• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 
7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
8  * the fundamental clock design. However, the clock operations are much simpler
9  * in the XL710 because the device supports a full 64 bits of nanoseconds.
10  * Because the field is so wide, we can forgo the cycle counter and just
11  * operate with the nanosecond field directly without fear of overflow.
12  *
13  * Much like the 82599, the update period is dependent upon the link speed:
14  * At 40Gb, 25Gb, or no link, the period is 1.6ns.
15  * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
16  * At 1Gb link, the period is multiplied by 20. (32ns)
17  * 1588 functionality is not supported at 100Mbps.
18  */
19 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
20 #define I40E_PTP_10GB_INCVAL_MULT	2
21 #define I40E_PTP_5GB_INCVAL_MULT	2
22 #define I40E_PTP_1GB_INCVAL_MULT	20
23 
24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
25 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
26 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
27 
28 /**
29  * i40e_ptp_read - Read the PHC time from the device
30  * @pf: Board private structure
31  * @ts: timespec structure to hold the current time value
32  * @sts: structure to hold the system time before and after reading the PHC
33  *
34  * This function reads the PRTTSYN_TIME registers and stores them in a
35  * timespec. However, since the registers are 64 bits of nanoseconds, we must
36  * convert the result to a timespec before we can return.
37  **/
i40e_ptp_read(struct i40e_pf * pf,struct timespec64 * ts,struct ptp_system_timestamp * sts)38 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
39 			  struct ptp_system_timestamp *sts)
40 {
41 	struct i40e_hw *hw = &pf->hw;
42 	u32 hi, lo;
43 	u64 ns;
44 
45 	/* The timer latches on the lowest register read. */
46 	ptp_read_system_prets(sts);
47 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
48 	ptp_read_system_postts(sts);
49 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
50 
51 	ns = (((u64)hi) << 32) | lo;
52 
53 	*ts = ns_to_timespec64(ns);
54 }
55 
56 /**
57  * i40e_ptp_write - Write the PHC time to the device
58  * @pf: Board private structure
59  * @ts: timespec structure that holds the new time value
60  *
61  * This function writes the PRTTSYN_TIME registers with the user value. Since
62  * we receive a timespec from the stack, we must convert that timespec into
63  * nanoseconds before programming the registers.
64  **/
i40e_ptp_write(struct i40e_pf * pf,const struct timespec64 * ts)65 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
66 {
67 	struct i40e_hw *hw = &pf->hw;
68 	u64 ns = timespec64_to_ns(ts);
69 
70 	/* The timer will not update until the high register is written, so
71 	 * write the low register first.
72 	 */
73 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
74 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
75 }
76 
77 /**
78  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
79  * @hwtstamps: Timestamp structure to update
80  * @timestamp: Timestamp from the hardware
81  *
82  * We need to convert the NIC clock value into a hwtstamp which can be used by
83  * the upper level timestamping functions. Since the timestamp is simply a 64-
84  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
85  **/
i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps * hwtstamps,u64 timestamp)86 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
87 					 u64 timestamp)
88 {
89 	memset(hwtstamps, 0, sizeof(*hwtstamps));
90 
91 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
92 }
93 
94 /**
95  * i40e_ptp_adjfreq - Adjust the PHC frequency
96  * @ptp: The PTP clock structure
97  * @ppb: Parts per billion adjustment from the base
98  *
99  * Adjust the frequency of the PHC by the indicated parts per billion from the
100  * base frequency.
101  **/
i40e_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)102 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
103 {
104 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
105 	struct i40e_hw *hw = &pf->hw;
106 	u64 adj, freq, diff;
107 	int neg_adj = 0;
108 
109 	if (ppb < 0) {
110 		neg_adj = 1;
111 		ppb = -ppb;
112 	}
113 
114 	freq = I40E_PTP_40GB_INCVAL;
115 	freq *= ppb;
116 	diff = div_u64(freq, 1000000000ULL);
117 
118 	if (neg_adj)
119 		adj = I40E_PTP_40GB_INCVAL - diff;
120 	else
121 		adj = I40E_PTP_40GB_INCVAL + diff;
122 
123 	/* At some link speeds, the base incval is so large that directly
124 	 * multiplying by ppb would result in arithmetic overflow even when
125 	 * using a u64. Avoid this by instead calculating the new incval
126 	 * always in terms of the 40GbE clock rate and then multiplying by the
127 	 * link speed factor afterwards. This does result in slightly lower
128 	 * precision at lower link speeds, but it is fairly minor.
129 	 */
130 	smp_mb(); /* Force any pending update before accessing. */
131 	adj *= READ_ONCE(pf->ptp_adj_mult);
132 
133 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
134 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
135 
136 	return 0;
137 }
138 
139 /**
140  * i40e_ptp_adjtime - Adjust the PHC time
141  * @ptp: The PTP clock structure
142  * @delta: Offset in nanoseconds to adjust the PHC time by
143  *
144  * Adjust the current clock time by a delta specified in nanoseconds.
145  **/
i40e_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)146 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
147 {
148 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
149 	struct timespec64 now, then;
150 
151 	then = ns_to_timespec64(delta);
152 	mutex_lock(&pf->tmreg_lock);
153 
154 	i40e_ptp_read(pf, &now, NULL);
155 	now = timespec64_add(now, then);
156 	i40e_ptp_write(pf, (const struct timespec64 *)&now);
157 
158 	mutex_unlock(&pf->tmreg_lock);
159 
160 	return 0;
161 }
162 
163 /**
164  * i40e_ptp_gettimex - Get the time of the PHC
165  * @ptp: The PTP clock structure
166  * @ts: timespec structure to hold the current time value
167  * @sts: structure to hold the system time before and after reading the PHC
168  *
169  * Read the device clock and return the correct value on ns, after converting it
170  * into a timespec struct.
171  **/
i40e_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)172 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
173 			     struct ptp_system_timestamp *sts)
174 {
175 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
176 
177 	mutex_lock(&pf->tmreg_lock);
178 	i40e_ptp_read(pf, ts, sts);
179 	mutex_unlock(&pf->tmreg_lock);
180 
181 	return 0;
182 }
183 
184 /**
185  * i40e_ptp_settime - Set the time of the PHC
186  * @ptp: The PTP clock structure
187  * @ts: timespec structure that holds the new time value
188  *
189  * Set the device clock to the user input value. The conversion from timespec
190  * to ns happens in the write function.
191  **/
i40e_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)192 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
193 			    const struct timespec64 *ts)
194 {
195 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
196 
197 	mutex_lock(&pf->tmreg_lock);
198 	i40e_ptp_write(pf, ts);
199 	mutex_unlock(&pf->tmreg_lock);
200 
201 	return 0;
202 }
203 
204 /**
205  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
206  * @ptp: The PTP clock structure
207  * @rq: The requested feature to change
208  * @on: Enable/disable flag
209  *
210  * The XL710 does not support any of the ancillary features of the PHC
211  * subsystem, so this function may just return.
212  **/
i40e_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)213 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
214 				   struct ptp_clock_request *rq, int on)
215 {
216 	return -EOPNOTSUPP;
217 }
218 
219 /**
220  * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
221  * @pf: the PF data structure
222  *
223  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
224  * for noticed latch events. This allows the driver to keep track of the first
225  * time a latch event was noticed which will be used to help clear out Rx
226  * timestamps for packets that got dropped or lost.
227  *
228  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
229  * expected to be called only while under the ptp_rx_lock.
230  **/
i40e_ptp_get_rx_events(struct i40e_pf * pf)231 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
232 {
233 	struct i40e_hw *hw = &pf->hw;
234 	u32 prttsyn_stat, new_latch_events;
235 	int  i;
236 
237 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
238 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
239 
240 	/* Update the jiffies time for any newly latched timestamp. This
241 	 * ensures that we store the time that we first discovered a timestamp
242 	 * was latched by the hardware. The service task will later determine
243 	 * if we should free the latch and drop that timestamp should too much
244 	 * time pass. This flow ensures that we only update jiffies for new
245 	 * events latched since the last time we checked, and not all events
246 	 * currently latched, so that the service task accounting remains
247 	 * accurate.
248 	 */
249 	for (i = 0; i < 4; i++) {
250 		if (new_latch_events & BIT(i))
251 			pf->latch_events[i] = jiffies;
252 	}
253 
254 	/* Finally, we store the current status of the Rx timestamp latches */
255 	pf->latch_event_flags = prttsyn_stat;
256 
257 	return prttsyn_stat;
258 }
259 
260 /**
261  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
262  * @pf: The PF private data structure
263  *
264  * This watchdog task is scheduled to detect error case where hardware has
265  * dropped an Rx packet that was timestamped when the ring is full. The
266  * particular error is rare but leaves the device in a state unable to timestamp
267  * any future packets.
268  **/
i40e_ptp_rx_hang(struct i40e_pf * pf)269 void i40e_ptp_rx_hang(struct i40e_pf *pf)
270 {
271 	struct i40e_hw *hw = &pf->hw;
272 	unsigned int i, cleared = 0;
273 
274 	/* Since we cannot turn off the Rx timestamp logic if the device is
275 	 * configured for Tx timestamping, we check if Rx timestamping is
276 	 * configured. We don't want to spuriously warn about Rx timestamp
277 	 * hangs if we don't care about the timestamps.
278 	 */
279 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
280 		return;
281 
282 	spin_lock_bh(&pf->ptp_rx_lock);
283 
284 	/* Update current latch times for Rx events */
285 	i40e_ptp_get_rx_events(pf);
286 
287 	/* Check all the currently latched Rx events and see whether they have
288 	 * been latched for over a second. It is assumed that any timestamp
289 	 * should have been cleared within this time, or else it was captured
290 	 * for a dropped frame that the driver never received. Thus, we will
291 	 * clear any timestamp that has been latched for over 1 second.
292 	 */
293 	for (i = 0; i < 4; i++) {
294 		if ((pf->latch_event_flags & BIT(i)) &&
295 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
296 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
297 			pf->latch_event_flags &= ~BIT(i);
298 			cleared++;
299 		}
300 	}
301 
302 	spin_unlock_bh(&pf->ptp_rx_lock);
303 
304 	/* Log a warning if more than 2 timestamps got dropped in the same
305 	 * check. We don't want to warn about all drops because it can occur
306 	 * in normal scenarios such as PTP frames on multicast addresses we
307 	 * aren't listening to. However, administrator should know if this is
308 	 * the reason packets aren't receiving timestamps.
309 	 */
310 	if (cleared > 2)
311 		dev_dbg(&pf->pdev->dev,
312 			"Dropped %d missed RXTIME timestamp events\n",
313 			cleared);
314 
315 	/* Finally, update the rx_hwtstamp_cleared counter */
316 	pf->rx_hwtstamp_cleared += cleared;
317 }
318 
319 /**
320  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
321  * @pf: The PF private data structure
322  *
323  * This watchdog task is run periodically to make sure that we clear the Tx
324  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
325  * time. It is unexpected in the normal case but if it occurs it results in
326  * permanently preventing timestamps of future packets.
327  **/
i40e_ptp_tx_hang(struct i40e_pf * pf)328 void i40e_ptp_tx_hang(struct i40e_pf *pf)
329 {
330 	struct sk_buff *skb;
331 
332 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
333 		return;
334 
335 	/* Nothing to do if we're not already waiting for a timestamp */
336 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
337 		return;
338 
339 	/* We already have a handler routine which is run when we are notified
340 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
341 	 * within a second it is reasonable to assume that we never will.
342 	 */
343 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
344 		skb = pf->ptp_tx_skb;
345 		pf->ptp_tx_skb = NULL;
346 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
347 
348 		/* Free the skb after we clear the bitlock */
349 		dev_kfree_skb_any(skb);
350 		pf->tx_hwtstamp_timeouts++;
351 	}
352 }
353 
354 /**
355  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
356  * @pf: Board private structure
357  *
358  * Read the value of the Tx timestamp from the registers, convert it into a
359  * value consumable by the stack, and store that result into the shhwtstamps
360  * struct before returning it up the stack.
361  **/
i40e_ptp_tx_hwtstamp(struct i40e_pf * pf)362 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
363 {
364 	struct skb_shared_hwtstamps shhwtstamps;
365 	struct sk_buff *skb = pf->ptp_tx_skb;
366 	struct i40e_hw *hw = &pf->hw;
367 	u32 hi, lo;
368 	u64 ns;
369 
370 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
371 		return;
372 
373 	/* don't attempt to timestamp if we don't have an skb */
374 	if (!pf->ptp_tx_skb)
375 		return;
376 
377 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
378 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
379 
380 	ns = (((u64)hi) << 32) | lo;
381 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
382 
383 	/* Clear the bit lock as soon as possible after reading the register,
384 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
385 	 * applications might wake up and attempt to request another transmit
386 	 * timestamp prior to the bit lock being cleared.
387 	 */
388 	pf->ptp_tx_skb = NULL;
389 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
390 
391 	/* Notify the stack and free the skb after we've unlocked */
392 	skb_tstamp_tx(skb, &shhwtstamps);
393 	dev_kfree_skb_any(skb);
394 }
395 
396 /**
397  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
398  * @pf: Board private structure
399  * @skb: Particular skb to send timestamp with
400  * @index: Index into the receive timestamp registers for the timestamp
401  *
402  * The XL710 receives a notification in the receive descriptor with an offset
403  * into the set of RXTIME registers where the timestamp is for that skb. This
404  * function goes and fetches the receive timestamp from that offset, if a valid
405  * one exists. The RXTIME registers are in ns, so we must convert the result
406  * first.
407  **/
i40e_ptp_rx_hwtstamp(struct i40e_pf * pf,struct sk_buff * skb,u8 index)408 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
409 {
410 	u32 prttsyn_stat, hi, lo;
411 	struct i40e_hw *hw;
412 	u64 ns;
413 
414 	/* Since we cannot turn off the Rx timestamp logic if the device is
415 	 * doing Tx timestamping, check if Rx timestamping is configured.
416 	 */
417 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
418 		return;
419 
420 	hw = &pf->hw;
421 
422 	spin_lock_bh(&pf->ptp_rx_lock);
423 
424 	/* Get current Rx events and update latch times */
425 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
426 
427 	/* TODO: Should we warn about missing Rx timestamp event? */
428 	if (!(prttsyn_stat & BIT(index))) {
429 		spin_unlock_bh(&pf->ptp_rx_lock);
430 		return;
431 	}
432 
433 	/* Clear the latched event since we're about to read its register */
434 	pf->latch_event_flags &= ~BIT(index);
435 
436 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
437 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
438 
439 	spin_unlock_bh(&pf->ptp_rx_lock);
440 
441 	ns = (((u64)hi) << 32) | lo;
442 
443 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
444 }
445 
446 /**
447  * i40e_ptp_set_increment - Utility function to update clock increment rate
448  * @pf: Board private structure
449  *
450  * During a link change, the DMA frequency that drives the 1588 logic will
451  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
452  * we must update the increment value per clock tick.
453  **/
i40e_ptp_set_increment(struct i40e_pf * pf)454 void i40e_ptp_set_increment(struct i40e_pf *pf)
455 {
456 	struct i40e_link_status *hw_link_info;
457 	struct i40e_hw *hw = &pf->hw;
458 	u64 incval;
459 	u32 mult;
460 
461 	hw_link_info = &hw->phy.link_info;
462 
463 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
464 
465 	switch (hw_link_info->link_speed) {
466 	case I40E_LINK_SPEED_10GB:
467 		mult = I40E_PTP_10GB_INCVAL_MULT;
468 		break;
469 	case I40E_LINK_SPEED_5GB:
470 		mult = I40E_PTP_5GB_INCVAL_MULT;
471 		break;
472 	case I40E_LINK_SPEED_1GB:
473 		mult = I40E_PTP_1GB_INCVAL_MULT;
474 		break;
475 	case I40E_LINK_SPEED_100MB:
476 	{
477 		static int warn_once;
478 
479 		if (!warn_once) {
480 			dev_warn(&pf->pdev->dev,
481 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
482 			warn_once++;
483 		}
484 		mult = 0;
485 		break;
486 	}
487 	case I40E_LINK_SPEED_40GB:
488 	default:
489 		mult = 1;
490 		break;
491 	}
492 
493 	/* The increment value is calculated by taking the base 40GbE incvalue
494 	 * and multiplying it by a factor based on the link speed.
495 	 */
496 	incval = I40E_PTP_40GB_INCVAL * mult;
497 
498 	/* Write the new increment value into the increment register. The
499 	 * hardware will not update the clock until both registers have been
500 	 * written.
501 	 */
502 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
503 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
504 
505 	/* Update the base adjustement value. */
506 	WRITE_ONCE(pf->ptp_adj_mult, mult);
507 	smp_mb(); /* Force the above update. */
508 }
509 
510 /**
511  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
512  * @pf: Board private structure
513  * @ifr: ioctl data
514  *
515  * Obtain the current hardware timestamping settigs as requested. To do this,
516  * keep a shadow copy of the timestamp settings rather than attempting to
517  * deconstruct it from the registers.
518  **/
i40e_ptp_get_ts_config(struct i40e_pf * pf,struct ifreq * ifr)519 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
520 {
521 	struct hwtstamp_config *config = &pf->tstamp_config;
522 
523 	if (!(pf->flags & I40E_FLAG_PTP))
524 		return -EOPNOTSUPP;
525 
526 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
527 		-EFAULT : 0;
528 }
529 
530 /**
531  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
532  * @pf: Board private structure
533  * @config: hwtstamp settings requested or saved
534  *
535  * Control hardware registers to enter the specific mode requested by the
536  * user. Also used during reset path to ensure that timestamp settings are
537  * maintained.
538  *
539  * Note: modifies config in place, and may update the requested mode to be
540  * more broad if the specific filter is not directly supported.
541  **/
i40e_ptp_set_timestamp_mode(struct i40e_pf * pf,struct hwtstamp_config * config)542 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
543 				       struct hwtstamp_config *config)
544 {
545 	struct i40e_hw *hw = &pf->hw;
546 	u32 tsyntype, regval;
547 
548 	/* Reserved for future extensions. */
549 	if (config->flags)
550 		return -EINVAL;
551 
552 	switch (config->tx_type) {
553 	case HWTSTAMP_TX_OFF:
554 		pf->ptp_tx = false;
555 		break;
556 	case HWTSTAMP_TX_ON:
557 		pf->ptp_tx = true;
558 		break;
559 	default:
560 		return -ERANGE;
561 	}
562 
563 	switch (config->rx_filter) {
564 	case HWTSTAMP_FILTER_NONE:
565 		pf->ptp_rx = false;
566 		/* We set the type to V1, but do not enable UDP packet
567 		 * recognition. In this way, we should be as close to
568 		 * disabling PTP Rx timestamps as possible since V1 packets
569 		 * are always UDP, since L2 packets are a V2 feature.
570 		 */
571 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
572 		break;
573 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
575 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
576 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
577 			return -ERANGE;
578 		pf->ptp_rx = true;
579 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
580 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
581 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
582 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
583 		break;
584 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
585 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
586 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
587 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
588 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
589 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
590 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
591 			return -ERANGE;
592 		fallthrough;
593 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
594 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
595 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
596 		pf->ptp_rx = true;
597 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
598 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
599 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
600 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
601 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
602 		} else {
603 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
604 		}
605 		break;
606 	case HWTSTAMP_FILTER_NTP_ALL:
607 	case HWTSTAMP_FILTER_ALL:
608 	default:
609 		return -ERANGE;
610 	}
611 
612 	/* Clear out all 1588-related registers to clear and unlatch them. */
613 	spin_lock_bh(&pf->ptp_rx_lock);
614 	rd32(hw, I40E_PRTTSYN_STAT_0);
615 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
616 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
617 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
618 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
619 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
620 	pf->latch_event_flags = 0;
621 	spin_unlock_bh(&pf->ptp_rx_lock);
622 
623 	/* Enable/disable the Tx timestamp interrupt based on user input. */
624 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
625 	if (pf->ptp_tx)
626 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
627 	else
628 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
629 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
630 
631 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
632 	if (pf->ptp_tx)
633 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
634 	else
635 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
636 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
637 
638 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
639 	 * timestamps by setting to V1 only mode and clear the UDP
640 	 * recognition. This ought to disable all PTP Rx timestamps as V1
641 	 * packets are always over UDP. Note that software is configured to
642 	 * ignore Rx timestamps via the pf->ptp_rx flag.
643 	 */
644 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
645 	/* clear everything but the enable bit */
646 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
647 	/* now enable bits for desired Rx timestamps */
648 	regval |= tsyntype;
649 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
650 
651 	return 0;
652 }
653 
654 /**
655  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
656  * @pf: Board private structure
657  * @ifr: ioctl data
658  *
659  * Respond to the user filter requests and make the appropriate hardware
660  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
661  * logic, so keep track in software of whether to indicate these timestamps
662  * or not.
663  *
664  * It is permissible to "upgrade" the user request to a broader filter, as long
665  * as the user receives the timestamps they care about and the user is notified
666  * the filter has been broadened.
667  **/
i40e_ptp_set_ts_config(struct i40e_pf * pf,struct ifreq * ifr)668 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
669 {
670 	struct hwtstamp_config config;
671 	int err;
672 
673 	if (!(pf->flags & I40E_FLAG_PTP))
674 		return -EOPNOTSUPP;
675 
676 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
677 		return -EFAULT;
678 
679 	err = i40e_ptp_set_timestamp_mode(pf, &config);
680 	if (err)
681 		return err;
682 
683 	/* save these settings for future reference */
684 	pf->tstamp_config = config;
685 
686 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
687 		-EFAULT : 0;
688 }
689 
690 /**
691  * i40e_ptp_create_clock - Create PTP clock device for userspace
692  * @pf: Board private structure
693  *
694  * This function creates a new PTP clock device. It only creates one if we
695  * don't already have one, so it is safe to call. Will return error if it
696  * can't create one, but success if we already have a device. Should be used
697  * by i40e_ptp_init to create clock initially, and prevent global resets from
698  * creating new clock devices.
699  **/
i40e_ptp_create_clock(struct i40e_pf * pf)700 static long i40e_ptp_create_clock(struct i40e_pf *pf)
701 {
702 	/* no need to create a clock device if we already have one */
703 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
704 		return 0;
705 
706 	strlcpy(pf->ptp_caps.name, i40e_driver_name,
707 		sizeof(pf->ptp_caps.name) - 1);
708 	pf->ptp_caps.owner = THIS_MODULE;
709 	pf->ptp_caps.max_adj = 999999999;
710 	pf->ptp_caps.n_ext_ts = 0;
711 	pf->ptp_caps.pps = 0;
712 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
713 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
714 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
715 	pf->ptp_caps.settime64 = i40e_ptp_settime;
716 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
717 
718 	/* Attempt to register the clock before enabling the hardware. */
719 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
720 	if (IS_ERR(pf->ptp_clock))
721 		return PTR_ERR(pf->ptp_clock);
722 
723 	/* clear the hwtstamp settings here during clock create, instead of
724 	 * during regular init, so that we can maintain settings across a
725 	 * reset or suspend.
726 	 */
727 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
728 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
729 
730 	/* Set the previous "reset" time to the current Kernel clock time */
731 	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
732 	pf->ptp_reset_start = ktime_get();
733 
734 	return 0;
735 }
736 
737 /**
738  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
739  * @pf: Board private structure
740  *
741  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
742  * be called at the end of preparing to reset, just before hardware reset
743  * occurs, in order to preserve the PTP time as close as possible across
744  * resets.
745  */
i40e_ptp_save_hw_time(struct i40e_pf * pf)746 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
747 {
748 	/* don't try to access the PTP clock if it's not enabled */
749 	if (!(pf->flags & I40E_FLAG_PTP))
750 		return;
751 
752 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
753 	/* Get a monotonic starting time for this reset */
754 	pf->ptp_reset_start = ktime_get();
755 }
756 
757 /**
758  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
759  * @pf: Board private structure
760  *
761  * Restore the PTP hardware clock registers. We previously cached the PTP
762  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
763  * update this value based on the time delta since the time was saved, using
764  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
765  *
766  * This ensures that the hardware clock is restored to nearly what it should
767  * have been if a reset had not occurred.
768  */
i40e_ptp_restore_hw_time(struct i40e_pf * pf)769 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
770 {
771 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
772 
773 	/* Update the previous HW time with the ktime delta */
774 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
775 
776 	/* Restore the hardware clock registers */
777 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
778 }
779 
780 /**
781  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
782  * @pf: Board private structure
783  *
784  * This function sets device up for 1588 support. The first time it is run, it
785  * will create a PHC clock device. It does not create a clock device if one
786  * already exists. It also reconfigures the device after a reset.
787  *
788  * The first time a clock is created, i40e_ptp_create_clock will set
789  * pf->ptp_prev_hw_time to the current system time. During resets, it is
790  * expected that this timespec will be set to the last known PTP clock time,
791  * in order to preserve the clock time as close as possible across a reset.
792  **/
i40e_ptp_init(struct i40e_pf * pf)793 void i40e_ptp_init(struct i40e_pf *pf)
794 {
795 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
796 	struct i40e_hw *hw = &pf->hw;
797 	u32 pf_id;
798 	long err;
799 
800 	/* Only one PF is assigned to control 1588 logic per port. Do not
801 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
802 	 */
803 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
804 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
805 	if (hw->pf_id != pf_id) {
806 		pf->flags &= ~I40E_FLAG_PTP;
807 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
808 			 __func__,
809 			 netdev->name);
810 		return;
811 	}
812 
813 	mutex_init(&pf->tmreg_lock);
814 	spin_lock_init(&pf->ptp_rx_lock);
815 
816 	/* ensure we have a clock device */
817 	err = i40e_ptp_create_clock(pf);
818 	if (err) {
819 		pf->ptp_clock = NULL;
820 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
821 			__func__);
822 	} else if (pf->ptp_clock) {
823 		u32 regval;
824 
825 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
826 			dev_info(&pf->pdev->dev, "PHC enabled\n");
827 		pf->flags |= I40E_FLAG_PTP;
828 
829 		/* Ensure the clocks are running. */
830 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
831 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
832 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
833 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
834 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
835 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
836 
837 		/* Set the increment value per clock tick. */
838 		i40e_ptp_set_increment(pf);
839 
840 		/* reset timestamping mode */
841 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
842 
843 		/* Restore the clock time based on last known value */
844 		i40e_ptp_restore_hw_time(pf);
845 	}
846 }
847 
848 /**
849  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
850  * @pf: Board private structure
851  *
852  * This function handles the cleanup work required from the initialization by
853  * clearing out the important information and unregistering the PHC.
854  **/
i40e_ptp_stop(struct i40e_pf * pf)855 void i40e_ptp_stop(struct i40e_pf *pf)
856 {
857 	pf->flags &= ~I40E_FLAG_PTP;
858 	pf->ptp_tx = false;
859 	pf->ptp_rx = false;
860 
861 	if (pf->ptp_tx_skb) {
862 		struct sk_buff *skb = pf->ptp_tx_skb;
863 
864 		pf->ptp_tx_skb = NULL;
865 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
866 		dev_kfree_skb_any(skb);
867 	}
868 
869 	if (pf->ptp_clock) {
870 		ptp_clock_unregister(pf->ptp_clock);
871 		pf->ptp_clock = NULL;
872 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
873 			 pf->vsi[pf->lan_vsi]->netdev->name);
874 	}
875 }
876