1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23 {
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
91 {
92 struct i40e_tx_buffer *tx_buf, *first;
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 if (!vsi)
104 return -ENOENT;
105
106 tx_ring = vsi->tx_rings[0];
107 dev = tx_ring->dev;
108
109 /* we need two descriptors to add/del a filter and we can wait */
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
113 msleep_interruptible(1);
114 }
115
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
122 i = tx_ring->next_to_use;
123 first = &tx_ring->tx_bi[i];
124 i40e_fdir(tx_ring, fdir_data, add);
125
126 /* Now program a dummy descriptor */
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
129 tx_buf = &tx_ring->tx_bi[i];
130
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135 /* record length, and DMA address */
136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
139 tx_desc->buffer_addr = cpu_to_le64(dma);
140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
145 tx_desc->cmd_type_offset_bsz =
146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148 /* Force memory writes to complete before letting h/w
149 * know there are new descriptors to fetch.
150 */
151 wmb();
152
153 /* Mark the data descriptor to be watched */
154 first->next_to_watch = tx_desc;
155
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159 dma_fail:
160 return -1;
161 }
162
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
i40e_add_del_fdir_udpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
175 bool add)
176 {
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
180 u8 *raw_packet;
181 int ret;
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
195 ip->daddr = fd_data->dst_ip;
196 udp->dest = fd_data->dst_port;
197 ip->saddr = fd_data->src_ip;
198 udp->source = fd_data->src_port;
199
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
226 }
227
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
233 return 0;
234 }
235
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
i40e_add_del_fdir_tcpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
247 bool add)
248 {
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
252 u8 *raw_packet;
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
269 ip->daddr = fd_data->dst_ip;
270 tcp->dest = fd_data->dst_port;
271 ip->saddr = fd_data->src_ip;
272 tcp->source = fd_data->src_port;
273
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 if (ret) {
285 dev_info(&pf->pdev->dev,
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
299 }
300
301 if (add) {
302 pf->fd_tcp4_filter_cnt++;
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 } else {
308 pf->fd_tcp4_filter_cnt--;
309 }
310
311 return 0;
312 }
313
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
i40e_add_del_fdir_sctpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327 {
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386 }
387
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
i40e_add_del_fdir_ipv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
400 bool add)
401 {
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
404 u8 *raw_packet;
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
421 ip->protocol = 0;
422
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 if (ret) {
434 dev_info(&pf->pdev->dev,
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
451 }
452 }
453
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
459 return 0;
460 }
461
462 /**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471 {
472 struct i40e_pf *pf = vsi->back;
473 int ret;
474
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 break;
479 case UDP_V4_FLOW:
480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 break;
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 break;
490 case IPPROTO_UDP:
491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 break;
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
496 case IPPROTO_IP:
497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 break;
499 default:
500 /* We cannot support masking based on protocol */
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
504 }
505 break;
506 default:
507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 input->flow_type);
509 return -EINVAL;
510 }
511
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
518 return ret;
519 }
520
521 /**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @qword0_raw: qword0
525 * @qword1: qword1 after le_to_cpu
526 * @prog_id: the id originally used for programming
527 *
528 * This is used to verify if the FD programming or invalidation
529 * requested by SW to the HW is successful or not and take actions accordingly.
530 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 u64 qword1, u8 prog_id)
533 {
534 struct i40e_pf *pf = rx_ring->vsi->back;
535 struct pci_dev *pdev = pf->pdev;
536 struct i40e_16b_rx_wb_qw0 *qw0;
537 u32 fcnt_prog, fcnt_avail;
538 u32 error;
539
540 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543
544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 if (qw0->hi_dword.fd_id != 0 ||
547 (I40E_DEBUG_FD & pf->hw.debug_mask))
548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 pf->fd_inv);
550
551 /* Check if the programming error is for ATR.
552 * If so, auto disable ATR and set a state for
553 * flush in progress. Next time we come here if flush is in
554 * progress do nothing, once flush is complete the state will
555 * be cleared.
556 */
557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 return;
559
560 pf->fd_add_err++;
561 /* store the current atr filter count */
562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563
564 if (qw0->hi_dword.fd_id == 0 &&
565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 /* These set_bit() calls aren't atomic with the
567 * test_bit() here, but worse case we potentially
568 * disable ATR and queue a flush right after SB
569 * support is re-enabled. That shouldn't cause an
570 * issue in practice
571 */
572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 }
575
576 /* filter programming failed most likely due to table full */
577 fcnt_prog = i40e_get_global_fd_count(pf);
578 fcnt_avail = pf->fdir_pf_filter_count;
579 /* If ATR is running fcnt_prog can quickly change,
580 * if we are very close to full, it makes sense to disable
581 * FD ATR/SB and then re-enable it when there is room.
582 */
583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 pf->state))
587 if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 }
590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 qw0->hi_dword.fd_id);
594 }
595 }
596
597 /**
598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 * @ring: the ring that owns the buffer
600 * @tx_buffer: the buffer to free
601 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 struct i40e_tx_buffer *tx_buffer)
604 {
605 if (tx_buffer->skb) {
606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 kfree(tx_buffer->raw_buf);
608 else if (ring_is_xdp(ring))
609 xdp_return_frame(tx_buffer->xdpf);
610 else
611 dev_kfree_skb_any(tx_buffer->skb);
612 if (dma_unmap_len(tx_buffer, len))
613 dma_unmap_single(ring->dev,
614 dma_unmap_addr(tx_buffer, dma),
615 dma_unmap_len(tx_buffer, len),
616 DMA_TO_DEVICE);
617 } else if (dma_unmap_len(tx_buffer, len)) {
618 dma_unmap_page(ring->dev,
619 dma_unmap_addr(tx_buffer, dma),
620 dma_unmap_len(tx_buffer, len),
621 DMA_TO_DEVICE);
622 }
623
624 tx_buffer->next_to_watch = NULL;
625 tx_buffer->skb = NULL;
626 dma_unmap_len_set(tx_buffer, len, 0);
627 /* tx_buffer must be completely set up in the transmit path */
628 }
629
630 /**
631 * i40e_clean_tx_ring - Free any empty Tx buffers
632 * @tx_ring: ring to be cleaned
633 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 unsigned long bi_size;
637 u16 i;
638
639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 i40e_xsk_clean_tx_ring(tx_ring);
641 } else {
642 /* ring already cleared, nothing to do */
643 if (!tx_ring->tx_bi)
644 return;
645
646 /* Free all the Tx ring sk_buffs */
647 for (i = 0; i < tx_ring->count; i++)
648 i40e_unmap_and_free_tx_resource(tx_ring,
649 &tx_ring->tx_bi[i]);
650 }
651
652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 memset(tx_ring->tx_bi, 0, bi_size);
654
655 /* Zero out the descriptor ring */
656 memset(tx_ring->desc, 0, tx_ring->size);
657
658 tx_ring->next_to_use = 0;
659 tx_ring->next_to_clean = 0;
660
661 if (!tx_ring->netdev)
662 return;
663
664 /* cleanup Tx queue statistics */
665 netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667
668 /**
669 * i40e_free_tx_resources - Free Tx resources per queue
670 * @tx_ring: Tx descriptor ring for a specific queue
671 *
672 * Free all transmit software resources
673 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 i40e_clean_tx_ring(tx_ring);
677 kfree(tx_ring->tx_bi);
678 tx_ring->tx_bi = NULL;
679
680 if (tx_ring->desc) {
681 dma_free_coherent(tx_ring->dev, tx_ring->size,
682 tx_ring->desc, tx_ring->dma);
683 tx_ring->desc = NULL;
684 }
685 }
686
687 /**
688 * i40e_get_tx_pending - how many tx descriptors not processed
689 * @ring: the ring of descriptors
690 * @in_sw: use SW variables
691 *
692 * Since there is no access to the ring head register
693 * in XL710, we need to use our local copies
694 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 u32 head, tail;
698
699 if (!in_sw) {
700 head = i40e_get_head(ring);
701 tail = readl(ring->tail);
702 } else {
703 head = ring->next_to_clean;
704 tail = ring->next_to_use;
705 }
706
707 if (head != tail)
708 return (head < tail) ?
709 tail - head : (tail + ring->count - head);
710
711 return 0;
712 }
713
714 /**
715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
716 * @vsi: pointer to vsi struct with tx queues
717 *
718 * VSI has netdev and netdev has TX queues. This function is to check each of
719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 struct i40e_ring *tx_ring = NULL;
724 struct net_device *netdev;
725 unsigned int i;
726 int packets;
727
728 if (!vsi)
729 return;
730
731 if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 return;
733
734 netdev = vsi->netdev;
735 if (!netdev)
736 return;
737
738 if (!netif_carrier_ok(netdev))
739 return;
740
741 for (i = 0; i < vsi->num_queue_pairs; i++) {
742 tx_ring = vsi->tx_rings[i];
743 if (tx_ring && tx_ring->desc) {
744 /* If packet counter has not changed the queue is
745 * likely stalled, so force an interrupt for this
746 * queue.
747 *
748 * prev_pkt_ctr would be negative if there was no
749 * pending work.
750 */
751 packets = tx_ring->stats.packets & INT_MAX;
752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 i40e_force_wb(vsi, tx_ring->q_vector);
754 continue;
755 }
756
757 /* Memory barrier between read of packet count and call
758 * to i40e_get_tx_pending()
759 */
760 smp_rmb();
761 tx_ring->tx_stats.prev_pkt_ctr =
762 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 }
764 }
765 }
766
767 /**
768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
769 * @vsi: the VSI we care about
770 * @tx_ring: Tx ring to clean
771 * @napi_budget: Used to determine if we are in netpoll
772 *
773 * Returns true if there's any budget left (e.g. the clean is finished)
774 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget)775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 struct i40e_ring *tx_ring, int napi_budget)
777 {
778 int i = tx_ring->next_to_clean;
779 struct i40e_tx_buffer *tx_buf;
780 struct i40e_tx_desc *tx_head;
781 struct i40e_tx_desc *tx_desc;
782 unsigned int total_bytes = 0, total_packets = 0;
783 unsigned int budget = vsi->work_limit;
784
785 tx_buf = &tx_ring->tx_bi[i];
786 tx_desc = I40E_TX_DESC(tx_ring, i);
787 i -= tx_ring->count;
788
789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790
791 do {
792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793
794 /* if next_to_watch is not set then there is no work pending */
795 if (!eop_desc)
796 break;
797
798 /* prevent any other reads prior to eop_desc */
799 smp_rmb();
800
801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 /* we have caught up to head, no work left to do */
803 if (tx_head == tx_desc)
804 break;
805
806 /* clear next_to_watch to prevent false hangs */
807 tx_buf->next_to_watch = NULL;
808
809 /* update the statistics for this packet */
810 total_bytes += tx_buf->bytecount;
811 total_packets += tx_buf->gso_segs;
812
813 /* free the skb/XDP data */
814 if (ring_is_xdp(tx_ring))
815 xdp_return_frame(tx_buf->xdpf);
816 else
817 napi_consume_skb(tx_buf->skb, napi_budget);
818
819 /* unmap skb header data */
820 dma_unmap_single(tx_ring->dev,
821 dma_unmap_addr(tx_buf, dma),
822 dma_unmap_len(tx_buf, len),
823 DMA_TO_DEVICE);
824
825 /* clear tx_buffer data */
826 tx_buf->skb = NULL;
827 dma_unmap_len_set(tx_buf, len, 0);
828
829 /* unmap remaining buffers */
830 while (tx_desc != eop_desc) {
831 i40e_trace(clean_tx_irq_unmap,
832 tx_ring, tx_desc, tx_buf);
833
834 tx_buf++;
835 tx_desc++;
836 i++;
837 if (unlikely(!i)) {
838 i -= tx_ring->count;
839 tx_buf = tx_ring->tx_bi;
840 tx_desc = I40E_TX_DESC(tx_ring, 0);
841 }
842
843 /* unmap any remaining paged data */
844 if (dma_unmap_len(tx_buf, len)) {
845 dma_unmap_page(tx_ring->dev,
846 dma_unmap_addr(tx_buf, dma),
847 dma_unmap_len(tx_buf, len),
848 DMA_TO_DEVICE);
849 dma_unmap_len_set(tx_buf, len, 0);
850 }
851 }
852
853 /* move us one more past the eop_desc for start of next pkt */
854 tx_buf++;
855 tx_desc++;
856 i++;
857 if (unlikely(!i)) {
858 i -= tx_ring->count;
859 tx_buf = tx_ring->tx_bi;
860 tx_desc = I40E_TX_DESC(tx_ring, 0);
861 }
862
863 prefetch(tx_desc);
864
865 /* update budget accounting */
866 budget--;
867 } while (likely(budget));
868
869 i += tx_ring->count;
870 tx_ring->next_to_clean = i;
871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 i40e_arm_wb(tx_ring, vsi, budget);
873
874 if (ring_is_xdp(tx_ring))
875 return !!budget;
876
877 /* notify netdev of completed buffers */
878 netdev_tx_completed_queue(txring_txq(tx_ring),
879 total_packets, total_bytes);
880
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 /* Make sure that anybody stopping the queue after this
885 * sees the new next_to_clean.
886 */
887 smp_mb();
888 if (__netif_subqueue_stopped(tx_ring->netdev,
889 tx_ring->queue_index) &&
890 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 netif_wake_subqueue(tx_ring->netdev,
892 tx_ring->queue_index);
893 ++tx_ring->tx_stats.restart_queue;
894 }
895 }
896
897 return !!budget;
898 }
899
900 /**
901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902 * @vsi: the VSI we care about
903 * @q_vector: the vector on which to enable writeback
904 *
905 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 struct i40e_q_vector *q_vector)
908 {
909 u16 flags = q_vector->tx.ring[0].flags;
910 u32 val;
911
912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 return;
914
915 if (q_vector->arm_wb_state)
916 return;
917
918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921
922 wr32(&vsi->back->hw,
923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 val);
925 } else {
926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928
929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 }
931 q_vector->arm_wb_state = true;
932 }
933
934 /**
935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
936 * @vsi: the VSI we care about
937 * @q_vector: the vector on which to force writeback
938 *
939 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 /* allow 00 to be written to the index */
948
949 wr32(&vsi->back->hw,
950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 } else {
952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 /* allow 00 to be written to the index */
957
958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 }
960 }
961
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 struct i40e_ring_container *rc)
964 {
965 return &q_vector->rx == rc;
966 }
967
i40e_itr_divisor(struct i40e_q_vector * q_vector)968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 unsigned int divisor;
971
972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 case I40E_LINK_SPEED_40GB:
974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 break;
976 case I40E_LINK_SPEED_25GB:
977 case I40E_LINK_SPEED_20GB:
978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 break;
980 default:
981 case I40E_LINK_SPEED_10GB:
982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 break;
984 case I40E_LINK_SPEED_1GB:
985 case I40E_LINK_SPEED_100MB:
986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 break;
988 }
989
990 return divisor;
991 }
992
993 /**
994 * i40e_update_itr - update the dynamic ITR value based on statistics
995 * @q_vector: structure containing interrupt and ring information
996 * @rc: structure containing ring performance data
997 *
998 * Stores a new ITR value based on packets and byte
999 * counts during the last interrupt. The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern. Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 struct i40e_ring_container *rc)
1008 {
1009 unsigned int avg_wire_size, packets, bytes, itr;
1010 unsigned long next_update = jiffies;
1011
1012 /* If we don't have any rings just leave ourselves set for maximum
1013 * possible latency so we take ourselves out of the equation.
1014 */
1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 return;
1017
1018 /* For Rx we want to push the delay up and default to low latency.
1019 * for Tx we want to pull the delay down and default to high latency.
1020 */
1021 itr = i40e_container_is_rx(q_vector, rc) ?
1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025 /* If we didn't update within up to 1 - 2 jiffies we can assume
1026 * that either packets are coming in so slow there hasn't been
1027 * any work, or that there is so much work that NAPI is dealing
1028 * with interrupt moderation and we don't need to do anything.
1029 */
1030 if (time_after(next_update, rc->next_update))
1031 goto clear_counts;
1032
1033 /* If itr_countdown is set it means we programmed an ITR within
1034 * the last 4 interrupt cycles. This has a side effect of us
1035 * potentially firing an early interrupt. In order to work around
1036 * this we need to throw out any data received for a few
1037 * interrupts following the update.
1038 */
1039 if (q_vector->itr_countdown) {
1040 itr = rc->target_itr;
1041 goto clear_counts;
1042 }
1043
1044 packets = rc->total_packets;
1045 bytes = rc->total_bytes;
1046
1047 if (i40e_container_is_rx(q_vector, rc)) {
1048 /* If Rx there are 1 to 4 packets and bytes are less than
1049 * 9000 assume insufficient data to use bulk rate limiting
1050 * approach unless Tx is already in bulk rate limiting. We
1051 * are likely latency driven.
1052 */
1053 if (packets && packets < 4 && bytes < 9000 &&
1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 goto adjust_by_size;
1057 }
1058 } else if (packets < 4) {
1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 * bulk mode and we are receiving 4 or fewer packets just
1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 * that the Rx can relax.
1063 */
1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 I40E_ITR_ADAPTIVE_MAX_USECS)
1067 goto clear_counts;
1068 } else if (packets > 32) {
1069 /* If we have processed over 32 packets in a single interrupt
1070 * for Tx assume we need to switch over to "bulk" mode.
1071 */
1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 }
1074
1075 /* We have no packets to actually measure against. This means
1076 * either one of the other queues on this vector is active or
1077 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 *
1079 * Between 4 and 56 we can assume that our current interrupt delay
1080 * is only slightly too low. As such we should increase it by a small
1081 * fixed amount.
1082 */
1083 if (packets < 56) {
1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 }
1089 goto clear_counts;
1090 }
1091
1092 if (packets <= 256) {
1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 itr &= I40E_ITR_MASK;
1095
1096 /* Between 56 and 112 is our "goldilocks" zone where we are
1097 * working out "just right". Just report that our current
1098 * ITR is good for us.
1099 */
1100 if (packets <= 112)
1101 goto clear_counts;
1102
1103 /* If packet count is 128 or greater we are likely looking
1104 * at a slight overrun of the delay we want. Try halving
1105 * our delay to see if that will cut the number of packets
1106 * in half per interrupt.
1107 */
1108 itr /= 2;
1109 itr &= I40E_ITR_MASK;
1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113 goto clear_counts;
1114 }
1115
1116 /* The paths below assume we are dealing with a bulk ITR since
1117 * number of packets is greater than 256. We are just going to have
1118 * to compute a value and try to bring the count under control,
1119 * though for smaller packet sizes there isn't much we can do as
1120 * NAPI polling will likely be kicking in sooner rather than later.
1121 */
1122 itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124 adjust_by_size:
1125 /* If packet counts are 256 or greater we can assume we have a gross
1126 * overestimation of what the rate should be. Instead of trying to fine
1127 * tune it just use the formula below to try and dial in an exact value
1128 * give the current packet size of the frame.
1129 */
1130 avg_wire_size = bytes / packets;
1131
1132 /* The following is a crude approximation of:
1133 * wmem_default / (size + overhead) = desired_pkts_per_int
1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 *
1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 * formula down to
1140 *
1141 * (170 * (size + 24)) / (size + 640) = ITR
1142 *
1143 * We first do some math on the packet size and then finally bitshift
1144 * by 8 after rounding up. We also have to account for PCIe link speed
1145 * difference as ITR scales based on this.
1146 */
1147 if (avg_wire_size <= 60) {
1148 /* Start at 250k ints/sec */
1149 avg_wire_size = 4096;
1150 } else if (avg_wire_size <= 380) {
1151 /* 250K ints/sec to 60K ints/sec */
1152 avg_wire_size *= 40;
1153 avg_wire_size += 1696;
1154 } else if (avg_wire_size <= 1084) {
1155 /* 60K ints/sec to 36K ints/sec */
1156 avg_wire_size *= 15;
1157 avg_wire_size += 11452;
1158 } else if (avg_wire_size <= 1980) {
1159 /* 36K ints/sec to 30K ints/sec */
1160 avg_wire_size *= 5;
1161 avg_wire_size += 22420;
1162 } else {
1163 /* plateau at a limit of 30K ints/sec */
1164 avg_wire_size = 32256;
1165 }
1166
1167 /* If we are in low latency mode halve our delay which doubles the
1168 * rate to somewhere between 100K to 16K ints/sec
1169 */
1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 avg_wire_size /= 2;
1172
1173 /* Resultant value is 256 times larger than it needs to be. This
1174 * gives us room to adjust the value as needed to either increase
1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 *
1177 * Use addition as we have already recorded the new latency flag
1178 * for the ITR value.
1179 */
1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 }
1187
1188 clear_counts:
1189 /* write back value */
1190 rc->target_itr = itr;
1191
1192 /* next update should occur within next jiffy */
1193 rc->next_update = next_update + 1;
1194
1195 rc->total_bytes = 0;
1196 rc->total_packets = 0;
1197 }
1198
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200 {
1201 return &rx_ring->rx_bi[idx];
1202 }
1203
1204 /**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 struct i40e_rx_buffer *old_buff)
1213 {
1214 struct i40e_rx_buffer *new_buff;
1215 u16 nta = rx_ring->next_to_alloc;
1216
1217 new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219 /* update, and store next to alloc */
1220 nta++;
1221 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223 /* transfer page from old buffer to new buffer */
1224 new_buff->dma = old_buff->dma;
1225 new_buff->page = old_buff->page;
1226 new_buff->page_offset = old_buff->page_offset;
1227 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1228
1229 rx_ring->rx_stats.page_reuse_count++;
1230
1231 /* clear contents of buffer_info */
1232 old_buff->page = NULL;
1233 }
1234
1235 /**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 u64 qword1)
1249 {
1250 u8 id;
1251
1252 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257 }
1258
1259 /**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266 {
1267 struct device *dev = tx_ring->dev;
1268 int bi_size;
1269
1270 if (!dev)
1271 return -ENOMEM;
1272
1273 /* warn if we are about to overwrite the pointer */
1274 WARN_ON(tx_ring->tx_bi);
1275 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 if (!tx_ring->tx_bi)
1278 goto err;
1279
1280 u64_stats_init(&tx_ring->syncp);
1281
1282 /* round up to nearest 4K */
1283 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 /* add u32 for head writeback, align after this takes care of
1285 * guaranteeing this is at least one cache line in size
1286 */
1287 tx_ring->size += sizeof(u32);
1288 tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 &tx_ring->dma, GFP_KERNEL);
1291 if (!tx_ring->desc) {
1292 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 tx_ring->size);
1294 goto err;
1295 }
1296
1297 tx_ring->next_to_use = 0;
1298 tx_ring->next_to_clean = 0;
1299 tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 return 0;
1301
1302 err:
1303 kfree(tx_ring->tx_bi);
1304 tx_ring->tx_bi = NULL;
1305 return -ENOMEM;
1306 }
1307
i40e_alloc_rx_bi(struct i40e_ring * rx_ring)1308 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309 {
1310 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311
1312 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313 return rx_ring->rx_bi ? 0 : -ENOMEM;
1314 }
1315
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1316 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317 {
1318 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319 }
1320
1321 /**
1322 * i40e_clean_rx_ring - Free Rx buffers
1323 * @rx_ring: ring to be cleaned
1324 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1325 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326 {
1327 u16 i;
1328
1329 /* ring already cleared, nothing to do */
1330 if (!rx_ring->rx_bi)
1331 return;
1332
1333 if (rx_ring->skb) {
1334 dev_kfree_skb(rx_ring->skb);
1335 rx_ring->skb = NULL;
1336 }
1337
1338 if (rx_ring->xsk_pool) {
1339 i40e_xsk_clean_rx_ring(rx_ring);
1340 goto skip_free;
1341 }
1342
1343 /* Free all the Rx ring sk_buffs */
1344 for (i = 0; i < rx_ring->count; i++) {
1345 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346
1347 if (!rx_bi->page)
1348 continue;
1349
1350 /* Invalidate cache lines that may have been written to by
1351 * device so that we avoid corrupting memory.
1352 */
1353 dma_sync_single_range_for_cpu(rx_ring->dev,
1354 rx_bi->dma,
1355 rx_bi->page_offset,
1356 rx_ring->rx_buf_len,
1357 DMA_FROM_DEVICE);
1358
1359 /* free resources associated with mapping */
1360 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361 i40e_rx_pg_size(rx_ring),
1362 DMA_FROM_DEVICE,
1363 I40E_RX_DMA_ATTR);
1364
1365 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366
1367 rx_bi->page = NULL;
1368 rx_bi->page_offset = 0;
1369 }
1370
1371 skip_free:
1372 if (rx_ring->xsk_pool)
1373 i40e_clear_rx_bi_zc(rx_ring);
1374 else
1375 i40e_clear_rx_bi(rx_ring);
1376
1377 /* Zero out the descriptor ring */
1378 memset(rx_ring->desc, 0, rx_ring->size);
1379
1380 rx_ring->next_to_alloc = 0;
1381 rx_ring->next_to_clean = 0;
1382 rx_ring->next_to_use = 0;
1383 }
1384
1385 /**
1386 * i40e_free_rx_resources - Free Rx resources
1387 * @rx_ring: ring to clean the resources from
1388 *
1389 * Free all receive software resources
1390 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1391 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392 {
1393 i40e_clean_rx_ring(rx_ring);
1394 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396 rx_ring->xdp_prog = NULL;
1397 kfree(rx_ring->rx_bi);
1398 rx_ring->rx_bi = NULL;
1399
1400 if (rx_ring->desc) {
1401 dma_free_coherent(rx_ring->dev, rx_ring->size,
1402 rx_ring->desc, rx_ring->dma);
1403 rx_ring->desc = NULL;
1404 }
1405 }
1406
1407 /**
1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410 *
1411 * Returns 0 on success, negative on failure
1412 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1413 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414 {
1415 struct device *dev = rx_ring->dev;
1416 int err;
1417
1418 u64_stats_init(&rx_ring->syncp);
1419
1420 /* Round up to nearest 4K */
1421 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1422 rx_ring->size = ALIGN(rx_ring->size, 4096);
1423 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424 &rx_ring->dma, GFP_KERNEL);
1425
1426 if (!rx_ring->desc) {
1427 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428 rx_ring->size);
1429 return -ENOMEM;
1430 }
1431
1432 rx_ring->next_to_alloc = 0;
1433 rx_ring->next_to_clean = 0;
1434 rx_ring->next_to_use = 0;
1435
1436 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1437 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439 rx_ring->queue_index);
1440 if (err < 0)
1441 return err;
1442 }
1443
1444 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * i40e_release_rx_desc - Store the new tail and head values
1451 * @rx_ring: ring to bump
1452 * @val: new head index
1453 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1454 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455 {
1456 rx_ring->next_to_use = val;
1457
1458 /* update next to alloc since we have filled the ring */
1459 rx_ring->next_to_alloc = val;
1460
1461 /* Force memory writes to complete before letting h/w
1462 * know there are new descriptors to fetch. (Only
1463 * applicable for weak-ordered memory model archs,
1464 * such as IA-64).
1465 */
1466 wmb();
1467 writel(val, rx_ring->tail);
1468 }
1469
1470 /**
1471 * i40e_rx_offset - Return expected offset into page to access data
1472 * @rx_ring: Ring we are requesting offset of
1473 *
1474 * Returns the offset value for ring into the data buffer.
1475 */
i40e_rx_offset(struct i40e_ring * rx_ring)1476 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477 {
1478 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479 }
1480
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1481 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482 unsigned int size)
1483 {
1484 unsigned int truesize;
1485
1486 #if (PAGE_SIZE < 8192)
1487 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488 #else
1489 truesize = i40e_rx_offset(rx_ring) ?
1490 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492 SKB_DATA_ALIGN(size);
1493 #endif
1494 return truesize;
1495 }
1496
1497 /**
1498 * i40e_alloc_mapped_page - recycle or make a new page
1499 * @rx_ring: ring to use
1500 * @bi: rx_buffer struct to modify
1501 *
1502 * Returns true if the page was successfully allocated or
1503 * reused.
1504 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1505 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506 struct i40e_rx_buffer *bi)
1507 {
1508 struct page *page = bi->page;
1509 dma_addr_t dma;
1510
1511 /* since we are recycling buffers we should seldom need to alloc */
1512 if (likely(page)) {
1513 rx_ring->rx_stats.page_reuse_count++;
1514 return true;
1515 }
1516
1517 /* alloc new page for storage */
1518 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519 if (unlikely(!page)) {
1520 rx_ring->rx_stats.alloc_page_failed++;
1521 return false;
1522 }
1523
1524 /* map page for use */
1525 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526 i40e_rx_pg_size(rx_ring),
1527 DMA_FROM_DEVICE,
1528 I40E_RX_DMA_ATTR);
1529
1530 /* if mapping failed free memory back to system since
1531 * there isn't much point in holding memory we can't use
1532 */
1533 if (dma_mapping_error(rx_ring->dev, dma)) {
1534 __free_pages(page, i40e_rx_pg_order(rx_ring));
1535 rx_ring->rx_stats.alloc_page_failed++;
1536 return false;
1537 }
1538
1539 bi->dma = dma;
1540 bi->page = page;
1541 bi->page_offset = i40e_rx_offset(rx_ring);
1542 page_ref_add(page, USHRT_MAX - 1);
1543 bi->pagecnt_bias = USHRT_MAX;
1544
1545 return true;
1546 }
1547
1548 /**
1549 * i40e_alloc_rx_buffers - Replace used receive buffers
1550 * @rx_ring: ring to place buffers on
1551 * @cleaned_count: number of buffers to replace
1552 *
1553 * Returns false if all allocations were successful, true if any fail
1554 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1555 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556 {
1557 u16 ntu = rx_ring->next_to_use;
1558 union i40e_rx_desc *rx_desc;
1559 struct i40e_rx_buffer *bi;
1560
1561 /* do nothing if no valid netdev defined */
1562 if (!rx_ring->netdev || !cleaned_count)
1563 return false;
1564
1565 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566 bi = i40e_rx_bi(rx_ring, ntu);
1567
1568 do {
1569 if (!i40e_alloc_mapped_page(rx_ring, bi))
1570 goto no_buffers;
1571
1572 /* sync the buffer for use by the device */
1573 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574 bi->page_offset,
1575 rx_ring->rx_buf_len,
1576 DMA_FROM_DEVICE);
1577
1578 /* Refresh the desc even if buffer_addrs didn't change
1579 * because each write-back erases this info.
1580 */
1581 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582
1583 rx_desc++;
1584 bi++;
1585 ntu++;
1586 if (unlikely(ntu == rx_ring->count)) {
1587 rx_desc = I40E_RX_DESC(rx_ring, 0);
1588 bi = i40e_rx_bi(rx_ring, 0);
1589 ntu = 0;
1590 }
1591
1592 /* clear the status bits for the next_to_use descriptor */
1593 rx_desc->wb.qword1.status_error_len = 0;
1594
1595 cleaned_count--;
1596 } while (cleaned_count);
1597
1598 if (rx_ring->next_to_use != ntu)
1599 i40e_release_rx_desc(rx_ring, ntu);
1600
1601 return false;
1602
1603 no_buffers:
1604 if (rx_ring->next_to_use != ntu)
1605 i40e_release_rx_desc(rx_ring, ntu);
1606
1607 /* make sure to come back via polling to try again after
1608 * allocation failure
1609 */
1610 return true;
1611 }
1612
1613 /**
1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615 * @vsi: the VSI we care about
1616 * @skb: skb currently being received and modified
1617 * @rx_desc: the receive descriptor
1618 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1619 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620 struct sk_buff *skb,
1621 union i40e_rx_desc *rx_desc)
1622 {
1623 struct i40e_rx_ptype_decoded decoded;
1624 u32 rx_error, rx_status;
1625 bool ipv4, ipv6;
1626 u8 ptype;
1627 u64 qword;
1628
1629 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632 I40E_RXD_QW1_ERROR_SHIFT;
1633 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634 I40E_RXD_QW1_STATUS_SHIFT;
1635 decoded = decode_rx_desc_ptype(ptype);
1636
1637 skb->ip_summed = CHECKSUM_NONE;
1638
1639 skb_checksum_none_assert(skb);
1640
1641 /* Rx csum enabled and ip headers found? */
1642 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643 return;
1644
1645 /* did the hardware decode the packet and checksum? */
1646 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647 return;
1648
1649 /* both known and outer_ip must be set for the below code to work */
1650 if (!(decoded.known && decoded.outer_ip))
1651 return;
1652
1653 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657
1658 if (ipv4 &&
1659 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661 goto checksum_fail;
1662
1663 /* likely incorrect csum if alternate IP extension headers found */
1664 if (ipv6 &&
1665 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666 /* don't increment checksum err here, non-fatal err */
1667 return;
1668
1669 /* there was some L4 error, count error and punt packet to the stack */
1670 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671 goto checksum_fail;
1672
1673 /* handle packets that were not able to be checksummed due
1674 * to arrival speed, in this case the stack can compute
1675 * the csum.
1676 */
1677 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678 return;
1679
1680 /* If there is an outer header present that might contain a checksum
1681 * we need to bump the checksum level by 1 to reflect the fact that
1682 * we are indicating we validated the inner checksum.
1683 */
1684 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685 skb->csum_level = 1;
1686
1687 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688 switch (decoded.inner_prot) {
1689 case I40E_RX_PTYPE_INNER_PROT_TCP:
1690 case I40E_RX_PTYPE_INNER_PROT_UDP:
1691 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692 skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 fallthrough;
1694 default:
1695 break;
1696 }
1697
1698 return;
1699
1700 checksum_fail:
1701 vsi->back->hw_csum_rx_error++;
1702 }
1703
1704 /**
1705 * i40e_ptype_to_htype - get a hash type
1706 * @ptype: the ptype value from the descriptor
1707 *
1708 * Returns a hash type to be used by skb_set_hash
1709 **/
i40e_ptype_to_htype(u8 ptype)1710 static inline int i40e_ptype_to_htype(u8 ptype)
1711 {
1712 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713
1714 if (!decoded.known)
1715 return PKT_HASH_TYPE_NONE;
1716
1717 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719 return PKT_HASH_TYPE_L4;
1720 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722 return PKT_HASH_TYPE_L3;
1723 else
1724 return PKT_HASH_TYPE_L2;
1725 }
1726
1727 /**
1728 * i40e_rx_hash - set the hash value in the skb
1729 * @ring: descriptor ring
1730 * @rx_desc: specific descriptor
1731 * @skb: skb currently being received and modified
1732 * @rx_ptype: Rx packet type
1733 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1734 static inline void i40e_rx_hash(struct i40e_ring *ring,
1735 union i40e_rx_desc *rx_desc,
1736 struct sk_buff *skb,
1737 u8 rx_ptype)
1738 {
1739 u32 hash;
1740 const __le64 rss_mask =
1741 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743
1744 if (!(ring->netdev->features & NETIF_F_RXHASH))
1745 return;
1746
1747 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750 }
1751 }
1752
1753 /**
1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755 * @rx_ring: rx descriptor ring packet is being transacted on
1756 * @rx_desc: pointer to the EOP Rx descriptor
1757 * @skb: pointer to current skb being populated
1758 *
1759 * This function checks the ring, descriptor, and packet information in
1760 * order to populate the hash, checksum, VLAN, protocol, and
1761 * other fields within the skb.
1762 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1763 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1764 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1765 {
1766 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1767 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1768 I40E_RXD_QW1_STATUS_SHIFT;
1769 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1770 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1771 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1772 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1773 I40E_RXD_QW1_PTYPE_SHIFT;
1774
1775 if (unlikely(tsynvalid))
1776 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1777
1778 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1779
1780 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1781
1782 skb_record_rx_queue(skb, rx_ring->queue_index);
1783
1784 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1785 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1786
1787 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1788 le16_to_cpu(vlan_tag));
1789 }
1790
1791 /* modifies the skb - consumes the enet header */
1792 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1793 }
1794
1795 /**
1796 * i40e_cleanup_headers - Correct empty headers
1797 * @rx_ring: rx descriptor ring packet is being transacted on
1798 * @skb: pointer to current skb being fixed
1799 * @rx_desc: pointer to the EOP Rx descriptor
1800 *
1801 * Also address the case where we are pulling data in on pages only
1802 * and as such no data is present in the skb header.
1803 *
1804 * In addition if skb is not at least 60 bytes we need to pad it so that
1805 * it is large enough to qualify as a valid Ethernet frame.
1806 *
1807 * Returns true if an error was encountered and skb was freed.
1808 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1809 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1810 union i40e_rx_desc *rx_desc)
1811
1812 {
1813 /* ERR_MASK will only have valid bits if EOP set, and
1814 * what we are doing here is actually checking
1815 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1816 * the error field
1817 */
1818 if (unlikely(i40e_test_staterr(rx_desc,
1819 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1820 dev_kfree_skb_any(skb);
1821 return true;
1822 }
1823
1824 /* if eth_skb_pad returns an error the skb was freed */
1825 if (eth_skb_pad(skb))
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /**
1832 * i40e_page_is_reusable - check if any reuse is possible
1833 * @page: page struct to check
1834 *
1835 * A page is not reusable if it was allocated under low memory
1836 * conditions, or it's not in the same NUMA node as this CPU.
1837 */
i40e_page_is_reusable(struct page * page)1838 static inline bool i40e_page_is_reusable(struct page *page)
1839 {
1840 return (page_to_nid(page) == numa_mem_id()) &&
1841 !page_is_pfmemalloc(page);
1842 }
1843
1844 /**
1845 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1846 * the adapter for another receive
1847 *
1848 * @rx_buffer: buffer containing the page
1849 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1850 *
1851 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1852 * an unused region in the page.
1853 *
1854 * For small pages, @truesize will be a constant value, half the size
1855 * of the memory at page. We'll attempt to alternate between high and
1856 * low halves of the page, with one half ready for use by the hardware
1857 * and the other half being consumed by the stack. We use the page
1858 * ref count to determine whether the stack has finished consuming the
1859 * portion of this page that was passed up with a previous packet. If
1860 * the page ref count is >1, we'll assume the "other" half page is
1861 * still busy, and this page cannot be reused.
1862 *
1863 * For larger pages, @truesize will be the actual space used by the
1864 * received packet (adjusted upward to an even multiple of the cache
1865 * line size). This will advance through the page by the amount
1866 * actually consumed by the received packets while there is still
1867 * space for a buffer. Each region of larger pages will be used at
1868 * most once, after which the page will not be reused.
1869 *
1870 * In either case, if the page is reusable its refcount is increased.
1871 **/
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1872 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1873 int rx_buffer_pgcnt)
1874 {
1875 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1876 struct page *page = rx_buffer->page;
1877
1878 /* Is any reuse possible? */
1879 if (unlikely(!i40e_page_is_reusable(page)))
1880 return false;
1881
1882 #if (PAGE_SIZE < 8192)
1883 /* if we are only owner of page we can reuse it */
1884 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1885 return false;
1886 #else
1887 #define I40E_LAST_OFFSET \
1888 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1889 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1890 return false;
1891 #endif
1892
1893 /* If we have drained the page fragment pool we need to update
1894 * the pagecnt_bias and page count so that we fully restock the
1895 * number of references the driver holds.
1896 */
1897 if (unlikely(pagecnt_bias == 1)) {
1898 page_ref_add(page, USHRT_MAX - 1);
1899 rx_buffer->pagecnt_bias = USHRT_MAX;
1900 }
1901
1902 return true;
1903 }
1904
1905 /**
1906 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1907 * @rx_ring: rx descriptor ring to transact packets on
1908 * @rx_buffer: buffer containing page to add
1909 * @skb: sk_buff to place the data into
1910 * @size: packet length from rx_desc
1911 *
1912 * This function will add the data contained in rx_buffer->page to the skb.
1913 * It will just attach the page as a frag to the skb.
1914 *
1915 * The function will then update the page offset.
1916 **/
i40e_add_rx_frag(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1917 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1918 struct i40e_rx_buffer *rx_buffer,
1919 struct sk_buff *skb,
1920 unsigned int size)
1921 {
1922 #if (PAGE_SIZE < 8192)
1923 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1924 #else
1925 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1926 #endif
1927
1928 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1929 rx_buffer->page_offset, size, truesize);
1930
1931 /* page is being used so we must update the page offset */
1932 #if (PAGE_SIZE < 8192)
1933 rx_buffer->page_offset ^= truesize;
1934 #else
1935 rx_buffer->page_offset += truesize;
1936 #endif
1937 }
1938
1939 /**
1940 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1941 * @rx_ring: rx descriptor ring to transact packets on
1942 * @size: size of buffer to add to skb
1943 * @rx_buffer_pgcnt: buffer page refcount
1944 *
1945 * This function will pull an Rx buffer from the ring and synchronize it
1946 * for use by the CPU.
1947 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1948 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1949 const unsigned int size,
1950 int *rx_buffer_pgcnt)
1951 {
1952 struct i40e_rx_buffer *rx_buffer;
1953
1954 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1955 *rx_buffer_pgcnt =
1956 #if (PAGE_SIZE < 8192)
1957 page_count(rx_buffer->page);
1958 #else
1959 0;
1960 #endif
1961 prefetch_page_address(rx_buffer->page);
1962
1963 /* we are reusing so sync this buffer for CPU use */
1964 dma_sync_single_range_for_cpu(rx_ring->dev,
1965 rx_buffer->dma,
1966 rx_buffer->page_offset,
1967 size,
1968 DMA_FROM_DEVICE);
1969
1970 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1971 rx_buffer->pagecnt_bias--;
1972
1973 return rx_buffer;
1974 }
1975
1976 /**
1977 * i40e_construct_skb - Allocate skb and populate it
1978 * @rx_ring: rx descriptor ring to transact packets on
1979 * @rx_buffer: rx buffer to pull data from
1980 * @xdp: xdp_buff pointing to the data
1981 *
1982 * This function allocates an skb. It then populates it with the page
1983 * data from the current receive descriptor, taking care to set up the
1984 * skb correctly.
1985 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)1986 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1987 struct i40e_rx_buffer *rx_buffer,
1988 struct xdp_buff *xdp)
1989 {
1990 unsigned int size = xdp->data_end - xdp->data;
1991 #if (PAGE_SIZE < 8192)
1992 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1993 #else
1994 unsigned int truesize = SKB_DATA_ALIGN(size);
1995 #endif
1996 unsigned int headlen;
1997 struct sk_buff *skb;
1998
1999 /* prefetch first cache line of first page */
2000 net_prefetch(xdp->data);
2001
2002 /* Note, we get here by enabling legacy-rx via:
2003 *
2004 * ethtool --set-priv-flags <dev> legacy-rx on
2005 *
2006 * In this mode, we currently get 0 extra XDP headroom as
2007 * opposed to having legacy-rx off, where we process XDP
2008 * packets going to stack via i40e_build_skb(). The latter
2009 * provides us currently with 192 bytes of headroom.
2010 *
2011 * For i40e_construct_skb() mode it means that the
2012 * xdp->data_meta will always point to xdp->data, since
2013 * the helper cannot expand the head. Should this ever
2014 * change in future for legacy-rx mode on, then lets also
2015 * add xdp->data_meta handling here.
2016 */
2017
2018 /* allocate a skb to store the frags */
2019 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2020 I40E_RX_HDR_SIZE,
2021 GFP_ATOMIC | __GFP_NOWARN);
2022 if (unlikely(!skb))
2023 return NULL;
2024
2025 /* Determine available headroom for copy */
2026 headlen = size;
2027 if (headlen > I40E_RX_HDR_SIZE)
2028 headlen = eth_get_headlen(skb->dev, xdp->data,
2029 I40E_RX_HDR_SIZE);
2030
2031 /* align pull length to size of long to optimize memcpy performance */
2032 memcpy(__skb_put(skb, headlen), xdp->data,
2033 ALIGN(headlen, sizeof(long)));
2034
2035 /* update all of the pointers */
2036 size -= headlen;
2037 if (size) {
2038 skb_add_rx_frag(skb, 0, rx_buffer->page,
2039 rx_buffer->page_offset + headlen,
2040 size, truesize);
2041
2042 /* buffer is used by skb, update page_offset */
2043 #if (PAGE_SIZE < 8192)
2044 rx_buffer->page_offset ^= truesize;
2045 #else
2046 rx_buffer->page_offset += truesize;
2047 #endif
2048 } else {
2049 /* buffer is unused, reset bias back to rx_buffer */
2050 rx_buffer->pagecnt_bias++;
2051 }
2052
2053 return skb;
2054 }
2055
2056 /**
2057 * i40e_build_skb - Build skb around an existing buffer
2058 * @rx_ring: Rx descriptor ring to transact packets on
2059 * @rx_buffer: Rx buffer to pull data from
2060 * @xdp: xdp_buff pointing to the data
2061 *
2062 * This function builds an skb around an existing Rx buffer, taking care
2063 * to set up the skb correctly and avoid any memcpy overhead.
2064 */
i40e_build_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2065 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2066 struct i40e_rx_buffer *rx_buffer,
2067 struct xdp_buff *xdp)
2068 {
2069 unsigned int metasize = xdp->data - xdp->data_meta;
2070 #if (PAGE_SIZE < 8192)
2071 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2072 #else
2073 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2074 SKB_DATA_ALIGN(xdp->data_end -
2075 xdp->data_hard_start);
2076 #endif
2077 struct sk_buff *skb;
2078
2079 /* Prefetch first cache line of first page. If xdp->data_meta
2080 * is unused, this points exactly as xdp->data, otherwise we
2081 * likely have a consumer accessing first few bytes of meta
2082 * data, and then actual data.
2083 */
2084 net_prefetch(xdp->data_meta);
2085
2086 /* build an skb around the page buffer */
2087 skb = build_skb(xdp->data_hard_start, truesize);
2088 if (unlikely(!skb))
2089 return NULL;
2090
2091 /* update pointers within the skb to store the data */
2092 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2093 __skb_put(skb, xdp->data_end - xdp->data);
2094 if (metasize)
2095 skb_metadata_set(skb, metasize);
2096
2097 /* buffer is used by skb, update page_offset */
2098 #if (PAGE_SIZE < 8192)
2099 rx_buffer->page_offset ^= truesize;
2100 #else
2101 rx_buffer->page_offset += truesize;
2102 #endif
2103
2104 return skb;
2105 }
2106
2107 /**
2108 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2109 * @rx_ring: rx descriptor ring to transact packets on
2110 * @rx_buffer: rx buffer to pull data from
2111 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2112 *
2113 * This function will clean up the contents of the rx_buffer. It will
2114 * either recycle the buffer or unmap it and free the associated resources.
2115 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2116 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2117 struct i40e_rx_buffer *rx_buffer,
2118 int rx_buffer_pgcnt)
2119 {
2120 if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2121 /* hand second half of page back to the ring */
2122 i40e_reuse_rx_page(rx_ring, rx_buffer);
2123 } else {
2124 /* we are not reusing the buffer so unmap it */
2125 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2126 i40e_rx_pg_size(rx_ring),
2127 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2128 __page_frag_cache_drain(rx_buffer->page,
2129 rx_buffer->pagecnt_bias);
2130 /* clear contents of buffer_info */
2131 rx_buffer->page = NULL;
2132 }
2133 }
2134
2135 /**
2136 * i40e_is_non_eop - process handling of non-EOP buffers
2137 * @rx_ring: Rx ring being processed
2138 * @rx_desc: Rx descriptor for current buffer
2139 * @skb: Current socket buffer containing buffer in progress
2140 *
2141 * This function updates next to clean. If the buffer is an EOP buffer
2142 * this function exits returning false, otherwise it will place the
2143 * sk_buff in the next buffer to be chained and return true indicating
2144 * that this is in fact a non-EOP buffer.
2145 **/
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)2146 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2147 union i40e_rx_desc *rx_desc,
2148 struct sk_buff *skb)
2149 {
2150 u32 ntc = rx_ring->next_to_clean + 1;
2151
2152 /* fetch, update, and store next to clean */
2153 ntc = (ntc < rx_ring->count) ? ntc : 0;
2154 rx_ring->next_to_clean = ntc;
2155
2156 prefetch(I40E_RX_DESC(rx_ring, ntc));
2157
2158 /* if we are the last buffer then there is nothing else to do */
2159 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2160 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2161 return false;
2162
2163 rx_ring->rx_stats.non_eop_descs++;
2164
2165 return true;
2166 }
2167
2168 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2169 struct i40e_ring *xdp_ring);
2170
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2171 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2172 {
2173 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2174
2175 if (unlikely(!xdpf))
2176 return I40E_XDP_CONSUMED;
2177
2178 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2179 }
2180
2181 /**
2182 * i40e_run_xdp - run an XDP program
2183 * @rx_ring: Rx ring being processed
2184 * @xdp: XDP buffer containing the frame
2185 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2186 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2187 {
2188 int err, result = I40E_XDP_PASS;
2189 struct i40e_ring *xdp_ring;
2190 struct bpf_prog *xdp_prog;
2191 u32 act;
2192
2193 rcu_read_lock();
2194 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2195
2196 if (!xdp_prog)
2197 goto xdp_out;
2198
2199 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2200
2201 act = bpf_prog_run_xdp(xdp_prog, xdp);
2202 switch (act) {
2203 case XDP_PASS:
2204 break;
2205 case XDP_TX:
2206 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2207 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2208 if (result == I40E_XDP_CONSUMED)
2209 goto out_failure;
2210 break;
2211 case XDP_REDIRECT:
2212 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2213 if (err)
2214 goto out_failure;
2215 result = I40E_XDP_REDIR;
2216 break;
2217 default:
2218 bpf_warn_invalid_xdp_action(act);
2219 fallthrough;
2220 case XDP_ABORTED:
2221 out_failure:
2222 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2223 fallthrough; /* handle aborts by dropping packet */
2224 case XDP_DROP:
2225 result = I40E_XDP_CONSUMED;
2226 break;
2227 }
2228 xdp_out:
2229 rcu_read_unlock();
2230 return result;
2231 }
2232
2233 /**
2234 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2235 * @rx_ring: Rx ring
2236 * @rx_buffer: Rx buffer to adjust
2237 * @size: Size of adjustment
2238 **/
i40e_rx_buffer_flip(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,unsigned int size)2239 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2240 struct i40e_rx_buffer *rx_buffer,
2241 unsigned int size)
2242 {
2243 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2244
2245 #if (PAGE_SIZE < 8192)
2246 rx_buffer->page_offset ^= truesize;
2247 #else
2248 rx_buffer->page_offset += truesize;
2249 #endif
2250 }
2251
2252 /**
2253 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2254 * @xdp_ring: XDP Tx ring
2255 *
2256 * This function updates the XDP Tx ring tail register.
2257 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2258 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2259 {
2260 /* Force memory writes to complete before letting h/w
2261 * know there are new descriptors to fetch.
2262 */
2263 wmb();
2264 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2265 }
2266
2267 /**
2268 * i40e_update_rx_stats - Update Rx ring statistics
2269 * @rx_ring: rx descriptor ring
2270 * @total_rx_bytes: number of bytes received
2271 * @total_rx_packets: number of packets received
2272 *
2273 * This function updates the Rx ring statistics.
2274 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2275 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2276 unsigned int total_rx_bytes,
2277 unsigned int total_rx_packets)
2278 {
2279 u64_stats_update_begin(&rx_ring->syncp);
2280 rx_ring->stats.packets += total_rx_packets;
2281 rx_ring->stats.bytes += total_rx_bytes;
2282 u64_stats_update_end(&rx_ring->syncp);
2283 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2284 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2285 }
2286
2287 /**
2288 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2289 * @rx_ring: Rx ring
2290 * @xdp_res: Result of the receive batch
2291 *
2292 * This function bumps XDP Tx tail and/or flush redirect map, and
2293 * should be called when a batch of packets has been processed in the
2294 * napi loop.
2295 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2296 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2297 {
2298 if (xdp_res & I40E_XDP_REDIR)
2299 xdp_do_flush_map();
2300
2301 if (xdp_res & I40E_XDP_TX) {
2302 struct i40e_ring *xdp_ring =
2303 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2304
2305 i40e_xdp_ring_update_tail(xdp_ring);
2306 }
2307 }
2308
2309 /**
2310 * i40e_inc_ntc: Advance the next_to_clean index
2311 * @rx_ring: Rx ring
2312 **/
i40e_inc_ntc(struct i40e_ring * rx_ring)2313 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2314 {
2315 u32 ntc = rx_ring->next_to_clean + 1;
2316
2317 ntc = (ntc < rx_ring->count) ? ntc : 0;
2318 rx_ring->next_to_clean = ntc;
2319 prefetch(I40E_RX_DESC(rx_ring, ntc));
2320 }
2321
2322 /**
2323 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2324 * @rx_ring: rx descriptor ring to transact packets on
2325 * @budget: Total limit on number of packets to process
2326 *
2327 * This function provides a "bounce buffer" approach to Rx interrupt
2328 * processing. The advantage to this is that on systems that have
2329 * expensive overhead for IOMMU access this provides a means of avoiding
2330 * it by maintaining the mapping of the page to the system.
2331 *
2332 * Returns amount of work completed
2333 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)2334 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2335 {
2336 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2337 struct sk_buff *skb = rx_ring->skb;
2338 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2339 unsigned int xdp_xmit = 0;
2340 bool failure = false;
2341 struct xdp_buff xdp;
2342 int xdp_res = 0;
2343
2344 #if (PAGE_SIZE < 8192)
2345 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2346 #endif
2347 xdp.rxq = &rx_ring->xdp_rxq;
2348
2349 while (likely(total_rx_packets < (unsigned int)budget)) {
2350 struct i40e_rx_buffer *rx_buffer;
2351 union i40e_rx_desc *rx_desc;
2352 int rx_buffer_pgcnt;
2353 unsigned int size;
2354 u64 qword;
2355
2356 /* return some buffers to hardware, one at a time is too slow */
2357 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2358 failure = failure ||
2359 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2360 cleaned_count = 0;
2361 }
2362
2363 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2364
2365 /* status_error_len will always be zero for unused descriptors
2366 * because it's cleared in cleanup, and overlaps with hdr_addr
2367 * which is always zero because packet split isn't used, if the
2368 * hardware wrote DD then the length will be non-zero
2369 */
2370 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2371
2372 /* This memory barrier is needed to keep us from reading
2373 * any other fields out of the rx_desc until we have
2374 * verified the descriptor has been written back.
2375 */
2376 dma_rmb();
2377
2378 if (i40e_rx_is_programming_status(qword)) {
2379 i40e_clean_programming_status(rx_ring,
2380 rx_desc->raw.qword[0],
2381 qword);
2382 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2383 i40e_inc_ntc(rx_ring);
2384 i40e_reuse_rx_page(rx_ring, rx_buffer);
2385 cleaned_count++;
2386 continue;
2387 }
2388
2389 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2390 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2391 if (!size)
2392 break;
2393
2394 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2395 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2396
2397 /* retrieve a buffer from the ring */
2398 if (!skb) {
2399 xdp.data = page_address(rx_buffer->page) +
2400 rx_buffer->page_offset;
2401 xdp.data_meta = xdp.data;
2402 xdp.data_hard_start = xdp.data -
2403 i40e_rx_offset(rx_ring);
2404 xdp.data_end = xdp.data + size;
2405 #if (PAGE_SIZE > 4096)
2406 /* At larger PAGE_SIZE, frame_sz depend on len size */
2407 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2408 #endif
2409 xdp_res = i40e_run_xdp(rx_ring, &xdp);
2410 }
2411
2412 if (xdp_res) {
2413 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2414 xdp_xmit |= xdp_res;
2415 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2416 } else {
2417 rx_buffer->pagecnt_bias++;
2418 }
2419 total_rx_bytes += size;
2420 total_rx_packets++;
2421 } else if (skb) {
2422 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2423 } else if (ring_uses_build_skb(rx_ring)) {
2424 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2425 } else {
2426 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2427 }
2428
2429 /* exit if we failed to retrieve a buffer */
2430 if (!xdp_res && !skb) {
2431 rx_ring->rx_stats.alloc_buff_failed++;
2432 rx_buffer->pagecnt_bias++;
2433 break;
2434 }
2435
2436 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2437 cleaned_count++;
2438
2439 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2440 continue;
2441
2442 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2443 skb = NULL;
2444 continue;
2445 }
2446
2447 /* probably a little skewed due to removing CRC */
2448 total_rx_bytes += skb->len;
2449
2450 /* populate checksum, VLAN, and protocol */
2451 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2452
2453 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2454 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2455 skb = NULL;
2456
2457 /* update budget accounting */
2458 total_rx_packets++;
2459 }
2460
2461 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2462 rx_ring->skb = skb;
2463
2464 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2465
2466 /* guarantee a trip back through this routine if there was a failure */
2467 return failure ? budget : (int)total_rx_packets;
2468 }
2469
i40e_buildreg_itr(const int type,u16 itr)2470 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2471 {
2472 u32 val;
2473
2474 /* We don't bother with setting the CLEARPBA bit as the data sheet
2475 * points out doing so is "meaningless since it was already
2476 * auto-cleared". The auto-clearing happens when the interrupt is
2477 * asserted.
2478 *
2479 * Hardware errata 28 for also indicates that writing to a
2480 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2481 * an event in the PBA anyway so we need to rely on the automask
2482 * to hold pending events for us until the interrupt is re-enabled
2483 *
2484 * The itr value is reported in microseconds, and the register
2485 * value is recorded in 2 microsecond units. For this reason we
2486 * only need to shift by the interval shift - 1 instead of the
2487 * full value.
2488 */
2489 itr &= I40E_ITR_MASK;
2490
2491 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2492 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2493 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2494
2495 return val;
2496 }
2497
2498 /* a small macro to shorten up some long lines */
2499 #define INTREG I40E_PFINT_DYN_CTLN
2500
2501 /* The act of updating the ITR will cause it to immediately trigger. In order
2502 * to prevent this from throwing off adaptive update statistics we defer the
2503 * update so that it can only happen so often. So after either Tx or Rx are
2504 * updated we make the adaptive scheme wait until either the ITR completely
2505 * expires via the next_update expiration or we have been through at least
2506 * 3 interrupts.
2507 */
2508 #define ITR_COUNTDOWN_START 3
2509
2510 /**
2511 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2512 * @vsi: the VSI we care about
2513 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2514 *
2515 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2516 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2517 struct i40e_q_vector *q_vector)
2518 {
2519 struct i40e_hw *hw = &vsi->back->hw;
2520 u32 intval;
2521
2522 /* If we don't have MSIX, then we only need to re-enable icr0 */
2523 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2524 i40e_irq_dynamic_enable_icr0(vsi->back);
2525 return;
2526 }
2527
2528 /* These will do nothing if dynamic updates are not enabled */
2529 i40e_update_itr(q_vector, &q_vector->tx);
2530 i40e_update_itr(q_vector, &q_vector->rx);
2531
2532 /* This block of logic allows us to get away with only updating
2533 * one ITR value with each interrupt. The idea is to perform a
2534 * pseudo-lazy update with the following criteria.
2535 *
2536 * 1. Rx is given higher priority than Tx if both are in same state
2537 * 2. If we must reduce an ITR that is given highest priority.
2538 * 3. We then give priority to increasing ITR based on amount.
2539 */
2540 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2541 /* Rx ITR needs to be reduced, this is highest priority */
2542 intval = i40e_buildreg_itr(I40E_RX_ITR,
2543 q_vector->rx.target_itr);
2544 q_vector->rx.current_itr = q_vector->rx.target_itr;
2545 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2546 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2547 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2548 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2549 /* Tx ITR needs to be reduced, this is second priority
2550 * Tx ITR needs to be increased more than Rx, fourth priority
2551 */
2552 intval = i40e_buildreg_itr(I40E_TX_ITR,
2553 q_vector->tx.target_itr);
2554 q_vector->tx.current_itr = q_vector->tx.target_itr;
2555 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2556 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2557 /* Rx ITR needs to be increased, third priority */
2558 intval = i40e_buildreg_itr(I40E_RX_ITR,
2559 q_vector->rx.target_itr);
2560 q_vector->rx.current_itr = q_vector->rx.target_itr;
2561 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2562 } else {
2563 /* No ITR update, lowest priority */
2564 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2565 if (q_vector->itr_countdown)
2566 q_vector->itr_countdown--;
2567 }
2568
2569 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2570 wr32(hw, INTREG(q_vector->reg_idx), intval);
2571 }
2572
2573 /**
2574 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2575 * @napi: napi struct with our devices info in it
2576 * @budget: amount of work driver is allowed to do this pass, in packets
2577 *
2578 * This function will clean all queues associated with a q_vector.
2579 *
2580 * Returns the amount of work done
2581 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2582 int i40e_napi_poll(struct napi_struct *napi, int budget)
2583 {
2584 struct i40e_q_vector *q_vector =
2585 container_of(napi, struct i40e_q_vector, napi);
2586 struct i40e_vsi *vsi = q_vector->vsi;
2587 struct i40e_ring *ring;
2588 bool clean_complete = true;
2589 bool arm_wb = false;
2590 int budget_per_ring;
2591 int work_done = 0;
2592
2593 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2594 napi_complete(napi);
2595 return 0;
2596 }
2597
2598 /* Since the actual Tx work is minimal, we can give the Tx a larger
2599 * budget and be more aggressive about cleaning up the Tx descriptors.
2600 */
2601 i40e_for_each_ring(ring, q_vector->tx) {
2602 bool wd = ring->xsk_pool ?
2603 i40e_clean_xdp_tx_irq(vsi, ring) :
2604 i40e_clean_tx_irq(vsi, ring, budget);
2605
2606 if (!wd) {
2607 clean_complete = false;
2608 continue;
2609 }
2610 arm_wb |= ring->arm_wb;
2611 ring->arm_wb = false;
2612 }
2613
2614 /* Handle case where we are called by netpoll with a budget of 0 */
2615 if (budget <= 0)
2616 goto tx_only;
2617
2618 /* normally we have 1 Rx ring per q_vector */
2619 if (unlikely(q_vector->num_ringpairs > 1))
2620 /* We attempt to distribute budget to each Rx queue fairly, but
2621 * don't allow the budget to go below 1 because that would exit
2622 * polling early.
2623 */
2624 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2625 else
2626 /* Max of 1 Rx ring in this q_vector so give it the budget */
2627 budget_per_ring = budget;
2628
2629 i40e_for_each_ring(ring, q_vector->rx) {
2630 int cleaned = ring->xsk_pool ?
2631 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2632 i40e_clean_rx_irq(ring, budget_per_ring);
2633
2634 work_done += cleaned;
2635 /* if we clean as many as budgeted, we must not be done */
2636 if (cleaned >= budget_per_ring)
2637 clean_complete = false;
2638 }
2639
2640 /* If work not completed, return budget and polling will return */
2641 if (!clean_complete) {
2642 int cpu_id = smp_processor_id();
2643
2644 /* It is possible that the interrupt affinity has changed but,
2645 * if the cpu is pegged at 100%, polling will never exit while
2646 * traffic continues and the interrupt will be stuck on this
2647 * cpu. We check to make sure affinity is correct before we
2648 * continue to poll, otherwise we must stop polling so the
2649 * interrupt can move to the correct cpu.
2650 */
2651 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2652 /* Tell napi that we are done polling */
2653 napi_complete_done(napi, work_done);
2654
2655 /* Force an interrupt */
2656 i40e_force_wb(vsi, q_vector);
2657
2658 /* Return budget-1 so that polling stops */
2659 return budget - 1;
2660 }
2661 tx_only:
2662 if (arm_wb) {
2663 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2664 i40e_enable_wb_on_itr(vsi, q_vector);
2665 }
2666 return budget;
2667 }
2668
2669 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2670 q_vector->arm_wb_state = false;
2671
2672 /* Exit the polling mode, but don't re-enable interrupts if stack might
2673 * poll us due to busy-polling
2674 */
2675 if (likely(napi_complete_done(napi, work_done)))
2676 i40e_update_enable_itr(vsi, q_vector);
2677
2678 return min(work_done, budget - 1);
2679 }
2680
2681 /**
2682 * i40e_atr - Add a Flow Director ATR filter
2683 * @tx_ring: ring to add programming descriptor to
2684 * @skb: send buffer
2685 * @tx_flags: send tx flags
2686 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2687 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2688 u32 tx_flags)
2689 {
2690 struct i40e_filter_program_desc *fdir_desc;
2691 struct i40e_pf *pf = tx_ring->vsi->back;
2692 union {
2693 unsigned char *network;
2694 struct iphdr *ipv4;
2695 struct ipv6hdr *ipv6;
2696 } hdr;
2697 struct tcphdr *th;
2698 unsigned int hlen;
2699 u32 flex_ptype, dtype_cmd;
2700 int l4_proto;
2701 u16 i;
2702
2703 /* make sure ATR is enabled */
2704 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2705 return;
2706
2707 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2708 return;
2709
2710 /* if sampling is disabled do nothing */
2711 if (!tx_ring->atr_sample_rate)
2712 return;
2713
2714 /* Currently only IPv4/IPv6 with TCP is supported */
2715 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2716 return;
2717
2718 /* snag network header to get L4 type and address */
2719 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2720 skb_inner_network_header(skb) : skb_network_header(skb);
2721
2722 /* Note: tx_flags gets modified to reflect inner protocols in
2723 * tx_enable_csum function if encap is enabled.
2724 */
2725 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2726 /* access ihl as u8 to avoid unaligned access on ia64 */
2727 hlen = (hdr.network[0] & 0x0F) << 2;
2728 l4_proto = hdr.ipv4->protocol;
2729 } else {
2730 /* find the start of the innermost ipv6 header */
2731 unsigned int inner_hlen = hdr.network - skb->data;
2732 unsigned int h_offset = inner_hlen;
2733
2734 /* this function updates h_offset to the end of the header */
2735 l4_proto =
2736 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2737 /* hlen will contain our best estimate of the tcp header */
2738 hlen = h_offset - inner_hlen;
2739 }
2740
2741 if (l4_proto != IPPROTO_TCP)
2742 return;
2743
2744 th = (struct tcphdr *)(hdr.network + hlen);
2745
2746 /* Due to lack of space, no more new filters can be programmed */
2747 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2748 return;
2749 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2750 /* HW ATR eviction will take care of removing filters on FIN
2751 * and RST packets.
2752 */
2753 if (th->fin || th->rst)
2754 return;
2755 }
2756
2757 tx_ring->atr_count++;
2758
2759 /* sample on all syn/fin/rst packets or once every atr sample rate */
2760 if (!th->fin &&
2761 !th->syn &&
2762 !th->rst &&
2763 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2764 return;
2765
2766 tx_ring->atr_count = 0;
2767
2768 /* grab the next descriptor */
2769 i = tx_ring->next_to_use;
2770 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2771
2772 i++;
2773 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2774
2775 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2776 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2777 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2778 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2779 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2780 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2781 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2782
2783 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2784
2785 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2786
2787 dtype_cmd |= (th->fin || th->rst) ?
2788 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2789 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2790 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2791 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2792
2793 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2794 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2795
2796 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2797 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2798
2799 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2800 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2801 dtype_cmd |=
2802 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2803 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2804 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2805 else
2806 dtype_cmd |=
2807 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2808 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2809 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2810
2811 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2812 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2813
2814 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2815 fdir_desc->rsvd = cpu_to_le32(0);
2816 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2817 fdir_desc->fd_id = cpu_to_le32(0);
2818 }
2819
2820 /**
2821 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2822 * @skb: send buffer
2823 * @tx_ring: ring to send buffer on
2824 * @flags: the tx flags to be set
2825 *
2826 * Checks the skb and set up correspondingly several generic transmit flags
2827 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2828 *
2829 * Returns error code indicate the frame should be dropped upon error and the
2830 * otherwise returns 0 to indicate the flags has been set properly.
2831 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)2832 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2833 struct i40e_ring *tx_ring,
2834 u32 *flags)
2835 {
2836 __be16 protocol = skb->protocol;
2837 u32 tx_flags = 0;
2838
2839 if (protocol == htons(ETH_P_8021Q) &&
2840 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2841 /* When HW VLAN acceleration is turned off by the user the
2842 * stack sets the protocol to 8021q so that the driver
2843 * can take any steps required to support the SW only
2844 * VLAN handling. In our case the driver doesn't need
2845 * to take any further steps so just set the protocol
2846 * to the encapsulated ethertype.
2847 */
2848 skb->protocol = vlan_get_protocol(skb);
2849 goto out;
2850 }
2851
2852 /* if we have a HW VLAN tag being added, default to the HW one */
2853 if (skb_vlan_tag_present(skb)) {
2854 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2855 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2856 /* else if it is a SW VLAN, check the next protocol and store the tag */
2857 } else if (protocol == htons(ETH_P_8021Q)) {
2858 struct vlan_hdr *vhdr, _vhdr;
2859
2860 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2861 if (!vhdr)
2862 return -EINVAL;
2863
2864 protocol = vhdr->h_vlan_encapsulated_proto;
2865 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2866 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2867 }
2868
2869 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2870 goto out;
2871
2872 /* Insert 802.1p priority into VLAN header */
2873 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2874 (skb->priority != TC_PRIO_CONTROL)) {
2875 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2876 tx_flags |= (skb->priority & 0x7) <<
2877 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2878 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2879 struct vlan_ethhdr *vhdr;
2880 int rc;
2881
2882 rc = skb_cow_head(skb, 0);
2883 if (rc < 0)
2884 return rc;
2885 vhdr = (struct vlan_ethhdr *)skb->data;
2886 vhdr->h_vlan_TCI = htons(tx_flags >>
2887 I40E_TX_FLAGS_VLAN_SHIFT);
2888 } else {
2889 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2890 }
2891 }
2892
2893 out:
2894 *flags = tx_flags;
2895 return 0;
2896 }
2897
2898 /**
2899 * i40e_tso - set up the tso context descriptor
2900 * @first: pointer to first Tx buffer for xmit
2901 * @hdr_len: ptr to the size of the packet header
2902 * @cd_type_cmd_tso_mss: Quad Word 1
2903 *
2904 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2905 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)2906 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2907 u64 *cd_type_cmd_tso_mss)
2908 {
2909 struct sk_buff *skb = first->skb;
2910 u64 cd_cmd, cd_tso_len, cd_mss;
2911 union {
2912 struct iphdr *v4;
2913 struct ipv6hdr *v6;
2914 unsigned char *hdr;
2915 } ip;
2916 union {
2917 struct tcphdr *tcp;
2918 struct udphdr *udp;
2919 unsigned char *hdr;
2920 } l4;
2921 u32 paylen, l4_offset;
2922 u16 gso_segs, gso_size;
2923 int err;
2924
2925 if (skb->ip_summed != CHECKSUM_PARTIAL)
2926 return 0;
2927
2928 if (!skb_is_gso(skb))
2929 return 0;
2930
2931 err = skb_cow_head(skb, 0);
2932 if (err < 0)
2933 return err;
2934
2935 ip.hdr = skb_network_header(skb);
2936 l4.hdr = skb_transport_header(skb);
2937
2938 /* initialize outer IP header fields */
2939 if (ip.v4->version == 4) {
2940 ip.v4->tot_len = 0;
2941 ip.v4->check = 0;
2942 } else {
2943 ip.v6->payload_len = 0;
2944 }
2945
2946 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2947 SKB_GSO_GRE_CSUM |
2948 SKB_GSO_IPXIP4 |
2949 SKB_GSO_IPXIP6 |
2950 SKB_GSO_UDP_TUNNEL |
2951 SKB_GSO_UDP_TUNNEL_CSUM)) {
2952 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2953 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2954 l4.udp->len = 0;
2955
2956 /* determine offset of outer transport header */
2957 l4_offset = l4.hdr - skb->data;
2958
2959 /* remove payload length from outer checksum */
2960 paylen = skb->len - l4_offset;
2961 csum_replace_by_diff(&l4.udp->check,
2962 (__force __wsum)htonl(paylen));
2963 }
2964
2965 /* reset pointers to inner headers */
2966 ip.hdr = skb_inner_network_header(skb);
2967 l4.hdr = skb_inner_transport_header(skb);
2968
2969 /* initialize inner IP header fields */
2970 if (ip.v4->version == 4) {
2971 ip.v4->tot_len = 0;
2972 ip.v4->check = 0;
2973 } else {
2974 ip.v6->payload_len = 0;
2975 }
2976 }
2977
2978 /* determine offset of inner transport header */
2979 l4_offset = l4.hdr - skb->data;
2980
2981 /* remove payload length from inner checksum */
2982 paylen = skb->len - l4_offset;
2983
2984 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2985 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2986 /* compute length of segmentation header */
2987 *hdr_len = sizeof(*l4.udp) + l4_offset;
2988 } else {
2989 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2990 /* compute length of segmentation header */
2991 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2992 }
2993
2994 /* pull values out of skb_shinfo */
2995 gso_size = skb_shinfo(skb)->gso_size;
2996 gso_segs = skb_shinfo(skb)->gso_segs;
2997
2998 /* update GSO size and bytecount with header size */
2999 first->gso_segs = gso_segs;
3000 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3001
3002 /* find the field values */
3003 cd_cmd = I40E_TX_CTX_DESC_TSO;
3004 cd_tso_len = skb->len - *hdr_len;
3005 cd_mss = gso_size;
3006 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3007 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3008 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3009 return 1;
3010 }
3011
3012 /**
3013 * i40e_tsyn - set up the tsyn context descriptor
3014 * @tx_ring: ptr to the ring to send
3015 * @skb: ptr to the skb we're sending
3016 * @tx_flags: the collected send information
3017 * @cd_type_cmd_tso_mss: Quad Word 1
3018 *
3019 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3020 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3021 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3022 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3023 {
3024 struct i40e_pf *pf;
3025
3026 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3027 return 0;
3028
3029 /* Tx timestamps cannot be sampled when doing TSO */
3030 if (tx_flags & I40E_TX_FLAGS_TSO)
3031 return 0;
3032
3033 /* only timestamp the outbound packet if the user has requested it and
3034 * we are not already transmitting a packet to be timestamped
3035 */
3036 pf = i40e_netdev_to_pf(tx_ring->netdev);
3037 if (!(pf->flags & I40E_FLAG_PTP))
3038 return 0;
3039
3040 if (pf->ptp_tx &&
3041 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3042 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3043 pf->ptp_tx_start = jiffies;
3044 pf->ptp_tx_skb = skb_get(skb);
3045 } else {
3046 pf->tx_hwtstamp_skipped++;
3047 return 0;
3048 }
3049
3050 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3051 I40E_TXD_CTX_QW1_CMD_SHIFT;
3052
3053 return 1;
3054 }
3055
3056 /**
3057 * i40e_tx_enable_csum - Enable Tx checksum offloads
3058 * @skb: send buffer
3059 * @tx_flags: pointer to Tx flags currently set
3060 * @td_cmd: Tx descriptor command bits to set
3061 * @td_offset: Tx descriptor header offsets to set
3062 * @tx_ring: Tx descriptor ring
3063 * @cd_tunneling: ptr to context desc bits
3064 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3065 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3066 u32 *td_cmd, u32 *td_offset,
3067 struct i40e_ring *tx_ring,
3068 u32 *cd_tunneling)
3069 {
3070 union {
3071 struct iphdr *v4;
3072 struct ipv6hdr *v6;
3073 unsigned char *hdr;
3074 } ip;
3075 union {
3076 struct tcphdr *tcp;
3077 struct udphdr *udp;
3078 unsigned char *hdr;
3079 } l4;
3080 unsigned char *exthdr;
3081 u32 offset, cmd = 0;
3082 __be16 frag_off;
3083 u8 l4_proto = 0;
3084
3085 if (skb->ip_summed != CHECKSUM_PARTIAL)
3086 return 0;
3087
3088 ip.hdr = skb_network_header(skb);
3089 l4.hdr = skb_transport_header(skb);
3090
3091 /* compute outer L2 header size */
3092 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3093
3094 if (skb->encapsulation) {
3095 u32 tunnel = 0;
3096 /* define outer network header type */
3097 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3098 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3099 I40E_TX_CTX_EXT_IP_IPV4 :
3100 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3101
3102 l4_proto = ip.v4->protocol;
3103 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3104 int ret;
3105
3106 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3107
3108 exthdr = ip.hdr + sizeof(*ip.v6);
3109 l4_proto = ip.v6->nexthdr;
3110 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3111 &l4_proto, &frag_off);
3112 if (ret < 0)
3113 return -1;
3114 }
3115
3116 /* define outer transport */
3117 switch (l4_proto) {
3118 case IPPROTO_UDP:
3119 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3120 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3121 break;
3122 case IPPROTO_GRE:
3123 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3124 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3125 break;
3126 case IPPROTO_IPIP:
3127 case IPPROTO_IPV6:
3128 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3129 l4.hdr = skb_inner_network_header(skb);
3130 break;
3131 default:
3132 if (*tx_flags & I40E_TX_FLAGS_TSO)
3133 return -1;
3134
3135 skb_checksum_help(skb);
3136 return 0;
3137 }
3138
3139 /* compute outer L3 header size */
3140 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3141 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3142
3143 /* switch IP header pointer from outer to inner header */
3144 ip.hdr = skb_inner_network_header(skb);
3145
3146 /* compute tunnel header size */
3147 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3148 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3149
3150 /* indicate if we need to offload outer UDP header */
3151 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3152 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3153 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3154 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3155
3156 /* record tunnel offload values */
3157 *cd_tunneling |= tunnel;
3158
3159 /* switch L4 header pointer from outer to inner */
3160 l4.hdr = skb_inner_transport_header(skb);
3161 l4_proto = 0;
3162
3163 /* reset type as we transition from outer to inner headers */
3164 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3165 if (ip.v4->version == 4)
3166 *tx_flags |= I40E_TX_FLAGS_IPV4;
3167 if (ip.v6->version == 6)
3168 *tx_flags |= I40E_TX_FLAGS_IPV6;
3169 }
3170
3171 /* Enable IP checksum offloads */
3172 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3173 l4_proto = ip.v4->protocol;
3174 /* the stack computes the IP header already, the only time we
3175 * need the hardware to recompute it is in the case of TSO.
3176 */
3177 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3178 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3179 I40E_TX_DESC_CMD_IIPT_IPV4;
3180 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3181 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3182
3183 exthdr = ip.hdr + sizeof(*ip.v6);
3184 l4_proto = ip.v6->nexthdr;
3185 if (l4.hdr != exthdr)
3186 ipv6_skip_exthdr(skb, exthdr - skb->data,
3187 &l4_proto, &frag_off);
3188 }
3189
3190 /* compute inner L3 header size */
3191 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3192
3193 /* Enable L4 checksum offloads */
3194 switch (l4_proto) {
3195 case IPPROTO_TCP:
3196 /* enable checksum offloads */
3197 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3198 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3199 break;
3200 case IPPROTO_SCTP:
3201 /* enable SCTP checksum offload */
3202 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3203 offset |= (sizeof(struct sctphdr) >> 2) <<
3204 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3205 break;
3206 case IPPROTO_UDP:
3207 /* enable UDP checksum offload */
3208 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3209 offset |= (sizeof(struct udphdr) >> 2) <<
3210 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3211 break;
3212 default:
3213 if (*tx_flags & I40E_TX_FLAGS_TSO)
3214 return -1;
3215 skb_checksum_help(skb);
3216 return 0;
3217 }
3218
3219 *td_cmd |= cmd;
3220 *td_offset |= offset;
3221
3222 return 1;
3223 }
3224
3225 /**
3226 * i40e_create_tx_ctx Build the Tx context descriptor
3227 * @tx_ring: ring to create the descriptor on
3228 * @cd_type_cmd_tso_mss: Quad Word 1
3229 * @cd_tunneling: Quad Word 0 - bits 0-31
3230 * @cd_l2tag2: Quad Word 0 - bits 32-63
3231 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3232 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3233 const u64 cd_type_cmd_tso_mss,
3234 const u32 cd_tunneling, const u32 cd_l2tag2)
3235 {
3236 struct i40e_tx_context_desc *context_desc;
3237 int i = tx_ring->next_to_use;
3238
3239 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3240 !cd_tunneling && !cd_l2tag2)
3241 return;
3242
3243 /* grab the next descriptor */
3244 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3245
3246 i++;
3247 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3248
3249 /* cpu_to_le32 and assign to struct fields */
3250 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3251 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3252 context_desc->rsvd = cpu_to_le16(0);
3253 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3254 }
3255
3256 /**
3257 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3258 * @tx_ring: the ring to be checked
3259 * @size: the size buffer we want to assure is available
3260 *
3261 * Returns -EBUSY if a stop is needed, else 0
3262 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3263 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3264 {
3265 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3266 /* Memory barrier before checking head and tail */
3267 smp_mb();
3268
3269 /* Check again in a case another CPU has just made room available. */
3270 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3271 return -EBUSY;
3272
3273 /* A reprieve! - use start_queue because it doesn't call schedule */
3274 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3275 ++tx_ring->tx_stats.restart_queue;
3276 return 0;
3277 }
3278
3279 /**
3280 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3281 * @skb: send buffer
3282 *
3283 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3284 * and so we need to figure out the cases where we need to linearize the skb.
3285 *
3286 * For TSO we need to count the TSO header and segment payload separately.
3287 * As such we need to check cases where we have 7 fragments or more as we
3288 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3289 * the segment payload in the first descriptor, and another 7 for the
3290 * fragments.
3291 **/
__i40e_chk_linearize(struct sk_buff * skb)3292 bool __i40e_chk_linearize(struct sk_buff *skb)
3293 {
3294 const skb_frag_t *frag, *stale;
3295 int nr_frags, sum;
3296
3297 /* no need to check if number of frags is less than 7 */
3298 nr_frags = skb_shinfo(skb)->nr_frags;
3299 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3300 return false;
3301
3302 /* We need to walk through the list and validate that each group
3303 * of 6 fragments totals at least gso_size.
3304 */
3305 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3306 frag = &skb_shinfo(skb)->frags[0];
3307
3308 /* Initialize size to the negative value of gso_size minus 1. We
3309 * use this as the worst case scenerio in which the frag ahead
3310 * of us only provides one byte which is why we are limited to 6
3311 * descriptors for a single transmit as the header and previous
3312 * fragment are already consuming 2 descriptors.
3313 */
3314 sum = 1 - skb_shinfo(skb)->gso_size;
3315
3316 /* Add size of frags 0 through 4 to create our initial sum */
3317 sum += skb_frag_size(frag++);
3318 sum += skb_frag_size(frag++);
3319 sum += skb_frag_size(frag++);
3320 sum += skb_frag_size(frag++);
3321 sum += skb_frag_size(frag++);
3322
3323 /* Walk through fragments adding latest fragment, testing it, and
3324 * then removing stale fragments from the sum.
3325 */
3326 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3327 int stale_size = skb_frag_size(stale);
3328
3329 sum += skb_frag_size(frag++);
3330
3331 /* The stale fragment may present us with a smaller
3332 * descriptor than the actual fragment size. To account
3333 * for that we need to remove all the data on the front and
3334 * figure out what the remainder would be in the last
3335 * descriptor associated with the fragment.
3336 */
3337 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3338 int align_pad = -(skb_frag_off(stale)) &
3339 (I40E_MAX_READ_REQ_SIZE - 1);
3340
3341 sum -= align_pad;
3342 stale_size -= align_pad;
3343
3344 do {
3345 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3346 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3347 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3348 }
3349
3350 /* if sum is negative we failed to make sufficient progress */
3351 if (sum < 0)
3352 return true;
3353
3354 if (!nr_frags--)
3355 break;
3356
3357 sum -= stale_size;
3358 }
3359
3360 return false;
3361 }
3362
3363 /**
3364 * i40e_tx_map - Build the Tx descriptor
3365 * @tx_ring: ring to send buffer on
3366 * @skb: send buffer
3367 * @first: first buffer info buffer to use
3368 * @tx_flags: collected send information
3369 * @hdr_len: size of the packet header
3370 * @td_cmd: the command field in the descriptor
3371 * @td_offset: offset for checksum or crc
3372 *
3373 * Returns 0 on success, -1 on failure to DMA
3374 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3375 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3376 struct i40e_tx_buffer *first, u32 tx_flags,
3377 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3378 {
3379 unsigned int data_len = skb->data_len;
3380 unsigned int size = skb_headlen(skb);
3381 skb_frag_t *frag;
3382 struct i40e_tx_buffer *tx_bi;
3383 struct i40e_tx_desc *tx_desc;
3384 u16 i = tx_ring->next_to_use;
3385 u32 td_tag = 0;
3386 dma_addr_t dma;
3387 u16 desc_count = 1;
3388
3389 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3390 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3391 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3392 I40E_TX_FLAGS_VLAN_SHIFT;
3393 }
3394
3395 first->tx_flags = tx_flags;
3396
3397 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3398
3399 tx_desc = I40E_TX_DESC(tx_ring, i);
3400 tx_bi = first;
3401
3402 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3403 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3404
3405 if (dma_mapping_error(tx_ring->dev, dma))
3406 goto dma_error;
3407
3408 /* record length, and DMA address */
3409 dma_unmap_len_set(tx_bi, len, size);
3410 dma_unmap_addr_set(tx_bi, dma, dma);
3411
3412 /* align size to end of page */
3413 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3414 tx_desc->buffer_addr = cpu_to_le64(dma);
3415
3416 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3417 tx_desc->cmd_type_offset_bsz =
3418 build_ctob(td_cmd, td_offset,
3419 max_data, td_tag);
3420
3421 tx_desc++;
3422 i++;
3423 desc_count++;
3424
3425 if (i == tx_ring->count) {
3426 tx_desc = I40E_TX_DESC(tx_ring, 0);
3427 i = 0;
3428 }
3429
3430 dma += max_data;
3431 size -= max_data;
3432
3433 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3434 tx_desc->buffer_addr = cpu_to_le64(dma);
3435 }
3436
3437 if (likely(!data_len))
3438 break;
3439
3440 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3441 size, td_tag);
3442
3443 tx_desc++;
3444 i++;
3445 desc_count++;
3446
3447 if (i == tx_ring->count) {
3448 tx_desc = I40E_TX_DESC(tx_ring, 0);
3449 i = 0;
3450 }
3451
3452 size = skb_frag_size(frag);
3453 data_len -= size;
3454
3455 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3456 DMA_TO_DEVICE);
3457
3458 tx_bi = &tx_ring->tx_bi[i];
3459 }
3460
3461 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3462
3463 i++;
3464 if (i == tx_ring->count)
3465 i = 0;
3466
3467 tx_ring->next_to_use = i;
3468
3469 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3470
3471 /* write last descriptor with EOP bit */
3472 td_cmd |= I40E_TX_DESC_CMD_EOP;
3473
3474 /* We OR these values together to check both against 4 (WB_STRIDE)
3475 * below. This is safe since we don't re-use desc_count afterwards.
3476 */
3477 desc_count |= ++tx_ring->packet_stride;
3478
3479 if (desc_count >= WB_STRIDE) {
3480 /* write last descriptor with RS bit set */
3481 td_cmd |= I40E_TX_DESC_CMD_RS;
3482 tx_ring->packet_stride = 0;
3483 }
3484
3485 tx_desc->cmd_type_offset_bsz =
3486 build_ctob(td_cmd, td_offset, size, td_tag);
3487
3488 skb_tx_timestamp(skb);
3489
3490 /* Force memory writes to complete before letting h/w know there
3491 * are new descriptors to fetch.
3492 *
3493 * We also use this memory barrier to make certain all of the
3494 * status bits have been updated before next_to_watch is written.
3495 */
3496 wmb();
3497
3498 /* set next_to_watch value indicating a packet is present */
3499 first->next_to_watch = tx_desc;
3500
3501 /* notify HW of packet */
3502 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3503 writel(i, tx_ring->tail);
3504 }
3505
3506 return 0;
3507
3508 dma_error:
3509 dev_info(tx_ring->dev, "TX DMA map failed\n");
3510
3511 /* clear dma mappings for failed tx_bi map */
3512 for (;;) {
3513 tx_bi = &tx_ring->tx_bi[i];
3514 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3515 if (tx_bi == first)
3516 break;
3517 if (i == 0)
3518 i = tx_ring->count;
3519 i--;
3520 }
3521
3522 tx_ring->next_to_use = i;
3523
3524 return -1;
3525 }
3526
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3527 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3528 const struct sk_buff *skb,
3529 u16 num_tx_queues)
3530 {
3531 u32 jhash_initval_salt = 0xd631614b;
3532 u32 hash;
3533
3534 if (skb->sk && skb->sk->sk_hash)
3535 hash = skb->sk->sk_hash;
3536 else
3537 hash = (__force u16)skb->protocol ^ skb->hash;
3538
3539 hash = jhash_1word(hash, jhash_initval_salt);
3540
3541 return (u16)(((u64)hash * num_tx_queues) >> 32);
3542 }
3543
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3544 u16 i40e_lan_select_queue(struct net_device *netdev,
3545 struct sk_buff *skb,
3546 struct net_device __always_unused *sb_dev)
3547 {
3548 struct i40e_netdev_priv *np = netdev_priv(netdev);
3549 struct i40e_vsi *vsi = np->vsi;
3550 struct i40e_hw *hw;
3551 u16 qoffset;
3552 u16 qcount;
3553 u8 tclass;
3554 u16 hash;
3555 u8 prio;
3556
3557 /* is DCB enabled at all? */
3558 if (vsi->tc_config.numtc == 1)
3559 return netdev_pick_tx(netdev, skb, sb_dev);
3560
3561 prio = skb->priority;
3562 hw = &vsi->back->hw;
3563 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3564 /* sanity check */
3565 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3566 tclass = 0;
3567
3568 /* select a queue assigned for the given TC */
3569 qcount = vsi->tc_config.tc_info[tclass].qcount;
3570 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3571
3572 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3573 return qoffset + hash;
3574 }
3575
3576 /**
3577 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3578 * @xdpf: data to transmit
3579 * @xdp_ring: XDP Tx ring
3580 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3581 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3582 struct i40e_ring *xdp_ring)
3583 {
3584 u16 i = xdp_ring->next_to_use;
3585 struct i40e_tx_buffer *tx_bi;
3586 struct i40e_tx_desc *tx_desc;
3587 void *data = xdpf->data;
3588 u32 size = xdpf->len;
3589 dma_addr_t dma;
3590
3591 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3592 xdp_ring->tx_stats.tx_busy++;
3593 return I40E_XDP_CONSUMED;
3594 }
3595 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3596 if (dma_mapping_error(xdp_ring->dev, dma))
3597 return I40E_XDP_CONSUMED;
3598
3599 tx_bi = &xdp_ring->tx_bi[i];
3600 tx_bi->bytecount = size;
3601 tx_bi->gso_segs = 1;
3602 tx_bi->xdpf = xdpf;
3603
3604 /* record length, and DMA address */
3605 dma_unmap_len_set(tx_bi, len, size);
3606 dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608 tx_desc = I40E_TX_DESC(xdp_ring, i);
3609 tx_desc->buffer_addr = cpu_to_le64(dma);
3610 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3611 | I40E_TXD_CMD,
3612 0, size, 0);
3613
3614 /* Make certain all of the status bits have been updated
3615 * before next_to_watch is written.
3616 */
3617 smp_wmb();
3618
3619 xdp_ring->xdp_tx_active++;
3620 i++;
3621 if (i == xdp_ring->count)
3622 i = 0;
3623
3624 tx_bi->next_to_watch = tx_desc;
3625 xdp_ring->next_to_use = i;
3626
3627 return I40E_XDP_TX;
3628 }
3629
3630 /**
3631 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3632 * @skb: send buffer
3633 * @tx_ring: ring to send buffer on
3634 *
3635 * Returns NETDEV_TX_OK if sent, else an error code
3636 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3637 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3638 struct i40e_ring *tx_ring)
3639 {
3640 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3641 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3642 struct i40e_tx_buffer *first;
3643 u32 td_offset = 0;
3644 u32 tx_flags = 0;
3645 __be16 protocol;
3646 u32 td_cmd = 0;
3647 u8 hdr_len = 0;
3648 int tso, count;
3649 int tsyn;
3650
3651 /* prefetch the data, we'll need it later */
3652 prefetch(skb->data);
3653
3654 i40e_trace(xmit_frame_ring, skb, tx_ring);
3655
3656 count = i40e_xmit_descriptor_count(skb);
3657 if (i40e_chk_linearize(skb, count)) {
3658 if (__skb_linearize(skb)) {
3659 dev_kfree_skb_any(skb);
3660 return NETDEV_TX_OK;
3661 }
3662 count = i40e_txd_use_count(skb->len);
3663 tx_ring->tx_stats.tx_linearize++;
3664 }
3665
3666 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3667 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3668 * + 4 desc gap to avoid the cache line where head is,
3669 * + 1 desc for context descriptor,
3670 * otherwise try next time
3671 */
3672 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3673 tx_ring->tx_stats.tx_busy++;
3674 return NETDEV_TX_BUSY;
3675 }
3676
3677 /* record the location of the first descriptor for this packet */
3678 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3679 first->skb = skb;
3680 first->bytecount = skb->len;
3681 first->gso_segs = 1;
3682
3683 /* prepare the xmit flags */
3684 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3685 goto out_drop;
3686
3687 /* obtain protocol of skb */
3688 protocol = vlan_get_protocol(skb);
3689
3690 /* setup IPv4/IPv6 offloads */
3691 if (protocol == htons(ETH_P_IP))
3692 tx_flags |= I40E_TX_FLAGS_IPV4;
3693 else if (protocol == htons(ETH_P_IPV6))
3694 tx_flags |= I40E_TX_FLAGS_IPV6;
3695
3696 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3697
3698 if (tso < 0)
3699 goto out_drop;
3700 else if (tso)
3701 tx_flags |= I40E_TX_FLAGS_TSO;
3702
3703 /* Always offload the checksum, since it's in the data descriptor */
3704 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3705 tx_ring, &cd_tunneling);
3706 if (tso < 0)
3707 goto out_drop;
3708
3709 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3710
3711 if (tsyn)
3712 tx_flags |= I40E_TX_FLAGS_TSYN;
3713
3714 /* always enable CRC insertion offload */
3715 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3716
3717 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3718 cd_tunneling, cd_l2tag2);
3719
3720 /* Add Flow Director ATR if it's enabled.
3721 *
3722 * NOTE: this must always be directly before the data descriptor.
3723 */
3724 i40e_atr(tx_ring, skb, tx_flags);
3725
3726 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3727 td_cmd, td_offset))
3728 goto cleanup_tx_tstamp;
3729
3730 return NETDEV_TX_OK;
3731
3732 out_drop:
3733 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3734 dev_kfree_skb_any(first->skb);
3735 first->skb = NULL;
3736 cleanup_tx_tstamp:
3737 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3738 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3739
3740 dev_kfree_skb_any(pf->ptp_tx_skb);
3741 pf->ptp_tx_skb = NULL;
3742 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3743 }
3744
3745 return NETDEV_TX_OK;
3746 }
3747
3748 /**
3749 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3750 * @skb: send buffer
3751 * @netdev: network interface device structure
3752 *
3753 * Returns NETDEV_TX_OK if sent, else an error code
3754 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3755 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3756 {
3757 struct i40e_netdev_priv *np = netdev_priv(netdev);
3758 struct i40e_vsi *vsi = np->vsi;
3759 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3760
3761 /* hardware can't handle really short frames, hardware padding works
3762 * beyond this point
3763 */
3764 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3765 return NETDEV_TX_OK;
3766
3767 return i40e_xmit_frame_ring(skb, tx_ring);
3768 }
3769
3770 /**
3771 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3772 * @dev: netdev
3773 * @n: number of frames
3774 * @frames: array of XDP buffer pointers
3775 * @flags: XDP extra info
3776 *
3777 * Returns number of frames successfully sent. Frames that fail are
3778 * free'ed via XDP return API.
3779 *
3780 * For error cases, a negative errno code is returned and no-frames
3781 * are transmitted (caller must handle freeing frames).
3782 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)3783 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3784 u32 flags)
3785 {
3786 struct i40e_netdev_priv *np = netdev_priv(dev);
3787 unsigned int queue_index = smp_processor_id();
3788 struct i40e_vsi *vsi = np->vsi;
3789 struct i40e_pf *pf = vsi->back;
3790 struct i40e_ring *xdp_ring;
3791 int drops = 0;
3792 int i;
3793
3794 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3795 return -ENETDOWN;
3796
3797 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3798 test_bit(__I40E_CONFIG_BUSY, pf->state))
3799 return -ENXIO;
3800
3801 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3802 return -EINVAL;
3803
3804 xdp_ring = vsi->xdp_rings[queue_index];
3805
3806 for (i = 0; i < n; i++) {
3807 struct xdp_frame *xdpf = frames[i];
3808 int err;
3809
3810 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3811 if (err != I40E_XDP_TX) {
3812 xdp_return_frame_rx_napi(xdpf);
3813 drops++;
3814 }
3815 }
3816
3817 if (unlikely(flags & XDP_XMIT_FLUSH))
3818 i40e_xdp_ring_update_tail(xdp_ring);
3819
3820 return n - drops;
3821 }
3822