1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2019 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include <linux/ip.h>
10 #include <linux/tcp.h>
11 #include <linux/vmalloc.h>
12 #include <linux/skbuff.h>
13
gve_tx_put_doorbell(struct gve_priv * priv,struct gve_queue_resources * q_resources,u32 val)14 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
15 struct gve_queue_resources *q_resources,
16 u32 val)
17 {
18 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
19 }
20
21 /* gvnic can only transmit from a Registered Segment.
22 * We copy skb payloads into the registered segment before writing Tx
23 * descriptors and ringing the Tx doorbell.
24 *
25 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
26 * free allocations in the order they were allocated.
27 */
28
gve_tx_fifo_init(struct gve_priv * priv,struct gve_tx_fifo * fifo)29 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
30 {
31 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
32 PAGE_KERNEL);
33 if (unlikely(!fifo->base)) {
34 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
35 fifo->qpl->id);
36 return -ENOMEM;
37 }
38
39 fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
40 atomic_set(&fifo->available, fifo->size);
41 fifo->head = 0;
42 return 0;
43 }
44
gve_tx_fifo_release(struct gve_priv * priv,struct gve_tx_fifo * fifo)45 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
46 {
47 WARN(atomic_read(&fifo->available) != fifo->size,
48 "Releasing non-empty fifo");
49
50 vunmap(fifo->base);
51 }
52
gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo * fifo,size_t bytes)53 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
54 size_t bytes)
55 {
56 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
57 }
58
gve_tx_fifo_can_alloc(struct gve_tx_fifo * fifo,size_t bytes)59 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
60 {
61 return (atomic_read(&fifo->available) <= bytes) ? false : true;
62 }
63
64 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
65 * @fifo: FIFO to allocate from
66 * @bytes: Allocation size
67 * @iov: Scatter-gather elements to fill with allocation fragment base/len
68 *
69 * Returns number of valid elements in iov[] or negative on error.
70 *
71 * Allocations from a given FIFO must be externally synchronized but concurrent
72 * allocation and frees are allowed.
73 */
gve_tx_alloc_fifo(struct gve_tx_fifo * fifo,size_t bytes,struct gve_tx_iovec iov[2])74 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
75 struct gve_tx_iovec iov[2])
76 {
77 size_t overflow, padding;
78 u32 aligned_head;
79 int nfrags = 0;
80
81 if (!bytes)
82 return 0;
83
84 /* This check happens before we know how much padding is needed to
85 * align to a cacheline boundary for the payload, but that is fine,
86 * because the FIFO head always start aligned, and the FIFO's boundaries
87 * are aligned, so if there is space for the data, there is space for
88 * the padding to the next alignment.
89 */
90 WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
91 "Reached %s when there's not enough space in the fifo", __func__);
92
93 nfrags++;
94
95 iov[0].iov_offset = fifo->head;
96 iov[0].iov_len = bytes;
97 fifo->head += bytes;
98
99 if (fifo->head > fifo->size) {
100 /* If the allocation did not fit in the tail fragment of the
101 * FIFO, also use the head fragment.
102 */
103 nfrags++;
104 overflow = fifo->head - fifo->size;
105 iov[0].iov_len -= overflow;
106 iov[1].iov_offset = 0; /* Start of fifo*/
107 iov[1].iov_len = overflow;
108
109 fifo->head = overflow;
110 }
111
112 /* Re-align to a cacheline boundary */
113 aligned_head = L1_CACHE_ALIGN(fifo->head);
114 padding = aligned_head - fifo->head;
115 iov[nfrags - 1].iov_padding = padding;
116 atomic_sub(bytes + padding, &fifo->available);
117 fifo->head = aligned_head;
118
119 if (fifo->head == fifo->size)
120 fifo->head = 0;
121
122 return nfrags;
123 }
124
125 /* gve_tx_free_fifo - Return space to Tx FIFO
126 * @fifo: FIFO to return fragments to
127 * @bytes: Bytes to free
128 */
gve_tx_free_fifo(struct gve_tx_fifo * fifo,size_t bytes)129 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
130 {
131 atomic_add(bytes, &fifo->available);
132 }
133
gve_tx_remove_from_block(struct gve_priv * priv,int queue_idx)134 static void gve_tx_remove_from_block(struct gve_priv *priv, int queue_idx)
135 {
136 struct gve_notify_block *block =
137 &priv->ntfy_blocks[gve_tx_idx_to_ntfy(priv, queue_idx)];
138
139 block->tx = NULL;
140 }
141
142 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
143 u32 to_do, bool try_to_wake);
144
gve_tx_free_ring(struct gve_priv * priv,int idx)145 static void gve_tx_free_ring(struct gve_priv *priv, int idx)
146 {
147 struct gve_tx_ring *tx = &priv->tx[idx];
148 struct device *hdev = &priv->pdev->dev;
149 size_t bytes;
150 u32 slots;
151
152 gve_tx_remove_from_block(priv, idx);
153 slots = tx->mask + 1;
154 gve_clean_tx_done(priv, tx, tx->req, false);
155 netdev_tx_reset_queue(tx->netdev_txq);
156
157 dma_free_coherent(hdev, sizeof(*tx->q_resources),
158 tx->q_resources, tx->q_resources_bus);
159 tx->q_resources = NULL;
160
161 gve_tx_fifo_release(priv, &tx->tx_fifo);
162 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
163 tx->tx_fifo.qpl = NULL;
164
165 bytes = sizeof(*tx->desc) * slots;
166 dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
167 tx->desc = NULL;
168
169 vfree(tx->info);
170 tx->info = NULL;
171
172 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
173 }
174
gve_tx_add_to_block(struct gve_priv * priv,int queue_idx)175 static void gve_tx_add_to_block(struct gve_priv *priv, int queue_idx)
176 {
177 int ntfy_idx = gve_tx_idx_to_ntfy(priv, queue_idx);
178 struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
179 struct gve_tx_ring *tx = &priv->tx[queue_idx];
180
181 block->tx = tx;
182 tx->ntfy_id = ntfy_idx;
183 }
184
gve_tx_alloc_ring(struct gve_priv * priv,int idx)185 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
186 {
187 struct gve_tx_ring *tx = &priv->tx[idx];
188 struct device *hdev = &priv->pdev->dev;
189 u32 slots = priv->tx_desc_cnt;
190 size_t bytes;
191
192 /* Make sure everything is zeroed to start */
193 memset(tx, 0, sizeof(*tx));
194 tx->q_num = idx;
195
196 tx->mask = slots - 1;
197
198 /* alloc metadata */
199 tx->info = vzalloc(sizeof(*tx->info) * slots);
200 if (!tx->info)
201 return -ENOMEM;
202
203 /* alloc tx queue */
204 bytes = sizeof(*tx->desc) * slots;
205 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
206 if (!tx->desc)
207 goto abort_with_info;
208
209 tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
210 if (!tx->tx_fifo.qpl)
211 goto abort_with_desc;
212
213 /* map Tx FIFO */
214 if (gve_tx_fifo_init(priv, &tx->tx_fifo))
215 goto abort_with_qpl;
216
217 tx->q_resources =
218 dma_alloc_coherent(hdev,
219 sizeof(*tx->q_resources),
220 &tx->q_resources_bus,
221 GFP_KERNEL);
222 if (!tx->q_resources)
223 goto abort_with_fifo;
224
225 netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
226 (unsigned long)tx->bus);
227 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
228 gve_tx_add_to_block(priv, idx);
229
230 return 0;
231
232 abort_with_fifo:
233 gve_tx_fifo_release(priv, &tx->tx_fifo);
234 abort_with_qpl:
235 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
236 abort_with_desc:
237 dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
238 tx->desc = NULL;
239 abort_with_info:
240 vfree(tx->info);
241 tx->info = NULL;
242 return -ENOMEM;
243 }
244
gve_tx_alloc_rings(struct gve_priv * priv)245 int gve_tx_alloc_rings(struct gve_priv *priv)
246 {
247 int err = 0;
248 int i;
249
250 for (i = 0; i < priv->tx_cfg.num_queues; i++) {
251 err = gve_tx_alloc_ring(priv, i);
252 if (err) {
253 netif_err(priv, drv, priv->dev,
254 "Failed to alloc tx ring=%d: err=%d\n",
255 i, err);
256 break;
257 }
258 }
259 /* Unallocate if there was an error */
260 if (err) {
261 int j;
262
263 for (j = 0; j < i; j++)
264 gve_tx_free_ring(priv, j);
265 }
266 return err;
267 }
268
gve_tx_free_rings(struct gve_priv * priv)269 void gve_tx_free_rings(struct gve_priv *priv)
270 {
271 int i;
272
273 for (i = 0; i < priv->tx_cfg.num_queues; i++)
274 gve_tx_free_ring(priv, i);
275 }
276
277 /* gve_tx_avail - Calculates the number of slots available in the ring
278 * @tx: tx ring to check
279 *
280 * Returns the number of slots available
281 *
282 * The capacity of the queue is mask + 1. We don't need to reserve an entry.
283 **/
gve_tx_avail(struct gve_tx_ring * tx)284 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
285 {
286 return tx->mask + 1 - (tx->req - tx->done);
287 }
288
gve_skb_fifo_bytes_required(struct gve_tx_ring * tx,struct sk_buff * skb)289 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
290 struct sk_buff *skb)
291 {
292 int pad_bytes, align_hdr_pad;
293 int bytes;
294 int hlen;
295
296 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) +
297 tcp_hdrlen(skb) : skb_headlen(skb);
298
299 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
300 hlen);
301 /* We need to take into account the header alignment padding. */
302 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
303 bytes = align_hdr_pad + pad_bytes + skb->len;
304
305 return bytes;
306 }
307
308 /* The most descriptors we could need are 3 - 1 for the headers, 1 for
309 * the beginning of the payload at the end of the FIFO, and 1 if the
310 * payload wraps to the beginning of the FIFO.
311 */
312 #define MAX_TX_DESC_NEEDED 3
313
314 /* Check if sufficient resources (descriptor ring space, FIFO space) are
315 * available to transmit the given number of bytes.
316 */
gve_can_tx(struct gve_tx_ring * tx,int bytes_required)317 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
318 {
319 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED &&
320 gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required));
321 }
322
323 /* Stops the queue if the skb cannot be transmitted. */
gve_maybe_stop_tx(struct gve_tx_ring * tx,struct sk_buff * skb)324 static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb)
325 {
326 int bytes_required;
327
328 bytes_required = gve_skb_fifo_bytes_required(tx, skb);
329 if (likely(gve_can_tx(tx, bytes_required)))
330 return 0;
331
332 /* No space, so stop the queue */
333 tx->stop_queue++;
334 netif_tx_stop_queue(tx->netdev_txq);
335 smp_mb(); /* sync with restarting queue in gve_clean_tx_done() */
336
337 /* Now check for resources again, in case gve_clean_tx_done() freed
338 * resources after we checked and we stopped the queue after
339 * gve_clean_tx_done() checked.
340 *
341 * gve_maybe_stop_tx() gve_clean_tx_done()
342 * nsegs/can_alloc test failed
343 * gve_tx_free_fifo()
344 * if (tx queue stopped)
345 * netif_tx_queue_wake()
346 * netif_tx_stop_queue()
347 * Need to check again for space here!
348 */
349 if (likely(!gve_can_tx(tx, bytes_required)))
350 return -EBUSY;
351
352 netif_tx_start_queue(tx->netdev_txq);
353 tx->wake_queue++;
354 return 0;
355 }
356
gve_tx_fill_pkt_desc(union gve_tx_desc * pkt_desc,struct sk_buff * skb,bool is_gso,int l4_hdr_offset,u32 desc_cnt,u16 hlen,u64 addr)357 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
358 struct sk_buff *skb, bool is_gso,
359 int l4_hdr_offset, u32 desc_cnt,
360 u16 hlen, u64 addr)
361 {
362 /* l4_hdr_offset and csum_offset are in units of 16-bit words */
363 if (is_gso) {
364 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
365 pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
366 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
367 } else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
368 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
369 pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
370 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
371 } else {
372 pkt_desc->pkt.type_flags = GVE_TXD_STD;
373 pkt_desc->pkt.l4_csum_offset = 0;
374 pkt_desc->pkt.l4_hdr_offset = 0;
375 }
376 pkt_desc->pkt.desc_cnt = desc_cnt;
377 pkt_desc->pkt.len = cpu_to_be16(skb->len);
378 pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
379 pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
380 }
381
gve_tx_fill_seg_desc(union gve_tx_desc * seg_desc,struct sk_buff * skb,bool is_gso,u16 len,u64 addr)382 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
383 struct sk_buff *skb, bool is_gso,
384 u16 len, u64 addr)
385 {
386 seg_desc->seg.type_flags = GVE_TXD_SEG;
387 if (is_gso) {
388 if (skb_is_gso_v6(skb))
389 seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
390 seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1;
391 seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
392 }
393 seg_desc->seg.seg_len = cpu_to_be16(len);
394 seg_desc->seg.seg_addr = cpu_to_be64(addr);
395 }
396
gve_dma_sync_for_device(struct device * dev,dma_addr_t * page_buses,u64 iov_offset,u64 iov_len)397 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
398 u64 iov_offset, u64 iov_len)
399 {
400 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
401 u64 first_page = iov_offset / PAGE_SIZE;
402 dma_addr_t dma;
403 u64 page;
404
405 for (page = first_page; page <= last_page; page++) {
406 dma = page_buses[page];
407 dma_sync_single_for_device(dev, dma, PAGE_SIZE, DMA_TO_DEVICE);
408 }
409 }
410
gve_tx_add_skb(struct gve_tx_ring * tx,struct sk_buff * skb,struct device * dev)411 static int gve_tx_add_skb(struct gve_tx_ring *tx, struct sk_buff *skb,
412 struct device *dev)
413 {
414 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
415 union gve_tx_desc *pkt_desc, *seg_desc;
416 struct gve_tx_buffer_state *info;
417 bool is_gso = skb_is_gso(skb);
418 u32 idx = tx->req & tx->mask;
419 int payload_iov = 2;
420 int copy_offset;
421 u32 next_idx;
422 int i;
423
424 info = &tx->info[idx];
425 pkt_desc = &tx->desc[idx];
426
427 l4_hdr_offset = skb_checksum_start_offset(skb);
428 /* If the skb is gso, then we want the tcp header in the first segment
429 * otherwise we want the linear portion of the skb (which will contain
430 * the checksum because skb->csum_start and skb->csum_offset are given
431 * relative to skb->head) in the first segment.
432 */
433 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
434 skb_headlen(skb);
435
436 info->skb = skb;
437 /* We don't want to split the header, so if necessary, pad to the end
438 * of the fifo and then put the header at the beginning of the fifo.
439 */
440 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
441 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
442 &info->iov[0]);
443 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
444 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
445 &info->iov[payload_iov]);
446
447 gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
448 1 + payload_nfrags, hlen,
449 info->iov[hdr_nfrags - 1].iov_offset);
450
451 skb_copy_bits(skb, 0,
452 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
453 hlen);
454 gve_dma_sync_for_device(dev, tx->tx_fifo.qpl->page_buses,
455 info->iov[hdr_nfrags - 1].iov_offset,
456 info->iov[hdr_nfrags - 1].iov_len);
457 copy_offset = hlen;
458
459 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
460 next_idx = (tx->req + 1 + i - payload_iov) & tx->mask;
461 seg_desc = &tx->desc[next_idx];
462
463 gve_tx_fill_seg_desc(seg_desc, skb, is_gso,
464 info->iov[i].iov_len,
465 info->iov[i].iov_offset);
466
467 skb_copy_bits(skb, copy_offset,
468 tx->tx_fifo.base + info->iov[i].iov_offset,
469 info->iov[i].iov_len);
470 gve_dma_sync_for_device(dev, tx->tx_fifo.qpl->page_buses,
471 info->iov[i].iov_offset,
472 info->iov[i].iov_len);
473 copy_offset += info->iov[i].iov_len;
474 }
475
476 return 1 + payload_nfrags;
477 }
478
gve_tx(struct sk_buff * skb,struct net_device * dev)479 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
480 {
481 struct gve_priv *priv = netdev_priv(dev);
482 struct gve_tx_ring *tx;
483 int nsegs;
484
485 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
486 "skb queue index out of range");
487 tx = &priv->tx[skb_get_queue_mapping(skb)];
488 if (unlikely(gve_maybe_stop_tx(tx, skb))) {
489 /* We need to ring the txq doorbell -- we have stopped the Tx
490 * queue for want of resources, but prior calls to gve_tx()
491 * may have added descriptors without ringing the doorbell.
492 */
493
494 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
495 return NETDEV_TX_BUSY;
496 }
497 nsegs = gve_tx_add_skb(tx, skb, &priv->pdev->dev);
498
499 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
500 skb_tx_timestamp(skb);
501
502 /* give packets to NIC */
503 tx->req += nsegs;
504
505 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
506 return NETDEV_TX_OK;
507
508 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
509 return NETDEV_TX_OK;
510 }
511
512 #define GVE_TX_START_THRESH PAGE_SIZE
513
gve_clean_tx_done(struct gve_priv * priv,struct gve_tx_ring * tx,u32 to_do,bool try_to_wake)514 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
515 u32 to_do, bool try_to_wake)
516 {
517 struct gve_tx_buffer_state *info;
518 u64 pkts = 0, bytes = 0;
519 size_t space_freed = 0;
520 struct sk_buff *skb;
521 int i, j;
522 u32 idx;
523
524 for (j = 0; j < to_do; j++) {
525 idx = tx->done & tx->mask;
526 netif_info(priv, tx_done, priv->dev,
527 "[%d] %s: idx=%d (req=%u done=%u)\n",
528 tx->q_num, __func__, idx, tx->req, tx->done);
529 info = &tx->info[idx];
530 skb = info->skb;
531
532 /* Mark as free */
533 if (skb) {
534 info->skb = NULL;
535 bytes += skb->len;
536 pkts++;
537 dev_consume_skb_any(skb);
538 /* FIFO free */
539 for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
540 space_freed += info->iov[i].iov_len +
541 info->iov[i].iov_padding;
542 info->iov[i].iov_len = 0;
543 info->iov[i].iov_padding = 0;
544 }
545 }
546 tx->done++;
547 }
548
549 gve_tx_free_fifo(&tx->tx_fifo, space_freed);
550 u64_stats_update_begin(&tx->statss);
551 tx->bytes_done += bytes;
552 tx->pkt_done += pkts;
553 u64_stats_update_end(&tx->statss);
554 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
555
556 /* start the queue if we've stopped it */
557 #ifndef CONFIG_BQL
558 /* Make sure that the doorbells are synced */
559 smp_mb();
560 #endif
561 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
562 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
563 tx->wake_queue++;
564 netif_tx_wake_queue(tx->netdev_txq);
565 }
566
567 return pkts;
568 }
569
gve_tx_load_event_counter(struct gve_priv * priv,struct gve_tx_ring * tx)570 __be32 gve_tx_load_event_counter(struct gve_priv *priv,
571 struct gve_tx_ring *tx)
572 {
573 u32 counter_index = be32_to_cpu((tx->q_resources->counter_index));
574
575 return READ_ONCE(priv->counter_array[counter_index]);
576 }
577
gve_tx_poll(struct gve_notify_block * block,int budget)578 bool gve_tx_poll(struct gve_notify_block *block, int budget)
579 {
580 struct gve_priv *priv = block->priv;
581 struct gve_tx_ring *tx = block->tx;
582 bool repoll = false;
583 u32 nic_done;
584 u32 to_do;
585
586 /* If budget is 0, do all the work */
587 if (budget == 0)
588 budget = INT_MAX;
589
590 /* Find out how much work there is to be done */
591 tx->last_nic_done = gve_tx_load_event_counter(priv, tx);
592 nic_done = be32_to_cpu(tx->last_nic_done);
593 if (budget > 0) {
594 /* Do as much work as we have that the budget will
595 * allow
596 */
597 to_do = min_t(u32, (nic_done - tx->done), budget);
598 gve_clean_tx_done(priv, tx, to_do, true);
599 }
600 /* If we still have work we want to repoll */
601 repoll |= (nic_done != tx->done);
602 return repoll;
603 }
604