1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28
29 #include "gfs2.h"
30 #include "incore.h"
31 #include "bmap.h"
32 #include "aops.h"
33 #include "dir.h"
34 #include "glock.h"
35 #include "glops.h"
36 #include "inode.h"
37 #include "log.h"
38 #include "meta_io.h"
39 #include "quota.h"
40 #include "rgrp.h"
41 #include "trans.h"
42 #include "util.h"
43
44 /**
45 * gfs2_llseek - seek to a location in a file
46 * @file: the file
47 * @offset: the offset
48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
49 *
50 * SEEK_END requires the glock for the file because it references the
51 * file's size.
52 *
53 * Returns: The new offset, or errno
54 */
55
gfs2_llseek(struct file * file,loff_t offset,int whence)56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
57 {
58 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
59 struct gfs2_holder i_gh;
60 loff_t error;
61
62 switch (whence) {
63 case SEEK_END:
64 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
65 &i_gh);
66 if (!error) {
67 error = generic_file_llseek(file, offset, whence);
68 gfs2_glock_dq_uninit(&i_gh);
69 }
70 break;
71
72 case SEEK_DATA:
73 error = gfs2_seek_data(file, offset);
74 break;
75
76 case SEEK_HOLE:
77 error = gfs2_seek_hole(file, offset);
78 break;
79
80 case SEEK_CUR:
81 case SEEK_SET:
82 /*
83 * These don't reference inode->i_size and don't depend on the
84 * block mapping, so we don't need the glock.
85 */
86 error = generic_file_llseek(file, offset, whence);
87 break;
88 default:
89 error = -EINVAL;
90 }
91
92 return error;
93 }
94
95 /**
96 * gfs2_readdir - Iterator for a directory
97 * @file: The directory to read from
98 * @ctx: What to feed directory entries to
99 *
100 * Returns: errno
101 */
102
gfs2_readdir(struct file * file,struct dir_context * ctx)103 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
104 {
105 struct inode *dir = file->f_mapping->host;
106 struct gfs2_inode *dip = GFS2_I(dir);
107 struct gfs2_holder d_gh;
108 int error;
109
110 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
111 if (error)
112 return error;
113
114 error = gfs2_dir_read(dir, ctx, &file->f_ra);
115
116 gfs2_glock_dq_uninit(&d_gh);
117
118 return error;
119 }
120
121 /**
122 * fsflag_gfs2flag
123 *
124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
125 * and to GFS2_DIF_JDATA for non-directories.
126 */
127 static struct {
128 u32 fsflag;
129 u32 gfsflag;
130 } fsflag_gfs2flag[] = {
131 {FS_SYNC_FL, GFS2_DIF_SYNC},
132 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
133 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
134 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
135 {FS_INDEX_FL, GFS2_DIF_EXHASH},
136 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
137 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
138 };
139
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)140 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
141 {
142 int i;
143 u32 fsflags = 0;
144
145 if (S_ISDIR(inode->i_mode))
146 gfsflags &= ~GFS2_DIF_JDATA;
147 else
148 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
149
150 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
151 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
152 fsflags |= fsflag_gfs2flag[i].fsflag;
153 return fsflags;
154 }
155
gfs2_get_flags(struct file * filp,u32 __user * ptr)156 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
157 {
158 struct inode *inode = file_inode(filp);
159 struct gfs2_inode *ip = GFS2_I(inode);
160 struct gfs2_holder gh;
161 int error;
162 u32 fsflags;
163
164 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
165 error = gfs2_glock_nq(&gh);
166 if (error)
167 goto out_uninit;
168
169 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
170
171 if (put_user(fsflags, ptr))
172 error = -EFAULT;
173
174 gfs2_glock_dq(&gh);
175 out_uninit:
176 gfs2_holder_uninit(&gh);
177 return error;
178 }
179
gfs2_set_inode_flags(struct inode * inode)180 void gfs2_set_inode_flags(struct inode *inode)
181 {
182 struct gfs2_inode *ip = GFS2_I(inode);
183 unsigned int flags = inode->i_flags;
184
185 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
186 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
187 flags |= S_NOSEC;
188 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
189 flags |= S_IMMUTABLE;
190 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
191 flags |= S_APPEND;
192 if (ip->i_diskflags & GFS2_DIF_NOATIME)
193 flags |= S_NOATIME;
194 if (ip->i_diskflags & GFS2_DIF_SYNC)
195 flags |= S_SYNC;
196 inode->i_flags = flags;
197 }
198
199 /* Flags that can be set by user space */
200 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
201 GFS2_DIF_IMMUTABLE| \
202 GFS2_DIF_APPENDONLY| \
203 GFS2_DIF_NOATIME| \
204 GFS2_DIF_SYNC| \
205 GFS2_DIF_TOPDIR| \
206 GFS2_DIF_INHERIT_JDATA)
207
208 /**
209 * do_gfs2_set_flags - set flags on an inode
210 * @filp: file pointer
211 * @reqflags: The flags to set
212 * @mask: Indicates which flags are valid
213 * @fsflags: The FS_* inode flags passed in
214 *
215 */
do_gfs2_set_flags(struct file * filp,u32 reqflags,u32 mask,const u32 fsflags)216 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
217 const u32 fsflags)
218 {
219 struct inode *inode = file_inode(filp);
220 struct gfs2_inode *ip = GFS2_I(inode);
221 struct gfs2_sbd *sdp = GFS2_SB(inode);
222 struct buffer_head *bh;
223 struct gfs2_holder gh;
224 int error;
225 u32 new_flags, flags, oldflags;
226
227 error = mnt_want_write_file(filp);
228 if (error)
229 return error;
230
231 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
232 if (error)
233 goto out_drop_write;
234
235 oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
236 error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
237 if (error)
238 goto out;
239
240 error = -EACCES;
241 if (!inode_owner_or_capable(inode))
242 goto out;
243
244 error = 0;
245 flags = ip->i_diskflags;
246 new_flags = (flags & ~mask) | (reqflags & mask);
247 if ((new_flags ^ flags) == 0)
248 goto out;
249
250 error = -EPERM;
251 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
252 goto out;
253 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
254 goto out;
255 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
256 !capable(CAP_LINUX_IMMUTABLE))
257 goto out;
258 if (!IS_IMMUTABLE(inode)) {
259 error = gfs2_permission(inode, MAY_WRITE);
260 if (error)
261 goto out;
262 }
263 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
264 if (new_flags & GFS2_DIF_JDATA)
265 gfs2_log_flush(sdp, ip->i_gl,
266 GFS2_LOG_HEAD_FLUSH_NORMAL |
267 GFS2_LFC_SET_FLAGS);
268 error = filemap_fdatawrite(inode->i_mapping);
269 if (error)
270 goto out;
271 error = filemap_fdatawait(inode->i_mapping);
272 if (error)
273 goto out;
274 if (new_flags & GFS2_DIF_JDATA)
275 gfs2_ordered_del_inode(ip);
276 }
277 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
278 if (error)
279 goto out;
280 error = gfs2_meta_inode_buffer(ip, &bh);
281 if (error)
282 goto out_trans_end;
283 inode->i_ctime = current_time(inode);
284 gfs2_trans_add_meta(ip->i_gl, bh);
285 ip->i_diskflags = new_flags;
286 gfs2_dinode_out(ip, bh->b_data);
287 brelse(bh);
288 gfs2_set_inode_flags(inode);
289 gfs2_set_aops(inode);
290 out_trans_end:
291 gfs2_trans_end(sdp);
292 out:
293 gfs2_glock_dq_uninit(&gh);
294 out_drop_write:
295 mnt_drop_write_file(filp);
296 return error;
297 }
298
gfs2_set_flags(struct file * filp,u32 __user * ptr)299 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
300 {
301 struct inode *inode = file_inode(filp);
302 u32 fsflags, gfsflags = 0;
303 u32 mask;
304 int i;
305
306 if (get_user(fsflags, ptr))
307 return -EFAULT;
308
309 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
310 if (fsflags & fsflag_gfs2flag[i].fsflag) {
311 fsflags &= ~fsflag_gfs2flag[i].fsflag;
312 gfsflags |= fsflag_gfs2flag[i].gfsflag;
313 }
314 }
315 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
316 return -EINVAL;
317
318 mask = GFS2_FLAGS_USER_SET;
319 if (S_ISDIR(inode->i_mode)) {
320 mask &= ~GFS2_DIF_JDATA;
321 } else {
322 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
323 if (gfsflags & GFS2_DIF_TOPDIR)
324 return -EINVAL;
325 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
326 }
327
328 return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
329 }
330
gfs2_getlabel(struct file * filp,char __user * label)331 static int gfs2_getlabel(struct file *filp, char __user *label)
332 {
333 struct inode *inode = file_inode(filp);
334 struct gfs2_sbd *sdp = GFS2_SB(inode);
335
336 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
337 return -EFAULT;
338
339 return 0;
340 }
341
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)342 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
343 {
344 switch(cmd) {
345 case FS_IOC_GETFLAGS:
346 return gfs2_get_flags(filp, (u32 __user *)arg);
347 case FS_IOC_SETFLAGS:
348 return gfs2_set_flags(filp, (u32 __user *)arg);
349 case FITRIM:
350 return gfs2_fitrim(filp, (void __user *)arg);
351 case FS_IOC_GETFSLABEL:
352 return gfs2_getlabel(filp, (char __user *)arg);
353 }
354
355 return -ENOTTY;
356 }
357
358 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)359 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
360 {
361 switch(cmd) {
362 /* These are just misnamed, they actually get/put from/to user an int */
363 case FS_IOC32_GETFLAGS:
364 cmd = FS_IOC_GETFLAGS;
365 break;
366 case FS_IOC32_SETFLAGS:
367 cmd = FS_IOC_SETFLAGS;
368 break;
369 /* Keep this list in sync with gfs2_ioctl */
370 case FITRIM:
371 case FS_IOC_GETFSLABEL:
372 break;
373 default:
374 return -ENOIOCTLCMD;
375 }
376
377 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
378 }
379 #else
380 #define gfs2_compat_ioctl NULL
381 #endif
382
383 /**
384 * gfs2_size_hint - Give a hint to the size of a write request
385 * @filep: The struct file
386 * @offset: The file offset of the write
387 * @size: The length of the write
388 *
389 * When we are about to do a write, this function records the total
390 * write size in order to provide a suitable hint to the lower layers
391 * about how many blocks will be required.
392 *
393 */
394
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)395 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
396 {
397 struct inode *inode = file_inode(filep);
398 struct gfs2_sbd *sdp = GFS2_SB(inode);
399 struct gfs2_inode *ip = GFS2_I(inode);
400 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
401 int hint = min_t(size_t, INT_MAX, blks);
402
403 if (hint > atomic_read(&ip->i_sizehint))
404 atomic_set(&ip->i_sizehint, hint);
405 }
406
407 /**
408 * gfs2_allocate_page_backing - Allocate blocks for a write fault
409 * @page: The (locked) page to allocate backing for
410 * @length: Size of the allocation
411 *
412 * We try to allocate all the blocks required for the page in one go. This
413 * might fail for various reasons, so we keep trying until all the blocks to
414 * back this page are allocated. If some of the blocks are already allocated,
415 * that is ok too.
416 */
gfs2_allocate_page_backing(struct page * page,unsigned int length)417 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
418 {
419 u64 pos = page_offset(page);
420
421 do {
422 struct iomap iomap = { };
423
424 if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
425 return -EIO;
426
427 if (length < iomap.length)
428 iomap.length = length;
429 length -= iomap.length;
430 pos += iomap.length;
431 } while (length > 0);
432
433 return 0;
434 }
435
436 /**
437 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
438 * @vma: The virtual memory area
439 * @vmf: The virtual memory fault containing the page to become writable
440 *
441 * When the page becomes writable, we need to ensure that we have
442 * blocks allocated on disk to back that page.
443 */
444
gfs2_page_mkwrite(struct vm_fault * vmf)445 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
446 {
447 struct page *page = vmf->page;
448 struct inode *inode = file_inode(vmf->vma->vm_file);
449 struct gfs2_inode *ip = GFS2_I(inode);
450 struct gfs2_sbd *sdp = GFS2_SB(inode);
451 struct gfs2_alloc_parms ap = { .aflags = 0, };
452 u64 offset = page_offset(page);
453 unsigned int data_blocks, ind_blocks, rblocks;
454 struct gfs2_holder gh;
455 unsigned int length;
456 loff_t size;
457 int ret;
458
459 sb_start_pagefault(inode->i_sb);
460
461 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
462 ret = gfs2_glock_nq(&gh);
463 if (ret)
464 goto out_uninit;
465
466 /* Check page index against inode size */
467 size = i_size_read(inode);
468 if (offset >= size) {
469 ret = -EINVAL;
470 goto out_unlock;
471 }
472
473 /* Update file times before taking page lock */
474 file_update_time(vmf->vma->vm_file);
475
476 /* page is wholly or partially inside EOF */
477 if (size - offset < PAGE_SIZE)
478 length = size - offset;
479 else
480 length = PAGE_SIZE;
481
482 gfs2_size_hint(vmf->vma->vm_file, offset, length);
483
484 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
485 set_bit(GIF_SW_PAGED, &ip->i_flags);
486
487 /*
488 * iomap_writepage / iomap_writepages currently don't support inline
489 * files, so always unstuff here.
490 */
491
492 if (!gfs2_is_stuffed(ip) &&
493 !gfs2_write_alloc_required(ip, offset, length)) {
494 lock_page(page);
495 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
496 ret = -EAGAIN;
497 unlock_page(page);
498 }
499 goto out_unlock;
500 }
501
502 ret = gfs2_rindex_update(sdp);
503 if (ret)
504 goto out_unlock;
505
506 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
507 ap.target = data_blocks + ind_blocks;
508 ret = gfs2_quota_lock_check(ip, &ap);
509 if (ret)
510 goto out_unlock;
511 ret = gfs2_inplace_reserve(ip, &ap);
512 if (ret)
513 goto out_quota_unlock;
514
515 rblocks = RES_DINODE + ind_blocks;
516 if (gfs2_is_jdata(ip))
517 rblocks += data_blocks ? data_blocks : 1;
518 if (ind_blocks || data_blocks) {
519 rblocks += RES_STATFS + RES_QUOTA;
520 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
521 }
522 ret = gfs2_trans_begin(sdp, rblocks, 0);
523 if (ret)
524 goto out_trans_fail;
525
526 lock_page(page);
527 ret = -EAGAIN;
528 /* If truncated, we must retry the operation, we may have raced
529 * with the glock demotion code.
530 */
531 if (!PageUptodate(page) || page->mapping != inode->i_mapping)
532 goto out_trans_end;
533
534 /* Unstuff, if required, and allocate backing blocks for page */
535 ret = 0;
536 if (gfs2_is_stuffed(ip))
537 ret = gfs2_unstuff_dinode(ip, page);
538 if (ret == 0)
539 ret = gfs2_allocate_page_backing(page, length);
540
541 out_trans_end:
542 if (ret)
543 unlock_page(page);
544 gfs2_trans_end(sdp);
545 out_trans_fail:
546 gfs2_inplace_release(ip);
547 out_quota_unlock:
548 gfs2_quota_unlock(ip);
549 out_unlock:
550 gfs2_glock_dq(&gh);
551 out_uninit:
552 gfs2_holder_uninit(&gh);
553 if (ret == 0) {
554 set_page_dirty(page);
555 wait_for_stable_page(page);
556 }
557 sb_end_pagefault(inode->i_sb);
558 return block_page_mkwrite_return(ret);
559 }
560
gfs2_fault(struct vm_fault * vmf)561 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
562 {
563 struct inode *inode = file_inode(vmf->vma->vm_file);
564 struct gfs2_inode *ip = GFS2_I(inode);
565 struct gfs2_holder gh;
566 vm_fault_t ret;
567 int err;
568
569 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
570 err = gfs2_glock_nq(&gh);
571 if (err) {
572 ret = block_page_mkwrite_return(err);
573 goto out_uninit;
574 }
575 ret = filemap_fault(vmf);
576 gfs2_glock_dq(&gh);
577 out_uninit:
578 gfs2_holder_uninit(&gh);
579 return ret;
580 }
581
582 static const struct vm_operations_struct gfs2_vm_ops = {
583 .fault = gfs2_fault,
584 .map_pages = filemap_map_pages,
585 .page_mkwrite = gfs2_page_mkwrite,
586 };
587
588 /**
589 * gfs2_mmap -
590 * @file: The file to map
591 * @vma: The VMA which described the mapping
592 *
593 * There is no need to get a lock here unless we should be updating
594 * atime. We ignore any locking errors since the only consequence is
595 * a missed atime update (which will just be deferred until later).
596 *
597 * Returns: 0
598 */
599
gfs2_mmap(struct file * file,struct vm_area_struct * vma)600 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
601 {
602 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
603
604 if (!(file->f_flags & O_NOATIME) &&
605 !IS_NOATIME(&ip->i_inode)) {
606 struct gfs2_holder i_gh;
607 int error;
608
609 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
610 &i_gh);
611 if (error)
612 return error;
613 /* grab lock to update inode */
614 gfs2_glock_dq_uninit(&i_gh);
615 file_accessed(file);
616 }
617 vma->vm_ops = &gfs2_vm_ops;
618
619 return 0;
620 }
621
622 /**
623 * gfs2_open_common - This is common to open and atomic_open
624 * @inode: The inode being opened
625 * @file: The file being opened
626 *
627 * This maybe called under a glock or not depending upon how it has
628 * been called. We must always be called under a glock for regular
629 * files, however. For other file types, it does not matter whether
630 * we hold the glock or not.
631 *
632 * Returns: Error code or 0 for success
633 */
634
gfs2_open_common(struct inode * inode,struct file * file)635 int gfs2_open_common(struct inode *inode, struct file *file)
636 {
637 struct gfs2_file *fp;
638 int ret;
639
640 if (S_ISREG(inode->i_mode)) {
641 ret = generic_file_open(inode, file);
642 if (ret)
643 return ret;
644 }
645
646 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
647 if (!fp)
648 return -ENOMEM;
649
650 mutex_init(&fp->f_fl_mutex);
651
652 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
653 file->private_data = fp;
654 if (file->f_mode & FMODE_WRITE) {
655 ret = gfs2_qa_get(GFS2_I(inode));
656 if (ret)
657 goto fail;
658 }
659 return 0;
660
661 fail:
662 kfree(file->private_data);
663 file->private_data = NULL;
664 return ret;
665 }
666
667 /**
668 * gfs2_open - open a file
669 * @inode: the inode to open
670 * @file: the struct file for this opening
671 *
672 * After atomic_open, this function is only used for opening files
673 * which are already cached. We must still get the glock for regular
674 * files to ensure that we have the file size uptodate for the large
675 * file check which is in the common code. That is only an issue for
676 * regular files though.
677 *
678 * Returns: errno
679 */
680
gfs2_open(struct inode * inode,struct file * file)681 static int gfs2_open(struct inode *inode, struct file *file)
682 {
683 struct gfs2_inode *ip = GFS2_I(inode);
684 struct gfs2_holder i_gh;
685 int error;
686 bool need_unlock = false;
687
688 if (S_ISREG(ip->i_inode.i_mode)) {
689 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
690 &i_gh);
691 if (error)
692 return error;
693 need_unlock = true;
694 }
695
696 error = gfs2_open_common(inode, file);
697
698 if (need_unlock)
699 gfs2_glock_dq_uninit(&i_gh);
700
701 return error;
702 }
703
704 /**
705 * gfs2_release - called to close a struct file
706 * @inode: the inode the struct file belongs to
707 * @file: the struct file being closed
708 *
709 * Returns: errno
710 */
711
gfs2_release(struct inode * inode,struct file * file)712 static int gfs2_release(struct inode *inode, struct file *file)
713 {
714 struct gfs2_inode *ip = GFS2_I(inode);
715
716 kfree(file->private_data);
717 file->private_data = NULL;
718
719 if (file->f_mode & FMODE_WRITE) {
720 gfs2_rs_delete(ip, &inode->i_writecount);
721 gfs2_qa_put(ip);
722 }
723 return 0;
724 }
725
726 /**
727 * gfs2_fsync - sync the dirty data for a file (across the cluster)
728 * @file: the file that points to the dentry
729 * @start: the start position in the file to sync
730 * @end: the end position in the file to sync
731 * @datasync: set if we can ignore timestamp changes
732 *
733 * We split the data flushing here so that we don't wait for the data
734 * until after we've also sent the metadata to disk. Note that for
735 * data=ordered, we will write & wait for the data at the log flush
736 * stage anyway, so this is unlikely to make much of a difference
737 * except in the data=writeback case.
738 *
739 * If the fdatawrite fails due to any reason except -EIO, we will
740 * continue the remainder of the fsync, although we'll still report
741 * the error at the end. This is to match filemap_write_and_wait_range()
742 * behaviour.
743 *
744 * Returns: errno
745 */
746
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)747 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
748 int datasync)
749 {
750 struct address_space *mapping = file->f_mapping;
751 struct inode *inode = mapping->host;
752 int sync_state = inode->i_state & I_DIRTY_ALL;
753 struct gfs2_inode *ip = GFS2_I(inode);
754 int ret = 0, ret1 = 0;
755
756 if (mapping->nrpages) {
757 ret1 = filemap_fdatawrite_range(mapping, start, end);
758 if (ret1 == -EIO)
759 return ret1;
760 }
761
762 if (!gfs2_is_jdata(ip))
763 sync_state &= ~I_DIRTY_PAGES;
764 if (datasync)
765 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
766
767 if (sync_state) {
768 ret = sync_inode_metadata(inode, 1);
769 if (ret)
770 return ret;
771 if (gfs2_is_jdata(ip))
772 ret = file_write_and_wait(file);
773 if (ret)
774 return ret;
775 gfs2_ail_flush(ip->i_gl, 1);
776 }
777
778 if (mapping->nrpages)
779 ret = file_fdatawait_range(file, start, end);
780
781 return ret ? ret : ret1;
782 }
783
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to,struct gfs2_holder * gh)784 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
785 struct gfs2_holder *gh)
786 {
787 struct file *file = iocb->ki_filp;
788 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
789 size_t count = iov_iter_count(to);
790 ssize_t ret;
791
792 if (!count)
793 return 0; /* skip atime */
794
795 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
796 ret = gfs2_glock_nq(gh);
797 if (ret)
798 goto out_uninit;
799
800 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
801 is_sync_kiocb(iocb));
802
803 gfs2_glock_dq(gh);
804 out_uninit:
805 gfs2_holder_uninit(gh);
806 return ret;
807 }
808
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)809 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
810 struct gfs2_holder *gh)
811 {
812 struct file *file = iocb->ki_filp;
813 struct inode *inode = file->f_mapping->host;
814 struct gfs2_inode *ip = GFS2_I(inode);
815 size_t len = iov_iter_count(from);
816 loff_t offset = iocb->ki_pos;
817 ssize_t ret;
818
819 /*
820 * Deferred lock, even if its a write, since we do no allocation on
821 * this path. All we need to change is the atime, and this lock mode
822 * ensures that other nodes have flushed their buffered read caches
823 * (i.e. their page cache entries for this inode). We do not,
824 * unfortunately, have the option of only flushing a range like the
825 * VFS does.
826 */
827 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
828 ret = gfs2_glock_nq(gh);
829 if (ret)
830 goto out_uninit;
831
832 /* Silently fall back to buffered I/O when writing beyond EOF */
833 if (offset + len > i_size_read(&ip->i_inode))
834 goto out;
835
836 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
837 is_sync_kiocb(iocb));
838 if (ret == -ENOTBLK)
839 ret = 0;
840 out:
841 gfs2_glock_dq(gh);
842 out_uninit:
843 gfs2_holder_uninit(gh);
844 return ret;
845 }
846
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)847 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
848 {
849 struct gfs2_inode *ip;
850 struct gfs2_holder gh;
851 size_t written = 0;
852 ssize_t ret;
853
854 if (iocb->ki_flags & IOCB_DIRECT) {
855 ret = gfs2_file_direct_read(iocb, to, &gh);
856 if (likely(ret != -ENOTBLK))
857 return ret;
858 iocb->ki_flags &= ~IOCB_DIRECT;
859 }
860 iocb->ki_flags |= IOCB_NOIO;
861 ret = generic_file_read_iter(iocb, to);
862 iocb->ki_flags &= ~IOCB_NOIO;
863 if (ret >= 0) {
864 if (!iov_iter_count(to))
865 return ret;
866 written = ret;
867 } else {
868 if (ret != -EAGAIN)
869 return ret;
870 if (iocb->ki_flags & IOCB_NOWAIT)
871 return ret;
872 }
873 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
874 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
875 ret = gfs2_glock_nq(&gh);
876 if (ret)
877 goto out_uninit;
878 ret = generic_file_read_iter(iocb, to);
879 if (ret > 0)
880 written += ret;
881 gfs2_glock_dq(&gh);
882 out_uninit:
883 gfs2_holder_uninit(&gh);
884 return written ? written : ret;
885 }
886
887 /**
888 * gfs2_file_write_iter - Perform a write to a file
889 * @iocb: The io context
890 * @from: The data to write
891 *
892 * We have to do a lock/unlock here to refresh the inode size for
893 * O_APPEND writes, otherwise we can land up writing at the wrong
894 * offset. There is still a race, but provided the app is using its
895 * own file locking, this will make O_APPEND work as expected.
896 *
897 */
898
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)899 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
900 {
901 struct file *file = iocb->ki_filp;
902 struct inode *inode = file_inode(file);
903 struct gfs2_inode *ip = GFS2_I(inode);
904 struct gfs2_holder gh;
905 ssize_t ret;
906
907 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
908
909 if (iocb->ki_flags & IOCB_APPEND) {
910 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
911 if (ret)
912 return ret;
913 gfs2_glock_dq_uninit(&gh);
914 }
915
916 inode_lock(inode);
917 ret = generic_write_checks(iocb, from);
918 if (ret <= 0)
919 goto out_unlock;
920
921 ret = file_remove_privs(file);
922 if (ret)
923 goto out_unlock;
924
925 ret = file_update_time(file);
926 if (ret)
927 goto out_unlock;
928
929 if (iocb->ki_flags & IOCB_DIRECT) {
930 struct address_space *mapping = file->f_mapping;
931 ssize_t buffered, ret2;
932
933 ret = gfs2_file_direct_write(iocb, from, &gh);
934 if (ret < 0 || !iov_iter_count(from))
935 goto out_unlock;
936
937 iocb->ki_flags |= IOCB_DSYNC;
938 current->backing_dev_info = inode_to_bdi(inode);
939 buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
940 current->backing_dev_info = NULL;
941 if (unlikely(buffered <= 0)) {
942 if (!ret)
943 ret = buffered;
944 goto out_unlock;
945 }
946
947 /*
948 * We need to ensure that the page cache pages are written to
949 * disk and invalidated to preserve the expected O_DIRECT
950 * semantics. If the writeback or invalidate fails, only report
951 * the direct I/O range as we don't know if the buffered pages
952 * made it to disk.
953 */
954 iocb->ki_pos += buffered;
955 ret2 = generic_write_sync(iocb, buffered);
956 invalidate_mapping_pages(mapping,
957 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
958 (iocb->ki_pos - 1) >> PAGE_SHIFT);
959 if (!ret || ret2 > 0)
960 ret += ret2;
961 } else {
962 current->backing_dev_info = inode_to_bdi(inode);
963 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
964 current->backing_dev_info = NULL;
965 if (likely(ret > 0)) {
966 iocb->ki_pos += ret;
967 ret = generic_write_sync(iocb, ret);
968 }
969 }
970
971 out_unlock:
972 inode_unlock(inode);
973 return ret;
974 }
975
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)976 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
977 int mode)
978 {
979 struct super_block *sb = inode->i_sb;
980 struct gfs2_inode *ip = GFS2_I(inode);
981 loff_t end = offset + len;
982 struct buffer_head *dibh;
983 int error;
984
985 error = gfs2_meta_inode_buffer(ip, &dibh);
986 if (unlikely(error))
987 return error;
988
989 gfs2_trans_add_meta(ip->i_gl, dibh);
990
991 if (gfs2_is_stuffed(ip)) {
992 error = gfs2_unstuff_dinode(ip, NULL);
993 if (unlikely(error))
994 goto out;
995 }
996
997 while (offset < end) {
998 struct iomap iomap = { };
999
1000 error = gfs2_iomap_get_alloc(inode, offset, end - offset,
1001 &iomap);
1002 if (error)
1003 goto out;
1004 offset = iomap.offset + iomap.length;
1005 if (!(iomap.flags & IOMAP_F_NEW))
1006 continue;
1007 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1008 iomap.length >> inode->i_blkbits,
1009 GFP_NOFS);
1010 if (error) {
1011 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1012 goto out;
1013 }
1014 }
1015 out:
1016 brelse(dibh);
1017 return error;
1018 }
1019
1020 /**
1021 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1022 * blocks, determine how many bytes can be written.
1023 * @ip: The inode in question.
1024 * @len: Max cap of bytes. What we return in *len must be <= this.
1025 * @data_blocks: Compute and return the number of data blocks needed
1026 * @ind_blocks: Compute and return the number of indirect blocks needed
1027 * @max_blocks: The total blocks available to work with.
1028 *
1029 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1030 */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)1031 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1032 unsigned int *data_blocks, unsigned int *ind_blocks,
1033 unsigned int max_blocks)
1034 {
1035 loff_t max = *len;
1036 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1037 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1038
1039 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1040 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1041 max_data -= tmp;
1042 }
1043
1044 *data_blocks = max_data;
1045 *ind_blocks = max_blocks - max_data;
1046 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1047 if (*len > max) {
1048 *len = max;
1049 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1050 }
1051 }
1052
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1053 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1054 {
1055 struct inode *inode = file_inode(file);
1056 struct gfs2_sbd *sdp = GFS2_SB(inode);
1057 struct gfs2_inode *ip = GFS2_I(inode);
1058 struct gfs2_alloc_parms ap = { .aflags = 0, };
1059 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1060 loff_t bytes, max_bytes, max_blks;
1061 int error;
1062 const loff_t pos = offset;
1063 const loff_t count = len;
1064 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1065 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1066 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1067
1068 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1069
1070 offset &= bsize_mask;
1071
1072 len = next - offset;
1073 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1074 if (!bytes)
1075 bytes = UINT_MAX;
1076 bytes &= bsize_mask;
1077 if (bytes == 0)
1078 bytes = sdp->sd_sb.sb_bsize;
1079
1080 gfs2_size_hint(file, offset, len);
1081
1082 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1083 ap.min_target = data_blocks + ind_blocks;
1084
1085 while (len > 0) {
1086 if (len < bytes)
1087 bytes = len;
1088 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1089 len -= bytes;
1090 offset += bytes;
1091 continue;
1092 }
1093
1094 /* We need to determine how many bytes we can actually
1095 * fallocate without exceeding quota or going over the
1096 * end of the fs. We start off optimistically by assuming
1097 * we can write max_bytes */
1098 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1099
1100 /* Since max_bytes is most likely a theoretical max, we
1101 * calculate a more realistic 'bytes' to serve as a good
1102 * starting point for the number of bytes we may be able
1103 * to write */
1104 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1105 ap.target = data_blocks + ind_blocks;
1106
1107 error = gfs2_quota_lock_check(ip, &ap);
1108 if (error)
1109 return error;
1110 /* ap.allowed tells us how many blocks quota will allow
1111 * us to write. Check if this reduces max_blks */
1112 max_blks = UINT_MAX;
1113 if (ap.allowed)
1114 max_blks = ap.allowed;
1115
1116 error = gfs2_inplace_reserve(ip, &ap);
1117 if (error)
1118 goto out_qunlock;
1119
1120 /* check if the selected rgrp limits our max_blks further */
1121 if (ap.allowed && ap.allowed < max_blks)
1122 max_blks = ap.allowed;
1123
1124 /* Almost done. Calculate bytes that can be written using
1125 * max_blks. We also recompute max_bytes, data_blocks and
1126 * ind_blocks */
1127 calc_max_reserv(ip, &max_bytes, &data_blocks,
1128 &ind_blocks, max_blks);
1129
1130 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1131 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1132 if (gfs2_is_jdata(ip))
1133 rblocks += data_blocks ? data_blocks : 1;
1134
1135 error = gfs2_trans_begin(sdp, rblocks,
1136 PAGE_SIZE >> inode->i_blkbits);
1137 if (error)
1138 goto out_trans_fail;
1139
1140 error = fallocate_chunk(inode, offset, max_bytes, mode);
1141 gfs2_trans_end(sdp);
1142
1143 if (error)
1144 goto out_trans_fail;
1145
1146 len -= max_bytes;
1147 offset += max_bytes;
1148 gfs2_inplace_release(ip);
1149 gfs2_quota_unlock(ip);
1150 }
1151
1152 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1153 i_size_write(inode, pos + count);
1154 file_update_time(file);
1155 mark_inode_dirty(inode);
1156
1157 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1158 return vfs_fsync_range(file, pos, pos + count - 1,
1159 (file->f_flags & __O_SYNC) ? 0 : 1);
1160 return 0;
1161
1162 out_trans_fail:
1163 gfs2_inplace_release(ip);
1164 out_qunlock:
1165 gfs2_quota_unlock(ip);
1166 return error;
1167 }
1168
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1169 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1170 {
1171 struct inode *inode = file_inode(file);
1172 struct gfs2_sbd *sdp = GFS2_SB(inode);
1173 struct gfs2_inode *ip = GFS2_I(inode);
1174 struct gfs2_holder gh;
1175 int ret;
1176
1177 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1178 return -EOPNOTSUPP;
1179 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1180 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1181 return -EOPNOTSUPP;
1182
1183 inode_lock(inode);
1184
1185 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1186 ret = gfs2_glock_nq(&gh);
1187 if (ret)
1188 goto out_uninit;
1189
1190 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1191 (offset + len) > inode->i_size) {
1192 ret = inode_newsize_ok(inode, offset + len);
1193 if (ret)
1194 goto out_unlock;
1195 }
1196
1197 ret = get_write_access(inode);
1198 if (ret)
1199 goto out_unlock;
1200
1201 if (mode & FALLOC_FL_PUNCH_HOLE) {
1202 ret = __gfs2_punch_hole(file, offset, len);
1203 } else {
1204 ret = __gfs2_fallocate(file, mode, offset, len);
1205 if (ret)
1206 gfs2_rs_deltree(&ip->i_res);
1207 }
1208
1209 put_write_access(inode);
1210 out_unlock:
1211 gfs2_glock_dq(&gh);
1212 out_uninit:
1213 gfs2_holder_uninit(&gh);
1214 inode_unlock(inode);
1215 return ret;
1216 }
1217
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1218 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1219 struct file *out, loff_t *ppos,
1220 size_t len, unsigned int flags)
1221 {
1222 ssize_t ret;
1223
1224 gfs2_size_hint(out, *ppos, len);
1225
1226 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1227 return ret;
1228 }
1229
1230 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1231
1232 /**
1233 * gfs2_lock - acquire/release a posix lock on a file
1234 * @file: the file pointer
1235 * @cmd: either modify or retrieve lock state, possibly wait
1236 * @fl: type and range of lock
1237 *
1238 * Returns: errno
1239 */
1240
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1241 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1242 {
1243 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1244 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1245 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1246
1247 if (!(fl->fl_flags & FL_POSIX))
1248 return -ENOLCK;
1249 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1250 return -ENOLCK;
1251
1252 if (cmd == F_CANCELLK) {
1253 /* Hack: */
1254 cmd = F_SETLK;
1255 fl->fl_type = F_UNLCK;
1256 }
1257 if (unlikely(gfs2_withdrawn(sdp))) {
1258 if (fl->fl_type == F_UNLCK)
1259 locks_lock_file_wait(file, fl);
1260 return -EIO;
1261 }
1262 if (IS_GETLK(cmd))
1263 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1264 else if (fl->fl_type == F_UNLCK)
1265 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1266 else
1267 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1268 }
1269
do_flock(struct file * file,int cmd,struct file_lock * fl)1270 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1271 {
1272 struct gfs2_file *fp = file->private_data;
1273 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1274 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1275 struct gfs2_glock *gl;
1276 unsigned int state;
1277 u16 flags;
1278 int error = 0;
1279 int sleeptime;
1280
1281 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1282 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1283
1284 mutex_lock(&fp->f_fl_mutex);
1285
1286 if (gfs2_holder_initialized(fl_gh)) {
1287 struct file_lock request;
1288 if (fl_gh->gh_state == state)
1289 goto out;
1290 locks_init_lock(&request);
1291 request.fl_type = F_UNLCK;
1292 request.fl_flags = FL_FLOCK;
1293 locks_lock_file_wait(file, &request);
1294 gfs2_glock_dq(fl_gh);
1295 gfs2_holder_reinit(state, flags, fl_gh);
1296 } else {
1297 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1298 &gfs2_flock_glops, CREATE, &gl);
1299 if (error)
1300 goto out;
1301 gfs2_holder_init(gl, state, flags, fl_gh);
1302 gfs2_glock_put(gl);
1303 }
1304 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1305 error = gfs2_glock_nq(fl_gh);
1306 if (error != GLR_TRYFAILED)
1307 break;
1308 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1309 fl_gh->gh_error = 0;
1310 msleep(sleeptime);
1311 }
1312 if (error) {
1313 gfs2_holder_uninit(fl_gh);
1314 if (error == GLR_TRYFAILED)
1315 error = -EAGAIN;
1316 } else {
1317 error = locks_lock_file_wait(file, fl);
1318 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1319 }
1320
1321 out:
1322 mutex_unlock(&fp->f_fl_mutex);
1323 return error;
1324 }
1325
do_unflock(struct file * file,struct file_lock * fl)1326 static void do_unflock(struct file *file, struct file_lock *fl)
1327 {
1328 struct gfs2_file *fp = file->private_data;
1329 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1330
1331 mutex_lock(&fp->f_fl_mutex);
1332 locks_lock_file_wait(file, fl);
1333 if (gfs2_holder_initialized(fl_gh)) {
1334 gfs2_glock_dq(fl_gh);
1335 gfs2_holder_uninit(fl_gh);
1336 }
1337 mutex_unlock(&fp->f_fl_mutex);
1338 }
1339
1340 /**
1341 * gfs2_flock - acquire/release a flock lock on a file
1342 * @file: the file pointer
1343 * @cmd: either modify or retrieve lock state, possibly wait
1344 * @fl: type and range of lock
1345 *
1346 * Returns: errno
1347 */
1348
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1349 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1350 {
1351 if (!(fl->fl_flags & FL_FLOCK))
1352 return -ENOLCK;
1353 if (fl->fl_type & LOCK_MAND)
1354 return -EOPNOTSUPP;
1355
1356 if (fl->fl_type == F_UNLCK) {
1357 do_unflock(file, fl);
1358 return 0;
1359 } else {
1360 return do_flock(file, cmd, fl);
1361 }
1362 }
1363
1364 const struct file_operations gfs2_file_fops = {
1365 .llseek = gfs2_llseek,
1366 .read_iter = gfs2_file_read_iter,
1367 .write_iter = gfs2_file_write_iter,
1368 .iopoll = iomap_dio_iopoll,
1369 .unlocked_ioctl = gfs2_ioctl,
1370 .compat_ioctl = gfs2_compat_ioctl,
1371 .mmap = gfs2_mmap,
1372 .open = gfs2_open,
1373 .release = gfs2_release,
1374 .fsync = gfs2_fsync,
1375 .lock = gfs2_lock,
1376 .flock = gfs2_flock,
1377 .splice_read = generic_file_splice_read,
1378 .splice_write = gfs2_file_splice_write,
1379 .setlease = simple_nosetlease,
1380 .fallocate = gfs2_fallocate,
1381 };
1382
1383 const struct file_operations gfs2_dir_fops = {
1384 .iterate_shared = gfs2_readdir,
1385 .unlocked_ioctl = gfs2_ioctl,
1386 .compat_ioctl = gfs2_compat_ioctl,
1387 .open = gfs2_open,
1388 .release = gfs2_release,
1389 .fsync = gfs2_fsync,
1390 .lock = gfs2_lock,
1391 .flock = gfs2_flock,
1392 .llseek = default_llseek,
1393 };
1394
1395 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1396
1397 const struct file_operations gfs2_file_fops_nolock = {
1398 .llseek = gfs2_llseek,
1399 .read_iter = gfs2_file_read_iter,
1400 .write_iter = gfs2_file_write_iter,
1401 .iopoll = iomap_dio_iopoll,
1402 .unlocked_ioctl = gfs2_ioctl,
1403 .compat_ioctl = gfs2_compat_ioctl,
1404 .mmap = gfs2_mmap,
1405 .open = gfs2_open,
1406 .release = gfs2_release,
1407 .fsync = gfs2_fsync,
1408 .splice_read = generic_file_splice_read,
1409 .splice_write = gfs2_file_splice_write,
1410 .setlease = generic_setlease,
1411 .fallocate = gfs2_fallocate,
1412 };
1413
1414 const struct file_operations gfs2_dir_fops_nolock = {
1415 .iterate_shared = gfs2_readdir,
1416 .unlocked_ioctl = gfs2_ioctl,
1417 .compat_ioctl = gfs2_compat_ioctl,
1418 .open = gfs2_open,
1419 .release = gfs2_release,
1420 .fsync = gfs2_fsync,
1421 .llseek = default_llseek,
1422 };
1423
1424