• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41 
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51 
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55 
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59 
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62 
63 /* ---- HCI debugfs entries ---- */
64 
dut_mode_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 			     size_t count, loff_t *ppos)
67 {
68 	struct hci_dev *hdev = file->private_data;
69 	char buf[3];
70 
71 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 	buf[1] = '\n';
73 	buf[2] = '\0';
74 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76 
dut_mode_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 			      size_t count, loff_t *ppos)
79 {
80 	struct hci_dev *hdev = file->private_data;
81 	struct sk_buff *skb;
82 	bool enable;
83 	int err;
84 
85 	if (!test_bit(HCI_UP, &hdev->flags))
86 		return -ENETDOWN;
87 
88 	err = kstrtobool_from_user(user_buf, count, &enable);
89 	if (err)
90 		return err;
91 
92 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 		return -EALREADY;
94 
95 	hci_req_sync_lock(hdev);
96 	if (enable)
97 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 				     HCI_CMD_TIMEOUT);
99 	else
100 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 				     HCI_CMD_TIMEOUT);
102 	hci_req_sync_unlock(hdev);
103 
104 	if (IS_ERR(skb))
105 		return PTR_ERR(skb);
106 
107 	kfree_skb(skb);
108 
109 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
110 
111 	return count;
112 }
113 
114 static const struct file_operations dut_mode_fops = {
115 	.open		= simple_open,
116 	.read		= dut_mode_read,
117 	.write		= dut_mode_write,
118 	.llseek		= default_llseek,
119 };
120 
vendor_diag_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 				size_t count, loff_t *ppos)
123 {
124 	struct hci_dev *hdev = file->private_data;
125 	char buf[3];
126 
127 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 	buf[1] = '\n';
129 	buf[2] = '\0';
130 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132 
vendor_diag_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 				 size_t count, loff_t *ppos)
135 {
136 	struct hci_dev *hdev = file->private_data;
137 	bool enable;
138 	int err;
139 
140 	err = kstrtobool_from_user(user_buf, count, &enable);
141 	if (err)
142 		return err;
143 
144 	/* When the diagnostic flags are not persistent and the transport
145 	 * is not active or in user channel operation, then there is no need
146 	 * for the vendor callback. Instead just store the desired value and
147 	 * the setting will be programmed when the controller gets powered on.
148 	 */
149 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 		goto done;
153 
154 	hci_req_sync_lock(hdev);
155 	err = hdev->set_diag(hdev, enable);
156 	hci_req_sync_unlock(hdev);
157 
158 	if (err < 0)
159 		return err;
160 
161 done:
162 	if (enable)
163 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 	else
165 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166 
167 	return count;
168 }
169 
170 static const struct file_operations vendor_diag_fops = {
171 	.open		= simple_open,
172 	.read		= vendor_diag_read,
173 	.write		= vendor_diag_write,
174 	.llseek		= default_llseek,
175 };
176 
hci_debugfs_create_basic(struct hci_dev * hdev)177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 			    &dut_mode_fops);
181 
182 	if (hdev->set_diag)
183 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 				    &vendor_diag_fops);
185 }
186 
hci_reset_req(struct hci_request * req,unsigned long opt)187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 	BT_DBG("%s %ld", req->hdev->name, opt);
190 
191 	/* Reset device */
192 	set_bit(HCI_RESET, &req->hdev->flags);
193 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 	return 0;
195 }
196 
bredr_init(struct hci_request * req)197 static void bredr_init(struct hci_request *req)
198 {
199 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200 
201 	/* Read Local Supported Features */
202 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203 
204 	/* Read Local Version */
205 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206 
207 	/* Read BD Address */
208 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210 
amp_init1(struct hci_request * req)211 static void amp_init1(struct hci_request *req)
212 {
213 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214 
215 	/* Read Local Version */
216 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217 
218 	/* Read Local Supported Commands */
219 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220 
221 	/* Read Local AMP Info */
222 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223 
224 	/* Read Data Blk size */
225 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226 
227 	/* Read Flow Control Mode */
228 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229 
230 	/* Read Location Data */
231 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233 
amp_init2(struct hci_request * req)234 static int amp_init2(struct hci_request *req)
235 {
236 	/* Read Local Supported Features. Not all AMP controllers
237 	 * support this so it's placed conditionally in the second
238 	 * stage init.
239 	 */
240 	if (req->hdev->commands[14] & 0x20)
241 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242 
243 	return 0;
244 }
245 
hci_init1_req(struct hci_request * req,unsigned long opt)246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 	struct hci_dev *hdev = req->hdev;
249 
250 	BT_DBG("%s %ld", hdev->name, opt);
251 
252 	/* Reset */
253 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 		hci_reset_req(req, 0);
255 
256 	switch (hdev->dev_type) {
257 	case HCI_PRIMARY:
258 		bredr_init(req);
259 		break;
260 	case HCI_AMP:
261 		amp_init1(req);
262 		break;
263 	default:
264 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 		break;
266 	}
267 
268 	return 0;
269 }
270 
bredr_setup(struct hci_request * req)271 static void bredr_setup(struct hci_request *req)
272 {
273 	__le16 param;
274 	__u8 flt_type;
275 
276 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278 
279 	/* Read Class of Device */
280 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281 
282 	/* Read Local Name */
283 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284 
285 	/* Read Voice Setting */
286 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287 
288 	/* Read Number of Supported IAC */
289 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290 
291 	/* Read Current IAC LAP */
292 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293 
294 	/* Clear Event Filters */
295 	flt_type = HCI_FLT_CLEAR_ALL;
296 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297 
298 	/* Connection accept timeout ~20 secs */
299 	param = cpu_to_le16(0x7d00);
300 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
301 }
302 
le_setup(struct hci_request * req)303 static void le_setup(struct hci_request *req)
304 {
305 	struct hci_dev *hdev = req->hdev;
306 
307 	/* Read LE Buffer Size */
308 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309 
310 	/* Read LE Local Supported Features */
311 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312 
313 	/* Read LE Supported States */
314 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315 
316 	/* LE-only controllers have LE implicitly enabled */
317 	if (!lmp_bredr_capable(hdev))
318 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320 
hci_setup_event_mask(struct hci_request * req)321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 	struct hci_dev *hdev = req->hdev;
324 
325 	/* The second byte is 0xff instead of 0x9f (two reserved bits
326 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 	 * command otherwise.
328 	 */
329 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330 
331 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 	 * any event mask for pre 1.2 devices.
333 	 */
334 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 		return;
336 
337 	if (lmp_bredr_capable(hdev)) {
338 		events[4] |= 0x01; /* Flow Specification Complete */
339 	} else {
340 		/* Use a different default for LE-only devices */
341 		memset(events, 0, sizeof(events));
342 		events[1] |= 0x20; /* Command Complete */
343 		events[1] |= 0x40; /* Command Status */
344 		events[1] |= 0x80; /* Hardware Error */
345 
346 		/* If the controller supports the Disconnect command, enable
347 		 * the corresponding event. In addition enable packet flow
348 		 * control related events.
349 		 */
350 		if (hdev->commands[0] & 0x20) {
351 			events[0] |= 0x10; /* Disconnection Complete */
352 			events[2] |= 0x04; /* Number of Completed Packets */
353 			events[3] |= 0x02; /* Data Buffer Overflow */
354 		}
355 
356 		/* If the controller supports the Read Remote Version
357 		 * Information command, enable the corresponding event.
358 		 */
359 		if (hdev->commands[2] & 0x80)
360 			events[1] |= 0x08; /* Read Remote Version Information
361 					    * Complete
362 					    */
363 
364 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 			events[0] |= 0x80; /* Encryption Change */
366 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 		}
368 	}
369 
370 	if (lmp_inq_rssi_capable(hdev) ||
371 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 		events[4] |= 0x02; /* Inquiry Result with RSSI */
373 
374 	if (lmp_ext_feat_capable(hdev))
375 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
376 
377 	if (lmp_esco_capable(hdev)) {
378 		events[5] |= 0x08; /* Synchronous Connection Complete */
379 		events[5] |= 0x10; /* Synchronous Connection Changed */
380 	}
381 
382 	if (lmp_sniffsubr_capable(hdev))
383 		events[5] |= 0x20; /* Sniff Subrating */
384 
385 	if (lmp_pause_enc_capable(hdev))
386 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
387 
388 	if (lmp_ext_inq_capable(hdev))
389 		events[5] |= 0x40; /* Extended Inquiry Result */
390 
391 	if (lmp_no_flush_capable(hdev))
392 		events[7] |= 0x01; /* Enhanced Flush Complete */
393 
394 	if (lmp_lsto_capable(hdev))
395 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
396 
397 	if (lmp_ssp_capable(hdev)) {
398 		events[6] |= 0x01;	/* IO Capability Request */
399 		events[6] |= 0x02;	/* IO Capability Response */
400 		events[6] |= 0x04;	/* User Confirmation Request */
401 		events[6] |= 0x08;	/* User Passkey Request */
402 		events[6] |= 0x10;	/* Remote OOB Data Request */
403 		events[6] |= 0x20;	/* Simple Pairing Complete */
404 		events[7] |= 0x04;	/* User Passkey Notification */
405 		events[7] |= 0x08;	/* Keypress Notification */
406 		events[7] |= 0x10;	/* Remote Host Supported
407 					 * Features Notification
408 					 */
409 	}
410 
411 	if (lmp_le_capable(hdev))
412 		events[7] |= 0x20;	/* LE Meta-Event */
413 
414 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416 
hci_init2_req(struct hci_request * req,unsigned long opt)417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 	struct hci_dev *hdev = req->hdev;
420 
421 	if (hdev->dev_type == HCI_AMP)
422 		return amp_init2(req);
423 
424 	if (lmp_bredr_capable(hdev))
425 		bredr_setup(req);
426 	else
427 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428 
429 	if (lmp_le_capable(hdev))
430 		le_setup(req);
431 
432 	/* All Bluetooth 1.2 and later controllers should support the
433 	 * HCI command for reading the local supported commands.
434 	 *
435 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 	 * but do not have support for this command. If that is the case,
437 	 * the driver can quirk the behavior and skip reading the local
438 	 * supported commands.
439 	 */
440 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443 
444 	if (lmp_ssp_capable(hdev)) {
445 		/* When SSP is available, then the host features page
446 		 * should also be available as well. However some
447 		 * controllers list the max_page as 0 as long as SSP
448 		 * has not been enabled. To achieve proper debugging
449 		 * output, force the minimum max_page to 1 at least.
450 		 */
451 		hdev->max_page = 0x01;
452 
453 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 			u8 mode = 0x01;
455 
456 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 				    sizeof(mode), &mode);
458 		} else {
459 			struct hci_cp_write_eir cp;
460 
461 			memset(hdev->eir, 0, sizeof(hdev->eir));
462 			memset(&cp, 0, sizeof(cp));
463 
464 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 		}
466 	}
467 
468 	if (lmp_inq_rssi_capable(hdev) ||
469 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 		u8 mode;
471 
472 		/* If Extended Inquiry Result events are supported, then
473 		 * they are clearly preferred over Inquiry Result with RSSI
474 		 * events.
475 		 */
476 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477 
478 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 	}
480 
481 	if (lmp_inq_tx_pwr_capable(hdev))
482 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483 
484 	if (lmp_ext_feat_capable(hdev)) {
485 		struct hci_cp_read_local_ext_features cp;
486 
487 		cp.page = 0x01;
488 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 			    sizeof(cp), &cp);
490 	}
491 
492 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 		u8 enable = 1;
494 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 			    &enable);
496 	}
497 
498 	return 0;
499 }
500 
hci_setup_link_policy(struct hci_request * req)501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 	struct hci_dev *hdev = req->hdev;
504 	struct hci_cp_write_def_link_policy cp;
505 	u16 link_policy = 0;
506 
507 	if (lmp_rswitch_capable(hdev))
508 		link_policy |= HCI_LP_RSWITCH;
509 	if (lmp_hold_capable(hdev))
510 		link_policy |= HCI_LP_HOLD;
511 	if (lmp_sniff_capable(hdev))
512 		link_policy |= HCI_LP_SNIFF;
513 	if (lmp_park_capable(hdev))
514 		link_policy |= HCI_LP_PARK;
515 
516 	cp.policy = cpu_to_le16(link_policy);
517 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519 
hci_set_le_support(struct hci_request * req)520 static void hci_set_le_support(struct hci_request *req)
521 {
522 	struct hci_dev *hdev = req->hdev;
523 	struct hci_cp_write_le_host_supported cp;
524 
525 	/* LE-only devices do not support explicit enablement */
526 	if (!lmp_bredr_capable(hdev))
527 		return;
528 
529 	memset(&cp, 0, sizeof(cp));
530 
531 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 		cp.le = 0x01;
533 		cp.simul = 0x00;
534 	}
535 
536 	if (cp.le != lmp_host_le_capable(hdev))
537 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 			    &cp);
539 }
540 
hci_set_event_mask_page_2(struct hci_request * req)541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 	struct hci_dev *hdev = req->hdev;
544 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 	bool changed = false;
546 
547 	/* If Connectionless Slave Broadcast master role is supported
548 	 * enable all necessary events for it.
549 	 */
550 	if (lmp_csb_master_capable(hdev)) {
551 		events[1] |= 0x40;	/* Triggered Clock Capture */
552 		events[1] |= 0x80;	/* Synchronization Train Complete */
553 		events[2] |= 0x10;	/* Slave Page Response Timeout */
554 		events[2] |= 0x20;	/* CSB Channel Map Change */
555 		changed = true;
556 	}
557 
558 	/* If Connectionless Slave Broadcast slave role is supported
559 	 * enable all necessary events for it.
560 	 */
561 	if (lmp_csb_slave_capable(hdev)) {
562 		events[2] |= 0x01;	/* Synchronization Train Received */
563 		events[2] |= 0x02;	/* CSB Receive */
564 		events[2] |= 0x04;	/* CSB Timeout */
565 		events[2] |= 0x08;	/* Truncated Page Complete */
566 		changed = true;
567 	}
568 
569 	/* Enable Authenticated Payload Timeout Expired event if supported */
570 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 		events[2] |= 0x80;
572 		changed = true;
573 	}
574 
575 	/* Some Broadcom based controllers indicate support for Set Event
576 	 * Mask Page 2 command, but then actually do not support it. Since
577 	 * the default value is all bits set to zero, the command is only
578 	 * required if the event mask has to be changed. In case no change
579 	 * to the event mask is needed, skip this command.
580 	 */
581 	if (changed)
582 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 			    sizeof(events), events);
584 }
585 
hci_init3_req(struct hci_request * req,unsigned long opt)586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 	struct hci_dev *hdev = req->hdev;
589 	u8 p;
590 
591 	hci_setup_event_mask(req);
592 
593 	if (hdev->commands[6] & 0x20 &&
594 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 		struct hci_cp_read_stored_link_key cp;
596 
597 		bacpy(&cp.bdaddr, BDADDR_ANY);
598 		cp.read_all = 0x01;
599 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 	}
601 
602 	if (hdev->commands[5] & 0x10)
603 		hci_setup_link_policy(req);
604 
605 	if (hdev->commands[8] & 0x01)
606 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607 
608 	if (hdev->commands[18] & 0x04 &&
609 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611 
612 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
613 	 * support the Read Page Scan Type command. Check support for
614 	 * this command in the bit mask of supported commands.
615 	 */
616 	if (hdev->commands[13] & 0x01)
617 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618 
619 	if (lmp_le_capable(hdev)) {
620 		u8 events[8];
621 
622 		memset(events, 0, sizeof(events));
623 
624 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 			events[0] |= 0x10;	/* LE Long Term Key Request */
626 
627 		/* If controller supports the Connection Parameters Request
628 		 * Link Layer Procedure, enable the corresponding event.
629 		 */
630 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 			events[0] |= 0x20;	/* LE Remote Connection
632 						 * Parameter Request
633 						 */
634 
635 		/* If the controller supports the Data Length Extension
636 		 * feature, enable the corresponding event.
637 		 */
638 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 			events[0] |= 0x40;	/* LE Data Length Change */
640 
641 		/* If the controller supports LL Privacy feature, enable
642 		 * the corresponding event.
643 		 */
644 		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 			events[1] |= 0x02;	/* LE Enhanced Connection
646 						 * Complete
647 						 */
648 
649 		/* If the controller supports Extended Scanner Filter
650 		 * Policies, enable the correspondig event.
651 		 */
652 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 			events[1] |= 0x04;	/* LE Direct Advertising
654 						 * Report
655 						 */
656 
657 		/* If the controller supports Channel Selection Algorithm #2
658 		 * feature, enable the corresponding event.
659 		 */
660 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 			events[2] |= 0x08;	/* LE Channel Selection
662 						 * Algorithm
663 						 */
664 
665 		/* If the controller supports the LE Set Scan Enable command,
666 		 * enable the corresponding advertising report event.
667 		 */
668 		if (hdev->commands[26] & 0x08)
669 			events[0] |= 0x02;	/* LE Advertising Report */
670 
671 		/* If the controller supports the LE Create Connection
672 		 * command, enable the corresponding event.
673 		 */
674 		if (hdev->commands[26] & 0x10)
675 			events[0] |= 0x01;	/* LE Connection Complete */
676 
677 		/* If the controller supports the LE Connection Update
678 		 * command, enable the corresponding event.
679 		 */
680 		if (hdev->commands[27] & 0x04)
681 			events[0] |= 0x04;	/* LE Connection Update
682 						 * Complete
683 						 */
684 
685 		/* If the controller supports the LE Read Remote Used Features
686 		 * command, enable the corresponding event.
687 		 */
688 		if (hdev->commands[27] & 0x20)
689 			events[0] |= 0x08;	/* LE Read Remote Used
690 						 * Features Complete
691 						 */
692 
693 		/* If the controller supports the LE Read Local P-256
694 		 * Public Key command, enable the corresponding event.
695 		 */
696 		if (hdev->commands[34] & 0x02)
697 			events[0] |= 0x80;	/* LE Read Local P-256
698 						 * Public Key Complete
699 						 */
700 
701 		/* If the controller supports the LE Generate DHKey
702 		 * command, enable the corresponding event.
703 		 */
704 		if (hdev->commands[34] & 0x04)
705 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
706 
707 		/* If the controller supports the LE Set Default PHY or
708 		 * LE Set PHY commands, enable the corresponding event.
709 		 */
710 		if (hdev->commands[35] & (0x20 | 0x40))
711 			events[1] |= 0x08;        /* LE PHY Update Complete */
712 
713 		/* If the controller supports LE Set Extended Scan Parameters
714 		 * and LE Set Extended Scan Enable commands, enable the
715 		 * corresponding event.
716 		 */
717 		if (use_ext_scan(hdev))
718 			events[1] |= 0x10;	/* LE Extended Advertising
719 						 * Report
720 						 */
721 
722 		/* If the controller supports the LE Extended Advertising
723 		 * command, enable the corresponding event.
724 		 */
725 		if (ext_adv_capable(hdev))
726 			events[2] |= 0x02;	/* LE Advertising Set
727 						 * Terminated
728 						 */
729 
730 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 			    events);
732 
733 		/* Read LE Advertising Channel TX Power */
734 		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 			/* HCI TS spec forbids mixing of legacy and extended
736 			 * advertising commands wherein READ_ADV_TX_POWER is
737 			 * also included. So do not call it if extended adv
738 			 * is supported otherwise controller will return
739 			 * COMMAND_DISALLOWED for extended commands.
740 			 */
741 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 		}
743 
744 		if (hdev->commands[26] & 0x40) {
745 			/* Read LE White List Size */
746 			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 				    0, NULL);
748 		}
749 
750 		if (hdev->commands[26] & 0x80) {
751 			/* Clear LE White List */
752 			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 		}
754 
755 		if (hdev->commands[34] & 0x40) {
756 			/* Read LE Resolving List Size */
757 			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 				    0, NULL);
759 		}
760 
761 		if (hdev->commands[34] & 0x20) {
762 			/* Clear LE Resolving List */
763 			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 		}
765 
766 		if (hdev->commands[35] & 0x04) {
767 			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768 
769 			/* Set RPA timeout */
770 			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 				    &rpa_timeout);
772 		}
773 
774 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 			/* Read LE Maximum Data Length */
776 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777 
778 			/* Read LE Suggested Default Data Length */
779 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 		}
781 
782 		if (ext_adv_capable(hdev)) {
783 			/* Read LE Number of Supported Advertising Sets */
784 			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 				    0, NULL);
786 		}
787 
788 		hci_set_le_support(req);
789 	}
790 
791 	/* Read features beyond page 1 if available */
792 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 		struct hci_cp_read_local_ext_features cp;
794 
795 		cp.page = p;
796 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 			    sizeof(cp), &cp);
798 	}
799 
800 	return 0;
801 }
802 
hci_init4_req(struct hci_request * req,unsigned long opt)803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 	struct hci_dev *hdev = req->hdev;
806 
807 	/* Some Broadcom based Bluetooth controllers do not support the
808 	 * Delete Stored Link Key command. They are clearly indicating its
809 	 * absence in the bit mask of supported commands.
810 	 *
811 	 * Check the supported commands and only if the command is marked
812 	 * as supported send it. If not supported assume that the controller
813 	 * does not have actual support for stored link keys which makes this
814 	 * command redundant anyway.
815 	 *
816 	 * Some controllers indicate that they support handling deleting
817 	 * stored link keys, but they don't. The quirk lets a driver
818 	 * just disable this command.
819 	 */
820 	if (hdev->commands[6] & 0x80 &&
821 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 		struct hci_cp_delete_stored_link_key cp;
823 
824 		bacpy(&cp.bdaddr, BDADDR_ANY);
825 		cp.delete_all = 0x01;
826 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 			    sizeof(cp), &cp);
828 	}
829 
830 	/* Set event mask page 2 if the HCI command for it is supported */
831 	if (hdev->commands[22] & 0x04)
832 		hci_set_event_mask_page_2(req);
833 
834 	/* Read local codec list if the HCI command is supported */
835 	if (hdev->commands[29] & 0x20)
836 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837 
838 	/* Read local pairing options if the HCI command is supported */
839 	if (hdev->commands[41] & 0x08)
840 		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841 
842 	/* Get MWS transport configuration if the HCI command is supported */
843 	if (hdev->commands[30] & 0x08)
844 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845 
846 	/* Check for Synchronization Train support */
847 	if (lmp_sync_train_capable(hdev))
848 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849 
850 	/* Enable Secure Connections if supported and configured */
851 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 	    bredr_sc_enabled(hdev)) {
853 		u8 support = 0x01;
854 
855 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 			    sizeof(support), &support);
857 	}
858 
859 	/* Set erroneous data reporting if supported to the wideband speech
860 	 * setting value
861 	 */
862 	if (hdev->commands[18] & 0x08 &&
863 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 		bool enabled = hci_dev_test_flag(hdev,
865 						 HCI_WIDEBAND_SPEECH_ENABLED);
866 
867 		if (enabled !=
868 		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 			struct hci_cp_write_def_err_data_reporting cp;
870 
871 			cp.err_data_reporting = enabled ?
872 						ERR_DATA_REPORTING_ENABLED :
873 						ERR_DATA_REPORTING_DISABLED;
874 
875 			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 				    sizeof(cp), &cp);
877 		}
878 	}
879 
880 	/* Set Suggested Default Data Length to maximum if supported */
881 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 		struct hci_cp_le_write_def_data_len cp;
883 
884 		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 	}
888 
889 	/* Set Default PHY parameters if command is supported */
890 	if (hdev->commands[35] & 0x20) {
891 		struct hci_cp_le_set_default_phy cp;
892 
893 		cp.all_phys = 0x00;
894 		cp.tx_phys = hdev->le_tx_def_phys;
895 		cp.rx_phys = hdev->le_rx_def_phys;
896 
897 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 	}
899 
900 	return 0;
901 }
902 
__hci_init(struct hci_dev * hdev)903 static int __hci_init(struct hci_dev *hdev)
904 {
905 	int err;
906 
907 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 	if (err < 0)
909 		return err;
910 
911 	if (hci_dev_test_flag(hdev, HCI_SETUP))
912 		hci_debugfs_create_basic(hdev);
913 
914 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 	if (err < 0)
916 		return err;
917 
918 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 	 * BR/EDR/LE type controllers. AMP controllers only need the
920 	 * first two stages of init.
921 	 */
922 	if (hdev->dev_type != HCI_PRIMARY)
923 		return 0;
924 
925 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 	if (err < 0)
927 		return err;
928 
929 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 	if (err < 0)
931 		return err;
932 
933 	/* This function is only called when the controller is actually in
934 	 * configured state. When the controller is marked as unconfigured,
935 	 * this initialization procedure is not run.
936 	 *
937 	 * It means that it is possible that a controller runs through its
938 	 * setup phase and then discovers missing settings. If that is the
939 	 * case, then this function will not be called. It then will only
940 	 * be called during the config phase.
941 	 *
942 	 * So only when in setup phase or config phase, create the debugfs
943 	 * entries and register the SMP channels.
944 	 */
945 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
947 		return 0;
948 
949 	hci_debugfs_create_common(hdev);
950 
951 	if (lmp_bredr_capable(hdev))
952 		hci_debugfs_create_bredr(hdev);
953 
954 	if (lmp_le_capable(hdev))
955 		hci_debugfs_create_le(hdev);
956 
957 	return 0;
958 }
959 
hci_init0_req(struct hci_request * req,unsigned long opt)960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 	struct hci_dev *hdev = req->hdev;
963 
964 	BT_DBG("%s %ld", hdev->name, opt);
965 
966 	/* Reset */
967 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 		hci_reset_req(req, 0);
969 
970 	/* Read Local Version */
971 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972 
973 	/* Read BD Address */
974 	if (hdev->set_bdaddr)
975 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976 
977 	return 0;
978 }
979 
__hci_unconf_init(struct hci_dev * hdev)980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 	int err;
983 
984 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 		return 0;
986 
987 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 	if (err < 0)
989 		return err;
990 
991 	if (hci_dev_test_flag(hdev, HCI_SETUP))
992 		hci_debugfs_create_basic(hdev);
993 
994 	return 0;
995 }
996 
hci_scan_req(struct hci_request * req,unsigned long opt)997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 	__u8 scan = opt;
1000 
1001 	BT_DBG("%s %x", req->hdev->name, scan);
1002 
1003 	/* Inquiry and Page scans */
1004 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 	return 0;
1006 }
1007 
hci_auth_req(struct hci_request * req,unsigned long opt)1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 	__u8 auth = opt;
1011 
1012 	BT_DBG("%s %x", req->hdev->name, auth);
1013 
1014 	/* Authentication */
1015 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 	return 0;
1017 }
1018 
hci_encrypt_req(struct hci_request * req,unsigned long opt)1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 	__u8 encrypt = opt;
1022 
1023 	BT_DBG("%s %x", req->hdev->name, encrypt);
1024 
1025 	/* Encryption */
1026 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 	return 0;
1028 }
1029 
hci_linkpol_req(struct hci_request * req,unsigned long opt)1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 	__le16 policy = cpu_to_le16(opt);
1033 
1034 	BT_DBG("%s %x", req->hdev->name, policy);
1035 
1036 	/* Default link policy */
1037 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 	return 0;
1039 }
1040 
1041 /* Get HCI device by index.
1042  * Device is held on return. */
hci_dev_get(int index)1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 	struct hci_dev *hdev = NULL, *d;
1046 
1047 	BT_DBG("%d", index);
1048 
1049 	if (index < 0)
1050 		return NULL;
1051 
1052 	read_lock(&hci_dev_list_lock);
1053 	list_for_each_entry(d, &hci_dev_list, list) {
1054 		if (d->id == index) {
1055 			hdev = hci_dev_hold(d);
1056 			break;
1057 		}
1058 	}
1059 	read_unlock(&hci_dev_list_lock);
1060 	return hdev;
1061 }
1062 
1063 /* ---- Inquiry support ---- */
1064 
hci_discovery_active(struct hci_dev * hdev)1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 	struct discovery_state *discov = &hdev->discovery;
1068 
1069 	switch (discov->state) {
1070 	case DISCOVERY_FINDING:
1071 	case DISCOVERY_RESOLVING:
1072 		return true;
1073 
1074 	default:
1075 		return false;
1076 	}
1077 }
1078 
hci_discovery_set_state(struct hci_dev * hdev,int state)1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 	int old_state = hdev->discovery.state;
1082 
1083 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084 
1085 	if (old_state == state)
1086 		return;
1087 
1088 	hdev->discovery.state = state;
1089 
1090 	switch (state) {
1091 	case DISCOVERY_STOPPED:
1092 		hci_update_background_scan(hdev);
1093 
1094 		if (old_state != DISCOVERY_STARTING)
1095 			mgmt_discovering(hdev, 0);
1096 		break;
1097 	case DISCOVERY_STARTING:
1098 		break;
1099 	case DISCOVERY_FINDING:
1100 		mgmt_discovering(hdev, 1);
1101 		break;
1102 	case DISCOVERY_RESOLVING:
1103 		break;
1104 	case DISCOVERY_STOPPING:
1105 		break;
1106 	}
1107 }
1108 
hci_inquiry_cache_flush(struct hci_dev * hdev)1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 	struct discovery_state *cache = &hdev->discovery;
1112 	struct inquiry_entry *p, *n;
1113 
1114 	list_for_each_entry_safe(p, n, &cache->all, all) {
1115 		list_del(&p->all);
1116 		kfree(p);
1117 	}
1118 
1119 	INIT_LIST_HEAD(&cache->unknown);
1120 	INIT_LIST_HEAD(&cache->resolve);
1121 }
1122 
hci_inquiry_cache_lookup(struct hci_dev * hdev,bdaddr_t * bdaddr)1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 					       bdaddr_t *bdaddr)
1125 {
1126 	struct discovery_state *cache = &hdev->discovery;
1127 	struct inquiry_entry *e;
1128 
1129 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130 
1131 	list_for_each_entry(e, &cache->all, all) {
1132 		if (!bacmp(&e->data.bdaddr, bdaddr))
1133 			return e;
1134 	}
1135 
1136 	return NULL;
1137 }
1138 
hci_inquiry_cache_lookup_unknown(struct hci_dev * hdev,bdaddr_t * bdaddr)1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 						       bdaddr_t *bdaddr)
1141 {
1142 	struct discovery_state *cache = &hdev->discovery;
1143 	struct inquiry_entry *e;
1144 
1145 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146 
1147 	list_for_each_entry(e, &cache->unknown, list) {
1148 		if (!bacmp(&e->data.bdaddr, bdaddr))
1149 			return e;
1150 	}
1151 
1152 	return NULL;
1153 }
1154 
hci_inquiry_cache_lookup_resolve(struct hci_dev * hdev,bdaddr_t * bdaddr,int state)1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 						       bdaddr_t *bdaddr,
1157 						       int state)
1158 {
1159 	struct discovery_state *cache = &hdev->discovery;
1160 	struct inquiry_entry *e;
1161 
1162 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163 
1164 	list_for_each_entry(e, &cache->resolve, list) {
1165 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 			return e;
1167 		if (!bacmp(&e->data.bdaddr, bdaddr))
1168 			return e;
1169 	}
1170 
1171 	return NULL;
1172 }
1173 
hci_inquiry_cache_update_resolve(struct hci_dev * hdev,struct inquiry_entry * ie)1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 				      struct inquiry_entry *ie)
1176 {
1177 	struct discovery_state *cache = &hdev->discovery;
1178 	struct list_head *pos = &cache->resolve;
1179 	struct inquiry_entry *p;
1180 
1181 	list_del(&ie->list);
1182 
1183 	list_for_each_entry(p, &cache->resolve, list) {
1184 		if (p->name_state != NAME_PENDING &&
1185 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186 			break;
1187 		pos = &p->list;
1188 	}
1189 
1190 	list_add(&ie->list, pos);
1191 }
1192 
hci_inquiry_cache_update(struct hci_dev * hdev,struct inquiry_data * data,bool name_known)1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 			     bool name_known)
1195 {
1196 	struct discovery_state *cache = &hdev->discovery;
1197 	struct inquiry_entry *ie;
1198 	u32 flags = 0;
1199 
1200 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201 
1202 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203 
1204 	if (!data->ssp_mode)
1205 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206 
1207 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 	if (ie) {
1209 		if (!ie->data.ssp_mode)
1210 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211 
1212 		if (ie->name_state == NAME_NEEDED &&
1213 		    data->rssi != ie->data.rssi) {
1214 			ie->data.rssi = data->rssi;
1215 			hci_inquiry_cache_update_resolve(hdev, ie);
1216 		}
1217 
1218 		goto update;
1219 	}
1220 
1221 	/* Entry not in the cache. Add new one. */
1222 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 	if (!ie) {
1224 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 		goto done;
1226 	}
1227 
1228 	list_add(&ie->all, &cache->all);
1229 
1230 	if (name_known) {
1231 		ie->name_state = NAME_KNOWN;
1232 	} else {
1233 		ie->name_state = NAME_NOT_KNOWN;
1234 		list_add(&ie->list, &cache->unknown);
1235 	}
1236 
1237 update:
1238 	if (name_known && ie->name_state != NAME_KNOWN &&
1239 	    ie->name_state != NAME_PENDING) {
1240 		ie->name_state = NAME_KNOWN;
1241 		list_del(&ie->list);
1242 	}
1243 
1244 	memcpy(&ie->data, data, sizeof(*data));
1245 	ie->timestamp = jiffies;
1246 	cache->timestamp = jiffies;
1247 
1248 	if (ie->name_state == NAME_NOT_KNOWN)
1249 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250 
1251 done:
1252 	return flags;
1253 }
1254 
inquiry_cache_dump(struct hci_dev * hdev,int num,__u8 * buf)1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 	struct discovery_state *cache = &hdev->discovery;
1258 	struct inquiry_info *info = (struct inquiry_info *) buf;
1259 	struct inquiry_entry *e;
1260 	int copied = 0;
1261 
1262 	list_for_each_entry(e, &cache->all, all) {
1263 		struct inquiry_data *data = &e->data;
1264 
1265 		if (copied >= num)
1266 			break;
1267 
1268 		bacpy(&info->bdaddr, &data->bdaddr);
1269 		info->pscan_rep_mode	= data->pscan_rep_mode;
1270 		info->pscan_period_mode	= data->pscan_period_mode;
1271 		info->pscan_mode	= data->pscan_mode;
1272 		memcpy(info->dev_class, data->dev_class, 3);
1273 		info->clock_offset	= data->clock_offset;
1274 
1275 		info++;
1276 		copied++;
1277 	}
1278 
1279 	BT_DBG("cache %p, copied %d", cache, copied);
1280 	return copied;
1281 }
1282 
hci_inq_req(struct hci_request * req,unsigned long opt)1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 	struct hci_dev *hdev = req->hdev;
1287 	struct hci_cp_inquiry cp;
1288 
1289 	BT_DBG("%s", hdev->name);
1290 
1291 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 		return 0;
1293 
1294 	/* Start Inquiry */
1295 	memcpy(&cp.lap, &ir->lap, 3);
1296 	cp.length  = ir->length;
1297 	cp.num_rsp = ir->num_rsp;
1298 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299 
1300 	return 0;
1301 }
1302 
hci_inquiry(void __user * arg)1303 int hci_inquiry(void __user *arg)
1304 {
1305 	__u8 __user *ptr = arg;
1306 	struct hci_inquiry_req ir;
1307 	struct hci_dev *hdev;
1308 	int err = 0, do_inquiry = 0, max_rsp;
1309 	long timeo;
1310 	__u8 *buf;
1311 
1312 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 		return -EFAULT;
1314 
1315 	hdev = hci_dev_get(ir.dev_id);
1316 	if (!hdev)
1317 		return -ENODEV;
1318 
1319 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 		err = -EBUSY;
1321 		goto done;
1322 	}
1323 
1324 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 		err = -EOPNOTSUPP;
1326 		goto done;
1327 	}
1328 
1329 	if (hdev->dev_type != HCI_PRIMARY) {
1330 		err = -EOPNOTSUPP;
1331 		goto done;
1332 	}
1333 
1334 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 		err = -EOPNOTSUPP;
1336 		goto done;
1337 	}
1338 
1339 	/* Restrict maximum inquiry length to 60 seconds */
1340 	if (ir.length > 60) {
1341 		err = -EINVAL;
1342 		goto done;
1343 	}
1344 
1345 	hci_dev_lock(hdev);
1346 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1347 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1348 		hci_inquiry_cache_flush(hdev);
1349 		do_inquiry = 1;
1350 	}
1351 	hci_dev_unlock(hdev);
1352 
1353 	timeo = ir.length * msecs_to_jiffies(2000);
1354 
1355 	if (do_inquiry) {
1356 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1357 				   timeo, NULL);
1358 		if (err < 0)
1359 			goto done;
1360 
1361 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1362 		 * cleared). If it is interrupted by a signal, return -EINTR.
1363 		 */
1364 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1365 				TASK_INTERRUPTIBLE)) {
1366 			err = -EINTR;
1367 			goto done;
1368 		}
1369 	}
1370 
1371 	/* for unlimited number of responses we will use buffer with
1372 	 * 255 entries
1373 	 */
1374 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1375 
1376 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1377 	 * copy it to the user space.
1378 	 */
1379 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1380 	if (!buf) {
1381 		err = -ENOMEM;
1382 		goto done;
1383 	}
1384 
1385 	hci_dev_lock(hdev);
1386 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1387 	hci_dev_unlock(hdev);
1388 
1389 	BT_DBG("num_rsp %d", ir.num_rsp);
1390 
1391 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1392 		ptr += sizeof(ir);
1393 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1394 				 ir.num_rsp))
1395 			err = -EFAULT;
1396 	} else
1397 		err = -EFAULT;
1398 
1399 	kfree(buf);
1400 
1401 done:
1402 	hci_dev_put(hdev);
1403 	return err;
1404 }
1405 
1406 /**
1407  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1408  *				       (BD_ADDR) for a HCI device from
1409  *				       a firmware node property.
1410  * @hdev:	The HCI device
1411  *
1412  * Search the firmware node for 'local-bd-address'.
1413  *
1414  * All-zero BD addresses are rejected, because those could be properties
1415  * that exist in the firmware tables, but were not updated by the firmware. For
1416  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1417  */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)1418 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1419 {
1420 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1421 	bdaddr_t ba;
1422 	int ret;
1423 
1424 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1425 					    (u8 *)&ba, sizeof(ba));
1426 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1427 		return;
1428 
1429 	bacpy(&hdev->public_addr, &ba);
1430 }
1431 
hci_dev_do_open(struct hci_dev * hdev)1432 static int hci_dev_do_open(struct hci_dev *hdev)
1433 {
1434 	int ret = 0;
1435 
1436 	BT_DBG("%s %p", hdev->name, hdev);
1437 
1438 	hci_req_sync_lock(hdev);
1439 
1440 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1441 		ret = -ENODEV;
1442 		goto done;
1443 	}
1444 
1445 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1446 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1447 		/* Check for rfkill but allow the HCI setup stage to
1448 		 * proceed (which in itself doesn't cause any RF activity).
1449 		 */
1450 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1451 			ret = -ERFKILL;
1452 			goto done;
1453 		}
1454 
1455 		/* Check for valid public address or a configured static
1456 		 * random adddress, but let the HCI setup proceed to
1457 		 * be able to determine if there is a public address
1458 		 * or not.
1459 		 *
1460 		 * In case of user channel usage, it is not important
1461 		 * if a public address or static random address is
1462 		 * available.
1463 		 *
1464 		 * This check is only valid for BR/EDR controllers
1465 		 * since AMP controllers do not have an address.
1466 		 */
1467 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1468 		    hdev->dev_type == HCI_PRIMARY &&
1469 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1470 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1471 			ret = -EADDRNOTAVAIL;
1472 			goto done;
1473 		}
1474 	}
1475 
1476 	if (test_bit(HCI_UP, &hdev->flags)) {
1477 		ret = -EALREADY;
1478 		goto done;
1479 	}
1480 
1481 	if (hdev->open(hdev)) {
1482 		ret = -EIO;
1483 		goto done;
1484 	}
1485 
1486 	set_bit(HCI_RUNNING, &hdev->flags);
1487 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1488 
1489 	atomic_set(&hdev->cmd_cnt, 1);
1490 	set_bit(HCI_INIT, &hdev->flags);
1491 
1492 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1493 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1494 		bool invalid_bdaddr;
1495 
1496 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1497 
1498 		if (hdev->setup)
1499 			ret = hdev->setup(hdev);
1500 
1501 		/* The transport driver can set the quirk to mark the
1502 		 * BD_ADDR invalid before creating the HCI device or in
1503 		 * its setup callback.
1504 		 */
1505 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1506 					  &hdev->quirks);
1507 
1508 		if (ret)
1509 			goto setup_failed;
1510 
1511 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1512 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1513 				hci_dev_get_bd_addr_from_property(hdev);
1514 
1515 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1516 			    hdev->set_bdaddr) {
1517 				ret = hdev->set_bdaddr(hdev,
1518 						       &hdev->public_addr);
1519 
1520 				/* If setting of the BD_ADDR from the device
1521 				 * property succeeds, then treat the address
1522 				 * as valid even if the invalid BD_ADDR
1523 				 * quirk indicates otherwise.
1524 				 */
1525 				if (!ret)
1526 					invalid_bdaddr = false;
1527 			}
1528 		}
1529 
1530 setup_failed:
1531 		/* The transport driver can set these quirks before
1532 		 * creating the HCI device or in its setup callback.
1533 		 *
1534 		 * For the invalid BD_ADDR quirk it is possible that
1535 		 * it becomes a valid address if the bootloader does
1536 		 * provide it (see above).
1537 		 *
1538 		 * In case any of them is set, the controller has to
1539 		 * start up as unconfigured.
1540 		 */
1541 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1542 		    invalid_bdaddr)
1543 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1544 
1545 		/* For an unconfigured controller it is required to
1546 		 * read at least the version information provided by
1547 		 * the Read Local Version Information command.
1548 		 *
1549 		 * If the set_bdaddr driver callback is provided, then
1550 		 * also the original Bluetooth public device address
1551 		 * will be read using the Read BD Address command.
1552 		 */
1553 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1554 			ret = __hci_unconf_init(hdev);
1555 	}
1556 
1557 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1558 		/* If public address change is configured, ensure that
1559 		 * the address gets programmed. If the driver does not
1560 		 * support changing the public address, fail the power
1561 		 * on procedure.
1562 		 */
1563 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1564 		    hdev->set_bdaddr)
1565 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1566 		else
1567 			ret = -EADDRNOTAVAIL;
1568 	}
1569 
1570 	if (!ret) {
1571 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1572 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1573 			ret = __hci_init(hdev);
1574 			if (!ret && hdev->post_init)
1575 				ret = hdev->post_init(hdev);
1576 		}
1577 	}
1578 
1579 	/* If the HCI Reset command is clearing all diagnostic settings,
1580 	 * then they need to be reprogrammed after the init procedure
1581 	 * completed.
1582 	 */
1583 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1584 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1585 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1586 		ret = hdev->set_diag(hdev, true);
1587 
1588 	msft_do_open(hdev);
1589 
1590 	clear_bit(HCI_INIT, &hdev->flags);
1591 
1592 	if (!ret) {
1593 		hci_dev_hold(hdev);
1594 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1595 		hci_adv_instances_set_rpa_expired(hdev, true);
1596 		set_bit(HCI_UP, &hdev->flags);
1597 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1598 		hci_leds_update_powered(hdev, true);
1599 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1600 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1601 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1602 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1603 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1604 		    hdev->dev_type == HCI_PRIMARY) {
1605 			ret = __hci_req_hci_power_on(hdev);
1606 			mgmt_power_on(hdev, ret);
1607 		}
1608 	} else {
1609 		/* Init failed, cleanup */
1610 		flush_work(&hdev->tx_work);
1611 
1612 		/* Since hci_rx_work() is possible to awake new cmd_work
1613 		 * it should be flushed first to avoid unexpected call of
1614 		 * hci_cmd_work()
1615 		 */
1616 		flush_work(&hdev->rx_work);
1617 		flush_work(&hdev->cmd_work);
1618 
1619 		skb_queue_purge(&hdev->cmd_q);
1620 		skb_queue_purge(&hdev->rx_q);
1621 
1622 		if (hdev->flush)
1623 			hdev->flush(hdev);
1624 
1625 		if (hdev->sent_cmd) {
1626 			kfree_skb(hdev->sent_cmd);
1627 			hdev->sent_cmd = NULL;
1628 		}
1629 
1630 		clear_bit(HCI_RUNNING, &hdev->flags);
1631 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1632 
1633 		hdev->close(hdev);
1634 		hdev->flags &= BIT(HCI_RAW);
1635 	}
1636 
1637 done:
1638 	hci_req_sync_unlock(hdev);
1639 	return ret;
1640 }
1641 
1642 /* ---- HCI ioctl helpers ---- */
1643 
hci_dev_open(__u16 dev)1644 int hci_dev_open(__u16 dev)
1645 {
1646 	struct hci_dev *hdev;
1647 	int err;
1648 
1649 	hdev = hci_dev_get(dev);
1650 	if (!hdev)
1651 		return -ENODEV;
1652 
1653 	/* Devices that are marked as unconfigured can only be powered
1654 	 * up as user channel. Trying to bring them up as normal devices
1655 	 * will result into a failure. Only user channel operation is
1656 	 * possible.
1657 	 *
1658 	 * When this function is called for a user channel, the flag
1659 	 * HCI_USER_CHANNEL will be set first before attempting to
1660 	 * open the device.
1661 	 */
1662 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1663 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1664 		err = -EOPNOTSUPP;
1665 		goto done;
1666 	}
1667 
1668 	/* We need to ensure that no other power on/off work is pending
1669 	 * before proceeding to call hci_dev_do_open. This is
1670 	 * particularly important if the setup procedure has not yet
1671 	 * completed.
1672 	 */
1673 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1674 		cancel_delayed_work(&hdev->power_off);
1675 
1676 	/* After this call it is guaranteed that the setup procedure
1677 	 * has finished. This means that error conditions like RFKILL
1678 	 * or no valid public or static random address apply.
1679 	 */
1680 	flush_workqueue(hdev->req_workqueue);
1681 
1682 	/* For controllers not using the management interface and that
1683 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1684 	 * so that pairing works for them. Once the management interface
1685 	 * is in use this bit will be cleared again and userspace has
1686 	 * to explicitly enable it.
1687 	 */
1688 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1689 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1690 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1691 
1692 	err = hci_dev_do_open(hdev);
1693 
1694 done:
1695 	hci_dev_put(hdev);
1696 	return err;
1697 }
1698 
1699 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)1700 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1701 {
1702 	struct hci_conn_params *p;
1703 
1704 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1705 		if (p->conn) {
1706 			hci_conn_drop(p->conn);
1707 			hci_conn_put(p->conn);
1708 			p->conn = NULL;
1709 		}
1710 		list_del_init(&p->action);
1711 	}
1712 
1713 	BT_DBG("All LE pending actions cleared");
1714 }
1715 
hci_dev_do_close(struct hci_dev * hdev)1716 int hci_dev_do_close(struct hci_dev *hdev)
1717 {
1718 	bool auto_off;
1719 
1720 	BT_DBG("%s %p", hdev->name, hdev);
1721 
1722 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1723 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1724 	    test_bit(HCI_UP, &hdev->flags)) {
1725 		/* Execute vendor specific shutdown routine */
1726 		if (hdev->shutdown)
1727 			hdev->shutdown(hdev);
1728 	}
1729 
1730 	cancel_delayed_work(&hdev->power_off);
1731 
1732 	hci_request_cancel_all(hdev);
1733 	hci_req_sync_lock(hdev);
1734 
1735 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1736 		cancel_delayed_work_sync(&hdev->cmd_timer);
1737 		hci_req_sync_unlock(hdev);
1738 		return 0;
1739 	}
1740 
1741 	hci_leds_update_powered(hdev, false);
1742 
1743 	/* Flush RX and TX works */
1744 	flush_work(&hdev->tx_work);
1745 	flush_work(&hdev->rx_work);
1746 
1747 	if (hdev->discov_timeout > 0) {
1748 		hdev->discov_timeout = 0;
1749 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1750 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1751 	}
1752 
1753 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1754 		cancel_delayed_work(&hdev->service_cache);
1755 
1756 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1757 		struct adv_info *adv_instance;
1758 
1759 		cancel_delayed_work_sync(&hdev->rpa_expired);
1760 
1761 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1762 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1763 	}
1764 
1765 	/* Avoid potential lockdep warnings from the *_flush() calls by
1766 	 * ensuring the workqueue is empty up front.
1767 	 */
1768 	drain_workqueue(hdev->workqueue);
1769 
1770 	hci_dev_lock(hdev);
1771 
1772 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1773 
1774 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1775 
1776 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1777 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1778 	    hci_dev_test_flag(hdev, HCI_MGMT))
1779 		__mgmt_power_off(hdev);
1780 
1781 	hci_inquiry_cache_flush(hdev);
1782 	hci_pend_le_actions_clear(hdev);
1783 	hci_conn_hash_flush(hdev);
1784 	hci_dev_unlock(hdev);
1785 
1786 	smp_unregister(hdev);
1787 
1788 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1789 
1790 	msft_do_close(hdev);
1791 
1792 	if (hdev->flush)
1793 		hdev->flush(hdev);
1794 
1795 	/* Reset device */
1796 	skb_queue_purge(&hdev->cmd_q);
1797 	atomic_set(&hdev->cmd_cnt, 1);
1798 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1799 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800 		set_bit(HCI_INIT, &hdev->flags);
1801 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1802 		clear_bit(HCI_INIT, &hdev->flags);
1803 	}
1804 
1805 	/* flush cmd  work */
1806 	flush_work(&hdev->cmd_work);
1807 
1808 	/* Drop queues */
1809 	skb_queue_purge(&hdev->rx_q);
1810 	skb_queue_purge(&hdev->cmd_q);
1811 	skb_queue_purge(&hdev->raw_q);
1812 
1813 	/* Drop last sent command */
1814 	if (hdev->sent_cmd) {
1815 		cancel_delayed_work_sync(&hdev->cmd_timer);
1816 		kfree_skb(hdev->sent_cmd);
1817 		hdev->sent_cmd = NULL;
1818 	}
1819 
1820 	clear_bit(HCI_RUNNING, &hdev->flags);
1821 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1822 
1823 	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1824 		wake_up(&hdev->suspend_wait_q);
1825 
1826 	/* After this point our queues are empty
1827 	 * and no tasks are scheduled. */
1828 	hdev->close(hdev);
1829 
1830 	/* Clear flags */
1831 	hdev->flags &= BIT(HCI_RAW);
1832 	hci_dev_clear_volatile_flags(hdev);
1833 
1834 	/* Controller radio is available but is currently powered down */
1835 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1836 
1837 	memset(hdev->eir, 0, sizeof(hdev->eir));
1838 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1839 	bacpy(&hdev->random_addr, BDADDR_ANY);
1840 
1841 	hci_req_sync_unlock(hdev);
1842 
1843 	hci_dev_put(hdev);
1844 	return 0;
1845 }
1846 
hci_dev_close(__u16 dev)1847 int hci_dev_close(__u16 dev)
1848 {
1849 	struct hci_dev *hdev;
1850 	int err;
1851 
1852 	hdev = hci_dev_get(dev);
1853 	if (!hdev)
1854 		return -ENODEV;
1855 
1856 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1857 		err = -EBUSY;
1858 		goto done;
1859 	}
1860 
1861 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1862 		cancel_delayed_work(&hdev->power_off);
1863 
1864 	err = hci_dev_do_close(hdev);
1865 
1866 done:
1867 	hci_dev_put(hdev);
1868 	return err;
1869 }
1870 
hci_dev_do_reset(struct hci_dev * hdev)1871 static int hci_dev_do_reset(struct hci_dev *hdev)
1872 {
1873 	int ret;
1874 
1875 	BT_DBG("%s %p", hdev->name, hdev);
1876 
1877 	hci_req_sync_lock(hdev);
1878 
1879 	/* Drop queues */
1880 	skb_queue_purge(&hdev->rx_q);
1881 	skb_queue_purge(&hdev->cmd_q);
1882 
1883 	/* Avoid potential lockdep warnings from the *_flush() calls by
1884 	 * ensuring the workqueue is empty up front.
1885 	 */
1886 	drain_workqueue(hdev->workqueue);
1887 
1888 	hci_dev_lock(hdev);
1889 	hci_inquiry_cache_flush(hdev);
1890 	hci_conn_hash_flush(hdev);
1891 	hci_dev_unlock(hdev);
1892 
1893 	if (hdev->flush)
1894 		hdev->flush(hdev);
1895 
1896 	atomic_set(&hdev->cmd_cnt, 1);
1897 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1898 
1899 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1900 
1901 	hci_req_sync_unlock(hdev);
1902 	return ret;
1903 }
1904 
hci_dev_reset(__u16 dev)1905 int hci_dev_reset(__u16 dev)
1906 {
1907 	struct hci_dev *hdev;
1908 	int err;
1909 
1910 	hdev = hci_dev_get(dev);
1911 	if (!hdev)
1912 		return -ENODEV;
1913 
1914 	if (!test_bit(HCI_UP, &hdev->flags)) {
1915 		err = -ENETDOWN;
1916 		goto done;
1917 	}
1918 
1919 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1920 		err = -EBUSY;
1921 		goto done;
1922 	}
1923 
1924 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1925 		err = -EOPNOTSUPP;
1926 		goto done;
1927 	}
1928 
1929 	err = hci_dev_do_reset(hdev);
1930 
1931 done:
1932 	hci_dev_put(hdev);
1933 	return err;
1934 }
1935 
hci_dev_reset_stat(__u16 dev)1936 int hci_dev_reset_stat(__u16 dev)
1937 {
1938 	struct hci_dev *hdev;
1939 	int ret = 0;
1940 
1941 	hdev = hci_dev_get(dev);
1942 	if (!hdev)
1943 		return -ENODEV;
1944 
1945 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1946 		ret = -EBUSY;
1947 		goto done;
1948 	}
1949 
1950 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1951 		ret = -EOPNOTSUPP;
1952 		goto done;
1953 	}
1954 
1955 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1956 
1957 done:
1958 	hci_dev_put(hdev);
1959 	return ret;
1960 }
1961 
hci_update_scan_state(struct hci_dev * hdev,u8 scan)1962 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1963 {
1964 	bool conn_changed, discov_changed;
1965 
1966 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1967 
1968 	if ((scan & SCAN_PAGE))
1969 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1970 							  HCI_CONNECTABLE);
1971 	else
1972 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1973 							   HCI_CONNECTABLE);
1974 
1975 	if ((scan & SCAN_INQUIRY)) {
1976 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1977 							    HCI_DISCOVERABLE);
1978 	} else {
1979 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1980 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1981 							     HCI_DISCOVERABLE);
1982 	}
1983 
1984 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1985 		return;
1986 
1987 	if (conn_changed || discov_changed) {
1988 		/* In case this was disabled through mgmt */
1989 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1990 
1991 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1992 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1993 
1994 		mgmt_new_settings(hdev);
1995 	}
1996 }
1997 
hci_dev_cmd(unsigned int cmd,void __user * arg)1998 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1999 {
2000 	struct hci_dev *hdev;
2001 	struct hci_dev_req dr;
2002 	int err = 0;
2003 
2004 	if (copy_from_user(&dr, arg, sizeof(dr)))
2005 		return -EFAULT;
2006 
2007 	hdev = hci_dev_get(dr.dev_id);
2008 	if (!hdev)
2009 		return -ENODEV;
2010 
2011 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2012 		err = -EBUSY;
2013 		goto done;
2014 	}
2015 
2016 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2017 		err = -EOPNOTSUPP;
2018 		goto done;
2019 	}
2020 
2021 	if (hdev->dev_type != HCI_PRIMARY) {
2022 		err = -EOPNOTSUPP;
2023 		goto done;
2024 	}
2025 
2026 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2027 		err = -EOPNOTSUPP;
2028 		goto done;
2029 	}
2030 
2031 	switch (cmd) {
2032 	case HCISETAUTH:
2033 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2034 				   HCI_INIT_TIMEOUT, NULL);
2035 		break;
2036 
2037 	case HCISETENCRYPT:
2038 		if (!lmp_encrypt_capable(hdev)) {
2039 			err = -EOPNOTSUPP;
2040 			break;
2041 		}
2042 
2043 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2044 			/* Auth must be enabled first */
2045 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2046 					   HCI_INIT_TIMEOUT, NULL);
2047 			if (err)
2048 				break;
2049 		}
2050 
2051 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2052 				   HCI_INIT_TIMEOUT, NULL);
2053 		break;
2054 
2055 	case HCISETSCAN:
2056 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2057 				   HCI_INIT_TIMEOUT, NULL);
2058 
2059 		/* Ensure that the connectable and discoverable states
2060 		 * get correctly modified as this was a non-mgmt change.
2061 		 */
2062 		if (!err)
2063 			hci_update_scan_state(hdev, dr.dev_opt);
2064 		break;
2065 
2066 	case HCISETLINKPOL:
2067 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2068 				   HCI_INIT_TIMEOUT, NULL);
2069 		break;
2070 
2071 	case HCISETLINKMODE:
2072 		hdev->link_mode = ((__u16) dr.dev_opt) &
2073 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2074 		break;
2075 
2076 	case HCISETPTYPE:
2077 		if (hdev->pkt_type == (__u16) dr.dev_opt)
2078 			break;
2079 
2080 		hdev->pkt_type = (__u16) dr.dev_opt;
2081 		mgmt_phy_configuration_changed(hdev, NULL);
2082 		break;
2083 
2084 	case HCISETACLMTU:
2085 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2086 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2087 		break;
2088 
2089 	case HCISETSCOMTU:
2090 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2091 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2092 		break;
2093 
2094 	default:
2095 		err = -EINVAL;
2096 		break;
2097 	}
2098 
2099 done:
2100 	hci_dev_put(hdev);
2101 	return err;
2102 }
2103 
hci_get_dev_list(void __user * arg)2104 int hci_get_dev_list(void __user *arg)
2105 {
2106 	struct hci_dev *hdev;
2107 	struct hci_dev_list_req *dl;
2108 	struct hci_dev_req *dr;
2109 	int n = 0, size, err;
2110 	__u16 dev_num;
2111 
2112 	if (get_user(dev_num, (__u16 __user *) arg))
2113 		return -EFAULT;
2114 
2115 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2116 		return -EINVAL;
2117 
2118 	size = sizeof(*dl) + dev_num * sizeof(*dr);
2119 
2120 	dl = kzalloc(size, GFP_KERNEL);
2121 	if (!dl)
2122 		return -ENOMEM;
2123 
2124 	dr = dl->dev_req;
2125 
2126 	read_lock(&hci_dev_list_lock);
2127 	list_for_each_entry(hdev, &hci_dev_list, list) {
2128 		unsigned long flags = hdev->flags;
2129 
2130 		/* When the auto-off is configured it means the transport
2131 		 * is running, but in that case still indicate that the
2132 		 * device is actually down.
2133 		 */
2134 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2135 			flags &= ~BIT(HCI_UP);
2136 
2137 		(dr + n)->dev_id  = hdev->id;
2138 		(dr + n)->dev_opt = flags;
2139 
2140 		if (++n >= dev_num)
2141 			break;
2142 	}
2143 	read_unlock(&hci_dev_list_lock);
2144 
2145 	dl->dev_num = n;
2146 	size = sizeof(*dl) + n * sizeof(*dr);
2147 
2148 	err = copy_to_user(arg, dl, size);
2149 	kfree(dl);
2150 
2151 	return err ? -EFAULT : 0;
2152 }
2153 
hci_get_dev_info(void __user * arg)2154 int hci_get_dev_info(void __user *arg)
2155 {
2156 	struct hci_dev *hdev;
2157 	struct hci_dev_info di;
2158 	unsigned long flags;
2159 	int err = 0;
2160 
2161 	if (copy_from_user(&di, arg, sizeof(di)))
2162 		return -EFAULT;
2163 
2164 	hdev = hci_dev_get(di.dev_id);
2165 	if (!hdev)
2166 		return -ENODEV;
2167 
2168 	/* When the auto-off is configured it means the transport
2169 	 * is running, but in that case still indicate that the
2170 	 * device is actually down.
2171 	 */
2172 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2173 		flags = hdev->flags & ~BIT(HCI_UP);
2174 	else
2175 		flags = hdev->flags;
2176 
2177 	strcpy(di.name, hdev->name);
2178 	di.bdaddr   = hdev->bdaddr;
2179 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2180 	di.flags    = flags;
2181 	di.pkt_type = hdev->pkt_type;
2182 	if (lmp_bredr_capable(hdev)) {
2183 		di.acl_mtu  = hdev->acl_mtu;
2184 		di.acl_pkts = hdev->acl_pkts;
2185 		di.sco_mtu  = hdev->sco_mtu;
2186 		di.sco_pkts = hdev->sco_pkts;
2187 	} else {
2188 		di.acl_mtu  = hdev->le_mtu;
2189 		di.acl_pkts = hdev->le_pkts;
2190 		di.sco_mtu  = 0;
2191 		di.sco_pkts = 0;
2192 	}
2193 	di.link_policy = hdev->link_policy;
2194 	di.link_mode   = hdev->link_mode;
2195 
2196 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2197 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2198 
2199 	if (copy_to_user(arg, &di, sizeof(di)))
2200 		err = -EFAULT;
2201 
2202 	hci_dev_put(hdev);
2203 
2204 	return err;
2205 }
2206 
2207 /* ---- Interface to HCI drivers ---- */
2208 
hci_rfkill_set_block(void * data,bool blocked)2209 static int hci_rfkill_set_block(void *data, bool blocked)
2210 {
2211 	struct hci_dev *hdev = data;
2212 
2213 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2214 
2215 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2216 		return -EBUSY;
2217 
2218 	if (blocked) {
2219 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2220 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2221 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2222 			hci_dev_do_close(hdev);
2223 	} else {
2224 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 static const struct rfkill_ops hci_rfkill_ops = {
2231 	.set_block = hci_rfkill_set_block,
2232 };
2233 
hci_power_on(struct work_struct * work)2234 static void hci_power_on(struct work_struct *work)
2235 {
2236 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2237 	int err;
2238 
2239 	BT_DBG("%s", hdev->name);
2240 
2241 	if (test_bit(HCI_UP, &hdev->flags) &&
2242 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2243 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2244 		cancel_delayed_work(&hdev->power_off);
2245 		hci_req_sync_lock(hdev);
2246 		err = __hci_req_hci_power_on(hdev);
2247 		hci_req_sync_unlock(hdev);
2248 		mgmt_power_on(hdev, err);
2249 		return;
2250 	}
2251 
2252 	err = hci_dev_do_open(hdev);
2253 	if (err < 0) {
2254 		hci_dev_lock(hdev);
2255 		mgmt_set_powered_failed(hdev, err);
2256 		hci_dev_unlock(hdev);
2257 		return;
2258 	}
2259 
2260 	/* During the HCI setup phase, a few error conditions are
2261 	 * ignored and they need to be checked now. If they are still
2262 	 * valid, it is important to turn the device back off.
2263 	 */
2264 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2265 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2266 	    (hdev->dev_type == HCI_PRIMARY &&
2267 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2268 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2269 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2270 		hci_dev_do_close(hdev);
2271 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2272 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2273 				   HCI_AUTO_OFF_TIMEOUT);
2274 	}
2275 
2276 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2277 		/* For unconfigured devices, set the HCI_RAW flag
2278 		 * so that userspace can easily identify them.
2279 		 */
2280 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2281 			set_bit(HCI_RAW, &hdev->flags);
2282 
2283 		/* For fully configured devices, this will send
2284 		 * the Index Added event. For unconfigured devices,
2285 		 * it will send Unconfigued Index Added event.
2286 		 *
2287 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2288 		 * and no event will be send.
2289 		 */
2290 		mgmt_index_added(hdev);
2291 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2292 		/* When the controller is now configured, then it
2293 		 * is important to clear the HCI_RAW flag.
2294 		 */
2295 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2296 			clear_bit(HCI_RAW, &hdev->flags);
2297 
2298 		/* Powering on the controller with HCI_CONFIG set only
2299 		 * happens with the transition from unconfigured to
2300 		 * configured. This will send the Index Added event.
2301 		 */
2302 		mgmt_index_added(hdev);
2303 	}
2304 }
2305 
hci_power_off(struct work_struct * work)2306 static void hci_power_off(struct work_struct *work)
2307 {
2308 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2309 					    power_off.work);
2310 
2311 	BT_DBG("%s", hdev->name);
2312 
2313 	hci_dev_do_close(hdev);
2314 }
2315 
hci_error_reset(struct work_struct * work)2316 static void hci_error_reset(struct work_struct *work)
2317 {
2318 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2319 
2320 	BT_DBG("%s", hdev->name);
2321 
2322 	if (hdev->hw_error)
2323 		hdev->hw_error(hdev, hdev->hw_error_code);
2324 	else
2325 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2326 
2327 	if (hci_dev_do_close(hdev))
2328 		return;
2329 
2330 	hci_dev_do_open(hdev);
2331 }
2332 
hci_uuids_clear(struct hci_dev * hdev)2333 void hci_uuids_clear(struct hci_dev *hdev)
2334 {
2335 	struct bt_uuid *uuid, *tmp;
2336 
2337 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2338 		list_del(&uuid->list);
2339 		kfree(uuid);
2340 	}
2341 }
2342 
hci_link_keys_clear(struct hci_dev * hdev)2343 void hci_link_keys_clear(struct hci_dev *hdev)
2344 {
2345 	struct link_key *key;
2346 
2347 	list_for_each_entry(key, &hdev->link_keys, list) {
2348 		list_del_rcu(&key->list);
2349 		kfree_rcu(key, rcu);
2350 	}
2351 }
2352 
hci_smp_ltks_clear(struct hci_dev * hdev)2353 void hci_smp_ltks_clear(struct hci_dev *hdev)
2354 {
2355 	struct smp_ltk *k;
2356 
2357 	list_for_each_entry(k, &hdev->long_term_keys, list) {
2358 		list_del_rcu(&k->list);
2359 		kfree_rcu(k, rcu);
2360 	}
2361 }
2362 
hci_smp_irks_clear(struct hci_dev * hdev)2363 void hci_smp_irks_clear(struct hci_dev *hdev)
2364 {
2365 	struct smp_irk *k;
2366 
2367 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2368 		list_del_rcu(&k->list);
2369 		kfree_rcu(k, rcu);
2370 	}
2371 }
2372 
hci_blocked_keys_clear(struct hci_dev * hdev)2373 void hci_blocked_keys_clear(struct hci_dev *hdev)
2374 {
2375 	struct blocked_key *b;
2376 
2377 	list_for_each_entry(b, &hdev->blocked_keys, list) {
2378 		list_del_rcu(&b->list);
2379 		kfree_rcu(b, rcu);
2380 	}
2381 }
2382 
hci_is_blocked_key(struct hci_dev * hdev,u8 type,u8 val[16])2383 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2384 {
2385 	bool blocked = false;
2386 	struct blocked_key *b;
2387 
2388 	rcu_read_lock();
2389 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2390 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2391 			blocked = true;
2392 			break;
2393 		}
2394 	}
2395 
2396 	rcu_read_unlock();
2397 	return blocked;
2398 }
2399 
hci_find_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2400 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2401 {
2402 	struct link_key *k;
2403 
2404 	rcu_read_lock();
2405 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2406 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2407 			rcu_read_unlock();
2408 
2409 			if (hci_is_blocked_key(hdev,
2410 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2411 					       k->val)) {
2412 				bt_dev_warn_ratelimited(hdev,
2413 							"Link key blocked for %pMR",
2414 							&k->bdaddr);
2415 				return NULL;
2416 			}
2417 
2418 			return k;
2419 		}
2420 	}
2421 	rcu_read_unlock();
2422 
2423 	return NULL;
2424 }
2425 
hci_persistent_key(struct hci_dev * hdev,struct hci_conn * conn,u8 key_type,u8 old_key_type)2426 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2427 			       u8 key_type, u8 old_key_type)
2428 {
2429 	/* Legacy key */
2430 	if (key_type < 0x03)
2431 		return true;
2432 
2433 	/* Debug keys are insecure so don't store them persistently */
2434 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2435 		return false;
2436 
2437 	/* Changed combination key and there's no previous one */
2438 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2439 		return false;
2440 
2441 	/* Security mode 3 case */
2442 	if (!conn)
2443 		return true;
2444 
2445 	/* BR/EDR key derived using SC from an LE link */
2446 	if (conn->type == LE_LINK)
2447 		return true;
2448 
2449 	/* Neither local nor remote side had no-bonding as requirement */
2450 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2451 		return true;
2452 
2453 	/* Local side had dedicated bonding as requirement */
2454 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2455 		return true;
2456 
2457 	/* Remote side had dedicated bonding as requirement */
2458 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2459 		return true;
2460 
2461 	/* If none of the above criteria match, then don't store the key
2462 	 * persistently */
2463 	return false;
2464 }
2465 
ltk_role(u8 type)2466 static u8 ltk_role(u8 type)
2467 {
2468 	if (type == SMP_LTK)
2469 		return HCI_ROLE_MASTER;
2470 
2471 	return HCI_ROLE_SLAVE;
2472 }
2473 
hci_find_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 role)2474 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2475 			     u8 addr_type, u8 role)
2476 {
2477 	struct smp_ltk *k;
2478 
2479 	rcu_read_lock();
2480 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2481 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2482 			continue;
2483 
2484 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2485 			rcu_read_unlock();
2486 
2487 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2488 					       k->val)) {
2489 				bt_dev_warn_ratelimited(hdev,
2490 							"LTK blocked for %pMR",
2491 							&k->bdaddr);
2492 				return NULL;
2493 			}
2494 
2495 			return k;
2496 		}
2497 	}
2498 	rcu_read_unlock();
2499 
2500 	return NULL;
2501 }
2502 
hci_find_irk_by_rpa(struct hci_dev * hdev,bdaddr_t * rpa)2503 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2504 {
2505 	struct smp_irk *irk_to_return = NULL;
2506 	struct smp_irk *irk;
2507 
2508 	rcu_read_lock();
2509 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2510 		if (!bacmp(&irk->rpa, rpa)) {
2511 			irk_to_return = irk;
2512 			goto done;
2513 		}
2514 	}
2515 
2516 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2517 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2518 			bacpy(&irk->rpa, rpa);
2519 			irk_to_return = irk;
2520 			goto done;
2521 		}
2522 	}
2523 
2524 done:
2525 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2526 						irk_to_return->val)) {
2527 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2528 					&irk_to_return->bdaddr);
2529 		irk_to_return = NULL;
2530 	}
2531 
2532 	rcu_read_unlock();
2533 
2534 	return irk_to_return;
2535 }
2536 
hci_find_irk_by_addr(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2537 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2538 				     u8 addr_type)
2539 {
2540 	struct smp_irk *irk_to_return = NULL;
2541 	struct smp_irk *irk;
2542 
2543 	/* Identity Address must be public or static random */
2544 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2545 		return NULL;
2546 
2547 	rcu_read_lock();
2548 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2549 		if (addr_type == irk->addr_type &&
2550 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2551 			irk_to_return = irk;
2552 			goto done;
2553 		}
2554 	}
2555 
2556 done:
2557 
2558 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2559 						irk_to_return->val)) {
2560 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2561 					&irk_to_return->bdaddr);
2562 		irk_to_return = NULL;
2563 	}
2564 
2565 	rcu_read_unlock();
2566 
2567 	return irk_to_return;
2568 }
2569 
hci_add_link_key(struct hci_dev * hdev,struct hci_conn * conn,bdaddr_t * bdaddr,u8 * val,u8 type,u8 pin_len,bool * persistent)2570 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2571 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2572 				  u8 pin_len, bool *persistent)
2573 {
2574 	struct link_key *key, *old_key;
2575 	u8 old_key_type;
2576 
2577 	old_key = hci_find_link_key(hdev, bdaddr);
2578 	if (old_key) {
2579 		old_key_type = old_key->type;
2580 		key = old_key;
2581 	} else {
2582 		old_key_type = conn ? conn->key_type : 0xff;
2583 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2584 		if (!key)
2585 			return NULL;
2586 		list_add_rcu(&key->list, &hdev->link_keys);
2587 	}
2588 
2589 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2590 
2591 	/* Some buggy controller combinations generate a changed
2592 	 * combination key for legacy pairing even when there's no
2593 	 * previous key */
2594 	if (type == HCI_LK_CHANGED_COMBINATION &&
2595 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2596 		type = HCI_LK_COMBINATION;
2597 		if (conn)
2598 			conn->key_type = type;
2599 	}
2600 
2601 	bacpy(&key->bdaddr, bdaddr);
2602 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2603 	key->pin_len = pin_len;
2604 
2605 	if (type == HCI_LK_CHANGED_COMBINATION)
2606 		key->type = old_key_type;
2607 	else
2608 		key->type = type;
2609 
2610 	if (persistent)
2611 		*persistent = hci_persistent_key(hdev, conn, type,
2612 						 old_key_type);
2613 
2614 	return key;
2615 }
2616 
hci_add_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 type,u8 authenticated,u8 tk[16],u8 enc_size,__le16 ediv,__le64 rand)2617 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2618 			    u8 addr_type, u8 type, u8 authenticated,
2619 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2620 {
2621 	struct smp_ltk *key, *old_key;
2622 	u8 role = ltk_role(type);
2623 
2624 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2625 	if (old_key)
2626 		key = old_key;
2627 	else {
2628 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2629 		if (!key)
2630 			return NULL;
2631 		list_add_rcu(&key->list, &hdev->long_term_keys);
2632 	}
2633 
2634 	bacpy(&key->bdaddr, bdaddr);
2635 	key->bdaddr_type = addr_type;
2636 	memcpy(key->val, tk, sizeof(key->val));
2637 	key->authenticated = authenticated;
2638 	key->ediv = ediv;
2639 	key->rand = rand;
2640 	key->enc_size = enc_size;
2641 	key->type = type;
2642 
2643 	return key;
2644 }
2645 
hci_add_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 val[16],bdaddr_t * rpa)2646 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2647 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2648 {
2649 	struct smp_irk *irk;
2650 
2651 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2652 	if (!irk) {
2653 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2654 		if (!irk)
2655 			return NULL;
2656 
2657 		bacpy(&irk->bdaddr, bdaddr);
2658 		irk->addr_type = addr_type;
2659 
2660 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2661 	}
2662 
2663 	memcpy(irk->val, val, 16);
2664 	bacpy(&irk->rpa, rpa);
2665 
2666 	return irk;
2667 }
2668 
hci_remove_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2669 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2670 {
2671 	struct link_key *key;
2672 
2673 	key = hci_find_link_key(hdev, bdaddr);
2674 	if (!key)
2675 		return -ENOENT;
2676 
2677 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2678 
2679 	list_del_rcu(&key->list);
2680 	kfree_rcu(key, rcu);
2681 
2682 	return 0;
2683 }
2684 
hci_remove_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2685 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2686 {
2687 	struct smp_ltk *k;
2688 	int removed = 0;
2689 
2690 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2691 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2692 			continue;
2693 
2694 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2695 
2696 		list_del_rcu(&k->list);
2697 		kfree_rcu(k, rcu);
2698 		removed++;
2699 	}
2700 
2701 	return removed ? 0 : -ENOENT;
2702 }
2703 
hci_remove_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2704 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2705 {
2706 	struct smp_irk *k;
2707 
2708 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2709 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2710 			continue;
2711 
2712 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2713 
2714 		list_del_rcu(&k->list);
2715 		kfree_rcu(k, rcu);
2716 	}
2717 }
2718 
hci_bdaddr_is_paired(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 type)2719 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2720 {
2721 	struct smp_ltk *k;
2722 	struct smp_irk *irk;
2723 	u8 addr_type;
2724 
2725 	if (type == BDADDR_BREDR) {
2726 		if (hci_find_link_key(hdev, bdaddr))
2727 			return true;
2728 		return false;
2729 	}
2730 
2731 	/* Convert to HCI addr type which struct smp_ltk uses */
2732 	if (type == BDADDR_LE_PUBLIC)
2733 		addr_type = ADDR_LE_DEV_PUBLIC;
2734 	else
2735 		addr_type = ADDR_LE_DEV_RANDOM;
2736 
2737 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2738 	if (irk) {
2739 		bdaddr = &irk->bdaddr;
2740 		addr_type = irk->addr_type;
2741 	}
2742 
2743 	rcu_read_lock();
2744 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2745 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2746 			rcu_read_unlock();
2747 			return true;
2748 		}
2749 	}
2750 	rcu_read_unlock();
2751 
2752 	return false;
2753 }
2754 
2755 /* HCI command timer function */
hci_cmd_timeout(struct work_struct * work)2756 static void hci_cmd_timeout(struct work_struct *work)
2757 {
2758 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2759 					    cmd_timer.work);
2760 
2761 	if (hdev->sent_cmd) {
2762 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2763 		u16 opcode = __le16_to_cpu(sent->opcode);
2764 
2765 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2766 	} else {
2767 		bt_dev_err(hdev, "command tx timeout");
2768 	}
2769 
2770 	if (hdev->cmd_timeout)
2771 		hdev->cmd_timeout(hdev);
2772 
2773 	atomic_set(&hdev->cmd_cnt, 1);
2774 	queue_work(hdev->workqueue, &hdev->cmd_work);
2775 }
2776 
hci_find_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2777 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2778 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2779 {
2780 	struct oob_data *data;
2781 
2782 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2783 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2784 			continue;
2785 		if (data->bdaddr_type != bdaddr_type)
2786 			continue;
2787 		return data;
2788 	}
2789 
2790 	return NULL;
2791 }
2792 
hci_remove_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2793 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2794 			       u8 bdaddr_type)
2795 {
2796 	struct oob_data *data;
2797 
2798 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2799 	if (!data)
2800 		return -ENOENT;
2801 
2802 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2803 
2804 	list_del(&data->list);
2805 	kfree(data);
2806 
2807 	return 0;
2808 }
2809 
hci_remote_oob_data_clear(struct hci_dev * hdev)2810 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2811 {
2812 	struct oob_data *data, *n;
2813 
2814 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2815 		list_del(&data->list);
2816 		kfree(data);
2817 	}
2818 }
2819 
hci_add_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type,u8 * hash192,u8 * rand192,u8 * hash256,u8 * rand256)2820 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2821 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2822 			    u8 *hash256, u8 *rand256)
2823 {
2824 	struct oob_data *data;
2825 
2826 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2827 	if (!data) {
2828 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2829 		if (!data)
2830 			return -ENOMEM;
2831 
2832 		bacpy(&data->bdaddr, bdaddr);
2833 		data->bdaddr_type = bdaddr_type;
2834 		list_add(&data->list, &hdev->remote_oob_data);
2835 	}
2836 
2837 	if (hash192 && rand192) {
2838 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2839 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2840 		if (hash256 && rand256)
2841 			data->present = 0x03;
2842 	} else {
2843 		memset(data->hash192, 0, sizeof(data->hash192));
2844 		memset(data->rand192, 0, sizeof(data->rand192));
2845 		if (hash256 && rand256)
2846 			data->present = 0x02;
2847 		else
2848 			data->present = 0x00;
2849 	}
2850 
2851 	if (hash256 && rand256) {
2852 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2853 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2854 	} else {
2855 		memset(data->hash256, 0, sizeof(data->hash256));
2856 		memset(data->rand256, 0, sizeof(data->rand256));
2857 		if (hash192 && rand192)
2858 			data->present = 0x01;
2859 	}
2860 
2861 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2862 
2863 	return 0;
2864 }
2865 
2866 /* This function requires the caller holds hdev->lock */
hci_find_adv_instance(struct hci_dev * hdev,u8 instance)2867 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2868 {
2869 	struct adv_info *adv_instance;
2870 
2871 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2872 		if (adv_instance->instance == instance)
2873 			return adv_instance;
2874 	}
2875 
2876 	return NULL;
2877 }
2878 
2879 /* This function requires the caller holds hdev->lock */
hci_get_next_instance(struct hci_dev * hdev,u8 instance)2880 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2881 {
2882 	struct adv_info *cur_instance;
2883 
2884 	cur_instance = hci_find_adv_instance(hdev, instance);
2885 	if (!cur_instance)
2886 		return NULL;
2887 
2888 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2889 					    struct adv_info, list))
2890 		return list_first_entry(&hdev->adv_instances,
2891 						 struct adv_info, list);
2892 	else
2893 		return list_next_entry(cur_instance, list);
2894 }
2895 
2896 /* This function requires the caller holds hdev->lock */
hci_remove_adv_instance(struct hci_dev * hdev,u8 instance)2897 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2898 {
2899 	struct adv_info *adv_instance;
2900 
2901 	adv_instance = hci_find_adv_instance(hdev, instance);
2902 	if (!adv_instance)
2903 		return -ENOENT;
2904 
2905 	BT_DBG("%s removing %dMR", hdev->name, instance);
2906 
2907 	if (hdev->cur_adv_instance == instance) {
2908 		if (hdev->adv_instance_timeout) {
2909 			cancel_delayed_work(&hdev->adv_instance_expire);
2910 			hdev->adv_instance_timeout = 0;
2911 		}
2912 		hdev->cur_adv_instance = 0x00;
2913 	}
2914 
2915 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2916 
2917 	list_del(&adv_instance->list);
2918 	kfree(adv_instance);
2919 
2920 	hdev->adv_instance_cnt--;
2921 
2922 	return 0;
2923 }
2924 
hci_adv_instances_set_rpa_expired(struct hci_dev * hdev,bool rpa_expired)2925 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2926 {
2927 	struct adv_info *adv_instance, *n;
2928 
2929 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2930 		adv_instance->rpa_expired = rpa_expired;
2931 }
2932 
2933 /* This function requires the caller holds hdev->lock */
hci_adv_instances_clear(struct hci_dev * hdev)2934 void hci_adv_instances_clear(struct hci_dev *hdev)
2935 {
2936 	struct adv_info *adv_instance, *n;
2937 
2938 	if (hdev->adv_instance_timeout) {
2939 		cancel_delayed_work(&hdev->adv_instance_expire);
2940 		hdev->adv_instance_timeout = 0;
2941 	}
2942 
2943 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2944 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2945 		list_del(&adv_instance->list);
2946 		kfree(adv_instance);
2947 	}
2948 
2949 	hdev->adv_instance_cnt = 0;
2950 	hdev->cur_adv_instance = 0x00;
2951 }
2952 
adv_instance_rpa_expired(struct work_struct * work)2953 static void adv_instance_rpa_expired(struct work_struct *work)
2954 {
2955 	struct adv_info *adv_instance = container_of(work, struct adv_info,
2956 						     rpa_expired_cb.work);
2957 
2958 	BT_DBG("");
2959 
2960 	adv_instance->rpa_expired = true;
2961 }
2962 
2963 /* This function requires the caller holds hdev->lock */
hci_add_adv_instance(struct hci_dev * hdev,u8 instance,u32 flags,u16 adv_data_len,u8 * adv_data,u16 scan_rsp_len,u8 * scan_rsp_data,u16 timeout,u16 duration)2964 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2965 			 u16 adv_data_len, u8 *adv_data,
2966 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2967 			 u16 timeout, u16 duration)
2968 {
2969 	struct adv_info *adv_instance;
2970 
2971 	adv_instance = hci_find_adv_instance(hdev, instance);
2972 	if (adv_instance) {
2973 		memset(adv_instance->adv_data, 0,
2974 		       sizeof(adv_instance->adv_data));
2975 		memset(adv_instance->scan_rsp_data, 0,
2976 		       sizeof(adv_instance->scan_rsp_data));
2977 	} else {
2978 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2979 		    instance < 1 || instance > hdev->le_num_of_adv_sets)
2980 			return -EOVERFLOW;
2981 
2982 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2983 		if (!adv_instance)
2984 			return -ENOMEM;
2985 
2986 		adv_instance->pending = true;
2987 		adv_instance->instance = instance;
2988 		list_add(&adv_instance->list, &hdev->adv_instances);
2989 		hdev->adv_instance_cnt++;
2990 	}
2991 
2992 	adv_instance->flags = flags;
2993 	adv_instance->adv_data_len = adv_data_len;
2994 	adv_instance->scan_rsp_len = scan_rsp_len;
2995 
2996 	if (adv_data_len)
2997 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2998 
2999 	if (scan_rsp_len)
3000 		memcpy(adv_instance->scan_rsp_data,
3001 		       scan_rsp_data, scan_rsp_len);
3002 
3003 	adv_instance->timeout = timeout;
3004 	adv_instance->remaining_time = timeout;
3005 
3006 	if (duration == 0)
3007 		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3008 	else
3009 		adv_instance->duration = duration;
3010 
3011 	adv_instance->tx_power = HCI_TX_POWER_INVALID;
3012 
3013 	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3014 			  adv_instance_rpa_expired);
3015 
3016 	BT_DBG("%s for %dMR", hdev->name, instance);
3017 
3018 	return 0;
3019 }
3020 
3021 /* This function requires the caller holds hdev->lock */
hci_adv_monitors_clear(struct hci_dev * hdev)3022 void hci_adv_monitors_clear(struct hci_dev *hdev)
3023 {
3024 	struct adv_monitor *monitor;
3025 	int handle;
3026 
3027 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3028 		hci_free_adv_monitor(monitor);
3029 
3030 	idr_destroy(&hdev->adv_monitors_idr);
3031 }
3032 
hci_free_adv_monitor(struct adv_monitor * monitor)3033 void hci_free_adv_monitor(struct adv_monitor *monitor)
3034 {
3035 	struct adv_pattern *pattern;
3036 	struct adv_pattern *tmp;
3037 
3038 	if (!monitor)
3039 		return;
3040 
3041 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3042 		kfree(pattern);
3043 
3044 	kfree(monitor);
3045 }
3046 
3047 /* This function requires the caller holds hdev->lock */
hci_add_adv_monitor(struct hci_dev * hdev,struct adv_monitor * monitor)3048 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3049 {
3050 	int min, max, handle;
3051 
3052 	if (!monitor)
3053 		return -EINVAL;
3054 
3055 	min = HCI_MIN_ADV_MONITOR_HANDLE;
3056 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3057 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3058 			   GFP_KERNEL);
3059 	if (handle < 0)
3060 		return handle;
3061 
3062 	hdev->adv_monitors_cnt++;
3063 	monitor->handle = handle;
3064 
3065 	hci_update_background_scan(hdev);
3066 
3067 	return 0;
3068 }
3069 
free_adv_monitor(int id,void * ptr,void * data)3070 static int free_adv_monitor(int id, void *ptr, void *data)
3071 {
3072 	struct hci_dev *hdev = data;
3073 	struct adv_monitor *monitor = ptr;
3074 
3075 	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3076 	hci_free_adv_monitor(monitor);
3077 	hdev->adv_monitors_cnt--;
3078 
3079 	return 0;
3080 }
3081 
3082 /* This function requires the caller holds hdev->lock */
hci_remove_adv_monitor(struct hci_dev * hdev,u16 handle)3083 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3084 {
3085 	struct adv_monitor *monitor;
3086 
3087 	if (handle) {
3088 		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3089 		if (!monitor)
3090 			return -ENOENT;
3091 
3092 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3093 		hci_free_adv_monitor(monitor);
3094 		hdev->adv_monitors_cnt--;
3095 	} else {
3096 		/* Remove all monitors if handle is 0. */
3097 		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3098 	}
3099 
3100 	hci_update_background_scan(hdev);
3101 
3102 	return 0;
3103 }
3104 
3105 /* This function requires the caller holds hdev->lock */
hci_is_adv_monitoring(struct hci_dev * hdev)3106 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3107 {
3108 	return !idr_is_empty(&hdev->adv_monitors_idr);
3109 }
3110 
hci_bdaddr_list_lookup(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3111 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3112 					 bdaddr_t *bdaddr, u8 type)
3113 {
3114 	struct bdaddr_list *b;
3115 
3116 	list_for_each_entry(b, bdaddr_list, list) {
3117 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3118 			return b;
3119 	}
3120 
3121 	return NULL;
3122 }
3123 
hci_bdaddr_list_lookup_with_irk(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3124 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3125 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3126 				u8 type)
3127 {
3128 	struct bdaddr_list_with_irk *b;
3129 
3130 	list_for_each_entry(b, bdaddr_list, list) {
3131 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3132 			return b;
3133 	}
3134 
3135 	return NULL;
3136 }
3137 
3138 struct bdaddr_list_with_flags *
hci_bdaddr_list_lookup_with_flags(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3139 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3140 				  bdaddr_t *bdaddr, u8 type)
3141 {
3142 	struct bdaddr_list_with_flags *b;
3143 
3144 	list_for_each_entry(b, bdaddr_list, list) {
3145 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3146 			return b;
3147 	}
3148 
3149 	return NULL;
3150 }
3151 
hci_bdaddr_list_clear(struct list_head * bdaddr_list)3152 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3153 {
3154 	struct bdaddr_list *b, *n;
3155 
3156 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3157 		list_del(&b->list);
3158 		kfree(b);
3159 	}
3160 }
3161 
hci_bdaddr_list_add(struct list_head * list,bdaddr_t * bdaddr,u8 type)3162 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3163 {
3164 	struct bdaddr_list *entry;
3165 
3166 	if (!bacmp(bdaddr, BDADDR_ANY))
3167 		return -EBADF;
3168 
3169 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3170 		return -EEXIST;
3171 
3172 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3173 	if (!entry)
3174 		return -ENOMEM;
3175 
3176 	bacpy(&entry->bdaddr, bdaddr);
3177 	entry->bdaddr_type = type;
3178 
3179 	list_add(&entry->list, list);
3180 
3181 	return 0;
3182 }
3183 
hci_bdaddr_list_add_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type,u8 * peer_irk,u8 * local_irk)3184 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3185 					u8 type, u8 *peer_irk, u8 *local_irk)
3186 {
3187 	struct bdaddr_list_with_irk *entry;
3188 
3189 	if (!bacmp(bdaddr, BDADDR_ANY))
3190 		return -EBADF;
3191 
3192 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3193 		return -EEXIST;
3194 
3195 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3196 	if (!entry)
3197 		return -ENOMEM;
3198 
3199 	bacpy(&entry->bdaddr, bdaddr);
3200 	entry->bdaddr_type = type;
3201 
3202 	if (peer_irk)
3203 		memcpy(entry->peer_irk, peer_irk, 16);
3204 
3205 	if (local_irk)
3206 		memcpy(entry->local_irk, local_irk, 16);
3207 
3208 	list_add(&entry->list, list);
3209 
3210 	return 0;
3211 }
3212 
hci_bdaddr_list_add_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type,u32 flags)3213 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3214 				   u8 type, u32 flags)
3215 {
3216 	struct bdaddr_list_with_flags *entry;
3217 
3218 	if (!bacmp(bdaddr, BDADDR_ANY))
3219 		return -EBADF;
3220 
3221 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3222 		return -EEXIST;
3223 
3224 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3225 	if (!entry)
3226 		return -ENOMEM;
3227 
3228 	bacpy(&entry->bdaddr, bdaddr);
3229 	entry->bdaddr_type = type;
3230 	entry->current_flags = flags;
3231 
3232 	list_add(&entry->list, list);
3233 
3234 	return 0;
3235 }
3236 
hci_bdaddr_list_del(struct list_head * list,bdaddr_t * bdaddr,u8 type)3237 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3238 {
3239 	struct bdaddr_list *entry;
3240 
3241 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3242 		hci_bdaddr_list_clear(list);
3243 		return 0;
3244 	}
3245 
3246 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3247 	if (!entry)
3248 		return -ENOENT;
3249 
3250 	list_del(&entry->list);
3251 	kfree(entry);
3252 
3253 	return 0;
3254 }
3255 
hci_bdaddr_list_del_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type)3256 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3257 							u8 type)
3258 {
3259 	struct bdaddr_list_with_irk *entry;
3260 
3261 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3262 		hci_bdaddr_list_clear(list);
3263 		return 0;
3264 	}
3265 
3266 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3267 	if (!entry)
3268 		return -ENOENT;
3269 
3270 	list_del(&entry->list);
3271 	kfree(entry);
3272 
3273 	return 0;
3274 }
3275 
hci_bdaddr_list_del_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type)3276 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3277 				   u8 type)
3278 {
3279 	struct bdaddr_list_with_flags *entry;
3280 
3281 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3282 		hci_bdaddr_list_clear(list);
3283 		return 0;
3284 	}
3285 
3286 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3287 	if (!entry)
3288 		return -ENOENT;
3289 
3290 	list_del(&entry->list);
3291 	kfree(entry);
3292 
3293 	return 0;
3294 }
3295 
3296 /* This function requires the caller holds hdev->lock */
hci_conn_params_lookup(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3297 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3298 					       bdaddr_t *addr, u8 addr_type)
3299 {
3300 	struct hci_conn_params *params;
3301 
3302 	list_for_each_entry(params, &hdev->le_conn_params, list) {
3303 		if (bacmp(&params->addr, addr) == 0 &&
3304 		    params->addr_type == addr_type) {
3305 			return params;
3306 		}
3307 	}
3308 
3309 	return NULL;
3310 }
3311 
3312 /* This function requires the caller holds hdev->lock */
hci_pend_le_action_lookup(struct list_head * list,bdaddr_t * addr,u8 addr_type)3313 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3314 						  bdaddr_t *addr, u8 addr_type)
3315 {
3316 	struct hci_conn_params *param;
3317 
3318 	switch (addr_type) {
3319 	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3320 		addr_type = ADDR_LE_DEV_PUBLIC;
3321 		break;
3322 	case ADDR_LE_DEV_RANDOM_RESOLVED:
3323 		addr_type = ADDR_LE_DEV_RANDOM;
3324 		break;
3325 	}
3326 
3327 	list_for_each_entry(param, list, action) {
3328 		if (bacmp(&param->addr, addr) == 0 &&
3329 		    param->addr_type == addr_type)
3330 			return param;
3331 	}
3332 
3333 	return NULL;
3334 }
3335 
3336 /* This function requires the caller holds hdev->lock */
hci_conn_params_add(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3337 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3338 					    bdaddr_t *addr, u8 addr_type)
3339 {
3340 	struct hci_conn_params *params;
3341 
3342 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3343 	if (params)
3344 		return params;
3345 
3346 	params = kzalloc(sizeof(*params), GFP_KERNEL);
3347 	if (!params) {
3348 		bt_dev_err(hdev, "out of memory");
3349 		return NULL;
3350 	}
3351 
3352 	bacpy(&params->addr, addr);
3353 	params->addr_type = addr_type;
3354 
3355 	list_add(&params->list, &hdev->le_conn_params);
3356 	INIT_LIST_HEAD(&params->action);
3357 
3358 	params->conn_min_interval = hdev->le_conn_min_interval;
3359 	params->conn_max_interval = hdev->le_conn_max_interval;
3360 	params->conn_latency = hdev->le_conn_latency;
3361 	params->supervision_timeout = hdev->le_supv_timeout;
3362 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3363 
3364 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3365 
3366 	return params;
3367 }
3368 
hci_conn_params_free(struct hci_conn_params * params)3369 static void hci_conn_params_free(struct hci_conn_params *params)
3370 {
3371 	if (params->conn) {
3372 		hci_conn_drop(params->conn);
3373 		hci_conn_put(params->conn);
3374 	}
3375 
3376 	list_del(&params->action);
3377 	list_del(&params->list);
3378 	kfree(params);
3379 }
3380 
3381 /* This function requires the caller holds hdev->lock */
hci_conn_params_del(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3382 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3383 {
3384 	struct hci_conn_params *params;
3385 
3386 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3387 	if (!params)
3388 		return;
3389 
3390 	hci_conn_params_free(params);
3391 
3392 	hci_update_background_scan(hdev);
3393 
3394 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3395 }
3396 
3397 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_disabled(struct hci_dev * hdev)3398 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3399 {
3400 	struct hci_conn_params *params, *tmp;
3401 
3402 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3403 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3404 			continue;
3405 
3406 		/* If trying to estabilish one time connection to disabled
3407 		 * device, leave the params, but mark them as just once.
3408 		 */
3409 		if (params->explicit_connect) {
3410 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3411 			continue;
3412 		}
3413 
3414 		list_del(&params->list);
3415 		kfree(params);
3416 	}
3417 
3418 	BT_DBG("All LE disabled connection parameters were removed");
3419 }
3420 
3421 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_all(struct hci_dev * hdev)3422 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3423 {
3424 	struct hci_conn_params *params, *tmp;
3425 
3426 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3427 		hci_conn_params_free(params);
3428 
3429 	BT_DBG("All LE connection parameters were removed");
3430 }
3431 
3432 /* Copy the Identity Address of the controller.
3433  *
3434  * If the controller has a public BD_ADDR, then by default use that one.
3435  * If this is a LE only controller without a public address, default to
3436  * the static random address.
3437  *
3438  * For debugging purposes it is possible to force controllers with a
3439  * public address to use the static random address instead.
3440  *
3441  * In case BR/EDR has been disabled on a dual-mode controller and
3442  * userspace has configured a static address, then that address
3443  * becomes the identity address instead of the public BR/EDR address.
3444  */
hci_copy_identity_address(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 * bdaddr_type)3445 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3446 			       u8 *bdaddr_type)
3447 {
3448 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3449 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3450 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3451 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3452 		bacpy(bdaddr, &hdev->static_addr);
3453 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3454 	} else {
3455 		bacpy(bdaddr, &hdev->bdaddr);
3456 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3457 	}
3458 }
3459 
hci_suspend_clear_tasks(struct hci_dev * hdev)3460 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3461 {
3462 	int i;
3463 
3464 	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3465 		clear_bit(i, hdev->suspend_tasks);
3466 
3467 	wake_up(&hdev->suspend_wait_q);
3468 }
3469 
hci_suspend_wait_event(struct hci_dev * hdev)3470 static int hci_suspend_wait_event(struct hci_dev *hdev)
3471 {
3472 #define WAKE_COND                                                              \
3473 	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3474 	 __SUSPEND_NUM_TASKS)
3475 
3476 	int i;
3477 	int ret = wait_event_timeout(hdev->suspend_wait_q,
3478 				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3479 
3480 	if (ret == 0) {
3481 		bt_dev_err(hdev, "Timed out waiting for suspend events");
3482 		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3483 			if (test_bit(i, hdev->suspend_tasks))
3484 				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3485 			clear_bit(i, hdev->suspend_tasks);
3486 		}
3487 
3488 		ret = -ETIMEDOUT;
3489 	} else {
3490 		ret = 0;
3491 	}
3492 
3493 	return ret;
3494 }
3495 
hci_prepare_suspend(struct work_struct * work)3496 static void hci_prepare_suspend(struct work_struct *work)
3497 {
3498 	struct hci_dev *hdev =
3499 		container_of(work, struct hci_dev, suspend_prepare);
3500 
3501 	hci_dev_lock(hdev);
3502 	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3503 	hci_dev_unlock(hdev);
3504 }
3505 
hci_change_suspend_state(struct hci_dev * hdev,enum suspended_state next)3506 static int hci_change_suspend_state(struct hci_dev *hdev,
3507 				    enum suspended_state next)
3508 {
3509 	hdev->suspend_state_next = next;
3510 	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3511 	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3512 	return hci_suspend_wait_event(hdev);
3513 }
3514 
hci_clear_wake_reason(struct hci_dev * hdev)3515 static void hci_clear_wake_reason(struct hci_dev *hdev)
3516 {
3517 	hci_dev_lock(hdev);
3518 
3519 	hdev->wake_reason = 0;
3520 	bacpy(&hdev->wake_addr, BDADDR_ANY);
3521 	hdev->wake_addr_type = 0;
3522 
3523 	hci_dev_unlock(hdev);
3524 }
3525 
hci_suspend_notifier(struct notifier_block * nb,unsigned long action,void * data)3526 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3527 				void *data)
3528 {
3529 	struct hci_dev *hdev =
3530 		container_of(nb, struct hci_dev, suspend_notifier);
3531 	int ret = 0;
3532 	u8 state = BT_RUNNING;
3533 
3534 	/* If powering down, wait for completion. */
3535 	if (mgmt_powering_down(hdev)) {
3536 		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3537 		ret = hci_suspend_wait_event(hdev);
3538 		if (ret)
3539 			goto done;
3540 	}
3541 
3542 	/* Suspend notifier should only act on events when powered. */
3543 	if (!hdev_is_powered(hdev) ||
3544 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3545 		goto done;
3546 
3547 	if (action == PM_SUSPEND_PREPARE) {
3548 		/* Suspend consists of two actions:
3549 		 *  - First, disconnect everything and make the controller not
3550 		 *    connectable (disabling scanning)
3551 		 *  - Second, program event filter/whitelist and enable scan
3552 		 */
3553 		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3554 		if (!ret)
3555 			state = BT_SUSPEND_DISCONNECT;
3556 
3557 		/* Only configure whitelist if disconnect succeeded and wake
3558 		 * isn't being prevented.
3559 		 */
3560 		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3561 			ret = hci_change_suspend_state(hdev,
3562 						BT_SUSPEND_CONFIGURE_WAKE);
3563 			if (!ret)
3564 				state = BT_SUSPEND_CONFIGURE_WAKE;
3565 		}
3566 
3567 		hci_clear_wake_reason(hdev);
3568 		mgmt_suspending(hdev, state);
3569 
3570 	} else if (action == PM_POST_SUSPEND) {
3571 		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3572 
3573 		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3574 			      hdev->wake_addr_type);
3575 	}
3576 
3577 done:
3578 	/* We always allow suspend even if suspend preparation failed and
3579 	 * attempt to recover in resume.
3580 	 */
3581 	if (ret)
3582 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3583 			   action, ret);
3584 
3585 	return NOTIFY_DONE;
3586 }
3587 
3588 /* Alloc HCI device */
hci_alloc_dev(void)3589 struct hci_dev *hci_alloc_dev(void)
3590 {
3591 	struct hci_dev *hdev;
3592 
3593 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3594 	if (!hdev)
3595 		return NULL;
3596 
3597 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3598 	hdev->esco_type = (ESCO_HV1);
3599 	hdev->link_mode = (HCI_LM_ACCEPT);
3600 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3601 	hdev->io_capability = 0x03;	/* No Input No Output */
3602 	hdev->manufacturer = 0xffff;	/* Default to internal use */
3603 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3604 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3605 	hdev->adv_instance_cnt = 0;
3606 	hdev->cur_adv_instance = 0x00;
3607 	hdev->adv_instance_timeout = 0;
3608 
3609 	hdev->sniff_max_interval = 800;
3610 	hdev->sniff_min_interval = 80;
3611 
3612 	hdev->le_adv_channel_map = 0x07;
3613 	hdev->le_adv_min_interval = 0x0800;
3614 	hdev->le_adv_max_interval = 0x0800;
3615 	hdev->le_scan_interval = 0x0060;
3616 	hdev->le_scan_window = 0x0030;
3617 	hdev->le_scan_int_suspend = 0x0400;
3618 	hdev->le_scan_window_suspend = 0x0012;
3619 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3620 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3621 	hdev->le_scan_int_connect = 0x0060;
3622 	hdev->le_scan_window_connect = 0x0060;
3623 	hdev->le_conn_min_interval = 0x0018;
3624 	hdev->le_conn_max_interval = 0x0028;
3625 	hdev->le_conn_latency = 0x0000;
3626 	hdev->le_supv_timeout = 0x002a;
3627 	hdev->le_def_tx_len = 0x001b;
3628 	hdev->le_def_tx_time = 0x0148;
3629 	hdev->le_max_tx_len = 0x001b;
3630 	hdev->le_max_tx_time = 0x0148;
3631 	hdev->le_max_rx_len = 0x001b;
3632 	hdev->le_max_rx_time = 0x0148;
3633 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3634 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3635 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3636 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3637 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3638 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3639 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3640 
3641 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3642 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3643 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3644 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3645 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3646 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3647 
3648 	/* default 1.28 sec page scan */
3649 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3650 	hdev->def_page_scan_int = 0x0800;
3651 	hdev->def_page_scan_window = 0x0012;
3652 
3653 	mutex_init(&hdev->lock);
3654 	mutex_init(&hdev->req_lock);
3655 
3656 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3657 	INIT_LIST_HEAD(&hdev->blacklist);
3658 	INIT_LIST_HEAD(&hdev->whitelist);
3659 	INIT_LIST_HEAD(&hdev->uuids);
3660 	INIT_LIST_HEAD(&hdev->link_keys);
3661 	INIT_LIST_HEAD(&hdev->long_term_keys);
3662 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3663 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3664 	INIT_LIST_HEAD(&hdev->le_white_list);
3665 	INIT_LIST_HEAD(&hdev->le_resolv_list);
3666 	INIT_LIST_HEAD(&hdev->le_conn_params);
3667 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3668 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3669 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3670 	INIT_LIST_HEAD(&hdev->adv_instances);
3671 	INIT_LIST_HEAD(&hdev->blocked_keys);
3672 
3673 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3674 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3675 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3676 	INIT_WORK(&hdev->power_on, hci_power_on);
3677 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3678 	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3679 
3680 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3681 
3682 	skb_queue_head_init(&hdev->rx_q);
3683 	skb_queue_head_init(&hdev->cmd_q);
3684 	skb_queue_head_init(&hdev->raw_q);
3685 
3686 	init_waitqueue_head(&hdev->req_wait_q);
3687 	init_waitqueue_head(&hdev->suspend_wait_q);
3688 
3689 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3690 
3691 	hci_request_setup(hdev);
3692 
3693 	hci_init_sysfs(hdev);
3694 	discovery_init(hdev);
3695 
3696 	return hdev;
3697 }
3698 EXPORT_SYMBOL(hci_alloc_dev);
3699 
3700 /* Free HCI device */
hci_free_dev(struct hci_dev * hdev)3701 void hci_free_dev(struct hci_dev *hdev)
3702 {
3703 	/* will free via device release */
3704 	put_device(&hdev->dev);
3705 }
3706 EXPORT_SYMBOL(hci_free_dev);
3707 
3708 /* Register HCI device */
hci_register_dev(struct hci_dev * hdev)3709 int hci_register_dev(struct hci_dev *hdev)
3710 {
3711 	int id, error;
3712 
3713 	if (!hdev->open || !hdev->close || !hdev->send)
3714 		return -EINVAL;
3715 
3716 	/* Do not allow HCI_AMP devices to register at index 0,
3717 	 * so the index can be used as the AMP controller ID.
3718 	 */
3719 	switch (hdev->dev_type) {
3720 	case HCI_PRIMARY:
3721 		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3722 		break;
3723 	case HCI_AMP:
3724 		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3725 		break;
3726 	default:
3727 		return -EINVAL;
3728 	}
3729 
3730 	if (id < 0)
3731 		return id;
3732 
3733 	sprintf(hdev->name, "hci%d", id);
3734 	hdev->id = id;
3735 
3736 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3737 
3738 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3739 	if (!hdev->workqueue) {
3740 		error = -ENOMEM;
3741 		goto err;
3742 	}
3743 
3744 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3745 						      hdev->name);
3746 	if (!hdev->req_workqueue) {
3747 		destroy_workqueue(hdev->workqueue);
3748 		error = -ENOMEM;
3749 		goto err;
3750 	}
3751 
3752 	if (!IS_ERR_OR_NULL(bt_debugfs))
3753 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3754 
3755 	dev_set_name(&hdev->dev, "%s", hdev->name);
3756 
3757 	error = device_add(&hdev->dev);
3758 	if (error < 0)
3759 		goto err_wqueue;
3760 
3761 	hci_leds_init(hdev);
3762 
3763 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3764 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3765 				    hdev);
3766 	if (hdev->rfkill) {
3767 		if (rfkill_register(hdev->rfkill) < 0) {
3768 			rfkill_destroy(hdev->rfkill);
3769 			hdev->rfkill = NULL;
3770 		}
3771 	}
3772 
3773 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3774 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3775 
3776 	hci_dev_set_flag(hdev, HCI_SETUP);
3777 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3778 
3779 	if (hdev->dev_type == HCI_PRIMARY) {
3780 		/* Assume BR/EDR support until proven otherwise (such as
3781 		 * through reading supported features during init.
3782 		 */
3783 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3784 	}
3785 
3786 	write_lock(&hci_dev_list_lock);
3787 	list_add(&hdev->list, &hci_dev_list);
3788 	write_unlock(&hci_dev_list_lock);
3789 
3790 	/* Devices that are marked for raw-only usage are unconfigured
3791 	 * and should not be included in normal operation.
3792 	 */
3793 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3794 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3795 
3796 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3797 	hci_dev_hold(hdev);
3798 
3799 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3800 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3801 		error = register_pm_notifier(&hdev->suspend_notifier);
3802 		if (error)
3803 			goto err_wqueue;
3804 	}
3805 
3806 	queue_work(hdev->req_workqueue, &hdev->power_on);
3807 
3808 	idr_init(&hdev->adv_monitors_idr);
3809 
3810 	return id;
3811 
3812 err_wqueue:
3813 	debugfs_remove_recursive(hdev->debugfs);
3814 	destroy_workqueue(hdev->workqueue);
3815 	destroy_workqueue(hdev->req_workqueue);
3816 err:
3817 	ida_simple_remove(&hci_index_ida, hdev->id);
3818 
3819 	return error;
3820 }
3821 EXPORT_SYMBOL(hci_register_dev);
3822 
3823 /* Unregister HCI device */
hci_unregister_dev(struct hci_dev * hdev)3824 void hci_unregister_dev(struct hci_dev *hdev)
3825 {
3826 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3827 
3828 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3829 
3830 	write_lock(&hci_dev_list_lock);
3831 	list_del(&hdev->list);
3832 	write_unlock(&hci_dev_list_lock);
3833 
3834 	cancel_work_sync(&hdev->power_on);
3835 
3836 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3837 		hci_suspend_clear_tasks(hdev);
3838 		unregister_pm_notifier(&hdev->suspend_notifier);
3839 		cancel_work_sync(&hdev->suspend_prepare);
3840 	}
3841 
3842 	hci_dev_do_close(hdev);
3843 
3844 	if (!test_bit(HCI_INIT, &hdev->flags) &&
3845 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3846 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3847 		hci_dev_lock(hdev);
3848 		mgmt_index_removed(hdev);
3849 		hci_dev_unlock(hdev);
3850 	}
3851 
3852 	/* mgmt_index_removed should take care of emptying the
3853 	 * pending list */
3854 	BUG_ON(!list_empty(&hdev->mgmt_pending));
3855 
3856 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3857 
3858 	if (hdev->rfkill) {
3859 		rfkill_unregister(hdev->rfkill);
3860 		rfkill_destroy(hdev->rfkill);
3861 	}
3862 
3863 	device_del(&hdev->dev);
3864 	/* Actual cleanup is deferred until hci_cleanup_dev(). */
3865 	hci_dev_put(hdev);
3866 }
3867 EXPORT_SYMBOL(hci_unregister_dev);
3868 
3869 /* Cleanup HCI device */
hci_cleanup_dev(struct hci_dev * hdev)3870 void hci_cleanup_dev(struct hci_dev *hdev)
3871 {
3872 	debugfs_remove_recursive(hdev->debugfs);
3873 	kfree_const(hdev->hw_info);
3874 	kfree_const(hdev->fw_info);
3875 
3876 	destroy_workqueue(hdev->workqueue);
3877 	destroy_workqueue(hdev->req_workqueue);
3878 
3879 	hci_dev_lock(hdev);
3880 	hci_bdaddr_list_clear(&hdev->blacklist);
3881 	hci_bdaddr_list_clear(&hdev->whitelist);
3882 	hci_uuids_clear(hdev);
3883 	hci_link_keys_clear(hdev);
3884 	hci_smp_ltks_clear(hdev);
3885 	hci_smp_irks_clear(hdev);
3886 	hci_remote_oob_data_clear(hdev);
3887 	hci_adv_instances_clear(hdev);
3888 	hci_adv_monitors_clear(hdev);
3889 	hci_bdaddr_list_clear(&hdev->le_white_list);
3890 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3891 	hci_conn_params_clear_all(hdev);
3892 	hci_discovery_filter_clear(hdev);
3893 	hci_blocked_keys_clear(hdev);
3894 	hci_dev_unlock(hdev);
3895 
3896 	ida_simple_remove(&hci_index_ida, hdev->id);
3897 }
3898 
3899 /* Suspend HCI device */
hci_suspend_dev(struct hci_dev * hdev)3900 int hci_suspend_dev(struct hci_dev *hdev)
3901 {
3902 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3903 	return 0;
3904 }
3905 EXPORT_SYMBOL(hci_suspend_dev);
3906 
3907 /* Resume HCI device */
hci_resume_dev(struct hci_dev * hdev)3908 int hci_resume_dev(struct hci_dev *hdev)
3909 {
3910 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3911 	return 0;
3912 }
3913 EXPORT_SYMBOL(hci_resume_dev);
3914 
3915 /* Reset HCI device */
hci_reset_dev(struct hci_dev * hdev)3916 int hci_reset_dev(struct hci_dev *hdev)
3917 {
3918 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3919 	struct sk_buff *skb;
3920 
3921 	skb = bt_skb_alloc(3, GFP_ATOMIC);
3922 	if (!skb)
3923 		return -ENOMEM;
3924 
3925 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3926 	skb_put_data(skb, hw_err, 3);
3927 
3928 	/* Send Hardware Error to upper stack */
3929 	return hci_recv_frame(hdev, skb);
3930 }
3931 EXPORT_SYMBOL(hci_reset_dev);
3932 
3933 /* Receive frame from HCI drivers */
hci_recv_frame(struct hci_dev * hdev,struct sk_buff * skb)3934 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3935 {
3936 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3937 		      && !test_bit(HCI_INIT, &hdev->flags))) {
3938 		kfree_skb(skb);
3939 		return -ENXIO;
3940 	}
3941 
3942 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3943 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3944 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3945 	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3946 		kfree_skb(skb);
3947 		return -EINVAL;
3948 	}
3949 
3950 	/* Incoming skb */
3951 	bt_cb(skb)->incoming = 1;
3952 
3953 	/* Time stamp */
3954 	__net_timestamp(skb);
3955 
3956 	skb_queue_tail(&hdev->rx_q, skb);
3957 	queue_work(hdev->workqueue, &hdev->rx_work);
3958 
3959 	return 0;
3960 }
3961 EXPORT_SYMBOL(hci_recv_frame);
3962 
3963 /* Receive diagnostic message from HCI drivers */
hci_recv_diag(struct hci_dev * hdev,struct sk_buff * skb)3964 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3965 {
3966 	/* Mark as diagnostic packet */
3967 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3968 
3969 	/* Time stamp */
3970 	__net_timestamp(skb);
3971 
3972 	skb_queue_tail(&hdev->rx_q, skb);
3973 	queue_work(hdev->workqueue, &hdev->rx_work);
3974 
3975 	return 0;
3976 }
3977 EXPORT_SYMBOL(hci_recv_diag);
3978 
hci_set_hw_info(struct hci_dev * hdev,const char * fmt,...)3979 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3980 {
3981 	va_list vargs;
3982 
3983 	va_start(vargs, fmt);
3984 	kfree_const(hdev->hw_info);
3985 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3986 	va_end(vargs);
3987 }
3988 EXPORT_SYMBOL(hci_set_hw_info);
3989 
hci_set_fw_info(struct hci_dev * hdev,const char * fmt,...)3990 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3991 {
3992 	va_list vargs;
3993 
3994 	va_start(vargs, fmt);
3995 	kfree_const(hdev->fw_info);
3996 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3997 	va_end(vargs);
3998 }
3999 EXPORT_SYMBOL(hci_set_fw_info);
4000 
4001 /* ---- Interface to upper protocols ---- */
4002 
hci_register_cb(struct hci_cb * cb)4003 int hci_register_cb(struct hci_cb *cb)
4004 {
4005 	BT_DBG("%p name %s", cb, cb->name);
4006 
4007 	mutex_lock(&hci_cb_list_lock);
4008 	list_add_tail(&cb->list, &hci_cb_list);
4009 	mutex_unlock(&hci_cb_list_lock);
4010 
4011 	return 0;
4012 }
4013 EXPORT_SYMBOL(hci_register_cb);
4014 
hci_unregister_cb(struct hci_cb * cb)4015 int hci_unregister_cb(struct hci_cb *cb)
4016 {
4017 	BT_DBG("%p name %s", cb, cb->name);
4018 
4019 	mutex_lock(&hci_cb_list_lock);
4020 	list_del(&cb->list);
4021 	mutex_unlock(&hci_cb_list_lock);
4022 
4023 	return 0;
4024 }
4025 EXPORT_SYMBOL(hci_unregister_cb);
4026 
hci_send_frame(struct hci_dev * hdev,struct sk_buff * skb)4027 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4028 {
4029 	int err;
4030 
4031 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4032 	       skb->len);
4033 
4034 	/* Time stamp */
4035 	__net_timestamp(skb);
4036 
4037 	/* Send copy to monitor */
4038 	hci_send_to_monitor(hdev, skb);
4039 
4040 	if (atomic_read(&hdev->promisc)) {
4041 		/* Send copy to the sockets */
4042 		hci_send_to_sock(hdev, skb);
4043 	}
4044 
4045 	/* Get rid of skb owner, prior to sending to the driver. */
4046 	skb_orphan(skb);
4047 
4048 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4049 		kfree_skb(skb);
4050 		return;
4051 	}
4052 
4053 	err = hdev->send(hdev, skb);
4054 	if (err < 0) {
4055 		bt_dev_err(hdev, "sending frame failed (%d)", err);
4056 		kfree_skb(skb);
4057 	}
4058 }
4059 
4060 /* Send HCI command */
hci_send_cmd(struct hci_dev * hdev,__u16 opcode,__u32 plen,const void * param)4061 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4062 		 const void *param)
4063 {
4064 	struct sk_buff *skb;
4065 
4066 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4067 
4068 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4069 	if (!skb) {
4070 		bt_dev_err(hdev, "no memory for command");
4071 		return -ENOMEM;
4072 	}
4073 
4074 	/* Stand-alone HCI commands must be flagged as
4075 	 * single-command requests.
4076 	 */
4077 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4078 
4079 	skb_queue_tail(&hdev->cmd_q, skb);
4080 	queue_work(hdev->workqueue, &hdev->cmd_work);
4081 
4082 	return 0;
4083 }
4084 
__hci_cmd_send(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)4085 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4086 		   const void *param)
4087 {
4088 	struct sk_buff *skb;
4089 
4090 	if (hci_opcode_ogf(opcode) != 0x3f) {
4091 		/* A controller receiving a command shall respond with either
4092 		 * a Command Status Event or a Command Complete Event.
4093 		 * Therefore, all standard HCI commands must be sent via the
4094 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4095 		 * Some vendors do not comply with this rule for vendor-specific
4096 		 * commands and do not return any event. We want to support
4097 		 * unresponded commands for such cases only.
4098 		 */
4099 		bt_dev_err(hdev, "unresponded command not supported");
4100 		return -EINVAL;
4101 	}
4102 
4103 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4104 	if (!skb) {
4105 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4106 			   opcode);
4107 		return -ENOMEM;
4108 	}
4109 
4110 	hci_send_frame(hdev, skb);
4111 
4112 	return 0;
4113 }
4114 EXPORT_SYMBOL(__hci_cmd_send);
4115 
4116 /* Get data from the previously sent command */
hci_sent_cmd_data(struct hci_dev * hdev,__u16 opcode)4117 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4118 {
4119 	struct hci_command_hdr *hdr;
4120 
4121 	if (!hdev->sent_cmd)
4122 		return NULL;
4123 
4124 	hdr = (void *) hdev->sent_cmd->data;
4125 
4126 	if (hdr->opcode != cpu_to_le16(opcode))
4127 		return NULL;
4128 
4129 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4130 
4131 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4132 }
4133 
4134 /* Send HCI command and wait for command commplete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)4135 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4136 			     const void *param, u32 timeout)
4137 {
4138 	struct sk_buff *skb;
4139 
4140 	if (!test_bit(HCI_UP, &hdev->flags))
4141 		return ERR_PTR(-ENETDOWN);
4142 
4143 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4144 
4145 	hci_req_sync_lock(hdev);
4146 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4147 	hci_req_sync_unlock(hdev);
4148 
4149 	return skb;
4150 }
4151 EXPORT_SYMBOL(hci_cmd_sync);
4152 
4153 /* Send ACL data */
hci_add_acl_hdr(struct sk_buff * skb,__u16 handle,__u16 flags)4154 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4155 {
4156 	struct hci_acl_hdr *hdr;
4157 	int len = skb->len;
4158 
4159 	skb_push(skb, HCI_ACL_HDR_SIZE);
4160 	skb_reset_transport_header(skb);
4161 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4162 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4163 	hdr->dlen   = cpu_to_le16(len);
4164 }
4165 
hci_queue_acl(struct hci_chan * chan,struct sk_buff_head * queue,struct sk_buff * skb,__u16 flags)4166 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4167 			  struct sk_buff *skb, __u16 flags)
4168 {
4169 	struct hci_conn *conn = chan->conn;
4170 	struct hci_dev *hdev = conn->hdev;
4171 	struct sk_buff *list;
4172 
4173 	skb->len = skb_headlen(skb);
4174 	skb->data_len = 0;
4175 
4176 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4177 
4178 	switch (hdev->dev_type) {
4179 	case HCI_PRIMARY:
4180 		hci_add_acl_hdr(skb, conn->handle, flags);
4181 		break;
4182 	case HCI_AMP:
4183 		hci_add_acl_hdr(skb, chan->handle, flags);
4184 		break;
4185 	default:
4186 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4187 		return;
4188 	}
4189 
4190 	list = skb_shinfo(skb)->frag_list;
4191 	if (!list) {
4192 		/* Non fragmented */
4193 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4194 
4195 		skb_queue_tail(queue, skb);
4196 	} else {
4197 		/* Fragmented */
4198 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4199 
4200 		skb_shinfo(skb)->frag_list = NULL;
4201 
4202 		/* Queue all fragments atomically. We need to use spin_lock_bh
4203 		 * here because of 6LoWPAN links, as there this function is
4204 		 * called from softirq and using normal spin lock could cause
4205 		 * deadlocks.
4206 		 */
4207 		spin_lock_bh(&queue->lock);
4208 
4209 		__skb_queue_tail(queue, skb);
4210 
4211 		flags &= ~ACL_START;
4212 		flags |= ACL_CONT;
4213 		do {
4214 			skb = list; list = list->next;
4215 
4216 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4217 			hci_add_acl_hdr(skb, conn->handle, flags);
4218 
4219 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4220 
4221 			__skb_queue_tail(queue, skb);
4222 		} while (list);
4223 
4224 		spin_unlock_bh(&queue->lock);
4225 	}
4226 }
4227 
hci_send_acl(struct hci_chan * chan,struct sk_buff * skb,__u16 flags)4228 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4229 {
4230 	struct hci_dev *hdev = chan->conn->hdev;
4231 
4232 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4233 
4234 	hci_queue_acl(chan, &chan->data_q, skb, flags);
4235 
4236 	queue_work(hdev->workqueue, &hdev->tx_work);
4237 }
4238 
4239 /* Send SCO data */
hci_send_sco(struct hci_conn * conn,struct sk_buff * skb)4240 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4241 {
4242 	struct hci_dev *hdev = conn->hdev;
4243 	struct hci_sco_hdr hdr;
4244 
4245 	BT_DBG("%s len %d", hdev->name, skb->len);
4246 
4247 	hdr.handle = cpu_to_le16(conn->handle);
4248 	hdr.dlen   = skb->len;
4249 
4250 	skb_push(skb, HCI_SCO_HDR_SIZE);
4251 	skb_reset_transport_header(skb);
4252 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4253 
4254 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4255 
4256 	skb_queue_tail(&conn->data_q, skb);
4257 	queue_work(hdev->workqueue, &hdev->tx_work);
4258 }
4259 
4260 /* ---- HCI TX task (outgoing data) ---- */
4261 
4262 /* HCI Connection scheduler */
hci_low_sent(struct hci_dev * hdev,__u8 type,int * quote)4263 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4264 				     int *quote)
4265 {
4266 	struct hci_conn_hash *h = &hdev->conn_hash;
4267 	struct hci_conn *conn = NULL, *c;
4268 	unsigned int num = 0, min = ~0;
4269 
4270 	/* We don't have to lock device here. Connections are always
4271 	 * added and removed with TX task disabled. */
4272 
4273 	rcu_read_lock();
4274 
4275 	list_for_each_entry_rcu(c, &h->list, list) {
4276 		if (c->type != type || skb_queue_empty(&c->data_q))
4277 			continue;
4278 
4279 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4280 			continue;
4281 
4282 		num++;
4283 
4284 		if (c->sent < min) {
4285 			min  = c->sent;
4286 			conn = c;
4287 		}
4288 
4289 		if (hci_conn_num(hdev, type) == num)
4290 			break;
4291 	}
4292 
4293 	rcu_read_unlock();
4294 
4295 	if (conn) {
4296 		int cnt, q;
4297 
4298 		switch (conn->type) {
4299 		case ACL_LINK:
4300 			cnt = hdev->acl_cnt;
4301 			break;
4302 		case SCO_LINK:
4303 		case ESCO_LINK:
4304 			cnt = hdev->sco_cnt;
4305 			break;
4306 		case LE_LINK:
4307 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4308 			break;
4309 		default:
4310 			cnt = 0;
4311 			bt_dev_err(hdev, "unknown link type %d", conn->type);
4312 		}
4313 
4314 		q = cnt / num;
4315 		*quote = q ? q : 1;
4316 	} else
4317 		*quote = 0;
4318 
4319 	BT_DBG("conn %p quote %d", conn, *quote);
4320 	return conn;
4321 }
4322 
hci_link_tx_to(struct hci_dev * hdev,__u8 type)4323 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4324 {
4325 	struct hci_conn_hash *h = &hdev->conn_hash;
4326 	struct hci_conn *c;
4327 
4328 	bt_dev_err(hdev, "link tx timeout");
4329 
4330 	rcu_read_lock();
4331 
4332 	/* Kill stalled connections */
4333 	list_for_each_entry_rcu(c, &h->list, list) {
4334 		if (c->type == type && c->sent) {
4335 			bt_dev_err(hdev, "killing stalled connection %pMR",
4336 				   &c->dst);
4337 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4338 		}
4339 	}
4340 
4341 	rcu_read_unlock();
4342 }
4343 
hci_chan_sent(struct hci_dev * hdev,__u8 type,int * quote)4344 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4345 				      int *quote)
4346 {
4347 	struct hci_conn_hash *h = &hdev->conn_hash;
4348 	struct hci_chan *chan = NULL;
4349 	unsigned int num = 0, min = ~0, cur_prio = 0;
4350 	struct hci_conn *conn;
4351 	int cnt, q, conn_num = 0;
4352 
4353 	BT_DBG("%s", hdev->name);
4354 
4355 	rcu_read_lock();
4356 
4357 	list_for_each_entry_rcu(conn, &h->list, list) {
4358 		struct hci_chan *tmp;
4359 
4360 		if (conn->type != type)
4361 			continue;
4362 
4363 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4364 			continue;
4365 
4366 		conn_num++;
4367 
4368 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4369 			struct sk_buff *skb;
4370 
4371 			if (skb_queue_empty(&tmp->data_q))
4372 				continue;
4373 
4374 			skb = skb_peek(&tmp->data_q);
4375 			if (skb->priority < cur_prio)
4376 				continue;
4377 
4378 			if (skb->priority > cur_prio) {
4379 				num = 0;
4380 				min = ~0;
4381 				cur_prio = skb->priority;
4382 			}
4383 
4384 			num++;
4385 
4386 			if (conn->sent < min) {
4387 				min  = conn->sent;
4388 				chan = tmp;
4389 			}
4390 		}
4391 
4392 		if (hci_conn_num(hdev, type) == conn_num)
4393 			break;
4394 	}
4395 
4396 	rcu_read_unlock();
4397 
4398 	if (!chan)
4399 		return NULL;
4400 
4401 	switch (chan->conn->type) {
4402 	case ACL_LINK:
4403 		cnt = hdev->acl_cnt;
4404 		break;
4405 	case AMP_LINK:
4406 		cnt = hdev->block_cnt;
4407 		break;
4408 	case SCO_LINK:
4409 	case ESCO_LINK:
4410 		cnt = hdev->sco_cnt;
4411 		break;
4412 	case LE_LINK:
4413 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4414 		break;
4415 	default:
4416 		cnt = 0;
4417 		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4418 	}
4419 
4420 	q = cnt / num;
4421 	*quote = q ? q : 1;
4422 	BT_DBG("chan %p quote %d", chan, *quote);
4423 	return chan;
4424 }
4425 
hci_prio_recalculate(struct hci_dev * hdev,__u8 type)4426 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4427 {
4428 	struct hci_conn_hash *h = &hdev->conn_hash;
4429 	struct hci_conn *conn;
4430 	int num = 0;
4431 
4432 	BT_DBG("%s", hdev->name);
4433 
4434 	rcu_read_lock();
4435 
4436 	list_for_each_entry_rcu(conn, &h->list, list) {
4437 		struct hci_chan *chan;
4438 
4439 		if (conn->type != type)
4440 			continue;
4441 
4442 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4443 			continue;
4444 
4445 		num++;
4446 
4447 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4448 			struct sk_buff *skb;
4449 
4450 			if (chan->sent) {
4451 				chan->sent = 0;
4452 				continue;
4453 			}
4454 
4455 			if (skb_queue_empty(&chan->data_q))
4456 				continue;
4457 
4458 			skb = skb_peek(&chan->data_q);
4459 			if (skb->priority >= HCI_PRIO_MAX - 1)
4460 				continue;
4461 
4462 			skb->priority = HCI_PRIO_MAX - 1;
4463 
4464 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4465 			       skb->priority);
4466 		}
4467 
4468 		if (hci_conn_num(hdev, type) == num)
4469 			break;
4470 	}
4471 
4472 	rcu_read_unlock();
4473 
4474 }
4475 
__get_blocks(struct hci_dev * hdev,struct sk_buff * skb)4476 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4477 {
4478 	/* Calculate count of blocks used by this packet */
4479 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4480 }
4481 
__check_timeout(struct hci_dev * hdev,unsigned int cnt)4482 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4483 {
4484 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4485 		/* ACL tx timeout must be longer than maximum
4486 		 * link supervision timeout (40.9 seconds) */
4487 		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4488 				       HCI_ACL_TX_TIMEOUT))
4489 			hci_link_tx_to(hdev, ACL_LINK);
4490 	}
4491 }
4492 
4493 /* Schedule SCO */
hci_sched_sco(struct hci_dev * hdev)4494 static void hci_sched_sco(struct hci_dev *hdev)
4495 {
4496 	struct hci_conn *conn;
4497 	struct sk_buff *skb;
4498 	int quote;
4499 
4500 	BT_DBG("%s", hdev->name);
4501 
4502 	if (!hci_conn_num(hdev, SCO_LINK))
4503 		return;
4504 
4505 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4506 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4507 			BT_DBG("skb %p len %d", skb, skb->len);
4508 			hci_send_frame(hdev, skb);
4509 
4510 			conn->sent++;
4511 			if (conn->sent == ~0)
4512 				conn->sent = 0;
4513 		}
4514 	}
4515 }
4516 
hci_sched_esco(struct hci_dev * hdev)4517 static void hci_sched_esco(struct hci_dev *hdev)
4518 {
4519 	struct hci_conn *conn;
4520 	struct sk_buff *skb;
4521 	int quote;
4522 
4523 	BT_DBG("%s", hdev->name);
4524 
4525 	if (!hci_conn_num(hdev, ESCO_LINK))
4526 		return;
4527 
4528 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4529 						     &quote))) {
4530 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4531 			BT_DBG("skb %p len %d", skb, skb->len);
4532 			hci_send_frame(hdev, skb);
4533 
4534 			conn->sent++;
4535 			if (conn->sent == ~0)
4536 				conn->sent = 0;
4537 		}
4538 	}
4539 }
4540 
hci_sched_acl_pkt(struct hci_dev * hdev)4541 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4542 {
4543 	unsigned int cnt = hdev->acl_cnt;
4544 	struct hci_chan *chan;
4545 	struct sk_buff *skb;
4546 	int quote;
4547 
4548 	__check_timeout(hdev, cnt);
4549 
4550 	while (hdev->acl_cnt &&
4551 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4552 		u32 priority = (skb_peek(&chan->data_q))->priority;
4553 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4554 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4555 			       skb->len, skb->priority);
4556 
4557 			/* Stop if priority has changed */
4558 			if (skb->priority < priority)
4559 				break;
4560 
4561 			skb = skb_dequeue(&chan->data_q);
4562 
4563 			hci_conn_enter_active_mode(chan->conn,
4564 						   bt_cb(skb)->force_active);
4565 
4566 			hci_send_frame(hdev, skb);
4567 			hdev->acl_last_tx = jiffies;
4568 
4569 			hdev->acl_cnt--;
4570 			chan->sent++;
4571 			chan->conn->sent++;
4572 
4573 			/* Send pending SCO packets right away */
4574 			hci_sched_sco(hdev);
4575 			hci_sched_esco(hdev);
4576 		}
4577 	}
4578 
4579 	if (cnt != hdev->acl_cnt)
4580 		hci_prio_recalculate(hdev, ACL_LINK);
4581 }
4582 
hci_sched_acl_blk(struct hci_dev * hdev)4583 static void hci_sched_acl_blk(struct hci_dev *hdev)
4584 {
4585 	unsigned int cnt = hdev->block_cnt;
4586 	struct hci_chan *chan;
4587 	struct sk_buff *skb;
4588 	int quote;
4589 	u8 type;
4590 
4591 	__check_timeout(hdev, cnt);
4592 
4593 	BT_DBG("%s", hdev->name);
4594 
4595 	if (hdev->dev_type == HCI_AMP)
4596 		type = AMP_LINK;
4597 	else
4598 		type = ACL_LINK;
4599 
4600 	while (hdev->block_cnt > 0 &&
4601 	       (chan = hci_chan_sent(hdev, type, &quote))) {
4602 		u32 priority = (skb_peek(&chan->data_q))->priority;
4603 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4604 			int blocks;
4605 
4606 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4607 			       skb->len, skb->priority);
4608 
4609 			/* Stop if priority has changed */
4610 			if (skb->priority < priority)
4611 				break;
4612 
4613 			skb = skb_dequeue(&chan->data_q);
4614 
4615 			blocks = __get_blocks(hdev, skb);
4616 			if (blocks > hdev->block_cnt)
4617 				return;
4618 
4619 			hci_conn_enter_active_mode(chan->conn,
4620 						   bt_cb(skb)->force_active);
4621 
4622 			hci_send_frame(hdev, skb);
4623 			hdev->acl_last_tx = jiffies;
4624 
4625 			hdev->block_cnt -= blocks;
4626 			quote -= blocks;
4627 
4628 			chan->sent += blocks;
4629 			chan->conn->sent += blocks;
4630 		}
4631 	}
4632 
4633 	if (cnt != hdev->block_cnt)
4634 		hci_prio_recalculate(hdev, type);
4635 }
4636 
hci_sched_acl(struct hci_dev * hdev)4637 static void hci_sched_acl(struct hci_dev *hdev)
4638 {
4639 	BT_DBG("%s", hdev->name);
4640 
4641 	/* No ACL link over BR/EDR controller */
4642 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4643 		return;
4644 
4645 	/* No AMP link over AMP controller */
4646 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4647 		return;
4648 
4649 	switch (hdev->flow_ctl_mode) {
4650 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4651 		hci_sched_acl_pkt(hdev);
4652 		break;
4653 
4654 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4655 		hci_sched_acl_blk(hdev);
4656 		break;
4657 	}
4658 }
4659 
hci_sched_le(struct hci_dev * hdev)4660 static void hci_sched_le(struct hci_dev *hdev)
4661 {
4662 	struct hci_chan *chan;
4663 	struct sk_buff *skb;
4664 	int quote, cnt, tmp;
4665 
4666 	BT_DBG("%s", hdev->name);
4667 
4668 	if (!hci_conn_num(hdev, LE_LINK))
4669 		return;
4670 
4671 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4672 
4673 	__check_timeout(hdev, cnt);
4674 
4675 	tmp = cnt;
4676 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4677 		u32 priority = (skb_peek(&chan->data_q))->priority;
4678 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4679 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4680 			       skb->len, skb->priority);
4681 
4682 			/* Stop if priority has changed */
4683 			if (skb->priority < priority)
4684 				break;
4685 
4686 			skb = skb_dequeue(&chan->data_q);
4687 
4688 			hci_send_frame(hdev, skb);
4689 			hdev->le_last_tx = jiffies;
4690 
4691 			cnt--;
4692 			chan->sent++;
4693 			chan->conn->sent++;
4694 
4695 			/* Send pending SCO packets right away */
4696 			hci_sched_sco(hdev);
4697 			hci_sched_esco(hdev);
4698 		}
4699 	}
4700 
4701 	if (hdev->le_pkts)
4702 		hdev->le_cnt = cnt;
4703 	else
4704 		hdev->acl_cnt = cnt;
4705 
4706 	if (cnt != tmp)
4707 		hci_prio_recalculate(hdev, LE_LINK);
4708 }
4709 
hci_tx_work(struct work_struct * work)4710 static void hci_tx_work(struct work_struct *work)
4711 {
4712 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4713 	struct sk_buff *skb;
4714 
4715 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4716 	       hdev->sco_cnt, hdev->le_cnt);
4717 
4718 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4719 		/* Schedule queues and send stuff to HCI driver */
4720 		hci_sched_sco(hdev);
4721 		hci_sched_esco(hdev);
4722 		hci_sched_acl(hdev);
4723 		hci_sched_le(hdev);
4724 	}
4725 
4726 	/* Send next queued raw (unknown type) packet */
4727 	while ((skb = skb_dequeue(&hdev->raw_q)))
4728 		hci_send_frame(hdev, skb);
4729 }
4730 
4731 /* ----- HCI RX task (incoming data processing) ----- */
4732 
4733 /* ACL data packet */
hci_acldata_packet(struct hci_dev * hdev,struct sk_buff * skb)4734 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4735 {
4736 	struct hci_acl_hdr *hdr = (void *) skb->data;
4737 	struct hci_conn *conn;
4738 	__u16 handle, flags;
4739 
4740 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4741 
4742 	handle = __le16_to_cpu(hdr->handle);
4743 	flags  = hci_flags(handle);
4744 	handle = hci_handle(handle);
4745 
4746 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4747 	       handle, flags);
4748 
4749 	hdev->stat.acl_rx++;
4750 
4751 	hci_dev_lock(hdev);
4752 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4753 	hci_dev_unlock(hdev);
4754 
4755 	if (conn) {
4756 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4757 
4758 		/* Send to upper protocol */
4759 		l2cap_recv_acldata(conn, skb, flags);
4760 		return;
4761 	} else {
4762 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4763 			   handle);
4764 	}
4765 
4766 	kfree_skb(skb);
4767 }
4768 
4769 /* SCO data packet */
hci_scodata_packet(struct hci_dev * hdev,struct sk_buff * skb)4770 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4771 {
4772 	struct hci_sco_hdr *hdr = (void *) skb->data;
4773 	struct hci_conn *conn;
4774 	__u16 handle, flags;
4775 
4776 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4777 
4778 	handle = __le16_to_cpu(hdr->handle);
4779 	flags  = hci_flags(handle);
4780 	handle = hci_handle(handle);
4781 
4782 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4783 	       handle, flags);
4784 
4785 	hdev->stat.sco_rx++;
4786 
4787 	hci_dev_lock(hdev);
4788 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4789 	hci_dev_unlock(hdev);
4790 
4791 	if (conn) {
4792 		/* Send to upper protocol */
4793 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4794 		sco_recv_scodata(conn, skb);
4795 		return;
4796 	} else {
4797 		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4798 			   handle);
4799 	}
4800 
4801 	kfree_skb(skb);
4802 }
4803 
hci_req_is_complete(struct hci_dev * hdev)4804 static bool hci_req_is_complete(struct hci_dev *hdev)
4805 {
4806 	struct sk_buff *skb;
4807 
4808 	skb = skb_peek(&hdev->cmd_q);
4809 	if (!skb)
4810 		return true;
4811 
4812 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4813 }
4814 
hci_resend_last(struct hci_dev * hdev)4815 static void hci_resend_last(struct hci_dev *hdev)
4816 {
4817 	struct hci_command_hdr *sent;
4818 	struct sk_buff *skb;
4819 	u16 opcode;
4820 
4821 	if (!hdev->sent_cmd)
4822 		return;
4823 
4824 	sent = (void *) hdev->sent_cmd->data;
4825 	opcode = __le16_to_cpu(sent->opcode);
4826 	if (opcode == HCI_OP_RESET)
4827 		return;
4828 
4829 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4830 	if (!skb)
4831 		return;
4832 
4833 	skb_queue_head(&hdev->cmd_q, skb);
4834 	queue_work(hdev->workqueue, &hdev->cmd_work);
4835 }
4836 
hci_req_cmd_complete(struct hci_dev * hdev,u16 opcode,u8 status,hci_req_complete_t * req_complete,hci_req_complete_skb_t * req_complete_skb)4837 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4838 			  hci_req_complete_t *req_complete,
4839 			  hci_req_complete_skb_t *req_complete_skb)
4840 {
4841 	struct sk_buff *skb;
4842 	unsigned long flags;
4843 
4844 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4845 
4846 	/* If the completed command doesn't match the last one that was
4847 	 * sent we need to do special handling of it.
4848 	 */
4849 	if (!hci_sent_cmd_data(hdev, opcode)) {
4850 		/* Some CSR based controllers generate a spontaneous
4851 		 * reset complete event during init and any pending
4852 		 * command will never be completed. In such a case we
4853 		 * need to resend whatever was the last sent
4854 		 * command.
4855 		 */
4856 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4857 			hci_resend_last(hdev);
4858 
4859 		return;
4860 	}
4861 
4862 	/* If we reach this point this event matches the last command sent */
4863 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4864 
4865 	/* If the command succeeded and there's still more commands in
4866 	 * this request the request is not yet complete.
4867 	 */
4868 	if (!status && !hci_req_is_complete(hdev))
4869 		return;
4870 
4871 	/* If this was the last command in a request the complete
4872 	 * callback would be found in hdev->sent_cmd instead of the
4873 	 * command queue (hdev->cmd_q).
4874 	 */
4875 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4876 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4877 		return;
4878 	}
4879 
4880 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4881 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4882 		return;
4883 	}
4884 
4885 	/* Remove all pending commands belonging to this request */
4886 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4887 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4888 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4889 			__skb_queue_head(&hdev->cmd_q, skb);
4890 			break;
4891 		}
4892 
4893 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4894 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4895 		else
4896 			*req_complete = bt_cb(skb)->hci.req_complete;
4897 		kfree_skb(skb);
4898 	}
4899 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4900 }
4901 
hci_rx_work(struct work_struct * work)4902 static void hci_rx_work(struct work_struct *work)
4903 {
4904 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4905 	struct sk_buff *skb;
4906 
4907 	BT_DBG("%s", hdev->name);
4908 
4909 	while ((skb = skb_dequeue(&hdev->rx_q))) {
4910 		/* Send copy to monitor */
4911 		hci_send_to_monitor(hdev, skb);
4912 
4913 		if (atomic_read(&hdev->promisc)) {
4914 			/* Send copy to the sockets */
4915 			hci_send_to_sock(hdev, skb);
4916 		}
4917 
4918 		/* If the device has been opened in HCI_USER_CHANNEL,
4919 		 * the userspace has exclusive access to device.
4920 		 * When device is HCI_INIT, we still need to process
4921 		 * the data packets to the driver in order
4922 		 * to complete its setup().
4923 		 */
4924 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4925 		    !test_bit(HCI_INIT, &hdev->flags)) {
4926 			kfree_skb(skb);
4927 			continue;
4928 		}
4929 
4930 		if (test_bit(HCI_INIT, &hdev->flags)) {
4931 			/* Don't process data packets in this states. */
4932 			switch (hci_skb_pkt_type(skb)) {
4933 			case HCI_ACLDATA_PKT:
4934 			case HCI_SCODATA_PKT:
4935 			case HCI_ISODATA_PKT:
4936 				kfree_skb(skb);
4937 				continue;
4938 			}
4939 		}
4940 
4941 		/* Process frame */
4942 		switch (hci_skb_pkt_type(skb)) {
4943 		case HCI_EVENT_PKT:
4944 			BT_DBG("%s Event packet", hdev->name);
4945 			hci_event_packet(hdev, skb);
4946 			break;
4947 
4948 		case HCI_ACLDATA_PKT:
4949 			BT_DBG("%s ACL data packet", hdev->name);
4950 			hci_acldata_packet(hdev, skb);
4951 			break;
4952 
4953 		case HCI_SCODATA_PKT:
4954 			BT_DBG("%s SCO data packet", hdev->name);
4955 			hci_scodata_packet(hdev, skb);
4956 			break;
4957 
4958 		default:
4959 			kfree_skb(skb);
4960 			break;
4961 		}
4962 	}
4963 }
4964 
hci_cmd_work(struct work_struct * work)4965 static void hci_cmd_work(struct work_struct *work)
4966 {
4967 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4968 	struct sk_buff *skb;
4969 
4970 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4971 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4972 
4973 	/* Send queued commands */
4974 	if (atomic_read(&hdev->cmd_cnt)) {
4975 		skb = skb_dequeue(&hdev->cmd_q);
4976 		if (!skb)
4977 			return;
4978 
4979 		kfree_skb(hdev->sent_cmd);
4980 
4981 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4982 		if (hdev->sent_cmd) {
4983 			if (hci_req_status_pend(hdev))
4984 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4985 			atomic_dec(&hdev->cmd_cnt);
4986 			hci_send_frame(hdev, skb);
4987 			if (test_bit(HCI_RESET, &hdev->flags))
4988 				cancel_delayed_work(&hdev->cmd_timer);
4989 			else
4990 				schedule_delayed_work(&hdev->cmd_timer,
4991 						      HCI_CMD_TIMEOUT);
4992 		} else {
4993 			skb_queue_head(&hdev->cmd_q, skb);
4994 			queue_work(hdev->workqueue, &hdev->cmd_work);
4995 		}
4996 	}
4997 }
4998