synchronously with
281 		 * TIF_NOCPUID in the current running context.
282 		 */
283 		set_cpuid_faulting(false);
284 	}
285 	preempt_enable();
286 }
287 
get_cpuid_mode(void)288 static int get_cpuid_mode(void)
289 {
290 	return !test_thread_flag(TIF_NOCPUID);
291 }
292 
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)293 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
294 {
295 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
296 		return -ENODEV;
297 
298 	if (cpuid_enabled)
299 		enable_cpuid();
300 	else
301 		disable_cpuid();
302 
303 	return 0;
304 }
305 
306 /*
307  * Called immediately after a successful exec.
308  */
arch_setup_new_exec(void)309 void arch_setup_new_exec(void)
310 {
311 	/* If cpuid was previously disabled for this task, re-enable it. */
312 	if (test_thread_flag(TIF_NOCPUID))
313 		enable_cpuid();
314 
315 	/*
316 	 * Don't inherit TIF_SSBD across exec boundary when
317 	 * PR_SPEC_DISABLE_NOEXEC is used.
318 	 */
319 	if (test_thread_flag(TIF_SSBD) &&
320 	    task_spec_ssb_noexec(current)) {
321 		clear_thread_flag(TIF_SSBD);
322 		task_clear_spec_ssb_disable(current);
323 		task_clear_spec_ssb_noexec(current);
324 		speculation_ctrl_update(task_thread_info(current)->flags);
325 	}
326 }
327 
328 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)329 static inline void switch_to_bitmap(unsigned long tifp)
330 {
331 	/*
332 	 * Invalidate I/O bitmap if the previous task used it. This prevents
333 	 * any possible leakage of an active I/O bitmap.
334 	 *
335 	 * If the next task has an I/O bitmap it will handle it on exit to
336 	 * user mode.
337 	 */
338 	if (tifp & _TIF_IO_BITMAP)
339 		tss_invalidate_io_bitmap();
340 }
341 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)342 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
343 {
344 	/*
345 	 * Copy at least the byte range of the incoming tasks bitmap which
346 	 * covers the permitted I/O ports.
347 	 *
348 	 * If the previous task which used an I/O bitmap had more bits
349 	 * permitted, then the copy needs to cover those as well so they
350 	 * get turned off.
351 	 */
352 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
353 	       max(tss->io_bitmap.prev_max, iobm->max));
354 
355 	/*
356 	 * Store the new max and the sequence number of this bitmap
357 	 * and a pointer to the bitmap itself.
358 	 */
359 	tss->io_bitmap.prev_max = iobm->max;
360 	tss->io_bitmap.prev_sequence = iobm->sequence;
361 }
362 
363 /**
364  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
365  */
native_tss_update_io_bitmap(void)366 void native_tss_update_io_bitmap(void)
367 {
368 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
369 	struct thread_struct *t = &current->thread;
370 	u16 *base = &tss->x86_tss.io_bitmap_base;
371 
372 	if (!test_thread_flag(TIF_IO_BITMAP)) {
373 		native_tss_invalidate_io_bitmap();
374 		return;
375 	}
376 
377 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
378 		*base = IO_BITMAP_OFFSET_VALID_ALL;
379 	} else {
380 		struct io_bitmap *iobm = t->io_bitmap;
381 
382 		/*
383 		 * Only copy bitmap data when the sequence number differs. The
384 		 * update time is accounted to the incoming task.
385 		 */
386 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
387 			tss_copy_io_bitmap(tss, iobm);
388 
389 		/* Enable the bitmap */
390 		*base = IO_BITMAP_OFFSET_VALID_MAP;
391 	}
392 
393 	/*
394 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
395 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
396 	 * access from user space to trigger a #GP because tbe bitmap is outside
397 	 * the TSS limit.
398 	 */
399 	refresh_tss_limit();
400 }
401 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)402 static inline void switch_to_bitmap(unsigned long tifp) { }
403 #endif
404 
405 #ifdef CONFIG_SMP
406 
407 struct ssb_state {
408 	struct ssb_state	*shared_state;
409 	raw_spinlock_t		lock;
410 	unsigned int		disable_state;
411 	unsigned long		local_state;
412 };
413 
414 #define LSTATE_SSB	0
415 
416 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
417 
speculative_store_bypass_ht_init(void)418 void speculative_store_bypass_ht_init(void)
419 {
420 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
421 	unsigned int this_cpu = smp_processor_id();
422 	unsigned int cpu;
423 
424 	st->local_state = 0;
425 
426 	/*
427 	 * Shared state setup happens once on the first bringup
428 	 * of the CPU. It's not destroyed on CPU hotunplug.
429 	 */
430 	if (st->shared_state)
431 		return;
432 
433 	raw_spin_lock_init(&st->lock);
434 
435 	/*
436 	 * Go over HT siblings and check whether one of them has set up the
437 	 * shared state pointer already.
438 	 */
439 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
440 		if (cpu == this_cpu)
441 			continue;
442 
443 		if (!per_cpu(ssb_state, cpu).shared_state)
444 			continue;
445 
446 		/* Link it to the state of the sibling: */
447 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
448 		return;
449 	}
450 
451 	/*
452 	 * First HT sibling to come up on the core.  Link shared state of
453 	 * the first HT sibling to itself. The siblings on the same core
454 	 * which come up later will see the shared state pointer and link
455 	 * themself to the state of this CPU.
456 	 */
457 	st->shared_state = st;
458 }
459 
460 /*
461  * Logic is: First HT sibling enables SSBD for both siblings in the core
462  * and last sibling to disable it, disables it for the whole core. This how
463  * MSR_SPEC_CTRL works in "hardware":
464  *
465  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
466  */
amd_set_core_ssb_state(unsigned long tifn)467 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
468 {
469 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
470 	u64 msr = x86_amd_ls_cfg_base;
471 
472 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
473 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
474 		wrmsrl(MSR_AMD64_LS_CFG, msr);
475 		return;
476 	}
477 
478 	if (tifn & _TIF_SSBD) {
479 		/*
480 		 * Since this can race with prctl(), block reentry on the
481 		 * same CPU.
482 		 */
483 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
484 			return;
485 
486 		msr |= x86_amd_ls_cfg_ssbd_mask;
487 
488 		raw_spin_lock(&st->shared_state->lock);
489 		/* First sibling enables SSBD: */
490 		if (!st->shared_state->disable_state)
491 			wrmsrl(MSR_AMD64_LS_CFG, msr);
492 		st->shared_state->disable_state++;
493 		raw_spin_unlock(&st->shared_state->lock);
494 	} else {
495 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
496 			return;
497 
498 		raw_spin_lock(&st->shared_state->lock);
499 		st->shared_state->disable_state--;
500 		if (!st->shared_state->disable_state)
501 			wrmsrl(MSR_AMD64_LS_CFG, msr);
502 		raw_spin_unlock(&st->shared_state->lock);
503 	}
504 }
505 #else
amd_set_core_ssb_state(unsigned long tifn)506 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
507 {
508 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
509 
510 	wrmsrl(MSR_AMD64_LS_CFG, msr);
511 }
512 #endif
513 
amd_set_ssb_virt_state(unsigned long tifn)514 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
515 {
516 	/*
517 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
518 	 * so ssbd_tif_to_spec_ctrl() just works.
519 	 */
520 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
521 }
522 
523 /*
524  * Update the MSRs managing speculation control, during context switch.
525  *
526  * tifp: Previous task's thread flags
527  * tifn: Next task's thread flags
528  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)529 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
530 						      unsigned long tifn)
531 {
532 	unsigned long tif_diff = tifp ^ tifn;
533 	u64 msr = x86_spec_ctrl_base;
534 	bool updmsr = false;
535 
536 	lockdep_assert_irqs_disabled();
537 
538 	/* Handle change of TIF_SSBD depending on the mitigation method. */
539 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
540 		if (tif_diff & _TIF_SSBD)
541 			amd_set_ssb_virt_state(tifn);
542 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
543 		if (tif_diff & _TIF_SSBD)
544 			amd_set_core_ssb_state(tifn);
545 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
546 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
547 		updmsr |= !!(tif_diff & _TIF_SSBD);
548 		msr |= ssbd_tif_to_spec_ctrl(tifn);
549 	}
550 
551 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
552 	if (IS_ENABLED(CONFIG_SMP) &&
553 	    static_branch_unlikely(&switch_to_cond_stibp)) {
554 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
555 		msr |= stibp_tif_to_spec_ctrl(tifn);
556 	}
557 
558 	if (updmsr)
559 		write_spec_ctrl_current(msr, false);
560 }
561 
speculation_ctrl_update_tif(struct task_struct * tsk)562 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
563 {
564 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
565 		if (task_spec_ssb_disable(tsk))
566 			set_tsk_thread_flag(tsk, TIF_SSBD);
567 		else
568 			clear_tsk_thread_flag(tsk, TIF_SSBD);
569 
570 		if (task_spec_ib_disable(tsk))
571 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
572 		else
573 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
574 	}
575 	/* Return the updated threadinfo flags*/
576 	return task_thread_info(tsk)->flags;
577 }
578 
speculation_ctrl_update(unsigned long tif)579 void speculation_ctrl_update(unsigned long tif)
580 {
581 	unsigned long flags;
582 
583 	/* Forced update. Make sure all relevant TIF flags are different */
584 	local_irq_save(flags);
585 	__speculation_ctrl_update(~tif, tif);
586 	local_irq_restore(flags);
587 }
588 
589 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)590 void speculation_ctrl_update_current(void)
591 {
592 	preempt_disable();
593 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
594 	preempt_enable();
595 }
596 
cr4_toggle_bits_irqsoff(unsigned long mask)597 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
598 {
599 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
600 
601 	newval = cr4 ^ mask;
602 	if (newval != cr4) {
603 		this_cpu_write(cpu_tlbstate.cr4, newval);
604 		__write_cr4(newval);
605 	}
606 }
607 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)608 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
609 {
610 	unsigned long tifp, tifn;
611 
612 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
613 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
614 
615 	switch_to_bitmap(tifp);
616 
617 	propagate_user_return_notify(prev_p, next_p);
618 
619 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
620 	    arch_has_block_step()) {
621 		unsigned long debugctl, msk;
622 
623 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
624 		debugctl &= ~DEBUGCTLMSR_BTF;
625 		msk = tifn & _TIF_BLOCKSTEP;
626 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
627 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
628 	}
629 
630 	if ((tifp ^ tifn) & _TIF_NOTSC)
631 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
632 
633 	if ((tifp ^ tifn) & _TIF_NOCPUID)
634 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
635 
636 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
637 		__speculation_ctrl_update(tifp, tifn);
638 	} else {
639 		speculation_ctrl_update_tif(prev_p);
640 		tifn = speculation_ctrl_update_tif(next_p);
641 
642 		/* Enforce MSR update to ensure consistent state */
643 		__speculation_ctrl_update(~tifn, tifn);
644 	}
645 
646 	if ((tifp ^ tifn) & _TIF_SLD)
647 		switch_to_sld(tifn);
648 }
649 
650 /*
651  * Idle related variables and functions
652  */
653 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
654 EXPORT_SYMBOL(boot_option_idle_override);
655 
656 static void (*x86_idle)(void);
657 
658 #ifndef CONFIG_SMP
play_dead(void)659 static inline void play_dead(void)
660 {
661 	BUG();
662 }
663 #endif
664 
arch_cpu_idle_enter(void)665 void arch_cpu_idle_enter(void)
666 {
667 	tsc_verify_tsc_adjust(false);
668 	local_touch_nmi();
669 }
670 
arch_cpu_idle_dead(void)671 void arch_cpu_idle_dead(void)
672 {
673 	play_dead();
674 }
675 
676 /*
677  * Called from the generic idle code.
678  */
arch_cpu_idle(void)679 void arch_cpu_idle(void)
680 {
681 	x86_idle();
682 }
683 
684 /*
685  * We use this if we don't have any better idle routine..
686  */
default_idle(void)687 void __cpuidle default_idle(void)
688 {
689 	raw_safe_halt();
690 }
691 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
692 EXPORT_SYMBOL(default_idle);
693 #endif
694 
695 #ifdef CONFIG_XEN
xen_set_default_idle(void)696 bool xen_set_default_idle(void)
697 {
698 	bool ret = !!x86_idle;
699 
700 	x86_idle = default_idle;
701 
702 	return ret;
703 }
704 #endif
705 
stop_this_cpu(void * dummy)706 void stop_this_cpu(void *dummy)
707 {
708 	local_irq_disable();
709 	/*
710 	 * Remove this CPU:
711 	 */
712 	set_cpu_online(smp_processor_id(), false);
713 	disable_local_APIC();
714 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
715 
716 	/*
717 	 * Use wbinvd on processors that support SME. This provides support
718 	 * for performing a successful kexec when going from SME inactive
719 	 * to SME active (or vice-versa). The cache must be cleared so that
720 	 * if there are entries with the same physical address, both with and
721 	 * without the encryption bit, they don't race each other when flushed
722 	 * and potentially end up with the wrong entry being committed to
723 	 * memory.
724 	 */
725 	if (boot_cpu_has(X86_FEATURE_SME))
726 		native_wbinvd();
727 	for (;;) {
728 		/*
729 		 * Use native_halt() so that memory contents don't change
730 		 * (stack usage and variables) after possibly issuing the
731 		 * native_wbinvd() above.
732 		 */
733 		native_halt();
734 	}
735 }
736 
737 /*
738  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
739  * states (local apic timer and TSC stop).
740  *
741  * XXX this function is completely buggered vs RCU and tracing.
742  */
amd_e400_idle(void)743 static void amd_e400_idle(void)
744 {
745 	/*
746 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
747 	 * gets set after static_cpu_has() places have been converted via
748 	 * alternatives.
749 	 */
750 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
751 		default_idle();
752 		return;
753 	}
754 
755 	tick_broadcast_enter();
756 
757 	default_idle();
758 
759 	/*
760 	 * The switch back from broadcast mode needs to be called with
761 	 * interrupts disabled.
762 	 */
763 	raw_local_irq_disable();
764 	tick_broadcast_exit();
765 	raw_local_irq_enable();
766 }
767 
768 /*
769  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
770  * We can't rely on cpuidle installing MWAIT, because it will not load
771  * on systems that support only C1 -- so the boot default must be MWAIT.
772  *
773  * Some AMD machines are the opposite, they depend on using HALT.
774  *
775  * So for default C1, which is used during boot until cpuidle loads,
776  * use MWAIT-C1 on Intel HW that has it, else use HALT.
777  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)778 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
779 {
780 	if (c->x86_vendor != X86_VENDOR_INTEL)
781 		return 0;
782 
783 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
784 		return 0;
785 
786 	return 1;
787 }
788 
789 /*
790  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
791  * with interrupts enabled and no flags, which is backwards compatible with the
792  * original MWAIT implementation.
793  */
mwait_idle(void)794 static __cpuidle void mwait_idle(void)
795 {
796 	if (!current_set_polling_and_test()) {
797 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
798 			mb(); /* quirk */
799 			clflush((void *)&current_thread_info()->flags);
800 			mb(); /* quirk */
801 		}
802 
803 		__monitor((void *)&current_thread_info()->flags, 0, 0);
804 		if (!need_resched())
805 			__sti_mwait(0, 0);
806 		else
807 			raw_local_irq_enable();
808 	} else {
809 		raw_local_irq_enable();
810 	}
811 	__current_clr_polling();
812 }
813 
select_idle_routine(const struct cpuinfo_x86 * c)814 void select_idle_routine(const struct cpuinfo_x86 *c)
815 {
816 #ifdef CONFIG_SMP
817 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
818 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
819 #endif
820 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
821 		return;
822 
823 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
824 		pr_info("using AMD E400 aware idle routine\n");
825 		x86_idle = amd_e400_idle;
826 	} else if (prefer_mwait_c1_over_halt(c)) {
827 		pr_info("using mwait in idle threads\n");
828 		x86_idle = mwait_idle;
829 	} else
830 		x86_idle = default_idle;
831 }
832 
amd_e400_c1e_apic_setup(void)833 void amd_e400_c1e_apic_setup(void)
834 {
835 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
836 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
837 		local_irq_disable();
838 		tick_broadcast_force();
839 		local_irq_enable();
840 	}
841 }
842 
arch_post_acpi_subsys_init(void)843 void __init arch_post_acpi_subsys_init(void)
844 {
845 	u32 lo, hi;
846 
847 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
848 		return;
849 
850 	/*
851 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
852 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
853 	 * MSR_K8_INT_PENDING_MSG.
854 	 */
855 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
856 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
857 		return;
858 
859 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
860 
861 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
862 		mark_tsc_unstable("TSC halt in AMD C1E");
863 	pr_info("System has AMD C1E enabled\n");
864 }
865 
idle_setup(char * str)866 static int __init idle_setup(char *str)
867 {
868 	if (!str)
869 		return -EINVAL;
870 
871 	if (!strcmp(str, "poll")) {
872 		pr_info("using polling idle threads\n");
873 		boot_option_idle_override = IDLE_POLL;
874 		cpu_idle_poll_ctrl(true);
875 	} else if (!strcmp(str, "halt")) {
876 		/*
877 		 * When the boot option of idle=halt is added, halt is
878 		 * forced to be used for CPU idle. In such case CPU C2/C3
879 		 * won't be used again.
880 		 * To continue to load the CPU idle driver, don't touch
881 		 * the boot_option_idle_override.
882 		 */
883 		x86_idle = default_idle;
884 		boot_option_idle_override = IDLE_HALT;
885 	} else if (!strcmp(str, "nomwait")) {
886 		/*
887 		 * If the boot option of "idle=nomwait" is added,
888 		 * it means that mwait will be disabled for CPU C2/C3
889 		 * states. In such case it won't touch the variable
890 		 * of boot_option_idle_override.
891 		 */
892 		boot_option_idle_override = IDLE_NOMWAIT;
893 	} else
894 		return -1;
895 
896 	return 0;
897 }
898 early_param("idle", idle_setup);
899 
arch_align_stack(unsigned long sp)900 unsigned long arch_align_stack(unsigned long sp)
901 {
902 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
903 		sp -= get_random_int() % 8192;
904 	return sp & ~0xf;
905 }
906 
arch_randomize_brk(struct mm_struct * mm)907 unsigned long arch_randomize_brk(struct mm_struct *mm)
908 {
909 	return randomize_page(mm->brk, 0x02000000);
910 }
911 
912 /*
913  * Called from fs/proc with a reference on @p to find the function
914  * which called into schedule(). This needs to be done carefully
915  * because the task might wake up and we might look at a stack
916  * changing under us.
917  */
get_wchan(struct task_struct * p)918 unsigned long get_wchan(struct task_struct *p)
919 {
920 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
921 	int count = 0;
922 
923 	if (p == current || p->state == TASK_RUNNING)
924 		return 0;
925 
926 	if (!try_get_task_stack(p))
927 		return 0;
928 
929 	start = (unsigned long)task_stack_page(p);
930 	if (!start)
931 		goto out;
932 
933 	/*
934 	 * Layout of the stack page:
935 	 *
936 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
937 	 * PADDING
938 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
939 	 * stack
940 	 * ----------- bottom = start
941 	 *
942 	 * The tasks stack pointer points at the location where the
943 	 * framepointer is stored. The data on the stack is:
944 	 * ... IP FP ... IP FP
945 	 *
946 	 * We need to read FP and IP, so we need to adjust the upper
947 	 * bound by another unsigned long.
948 	 */
949 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
950 	top -= 2 * sizeof(unsigned long);
951 	bottom = start;
952 
953 	sp = READ_ONCE(p->thread.sp);
954 	if (sp < bottom || sp > top)
955 		goto out;
956 
957 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
958 	do {
959 		if (fp < bottom || fp > top)
960 			goto out;
961 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
962 		if (!in_sched_functions(ip)) {
963 			ret = ip;
964 			goto out;
965 		}
966 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
967 	} while (count++ < 16 && p->state != TASK_RUNNING);
968 
969 out:
970 	put_task_stack(p);
971 	return ret;
972 }
973 
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)974 long do_arch_prctl_common(struct task_struct *task, int option,
975 			  unsigned long cpuid_enabled)
976 {
977 	switch (option) {
978 	case ARCH_GET_CPUID:
979 		return get_cpuid_mode();
980 	case ARCH_SET_CPUID:
981 		return set_cpuid_mode(task, cpuid_enabled);
982 	}
983 
984 	return -EINVAL;
985 }
986