• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/efi.h>
12 #include <linux/types.h>
13 #include <asm/apic.h>
14 #include <asm/desc.h>
15 #include <asm/hypervisor.h>
16 #include <asm/hyperv-tlfs.h>
17 #include <asm/mshyperv.h>
18 #include <asm/idtentry.h>
19 #include <linux/kexec.h>
20 #include <linux/version.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/hyperv.h>
24 #include <linux/slab.h>
25 #include <linux/kernel.h>
26 #include <linux/cpuhotplug.h>
27 #include <linux/syscore_ops.h>
28 #include <clocksource/hyperv_timer.h>
29 
30 int hyperv_init_cpuhp;
31 
32 void *hv_hypercall_pg;
33 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
34 
35 /* Storage to save the hypercall page temporarily for hibernation */
36 static void *hv_hypercall_pg_saved;
37 
38 u32 *hv_vp_index;
39 EXPORT_SYMBOL_GPL(hv_vp_index);
40 
41 struct hv_vp_assist_page **hv_vp_assist_page;
42 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
43 
44 void  __percpu **hyperv_pcpu_input_arg;
45 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
46 
47 u32 hv_max_vp_index;
48 EXPORT_SYMBOL_GPL(hv_max_vp_index);
49 
hv_alloc_hyperv_page(void)50 void *hv_alloc_hyperv_page(void)
51 {
52 	BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
53 
54 	return (void *)__get_free_page(GFP_KERNEL);
55 }
56 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
57 
hv_alloc_hyperv_zeroed_page(void)58 void *hv_alloc_hyperv_zeroed_page(void)
59 {
60         BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
61 
62         return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
63 }
64 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
65 
hv_free_hyperv_page(unsigned long addr)66 void hv_free_hyperv_page(unsigned long addr)
67 {
68 	free_page(addr);
69 }
70 EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
71 
hv_cpu_init(unsigned int cpu)72 static int hv_cpu_init(unsigned int cpu)
73 {
74 	u64 msr_vp_index;
75 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
76 	void **input_arg;
77 	struct page *pg;
78 
79 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
80 	/* hv_cpu_init() can be called with IRQs disabled from hv_resume() */
81 	pg = alloc_page(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL);
82 	if (unlikely(!pg))
83 		return -ENOMEM;
84 	*input_arg = page_address(pg);
85 
86 	hv_get_vp_index(msr_vp_index);
87 
88 	hv_vp_index[smp_processor_id()] = msr_vp_index;
89 
90 	if (msr_vp_index > hv_max_vp_index)
91 		hv_max_vp_index = msr_vp_index;
92 
93 	if (!hv_vp_assist_page)
94 		return 0;
95 
96 	/*
97 	 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section
98 	 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure
99 	 * we always write the EOI MSR in hv_apic_eoi_write() *after* the
100 	 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may
101 	 * not be stopped in the case of CPU offlining and the VM will hang.
102 	 */
103 	if (!*hvp) {
104 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
105 	}
106 
107 	if (*hvp) {
108 		u64 val;
109 
110 		val = vmalloc_to_pfn(*hvp);
111 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
112 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
113 
114 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
115 	}
116 
117 	return 0;
118 }
119 
120 static void (*hv_reenlightenment_cb)(void);
121 
hv_reenlightenment_notify(struct work_struct * dummy)122 static void hv_reenlightenment_notify(struct work_struct *dummy)
123 {
124 	struct hv_tsc_emulation_status emu_status;
125 
126 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
127 
128 	/* Don't issue the callback if TSC accesses are not emulated */
129 	if (hv_reenlightenment_cb && emu_status.inprogress)
130 		hv_reenlightenment_cb();
131 }
132 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
133 
hyperv_stop_tsc_emulation(void)134 void hyperv_stop_tsc_emulation(void)
135 {
136 	u64 freq;
137 	struct hv_tsc_emulation_status emu_status;
138 
139 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
140 	emu_status.inprogress = 0;
141 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
142 
143 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
144 	tsc_khz = div64_u64(freq, 1000);
145 }
146 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
147 
hv_reenlightenment_available(void)148 static inline bool hv_reenlightenment_available(void)
149 {
150 	/*
151 	 * Check for required features and priviliges to make TSC frequency
152 	 * change notifications work.
153 	 */
154 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
155 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
156 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
157 }
158 
DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)159 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
160 {
161 	ack_APIC_irq();
162 	inc_irq_stat(irq_hv_reenlightenment_count);
163 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
164 }
165 
set_hv_tscchange_cb(void (* cb)(void))166 void set_hv_tscchange_cb(void (*cb)(void))
167 {
168 	struct hv_reenlightenment_control re_ctrl = {
169 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
170 		.enabled = 1,
171 	};
172 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
173 
174 	if (!hv_reenlightenment_available()) {
175 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
176 		return;
177 	}
178 
179 	if (!hv_vp_index)
180 		return;
181 
182 	hv_reenlightenment_cb = cb;
183 
184 	/* Make sure callback is registered before we write to MSRs */
185 	wmb();
186 
187 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
188 
189 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
190 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
191 
192 	put_cpu();
193 }
194 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
195 
clear_hv_tscchange_cb(void)196 void clear_hv_tscchange_cb(void)
197 {
198 	struct hv_reenlightenment_control re_ctrl;
199 
200 	if (!hv_reenlightenment_available())
201 		return;
202 
203 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
204 	re_ctrl.enabled = 0;
205 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
206 
207 	hv_reenlightenment_cb = NULL;
208 }
209 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
210 
hv_cpu_die(unsigned int cpu)211 static int hv_cpu_die(unsigned int cpu)
212 {
213 	struct hv_reenlightenment_control re_ctrl;
214 	unsigned int new_cpu;
215 	unsigned long flags;
216 	void **input_arg;
217 	void *input_pg = NULL;
218 
219 	local_irq_save(flags);
220 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
221 	input_pg = *input_arg;
222 	*input_arg = NULL;
223 	local_irq_restore(flags);
224 	free_page((unsigned long)input_pg);
225 
226 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
227 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
228 
229 	if (hv_reenlightenment_cb == NULL)
230 		return 0;
231 
232 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
233 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
234 		/*
235 		 * Reassign reenlightenment notifications to some other online
236 		 * CPU or just disable the feature if there are no online CPUs
237 		 * left (happens on hibernation).
238 		 */
239 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
240 
241 		if (new_cpu < nr_cpu_ids)
242 			re_ctrl.target_vp = hv_vp_index[new_cpu];
243 		else
244 			re_ctrl.enabled = 0;
245 
246 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
247 	}
248 
249 	return 0;
250 }
251 
hv_pci_init(void)252 static int __init hv_pci_init(void)
253 {
254 	int gen2vm = efi_enabled(EFI_BOOT);
255 
256 	/*
257 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
258 	 * The purpose is to suppress the harmless warning:
259 	 * "PCI: Fatal: No config space access function found"
260 	 */
261 	if (gen2vm)
262 		return 0;
263 
264 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
265 	return 1;
266 }
267 
hv_suspend(void)268 static int hv_suspend(void)
269 {
270 	union hv_x64_msr_hypercall_contents hypercall_msr;
271 	int ret;
272 
273 	/*
274 	 * Reset the hypercall page as it is going to be invalidated
275 	 * accross hibernation. Setting hv_hypercall_pg to NULL ensures
276 	 * that any subsequent hypercall operation fails safely instead of
277 	 * crashing due to an access of an invalid page. The hypercall page
278 	 * pointer is restored on resume.
279 	 */
280 	hv_hypercall_pg_saved = hv_hypercall_pg;
281 	hv_hypercall_pg = NULL;
282 
283 	/* Disable the hypercall page in the hypervisor */
284 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
285 	hypercall_msr.enable = 0;
286 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
287 
288 	ret = hv_cpu_die(0);
289 	return ret;
290 }
291 
hv_resume(void)292 static void hv_resume(void)
293 {
294 	union hv_x64_msr_hypercall_contents hypercall_msr;
295 	int ret;
296 
297 	ret = hv_cpu_init(0);
298 	WARN_ON(ret);
299 
300 	/* Re-enable the hypercall page */
301 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
302 	hypercall_msr.enable = 1;
303 	hypercall_msr.guest_physical_address =
304 		vmalloc_to_pfn(hv_hypercall_pg_saved);
305 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
306 
307 	hv_hypercall_pg = hv_hypercall_pg_saved;
308 	hv_hypercall_pg_saved = NULL;
309 
310 	/*
311 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
312 	 * reenable them here if hv_reenlightenment_cb was previously set.
313 	 */
314 	if (hv_reenlightenment_cb)
315 		set_hv_tscchange_cb(hv_reenlightenment_cb);
316 }
317 
318 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
319 static struct syscore_ops hv_syscore_ops = {
320 	.suspend	= hv_suspend,
321 	.resume		= hv_resume,
322 };
323 
324 static void (* __initdata old_setup_percpu_clockev)(void);
325 
hv_stimer_setup_percpu_clockev(void)326 static void __init hv_stimer_setup_percpu_clockev(void)
327 {
328 	/*
329 	 * Ignore any errors in setting up stimer clockevents
330 	 * as we can run with the LAPIC timer as a fallback.
331 	 */
332 	(void)hv_stimer_alloc();
333 
334 	/*
335 	 * Still register the LAPIC timer, because the direct-mode STIMER is
336 	 * not supported by old versions of Hyper-V. This also allows users
337 	 * to switch to LAPIC timer via /sys, if they want to.
338 	 */
339 	if (old_setup_percpu_clockev)
340 		old_setup_percpu_clockev();
341 }
342 
343 /*
344  * This function is to be invoked early in the boot sequence after the
345  * hypervisor has been detected.
346  *
347  * 1. Setup the hypercall page.
348  * 2. Register Hyper-V specific clocksource.
349  * 3. Setup Hyper-V specific APIC entry points.
350  */
hyperv_init(void)351 void __init hyperv_init(void)
352 {
353 	u64 guest_id, required_msrs;
354 	union hv_x64_msr_hypercall_contents hypercall_msr;
355 	int cpuhp, i;
356 
357 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
358 		return;
359 
360 	/* Absolutely required MSRs */
361 	required_msrs = HV_MSR_HYPERCALL_AVAILABLE |
362 		HV_MSR_VP_INDEX_AVAILABLE;
363 
364 	if ((ms_hyperv.features & required_msrs) != required_msrs)
365 		return;
366 
367 	/*
368 	 * Allocate the per-CPU state for the hypercall input arg.
369 	 * If this allocation fails, we will not be able to setup
370 	 * (per-CPU) hypercall input page and thus this failure is
371 	 * fatal on Hyper-V.
372 	 */
373 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
374 
375 	BUG_ON(hyperv_pcpu_input_arg == NULL);
376 
377 	/* Allocate percpu VP index */
378 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
379 				    GFP_KERNEL);
380 	if (!hv_vp_index)
381 		return;
382 
383 	for (i = 0; i < num_possible_cpus(); i++)
384 		hv_vp_index[i] = VP_INVAL;
385 
386 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
387 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
388 	if (!hv_vp_assist_page) {
389 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
390 		goto free_vp_index;
391 	}
392 
393 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
394 				  hv_cpu_init, hv_cpu_die);
395 	if (cpuhp < 0)
396 		goto free_vp_assist_page;
397 
398 	/*
399 	 * Setup the hypercall page and enable hypercalls.
400 	 * 1. Register the guest ID
401 	 * 2. Enable the hypercall and register the hypercall page
402 	 */
403 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
404 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
405 
406 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
407 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
408 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
409 			__builtin_return_address(0));
410 	if (hv_hypercall_pg == NULL) {
411 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
412 		goto remove_cpuhp_state;
413 	}
414 
415 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
416 	hypercall_msr.enable = 1;
417 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
418 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
419 
420 	/*
421 	 * hyperv_init() is called before LAPIC is initialized: see
422 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
423 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
424 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
425 	 * x86_init.timers.setup_percpu_clockev.
426 	 */
427 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
428 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
429 
430 	hv_apic_init();
431 
432 	x86_init.pci.arch_init = hv_pci_init;
433 
434 	register_syscore_ops(&hv_syscore_ops);
435 
436 	hyperv_init_cpuhp = cpuhp;
437 	return;
438 
439 remove_cpuhp_state:
440 	cpuhp_remove_state(cpuhp);
441 free_vp_assist_page:
442 	kfree(hv_vp_assist_page);
443 	hv_vp_assist_page = NULL;
444 free_vp_index:
445 	kfree(hv_vp_index);
446 	hv_vp_index = NULL;
447 }
448 
449 /*
450  * This routine is called before kexec/kdump, it does the required cleanup.
451  */
hyperv_cleanup(void)452 void hyperv_cleanup(void)
453 {
454 	union hv_x64_msr_hypercall_contents hypercall_msr;
455 
456 	unregister_syscore_ops(&hv_syscore_ops);
457 
458 	/* Reset our OS id */
459 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
460 
461 	/*
462 	 * Reset hypercall page reference before reset the page,
463 	 * let hypercall operations fail safely rather than
464 	 * panic the kernel for using invalid hypercall page
465 	 */
466 	hv_hypercall_pg = NULL;
467 
468 	/* Reset the hypercall page */
469 	hypercall_msr.as_uint64 = 0;
470 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
471 
472 	/* Reset the TSC page */
473 	hypercall_msr.as_uint64 = 0;
474 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
475 }
476 EXPORT_SYMBOL_GPL(hyperv_cleanup);
477 
hyperv_report_panic(struct pt_regs * regs,long err,bool in_die)478 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
479 {
480 	static bool panic_reported;
481 	u64 guest_id;
482 
483 	if (in_die && !panic_on_oops)
484 		return;
485 
486 	/*
487 	 * We prefer to report panic on 'die' chain as we have proper
488 	 * registers to report, but if we miss it (e.g. on BUG()) we need
489 	 * to report it on 'panic'.
490 	 */
491 	if (panic_reported)
492 		return;
493 	panic_reported = true;
494 
495 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
496 
497 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
498 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
499 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
500 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
501 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
502 
503 	/*
504 	 * Let Hyper-V know there is crash data available
505 	 */
506 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
507 }
508 EXPORT_SYMBOL_GPL(hyperv_report_panic);
509 
510 /**
511  * hyperv_report_panic_msg - report panic message to Hyper-V
512  * @pa: physical address of the panic page containing the message
513  * @size: size of the message in the page
514  */
hyperv_report_panic_msg(phys_addr_t pa,size_t size)515 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
516 {
517 	/*
518 	 * P3 to contain the physical address of the panic page & P4 to
519 	 * contain the size of the panic data in that page. Rest of the
520 	 * registers are no-op when the NOTIFY_MSG flag is set.
521 	 */
522 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
523 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
524 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
525 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
526 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
527 
528 	/*
529 	 * Let Hyper-V know there is crash data available along with
530 	 * the panic message.
531 	 */
532 	wrmsrl(HV_X64_MSR_CRASH_CTL,
533 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
534 }
535 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
536 
hv_is_hyperv_initialized(void)537 bool hv_is_hyperv_initialized(void)
538 {
539 	union hv_x64_msr_hypercall_contents hypercall_msr;
540 
541 	/*
542 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
543 	 * emulation of Hyper-V
544 	 */
545 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
546 		return false;
547 
548 	/*
549 	 * Verify that earlier initialization succeeded by checking
550 	 * that the hypercall page is setup
551 	 */
552 	hypercall_msr.as_uint64 = 0;
553 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
554 
555 	return hypercall_msr.enable;
556 }
557 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
558 
hv_is_hibernation_supported(void)559 bool hv_is_hibernation_supported(void)
560 {
561 	return acpi_sleep_state_supported(ACPI_STATE_S4);
562 }
563 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);
564