1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_ring.h"
37 #include "gt/intel_rps.h"
38
39 #include "i915_active.h"
40 #include "i915_drv.h"
41 #include "i915_globals.h"
42 #include "i915_trace.h"
43 #include "intel_pm.h"
44
45 struct execute_cb {
46 struct irq_work work;
47 struct i915_sw_fence *fence;
48 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 struct i915_request *signal;
50 };
51
52 static struct i915_global_request {
53 struct i915_global base;
54 struct kmem_cache *slab_requests;
55 struct kmem_cache *slab_execute_cbs;
56 } global;
57
i915_fence_get_driver_name(struct dma_fence * fence)58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 return dev_name(to_request(fence)->engine->i915->drm.dev);
61 }
62
i915_fence_get_timeline_name(struct dma_fence * fence)63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 const struct i915_gem_context *ctx;
66
67 /*
68 * The timeline struct (as part of the ppgtt underneath a context)
69 * may be freed when the request is no longer in use by the GPU.
70 * We could extend the life of a context to beyond that of all
71 * fences, possibly keeping the hw resource around indefinitely,
72 * or we just give them a false name. Since
73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 * lie seems justifiable.
75 */
76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 return "signaled";
78
79 ctx = i915_request_gem_context(to_request(fence));
80 if (!ctx)
81 return "[" DRIVER_NAME "]";
82
83 return ctx->name;
84 }
85
i915_fence_signaled(struct dma_fence * fence)86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 return i915_request_completed(to_request(fence));
89 }
90
i915_fence_enable_signaling(struct dma_fence * fence)91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)96 static signed long i915_fence_wait(struct dma_fence *fence,
97 bool interruptible,
98 signed long timeout)
99 {
100 return i915_request_wait(to_request(fence),
101 interruptible | I915_WAIT_PRIORITY,
102 timeout);
103 }
104
i915_request_slab_cache(void)105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107 return global.slab_requests;
108 }
109
i915_fence_release(struct dma_fence * fence)110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 struct i915_request *rq = to_request(fence);
113
114 /*
115 * The request is put onto a RCU freelist (i.e. the address
116 * is immediately reused), mark the fences as being freed now.
117 * Otherwise the debugobjects for the fences are only marked as
118 * freed when the slab cache itself is freed, and so we would get
119 * caught trying to reuse dead objects.
120 */
121 i915_sw_fence_fini(&rq->submit);
122 i915_sw_fence_fini(&rq->semaphore);
123
124 /*
125 * Keep one request on each engine for reserved use under mempressure
126 *
127 * We do not hold a reference to the engine here and so have to be
128 * very careful in what rq->engine we poke. The virtual engine is
129 * referenced via the rq->context and we released that ref during
130 * i915_request_retire(), ergo we must not dereference a virtual
131 * engine here. Not that we would want to, as the only consumer of
132 * the reserved engine->request_pool is the power management parking,
133 * which must-not-fail, and that is only run on the physical engines.
134 *
135 * Since the request must have been executed to be have completed,
136 * we know that it will have been processed by the HW and will
137 * not be unsubmitted again, so rq->engine and rq->execution_mask
138 * at this point is stable. rq->execution_mask will be a single
139 * bit if the last and _only_ engine it could execution on was a
140 * physical engine, if it's multiple bits then it started on and
141 * could still be on a virtual engine. Thus if the mask is not a
142 * power-of-two we assume that rq->engine may still be a virtual
143 * engine and so a dangling invalid pointer that we cannot dereference
144 *
145 * For example, consider the flow of a bonded request through a virtual
146 * engine. The request is created with a wide engine mask (all engines
147 * that we might execute on). On processing the bond, the request mask
148 * is reduced to one or more engines. If the request is subsequently
149 * bound to a single engine, it will then be constrained to only
150 * execute on that engine and never returned to the virtual engine
151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152 * know that if the rq->execution_mask is a single bit, rq->engine
153 * can be a physical engine with the exact corresponding mask.
154 */
155 if (is_power_of_2(rq->execution_mask) &&
156 !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 return;
158
159 kmem_cache_free(global.slab_requests, rq);
160 }
161
162 const struct dma_fence_ops i915_fence_ops = {
163 .get_driver_name = i915_fence_get_driver_name,
164 .get_timeline_name = i915_fence_get_timeline_name,
165 .enable_signaling = i915_fence_enable_signaling,
166 .signaled = i915_fence_signaled,
167 .wait = i915_fence_wait,
168 .release = i915_fence_release,
169 };
170
irq_execute_cb(struct irq_work * wrk)171 static void irq_execute_cb(struct irq_work *wrk)
172 {
173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174
175 i915_sw_fence_complete(cb->fence);
176 kmem_cache_free(global.slab_execute_cbs, cb);
177 }
178
irq_execute_cb_hook(struct irq_work * wrk)179 static void irq_execute_cb_hook(struct irq_work *wrk)
180 {
181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182
183 cb->hook(container_of(cb->fence, struct i915_request, submit),
184 &cb->signal->fence);
185 i915_request_put(cb->signal);
186
187 irq_execute_cb(wrk);
188 }
189
190 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))191 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192 {
193 struct execute_cb *cb, *cn;
194
195 if (llist_empty(&rq->execute_cb))
196 return;
197
198 llist_for_each_entry_safe(cb, cn,
199 llist_del_all(&rq->execute_cb),
200 work.llnode)
201 fn(&cb->work);
202 }
203
__notify_execute_cb_irq(struct i915_request * rq)204 static void __notify_execute_cb_irq(struct i915_request *rq)
205 {
206 __notify_execute_cb(rq, irq_work_queue);
207 }
208
irq_work_imm(struct irq_work * wrk)209 static bool irq_work_imm(struct irq_work *wrk)
210 {
211 wrk->func(wrk);
212 return false;
213 }
214
__notify_execute_cb_imm(struct i915_request * rq)215 static void __notify_execute_cb_imm(struct i915_request *rq)
216 {
217 __notify_execute_cb(rq, irq_work_imm);
218 }
219
free_capture_list(struct i915_request * request)220 static void free_capture_list(struct i915_request *request)
221 {
222 struct i915_capture_list *capture;
223
224 capture = fetch_and_zero(&request->capture_list);
225 while (capture) {
226 struct i915_capture_list *next = capture->next;
227
228 kfree(capture);
229 capture = next;
230 }
231 }
232
__i915_request_fill(struct i915_request * rq,u8 val)233 static void __i915_request_fill(struct i915_request *rq, u8 val)
234 {
235 void *vaddr = rq->ring->vaddr;
236 u32 head;
237
238 head = rq->infix;
239 if (rq->postfix < head) {
240 memset(vaddr + head, val, rq->ring->size - head);
241 head = 0;
242 }
243 memset(vaddr + head, val, rq->postfix - head);
244 }
245
remove_from_engine(struct i915_request * rq)246 static void remove_from_engine(struct i915_request *rq)
247 {
248 struct intel_engine_cs *engine, *locked;
249
250 /*
251 * Virtual engines complicate acquiring the engine timeline lock,
252 * as their rq->engine pointer is not stable until under that
253 * engine lock. The simple ploy we use is to take the lock then
254 * check that the rq still belongs to the newly locked engine.
255 */
256 locked = READ_ONCE(rq->engine);
257 spin_lock_irq(&locked->active.lock);
258 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
259 spin_unlock(&locked->active.lock);
260 spin_lock(&engine->active.lock);
261 locked = engine;
262 }
263 list_del_init(&rq->sched.link);
264
265 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
266 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
267
268 /* Prevent further __await_execution() registering a cb, then flush */
269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270
271 spin_unlock_irq(&locked->active.lock);
272
273 __notify_execute_cb_imm(rq);
274 }
275
i915_request_retire(struct i915_request * rq)276 bool i915_request_retire(struct i915_request *rq)
277 {
278 if (!i915_request_completed(rq))
279 return false;
280
281 RQ_TRACE(rq, "\n");
282
283 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
284 trace_i915_request_retire(rq);
285 i915_request_mark_complete(rq);
286
287 /*
288 * We know the GPU must have read the request to have
289 * sent us the seqno + interrupt, so use the position
290 * of tail of the request to update the last known position
291 * of the GPU head.
292 *
293 * Note this requires that we are always called in request
294 * completion order.
295 */
296 GEM_BUG_ON(!list_is_first(&rq->link,
297 &i915_request_timeline(rq)->requests));
298 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
299 /* Poison before we release our space in the ring */
300 __i915_request_fill(rq, POISON_FREE);
301 rq->ring->head = rq->postfix;
302
303 if (!i915_request_signaled(rq)) {
304 spin_lock_irq(&rq->lock);
305 dma_fence_signal_locked(&rq->fence);
306 spin_unlock_irq(&rq->lock);
307 }
308
309 if (i915_request_has_waitboost(rq)) {
310 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
311 atomic_dec(&rq->engine->gt->rps.num_waiters);
312 }
313
314 /*
315 * We only loosely track inflight requests across preemption,
316 * and so we may find ourselves attempting to retire a _completed_
317 * request that we have removed from the HW and put back on a run
318 * queue.
319 *
320 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
321 * after removing the breadcrumb and signaling it, so that we do not
322 * inadvertently attach the breadcrumb to a completed request.
323 */
324 remove_from_engine(rq);
325 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326
327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328
329 intel_context_exit(rq->context);
330 intel_context_unpin(rq->context);
331
332 free_capture_list(rq);
333 i915_sched_node_fini(&rq->sched);
334 i915_request_put(rq);
335
336 return true;
337 }
338
i915_request_retire_upto(struct i915_request * rq)339 void i915_request_retire_upto(struct i915_request *rq)
340 {
341 struct intel_timeline * const tl = i915_request_timeline(rq);
342 struct i915_request *tmp;
343
344 RQ_TRACE(rq, "\n");
345
346 GEM_BUG_ON(!i915_request_completed(rq));
347
348 do {
349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
350 } while (i915_request_retire(tmp) && tmp != rq);
351 }
352
353 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)354 __engine_active(struct intel_engine_cs *engine)
355 {
356 return READ_ONCE(engine->execlists.active);
357 }
358
__request_in_flight(const struct i915_request * signal)359 static bool __request_in_flight(const struct i915_request *signal)
360 {
361 struct i915_request * const *port, *rq;
362 bool inflight = false;
363
364 if (!i915_request_is_ready(signal))
365 return false;
366
367 /*
368 * Even if we have unwound the request, it may still be on
369 * the GPU (preempt-to-busy). If that request is inside an
370 * unpreemptible critical section, it will not be removed. Some
371 * GPU functions may even be stuck waiting for the paired request
372 * (__await_execution) to be submitted and cannot be preempted
373 * until the bond is executing.
374 *
375 * As we know that there are always preemption points between
376 * requests, we know that only the currently executing request
377 * may be still active even though we have cleared the flag.
378 * However, we can't rely on our tracking of ELSP[0] to know
379 * which request is currently active and so maybe stuck, as
380 * the tracking maybe an event behind. Instead assume that
381 * if the context is still inflight, then it is still active
382 * even if the active flag has been cleared.
383 *
384 * To further complicate matters, if there a pending promotion, the HW
385 * may either perform a context switch to the second inflight execlists,
386 * or it may switch to the pending set of execlists. In the case of the
387 * latter, it may send the ACK and we process the event copying the
388 * pending[] over top of inflight[], _overwriting_ our *active. Since
389 * this implies the HW is arbitrating and not struck in *active, we do
390 * not worry about complete accuracy, but we do require no read/write
391 * tearing of the pointer [the read of the pointer must be valid, even
392 * as the array is being overwritten, for which we require the writes
393 * to avoid tearing.]
394 *
395 * Note that the read of *execlists->active may race with the promotion
396 * of execlists->pending[] to execlists->inflight[], overwritting
397 * the value at *execlists->active. This is fine. The promotion implies
398 * that we received an ACK from the HW, and so the context is not
399 * stuck -- if we do not see ourselves in *active, the inflight status
400 * is valid. If instead we see ourselves being copied into *active,
401 * we are inflight and may signal the callback.
402 */
403 if (!intel_context_inflight(signal->context))
404 return false;
405
406 rcu_read_lock();
407 for (port = __engine_active(signal->engine);
408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409 port++) {
410 if (rq->context == signal->context) {
411 inflight = i915_seqno_passed(rq->fence.seqno,
412 signal->fence.seqno);
413 break;
414 }
415 }
416 rcu_read_unlock();
417
418 return inflight;
419 }
420
421 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,void (* hook)(struct i915_request * rq,struct dma_fence * signal),gfp_t gfp)422 __await_execution(struct i915_request *rq,
423 struct i915_request *signal,
424 void (*hook)(struct i915_request *rq,
425 struct dma_fence *signal),
426 gfp_t gfp)
427 {
428 struct execute_cb *cb;
429
430 if (i915_request_is_active(signal)) {
431 if (hook)
432 hook(rq, &signal->fence);
433 return 0;
434 }
435
436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437 if (!cb)
438 return -ENOMEM;
439
440 cb->fence = &rq->submit;
441 i915_sw_fence_await(cb->fence);
442 init_irq_work(&cb->work, irq_execute_cb);
443
444 if (hook) {
445 cb->hook = hook;
446 cb->signal = i915_request_get(signal);
447 cb->work.func = irq_execute_cb_hook;
448 }
449
450 /*
451 * Register the callback first, then see if the signaler is already
452 * active. This ensures that if we race with the
453 * __notify_execute_cb from i915_request_submit() and we are not
454 * included in that list, we get a second bite of the cherry and
455 * execute it ourselves. After this point, a future
456 * i915_request_submit() will notify us.
457 *
458 * In i915_request_retire() we set the ACTIVE bit on a completed
459 * request (then flush the execute_cb). So by registering the
460 * callback first, then checking the ACTIVE bit, we serialise with
461 * the completed/retired request.
462 */
463 if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
464 if (i915_request_is_active(signal) ||
465 __request_in_flight(signal))
466 __notify_execute_cb_imm(signal);
467 }
468
469 return 0;
470 }
471
fatal_error(int error)472 static bool fatal_error(int error)
473 {
474 switch (error) {
475 case 0: /* not an error! */
476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478 return false;
479 default:
480 return true;
481 }
482 }
483
__i915_request_skip(struct i915_request * rq)484 void __i915_request_skip(struct i915_request *rq)
485 {
486 GEM_BUG_ON(!fatal_error(rq->fence.error));
487
488 if (rq->infix == rq->postfix)
489 return;
490
491 /*
492 * As this request likely depends on state from the lost
493 * context, clear out all the user operations leaving the
494 * breadcrumb at the end (so we get the fence notifications).
495 */
496 __i915_request_fill(rq, 0);
497 rq->infix = rq->postfix;
498 }
499
i915_request_set_error_once(struct i915_request * rq,int error)500 void i915_request_set_error_once(struct i915_request *rq, int error)
501 {
502 int old;
503
504 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
505
506 if (i915_request_signaled(rq))
507 return;
508
509 old = READ_ONCE(rq->fence.error);
510 do {
511 if (fatal_error(old))
512 return;
513 } while (!try_cmpxchg(&rq->fence.error, &old, error));
514 }
515
__i915_request_submit(struct i915_request * request)516 bool __i915_request_submit(struct i915_request *request)
517 {
518 struct intel_engine_cs *engine = request->engine;
519 bool result = false;
520
521 RQ_TRACE(request, "\n");
522
523 GEM_BUG_ON(!irqs_disabled());
524 lockdep_assert_held(&engine->active.lock);
525
526 /*
527 * With the advent of preempt-to-busy, we frequently encounter
528 * requests that we have unsubmitted from HW, but left running
529 * until the next ack and so have completed in the meantime. On
530 * resubmission of that completed request, we can skip
531 * updating the payload, and execlists can even skip submitting
532 * the request.
533 *
534 * We must remove the request from the caller's priority queue,
535 * and the caller must only call us when the request is in their
536 * priority queue, under the active.lock. This ensures that the
537 * request has *not* yet been retired and we can safely move
538 * the request into the engine->active.list where it will be
539 * dropped upon retiring. (Otherwise if resubmit a *retired*
540 * request, this would be a horrible use-after-free.)
541 */
542 if (i915_request_completed(request))
543 goto xfer;
544
545 if (unlikely(intel_context_is_closed(request->context) &&
546 !intel_engine_has_heartbeat(engine)))
547 intel_context_set_banned(request->context);
548
549 if (unlikely(intel_context_is_banned(request->context)))
550 i915_request_set_error_once(request, -EIO);
551
552 if (unlikely(fatal_error(request->fence.error)))
553 __i915_request_skip(request);
554
555 /*
556 * Are we using semaphores when the gpu is already saturated?
557 *
558 * Using semaphores incurs a cost in having the GPU poll a
559 * memory location, busywaiting for it to change. The continual
560 * memory reads can have a noticeable impact on the rest of the
561 * system with the extra bus traffic, stalling the cpu as it too
562 * tries to access memory across the bus (perf stat -e bus-cycles).
563 *
564 * If we installed a semaphore on this request and we only submit
565 * the request after the signaler completed, that indicates the
566 * system is overloaded and using semaphores at this time only
567 * increases the amount of work we are doing. If so, we disable
568 * further use of semaphores until we are idle again, whence we
569 * optimistically try again.
570 */
571 if (request->sched.semaphores &&
572 i915_sw_fence_signaled(&request->semaphore))
573 engine->saturated |= request->sched.semaphores;
574
575 engine->emit_fini_breadcrumb(request,
576 request->ring->vaddr + request->postfix);
577
578 trace_i915_request_execute(request);
579 engine->serial++;
580 result = true;
581
582 xfer:
583 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
584 list_move_tail(&request->sched.link, &engine->active.requests);
585 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
586 }
587
588 /*
589 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
590 *
591 * In the future, perhaps when we have an active time-slicing scheduler,
592 * it will be interesting to unsubmit parallel execution and remove
593 * busywaits from the GPU until their master is restarted. This is
594 * quite hairy, we have to carefully rollback the fence and do a
595 * preempt-to-idle cycle on the target engine, all the while the
596 * master execute_cb may refire.
597 */
598 __notify_execute_cb_irq(request);
599
600 /* We may be recursing from the signal callback of another i915 fence */
601 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
602 i915_request_enable_breadcrumb(request);
603
604 return result;
605 }
606
i915_request_submit(struct i915_request * request)607 void i915_request_submit(struct i915_request *request)
608 {
609 struct intel_engine_cs *engine = request->engine;
610 unsigned long flags;
611
612 /* Will be called from irq-context when using foreign fences. */
613 spin_lock_irqsave(&engine->active.lock, flags);
614
615 __i915_request_submit(request);
616
617 spin_unlock_irqrestore(&engine->active.lock, flags);
618 }
619
__i915_request_unsubmit(struct i915_request * request)620 void __i915_request_unsubmit(struct i915_request *request)
621 {
622 struct intel_engine_cs *engine = request->engine;
623
624 /*
625 * Only unwind in reverse order, required so that the per-context list
626 * is kept in seqno/ring order.
627 */
628 RQ_TRACE(request, "\n");
629
630 GEM_BUG_ON(!irqs_disabled());
631 lockdep_assert_held(&engine->active.lock);
632
633 /*
634 * Before we remove this breadcrumb from the signal list, we have
635 * to ensure that a concurrent dma_fence_enable_signaling() does not
636 * attach itself. We first mark the request as no longer active and
637 * make sure that is visible to other cores, and then remove the
638 * breadcrumb if attached.
639 */
640 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
641 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643 i915_request_cancel_breadcrumb(request);
644
645 /* We've already spun, don't charge on resubmitting. */
646 if (request->sched.semaphores && i915_request_started(request))
647 request->sched.semaphores = 0;
648
649 /*
650 * We don't need to wake_up any waiters on request->execute, they
651 * will get woken by any other event or us re-adding this request
652 * to the engine timeline (__i915_request_submit()). The waiters
653 * should be quite adapt at finding that the request now has a new
654 * global_seqno to the one they went to sleep on.
655 */
656 }
657
i915_request_unsubmit(struct i915_request * request)658 void i915_request_unsubmit(struct i915_request *request)
659 {
660 struct intel_engine_cs *engine = request->engine;
661 unsigned long flags;
662
663 /* Will be called from irq-context when using foreign fences. */
664 spin_lock_irqsave(&engine->active.lock, flags);
665
666 __i915_request_unsubmit(request);
667
668 spin_unlock_irqrestore(&engine->active.lock, flags);
669 }
670
671 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)672 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
673 {
674 struct i915_request *request =
675 container_of(fence, typeof(*request), submit);
676
677 switch (state) {
678 case FENCE_COMPLETE:
679 trace_i915_request_submit(request);
680
681 if (unlikely(fence->error))
682 i915_request_set_error_once(request, fence->error);
683
684 /*
685 * We need to serialize use of the submit_request() callback
686 * with its hotplugging performed during an emergency
687 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
688 * critical section in order to force i915_gem_set_wedged() to
689 * wait until the submit_request() is completed before
690 * proceeding.
691 */
692 rcu_read_lock();
693 request->engine->submit_request(request);
694 rcu_read_unlock();
695 break;
696
697 case FENCE_FREE:
698 i915_request_put(request);
699 break;
700 }
701
702 return NOTIFY_DONE;
703 }
704
705 static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)706 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
707 {
708 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
709
710 switch (state) {
711 case FENCE_COMPLETE:
712 break;
713
714 case FENCE_FREE:
715 i915_request_put(rq);
716 break;
717 }
718
719 return NOTIFY_DONE;
720 }
721
retire_requests(struct intel_timeline * tl)722 static void retire_requests(struct intel_timeline *tl)
723 {
724 struct i915_request *rq, *rn;
725
726 list_for_each_entry_safe(rq, rn, &tl->requests, link)
727 if (!i915_request_retire(rq))
728 break;
729 }
730
731 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)732 request_alloc_slow(struct intel_timeline *tl,
733 struct i915_request **rsvd,
734 gfp_t gfp)
735 {
736 struct i915_request *rq;
737
738 /* If we cannot wait, dip into our reserves */
739 if (!gfpflags_allow_blocking(gfp)) {
740 rq = xchg(rsvd, NULL);
741 if (!rq) /* Use the normal failure path for one final WARN */
742 goto out;
743
744 return rq;
745 }
746
747 if (list_empty(&tl->requests))
748 goto out;
749
750 /* Move our oldest request to the slab-cache (if not in use!) */
751 rq = list_first_entry(&tl->requests, typeof(*rq), link);
752 i915_request_retire(rq);
753
754 rq = kmem_cache_alloc(global.slab_requests,
755 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
756 if (rq)
757 return rq;
758
759 /* Ratelimit ourselves to prevent oom from malicious clients */
760 rq = list_last_entry(&tl->requests, typeof(*rq), link);
761 cond_synchronize_rcu(rq->rcustate);
762
763 /* Retire our old requests in the hope that we free some */
764 retire_requests(tl);
765
766 out:
767 return kmem_cache_alloc(global.slab_requests, gfp);
768 }
769
__i915_request_ctor(void * arg)770 static void __i915_request_ctor(void *arg)
771 {
772 struct i915_request *rq = arg;
773
774 spin_lock_init(&rq->lock);
775 i915_sched_node_init(&rq->sched);
776 i915_sw_fence_init(&rq->submit, submit_notify);
777 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
778
779 rq->capture_list = NULL;
780
781 init_llist_head(&rq->execute_cb);
782 }
783
784 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)785 __i915_request_create(struct intel_context *ce, gfp_t gfp)
786 {
787 struct intel_timeline *tl = ce->timeline;
788 struct i915_request *rq;
789 u32 seqno;
790 int ret;
791
792 might_sleep_if(gfpflags_allow_blocking(gfp));
793
794 /* Check that the caller provided an already pinned context */
795 __intel_context_pin(ce);
796
797 /*
798 * Beware: Dragons be flying overhead.
799 *
800 * We use RCU to look up requests in flight. The lookups may
801 * race with the request being allocated from the slab freelist.
802 * That is the request we are writing to here, may be in the process
803 * of being read by __i915_active_request_get_rcu(). As such,
804 * we have to be very careful when overwriting the contents. During
805 * the RCU lookup, we change chase the request->engine pointer,
806 * read the request->global_seqno and increment the reference count.
807 *
808 * The reference count is incremented atomically. If it is zero,
809 * the lookup knows the request is unallocated and complete. Otherwise,
810 * it is either still in use, or has been reallocated and reset
811 * with dma_fence_init(). This increment is safe for release as we
812 * check that the request we have a reference to and matches the active
813 * request.
814 *
815 * Before we increment the refcount, we chase the request->engine
816 * pointer. We must not call kmem_cache_zalloc() or else we set
817 * that pointer to NULL and cause a crash during the lookup. If
818 * we see the request is completed (based on the value of the
819 * old engine and seqno), the lookup is complete and reports NULL.
820 * If we decide the request is not completed (new engine or seqno),
821 * then we grab a reference and double check that it is still the
822 * active request - which it won't be and restart the lookup.
823 *
824 * Do not use kmem_cache_zalloc() here!
825 */
826 rq = kmem_cache_alloc(global.slab_requests,
827 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
828 if (unlikely(!rq)) {
829 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
830 if (!rq) {
831 ret = -ENOMEM;
832 goto err_unreserve;
833 }
834 }
835
836 rq->context = ce;
837 rq->engine = ce->engine;
838 rq->ring = ce->ring;
839 rq->execution_mask = ce->engine->mask;
840
841 ret = intel_timeline_get_seqno(tl, rq, &seqno);
842 if (ret)
843 goto err_free;
844
845 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
846 tl->fence_context, seqno);
847
848 RCU_INIT_POINTER(rq->timeline, tl);
849 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
850 rq->hwsp_seqno = tl->hwsp_seqno;
851 GEM_BUG_ON(i915_request_completed(rq));
852
853 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
854
855 /* We bump the ref for the fence chain */
856 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
857 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
858
859 i915_sched_node_reinit(&rq->sched);
860
861 /* No zalloc, everything must be cleared after use */
862 rq->batch = NULL;
863 GEM_BUG_ON(rq->capture_list);
864 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
865
866 /*
867 * Reserve space in the ring buffer for all the commands required to
868 * eventually emit this request. This is to guarantee that the
869 * i915_request_add() call can't fail. Note that the reserve may need
870 * to be redone if the request is not actually submitted straight
871 * away, e.g. because a GPU scheduler has deferred it.
872 *
873 * Note that due to how we add reserved_space to intel_ring_begin()
874 * we need to double our request to ensure that if we need to wrap
875 * around inside i915_request_add() there is sufficient space at
876 * the beginning of the ring as well.
877 */
878 rq->reserved_space =
879 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
880
881 /*
882 * Record the position of the start of the request so that
883 * should we detect the updated seqno part-way through the
884 * GPU processing the request, we never over-estimate the
885 * position of the head.
886 */
887 rq->head = rq->ring->emit;
888
889 ret = rq->engine->request_alloc(rq);
890 if (ret)
891 goto err_unwind;
892
893 rq->infix = rq->ring->emit; /* end of header; start of user payload */
894
895 intel_context_mark_active(ce);
896 list_add_tail_rcu(&rq->link, &tl->requests);
897
898 return rq;
899
900 err_unwind:
901 ce->ring->emit = rq->head;
902
903 /* Make sure we didn't add ourselves to external state before freeing */
904 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
905 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
906
907 err_free:
908 kmem_cache_free(global.slab_requests, rq);
909 err_unreserve:
910 intel_context_unpin(ce);
911 return ERR_PTR(ret);
912 }
913
914 struct i915_request *
i915_request_create(struct intel_context * ce)915 i915_request_create(struct intel_context *ce)
916 {
917 struct i915_request *rq;
918 struct intel_timeline *tl;
919
920 tl = intel_context_timeline_lock(ce);
921 if (IS_ERR(tl))
922 return ERR_CAST(tl);
923
924 /* Move our oldest request to the slab-cache (if not in use!) */
925 rq = list_first_entry(&tl->requests, typeof(*rq), link);
926 if (!list_is_last(&rq->link, &tl->requests))
927 i915_request_retire(rq);
928
929 intel_context_enter(ce);
930 rq = __i915_request_create(ce, GFP_KERNEL);
931 intel_context_exit(ce); /* active reference transferred to request */
932 if (IS_ERR(rq))
933 goto err_unlock;
934
935 /* Check that we do not interrupt ourselves with a new request */
936 rq->cookie = lockdep_pin_lock(&tl->mutex);
937
938 return rq;
939
940 err_unlock:
941 intel_context_timeline_unlock(tl);
942 return rq;
943 }
944
945 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)946 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
947 {
948 struct dma_fence *fence;
949 int err;
950
951 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
952 return 0;
953
954 if (i915_request_started(signal))
955 return 0;
956
957 fence = NULL;
958 rcu_read_lock();
959 spin_lock_irq(&signal->lock);
960 do {
961 struct list_head *pos = READ_ONCE(signal->link.prev);
962 struct i915_request *prev;
963
964 /* Confirm signal has not been retired, the link is valid */
965 if (unlikely(i915_request_started(signal)))
966 break;
967
968 /* Is signal the earliest request on its timeline? */
969 if (pos == &rcu_dereference(signal->timeline)->requests)
970 break;
971
972 /*
973 * Peek at the request before us in the timeline. That
974 * request will only be valid before it is retired, so
975 * after acquiring a reference to it, confirm that it is
976 * still part of the signaler's timeline.
977 */
978 prev = list_entry(pos, typeof(*prev), link);
979 if (!i915_request_get_rcu(prev))
980 break;
981
982 /* After the strong barrier, confirm prev is still attached */
983 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
984 i915_request_put(prev);
985 break;
986 }
987
988 fence = &prev->fence;
989 } while (0);
990 spin_unlock_irq(&signal->lock);
991 rcu_read_unlock();
992 if (!fence)
993 return 0;
994
995 err = 0;
996 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
997 err = i915_sw_fence_await_dma_fence(&rq->submit,
998 fence, 0,
999 I915_FENCE_GFP);
1000 dma_fence_put(fence);
1001
1002 return err;
1003 }
1004
1005 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1006 already_busywaiting(struct i915_request *rq)
1007 {
1008 /*
1009 * Polling a semaphore causes bus traffic, delaying other users of
1010 * both the GPU and CPU. We want to limit the impact on others,
1011 * while taking advantage of early submission to reduce GPU
1012 * latency. Therefore we restrict ourselves to not using more
1013 * than one semaphore from each source, and not using a semaphore
1014 * if we have detected the engine is saturated (i.e. would not be
1015 * submitted early and cause bus traffic reading an already passed
1016 * semaphore).
1017 *
1018 * See the are-we-too-late? check in __i915_request_submit().
1019 */
1020 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1021 }
1022
1023 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1024 __emit_semaphore_wait(struct i915_request *to,
1025 struct i915_request *from,
1026 u32 seqno)
1027 {
1028 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1029 u32 hwsp_offset;
1030 int len, err;
1031 u32 *cs;
1032
1033 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1034 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1035
1036 /* We need to pin the signaler's HWSP until we are finished reading. */
1037 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1038 if (err)
1039 return err;
1040
1041 len = 4;
1042 if (has_token)
1043 len += 2;
1044
1045 cs = intel_ring_begin(to, len);
1046 if (IS_ERR(cs))
1047 return PTR_ERR(cs);
1048
1049 /*
1050 * Using greater-than-or-equal here means we have to worry
1051 * about seqno wraparound. To side step that issue, we swap
1052 * the timeline HWSP upon wrapping, so that everyone listening
1053 * for the old (pre-wrap) values do not see the much smaller
1054 * (post-wrap) values than they were expecting (and so wait
1055 * forever).
1056 */
1057 *cs++ = (MI_SEMAPHORE_WAIT |
1058 MI_SEMAPHORE_GLOBAL_GTT |
1059 MI_SEMAPHORE_POLL |
1060 MI_SEMAPHORE_SAD_GTE_SDD) +
1061 has_token;
1062 *cs++ = seqno;
1063 *cs++ = hwsp_offset;
1064 *cs++ = 0;
1065 if (has_token) {
1066 *cs++ = 0;
1067 *cs++ = MI_NOOP;
1068 }
1069
1070 intel_ring_advance(to, cs);
1071 return 0;
1072 }
1073
1074 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1075 emit_semaphore_wait(struct i915_request *to,
1076 struct i915_request *from,
1077 gfp_t gfp)
1078 {
1079 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1080 struct i915_sw_fence *wait = &to->submit;
1081
1082 if (!intel_context_use_semaphores(to->context))
1083 goto await_fence;
1084
1085 if (i915_request_has_initial_breadcrumb(to))
1086 goto await_fence;
1087
1088 if (!rcu_access_pointer(from->hwsp_cacheline))
1089 goto await_fence;
1090
1091 /*
1092 * If this or its dependents are waiting on an external fence
1093 * that may fail catastrophically, then we want to avoid using
1094 * sempahores as they bypass the fence signaling metadata, and we
1095 * lose the fence->error propagation.
1096 */
1097 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1098 goto await_fence;
1099
1100 /* Just emit the first semaphore we see as request space is limited. */
1101 if (already_busywaiting(to) & mask)
1102 goto await_fence;
1103
1104 if (i915_request_await_start(to, from) < 0)
1105 goto await_fence;
1106
1107 /* Only submit our spinner after the signaler is running! */
1108 if (__await_execution(to, from, NULL, gfp))
1109 goto await_fence;
1110
1111 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1112 goto await_fence;
1113
1114 to->sched.semaphores |= mask;
1115 wait = &to->semaphore;
1116
1117 await_fence:
1118 return i915_sw_fence_await_dma_fence(wait,
1119 &from->fence, 0,
1120 I915_FENCE_GFP);
1121 }
1122
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1123 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1124 struct dma_fence *fence)
1125 {
1126 return __intel_timeline_sync_is_later(tl,
1127 fence->context,
1128 fence->seqno - 1);
1129 }
1130
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1131 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1132 const struct dma_fence *fence)
1133 {
1134 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1135 }
1136
1137 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from,void (* hook)(struct i915_request * rq,struct dma_fence * signal))1138 __i915_request_await_execution(struct i915_request *to,
1139 struct i915_request *from,
1140 void (*hook)(struct i915_request *rq,
1141 struct dma_fence *signal))
1142 {
1143 int err;
1144
1145 GEM_BUG_ON(intel_context_is_barrier(from->context));
1146
1147 /* Submit both requests at the same time */
1148 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1149 if (err)
1150 return err;
1151
1152 /* Squash repeated depenendices to the same timelines */
1153 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1154 &from->fence))
1155 return 0;
1156
1157 /*
1158 * Wait until the start of this request.
1159 *
1160 * The execution cb fires when we submit the request to HW. But in
1161 * many cases this may be long before the request itself is ready to
1162 * run (consider that we submit 2 requests for the same context, where
1163 * the request of interest is behind an indefinite spinner). So we hook
1164 * up to both to reduce our queues and keep the execution lag minimised
1165 * in the worst case, though we hope that the await_start is elided.
1166 */
1167 err = i915_request_await_start(to, from);
1168 if (err < 0)
1169 return err;
1170
1171 /*
1172 * Ensure both start together [after all semaphores in signal]
1173 *
1174 * Now that we are queued to the HW at roughly the same time (thanks
1175 * to the execute cb) and are ready to run at roughly the same time
1176 * (thanks to the await start), our signaler may still be indefinitely
1177 * delayed by waiting on a semaphore from a remote engine. If our
1178 * signaler depends on a semaphore, so indirectly do we, and we do not
1179 * want to start our payload until our signaler also starts theirs.
1180 * So we wait.
1181 *
1182 * However, there is also a second condition for which we need to wait
1183 * for the precise start of the signaler. Consider that the signaler
1184 * was submitted in a chain of requests following another context
1185 * (with just an ordinary intra-engine fence dependency between the
1186 * two). In this case the signaler is queued to HW, but not for
1187 * immediate execution, and so we must wait until it reaches the
1188 * active slot.
1189 */
1190 if (intel_engine_has_semaphores(to->engine) &&
1191 !i915_request_has_initial_breadcrumb(to)) {
1192 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1193 if (err < 0)
1194 return err;
1195 }
1196
1197 /* Couple the dependency tree for PI on this exposed to->fence */
1198 if (to->engine->schedule) {
1199 err = i915_sched_node_add_dependency(&to->sched,
1200 &from->sched,
1201 I915_DEPENDENCY_WEAK);
1202 if (err < 0)
1203 return err;
1204 }
1205
1206 return intel_timeline_sync_set_start(i915_request_timeline(to),
1207 &from->fence);
1208 }
1209
mark_external(struct i915_request * rq)1210 static void mark_external(struct i915_request *rq)
1211 {
1212 /*
1213 * The downside of using semaphores is that we lose metadata passing
1214 * along the signaling chain. This is particularly nasty when we
1215 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1216 * fatal errors we want to scrub the request before it is executed,
1217 * which means that we cannot preload the request onto HW and have
1218 * it wait upon a semaphore.
1219 */
1220 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1221 }
1222
1223 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1224 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1225 {
1226 mark_external(rq);
1227 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1228 i915_fence_context_timeout(rq->engine->i915,
1229 fence->context),
1230 I915_FENCE_GFP);
1231 }
1232
1233 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1234 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1235 {
1236 struct dma_fence *iter;
1237 int err = 0;
1238
1239 if (!to_dma_fence_chain(fence))
1240 return __i915_request_await_external(rq, fence);
1241
1242 dma_fence_chain_for_each(iter, fence) {
1243 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1244
1245 if (!dma_fence_is_i915(chain->fence)) {
1246 err = __i915_request_await_external(rq, iter);
1247 break;
1248 }
1249
1250 err = i915_request_await_dma_fence(rq, chain->fence);
1251 if (err < 0)
1252 break;
1253 }
1254
1255 dma_fence_put(iter);
1256 return err;
1257 }
1258
1259 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence,void (* hook)(struct i915_request * rq,struct dma_fence * signal))1260 i915_request_await_execution(struct i915_request *rq,
1261 struct dma_fence *fence,
1262 void (*hook)(struct i915_request *rq,
1263 struct dma_fence *signal))
1264 {
1265 struct dma_fence **child = &fence;
1266 unsigned int nchild = 1;
1267 int ret;
1268
1269 if (dma_fence_is_array(fence)) {
1270 struct dma_fence_array *array = to_dma_fence_array(fence);
1271
1272 /* XXX Error for signal-on-any fence arrays */
1273
1274 child = array->fences;
1275 nchild = array->num_fences;
1276 GEM_BUG_ON(!nchild);
1277 }
1278
1279 do {
1280 fence = *child++;
1281 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1282 continue;
1283
1284 if (fence->context == rq->fence.context)
1285 continue;
1286
1287 /*
1288 * We don't squash repeated fence dependencies here as we
1289 * want to run our callback in all cases.
1290 */
1291
1292 if (dma_fence_is_i915(fence))
1293 ret = __i915_request_await_execution(rq,
1294 to_request(fence),
1295 hook);
1296 else
1297 ret = i915_request_await_external(rq, fence);
1298 if (ret < 0)
1299 return ret;
1300 } while (--nchild);
1301
1302 return 0;
1303 }
1304
1305 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1306 await_request_submit(struct i915_request *to, struct i915_request *from)
1307 {
1308 /*
1309 * If we are waiting on a virtual engine, then it may be
1310 * constrained to execute on a single engine *prior* to submission.
1311 * When it is submitted, it will be first submitted to the virtual
1312 * engine and then passed to the physical engine. We cannot allow
1313 * the waiter to be submitted immediately to the physical engine
1314 * as it may then bypass the virtual request.
1315 */
1316 if (to->engine == READ_ONCE(from->engine))
1317 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1318 &from->submit,
1319 I915_FENCE_GFP);
1320 else
1321 return __i915_request_await_execution(to, from, NULL);
1322 }
1323
1324 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1325 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1326 {
1327 int ret;
1328
1329 GEM_BUG_ON(to == from);
1330 GEM_BUG_ON(to->timeline == from->timeline);
1331
1332 if (i915_request_completed(from)) {
1333 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1334 return 0;
1335 }
1336
1337 if (to->engine->schedule) {
1338 ret = i915_sched_node_add_dependency(&to->sched,
1339 &from->sched,
1340 I915_DEPENDENCY_EXTERNAL);
1341 if (ret < 0)
1342 return ret;
1343 }
1344
1345 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1346 ret = await_request_submit(to, from);
1347 else
1348 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1349 if (ret < 0)
1350 return ret;
1351
1352 return 0;
1353 }
1354
1355 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1356 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1357 {
1358 struct dma_fence **child = &fence;
1359 unsigned int nchild = 1;
1360 int ret;
1361
1362 /*
1363 * Note that if the fence-array was created in signal-on-any mode,
1364 * we should *not* decompose it into its individual fences. However,
1365 * we don't currently store which mode the fence-array is operating
1366 * in. Fortunately, the only user of signal-on-any is private to
1367 * amdgpu and we should not see any incoming fence-array from
1368 * sync-file being in signal-on-any mode.
1369 */
1370 if (dma_fence_is_array(fence)) {
1371 struct dma_fence_array *array = to_dma_fence_array(fence);
1372
1373 child = array->fences;
1374 nchild = array->num_fences;
1375 GEM_BUG_ON(!nchild);
1376 }
1377
1378 do {
1379 fence = *child++;
1380 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1381 continue;
1382
1383 /*
1384 * Requests on the same timeline are explicitly ordered, along
1385 * with their dependencies, by i915_request_add() which ensures
1386 * that requests are submitted in-order through each ring.
1387 */
1388 if (fence->context == rq->fence.context)
1389 continue;
1390
1391 /* Squash repeated waits to the same timelines */
1392 if (fence->context &&
1393 intel_timeline_sync_is_later(i915_request_timeline(rq),
1394 fence))
1395 continue;
1396
1397 if (dma_fence_is_i915(fence))
1398 ret = i915_request_await_request(rq, to_request(fence));
1399 else
1400 ret = i915_request_await_external(rq, fence);
1401 if (ret < 0)
1402 return ret;
1403
1404 /* Record the latest fence used against each timeline */
1405 if (fence->context)
1406 intel_timeline_sync_set(i915_request_timeline(rq),
1407 fence);
1408 } while (--nchild);
1409
1410 return 0;
1411 }
1412
1413 /**
1414 * i915_request_await_object - set this request to (async) wait upon a bo
1415 * @to: request we are wishing to use
1416 * @obj: object which may be in use on another ring.
1417 * @write: whether the wait is on behalf of a writer
1418 *
1419 * This code is meant to abstract object synchronization with the GPU.
1420 * Conceptually we serialise writes between engines inside the GPU.
1421 * We only allow one engine to write into a buffer at any time, but
1422 * multiple readers. To ensure each has a coherent view of memory, we must:
1423 *
1424 * - If there is an outstanding write request to the object, the new
1425 * request must wait for it to complete (either CPU or in hw, requests
1426 * on the same ring will be naturally ordered).
1427 *
1428 * - If we are a write request (pending_write_domain is set), the new
1429 * request must wait for outstanding read requests to complete.
1430 *
1431 * Returns 0 if successful, else propagates up the lower layer error.
1432 */
1433 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1434 i915_request_await_object(struct i915_request *to,
1435 struct drm_i915_gem_object *obj,
1436 bool write)
1437 {
1438 struct dma_fence *excl;
1439 int ret = 0;
1440
1441 if (write) {
1442 struct dma_fence **shared;
1443 unsigned int count, i;
1444
1445 ret = dma_resv_get_fences_rcu(obj->base.resv,
1446 &excl, &count, &shared);
1447 if (ret)
1448 return ret;
1449
1450 for (i = 0; i < count; i++) {
1451 ret = i915_request_await_dma_fence(to, shared[i]);
1452 if (ret)
1453 break;
1454
1455 dma_fence_put(shared[i]);
1456 }
1457
1458 for (; i < count; i++)
1459 dma_fence_put(shared[i]);
1460 kfree(shared);
1461 } else {
1462 excl = dma_resv_get_excl_rcu(obj->base.resv);
1463 }
1464
1465 if (excl) {
1466 if (ret == 0)
1467 ret = i915_request_await_dma_fence(to, excl);
1468
1469 dma_fence_put(excl);
1470 }
1471
1472 return ret;
1473 }
1474
1475 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1476 __i915_request_add_to_timeline(struct i915_request *rq)
1477 {
1478 struct intel_timeline *timeline = i915_request_timeline(rq);
1479 struct i915_request *prev;
1480
1481 /*
1482 * Dependency tracking and request ordering along the timeline
1483 * is special cased so that we can eliminate redundant ordering
1484 * operations while building the request (we know that the timeline
1485 * itself is ordered, and here we guarantee it).
1486 *
1487 * As we know we will need to emit tracking along the timeline,
1488 * we embed the hooks into our request struct -- at the cost of
1489 * having to have specialised no-allocation interfaces (which will
1490 * be beneficial elsewhere).
1491 *
1492 * A second benefit to open-coding i915_request_await_request is
1493 * that we can apply a slight variant of the rules specialised
1494 * for timelines that jump between engines (such as virtual engines).
1495 * If we consider the case of virtual engine, we must emit a dma-fence
1496 * to prevent scheduling of the second request until the first is
1497 * complete (to maximise our greedy late load balancing) and this
1498 * precludes optimising to use semaphores serialisation of a single
1499 * timeline across engines.
1500 */
1501 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1502 &rq->fence));
1503 if (prev && !i915_request_completed(prev)) {
1504 /*
1505 * The requests are supposed to be kept in order. However,
1506 * we need to be wary in case the timeline->last_request
1507 * is used as a barrier for external modification to this
1508 * context.
1509 */
1510 GEM_BUG_ON(prev->context == rq->context &&
1511 i915_seqno_passed(prev->fence.seqno,
1512 rq->fence.seqno));
1513
1514 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1515 i915_sw_fence_await_sw_fence(&rq->submit,
1516 &prev->submit,
1517 &rq->submitq);
1518 else
1519 __i915_sw_fence_await_dma_fence(&rq->submit,
1520 &prev->fence,
1521 &rq->dmaq);
1522 if (rq->engine->schedule)
1523 __i915_sched_node_add_dependency(&rq->sched,
1524 &prev->sched,
1525 &rq->dep,
1526 0);
1527 }
1528
1529 /*
1530 * Make sure that no request gazumped us - if it was allocated after
1531 * our i915_request_alloc() and called __i915_request_add() before
1532 * us, the timeline will hold its seqno which is later than ours.
1533 */
1534 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1535
1536 return prev;
1537 }
1538
1539 /*
1540 * NB: This function is not allowed to fail. Doing so would mean the the
1541 * request is not being tracked for completion but the work itself is
1542 * going to happen on the hardware. This would be a Bad Thing(tm).
1543 */
__i915_request_commit(struct i915_request * rq)1544 struct i915_request *__i915_request_commit(struct i915_request *rq)
1545 {
1546 struct intel_engine_cs *engine = rq->engine;
1547 struct intel_ring *ring = rq->ring;
1548 u32 *cs;
1549
1550 RQ_TRACE(rq, "\n");
1551
1552 /*
1553 * To ensure that this call will not fail, space for its emissions
1554 * should already have been reserved in the ring buffer. Let the ring
1555 * know that it is time to use that space up.
1556 */
1557 GEM_BUG_ON(rq->reserved_space > ring->space);
1558 rq->reserved_space = 0;
1559 rq->emitted_jiffies = jiffies;
1560
1561 /*
1562 * Record the position of the start of the breadcrumb so that
1563 * should we detect the updated seqno part-way through the
1564 * GPU processing the request, we never over-estimate the
1565 * position of the ring's HEAD.
1566 */
1567 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1568 GEM_BUG_ON(IS_ERR(cs));
1569 rq->postfix = intel_ring_offset(rq, cs);
1570
1571 return __i915_request_add_to_timeline(rq);
1572 }
1573
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1574 void __i915_request_queue(struct i915_request *rq,
1575 const struct i915_sched_attr *attr)
1576 {
1577 /*
1578 * Let the backend know a new request has arrived that may need
1579 * to adjust the existing execution schedule due to a high priority
1580 * request - i.e. we may want to preempt the current request in order
1581 * to run a high priority dependency chain *before* we can execute this
1582 * request.
1583 *
1584 * This is called before the request is ready to run so that we can
1585 * decide whether to preempt the entire chain so that it is ready to
1586 * run at the earliest possible convenience.
1587 */
1588 if (attr && rq->engine->schedule)
1589 rq->engine->schedule(rq, attr);
1590 i915_sw_fence_commit(&rq->semaphore);
1591 i915_sw_fence_commit(&rq->submit);
1592 }
1593
i915_request_add(struct i915_request * rq)1594 void i915_request_add(struct i915_request *rq)
1595 {
1596 struct intel_timeline * const tl = i915_request_timeline(rq);
1597 struct i915_sched_attr attr = {};
1598 struct i915_gem_context *ctx;
1599
1600 lockdep_assert_held(&tl->mutex);
1601 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1602
1603 trace_i915_request_add(rq);
1604 __i915_request_commit(rq);
1605
1606 /* XXX placeholder for selftests */
1607 rcu_read_lock();
1608 ctx = rcu_dereference(rq->context->gem_context);
1609 if (ctx)
1610 attr = ctx->sched;
1611 rcu_read_unlock();
1612
1613 __i915_request_queue(rq, &attr);
1614
1615 mutex_unlock(&tl->mutex);
1616 }
1617
local_clock_ns(unsigned int * cpu)1618 static unsigned long local_clock_ns(unsigned int *cpu)
1619 {
1620 unsigned long t;
1621
1622 /*
1623 * Cheaply and approximately convert from nanoseconds to microseconds.
1624 * The result and subsequent calculations are also defined in the same
1625 * approximate microseconds units. The principal source of timing
1626 * error here is from the simple truncation.
1627 *
1628 * Note that local_clock() is only defined wrt to the current CPU;
1629 * the comparisons are no longer valid if we switch CPUs. Instead of
1630 * blocking preemption for the entire busywait, we can detect the CPU
1631 * switch and use that as indicator of system load and a reason to
1632 * stop busywaiting, see busywait_stop().
1633 */
1634 *cpu = get_cpu();
1635 t = local_clock();
1636 put_cpu();
1637
1638 return t;
1639 }
1640
busywait_stop(unsigned long timeout,unsigned int cpu)1641 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1642 {
1643 unsigned int this_cpu;
1644
1645 if (time_after(local_clock_ns(&this_cpu), timeout))
1646 return true;
1647
1648 return this_cpu != cpu;
1649 }
1650
__i915_spin_request(struct i915_request * const rq,int state)1651 static bool __i915_spin_request(struct i915_request * const rq, int state)
1652 {
1653 unsigned long timeout_ns;
1654 unsigned int cpu;
1655
1656 /*
1657 * Only wait for the request if we know it is likely to complete.
1658 *
1659 * We don't track the timestamps around requests, nor the average
1660 * request length, so we do not have a good indicator that this
1661 * request will complete within the timeout. What we do know is the
1662 * order in which requests are executed by the context and so we can
1663 * tell if the request has been started. If the request is not even
1664 * running yet, it is a fair assumption that it will not complete
1665 * within our relatively short timeout.
1666 */
1667 if (!i915_request_is_running(rq))
1668 return false;
1669
1670 /*
1671 * When waiting for high frequency requests, e.g. during synchronous
1672 * rendering split between the CPU and GPU, the finite amount of time
1673 * required to set up the irq and wait upon it limits the response
1674 * rate. By busywaiting on the request completion for a short while we
1675 * can service the high frequency waits as quick as possible. However,
1676 * if it is a slow request, we want to sleep as quickly as possible.
1677 * The tradeoff between waiting and sleeping is roughly the time it
1678 * takes to sleep on a request, on the order of a microsecond.
1679 */
1680
1681 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1682 timeout_ns += local_clock_ns(&cpu);
1683 do {
1684 if (dma_fence_is_signaled(&rq->fence))
1685 return true;
1686
1687 if (signal_pending_state(state, current))
1688 break;
1689
1690 if (busywait_stop(timeout_ns, cpu))
1691 break;
1692
1693 cpu_relax();
1694 } while (!need_resched());
1695
1696 return false;
1697 }
1698
1699 struct request_wait {
1700 struct dma_fence_cb cb;
1701 struct task_struct *tsk;
1702 };
1703
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1704 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1705 {
1706 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1707
1708 wake_up_process(fetch_and_zero(&wait->tsk));
1709 }
1710
1711 /**
1712 * i915_request_wait - wait until execution of request has finished
1713 * @rq: the request to wait upon
1714 * @flags: how to wait
1715 * @timeout: how long to wait in jiffies
1716 *
1717 * i915_request_wait() waits for the request to be completed, for a
1718 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1719 * unbounded wait).
1720 *
1721 * Returns the remaining time (in jiffies) if the request completed, which may
1722 * be zero or -ETIME if the request is unfinished after the timeout expires.
1723 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1724 * pending before the request completes.
1725 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)1726 long i915_request_wait(struct i915_request *rq,
1727 unsigned int flags,
1728 long timeout)
1729 {
1730 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1731 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1732 struct request_wait wait;
1733
1734 might_sleep();
1735 GEM_BUG_ON(timeout < 0);
1736
1737 if (dma_fence_is_signaled(&rq->fence))
1738 return timeout;
1739
1740 if (!timeout)
1741 return -ETIME;
1742
1743 trace_i915_request_wait_begin(rq, flags);
1744
1745 /*
1746 * We must never wait on the GPU while holding a lock as we
1747 * may need to perform a GPU reset. So while we don't need to
1748 * serialise wait/reset with an explicit lock, we do want
1749 * lockdep to detect potential dependency cycles.
1750 */
1751 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1752
1753 /*
1754 * Optimistic spin before touching IRQs.
1755 *
1756 * We may use a rather large value here to offset the penalty of
1757 * switching away from the active task. Frequently, the client will
1758 * wait upon an old swapbuffer to throttle itself to remain within a
1759 * frame of the gpu. If the client is running in lockstep with the gpu,
1760 * then it should not be waiting long at all, and a sleep now will incur
1761 * extra scheduler latency in producing the next frame. To try to
1762 * avoid adding the cost of enabling/disabling the interrupt to the
1763 * short wait, we first spin to see if the request would have completed
1764 * in the time taken to setup the interrupt.
1765 *
1766 * We need upto 5us to enable the irq, and upto 20us to hide the
1767 * scheduler latency of a context switch, ignoring the secondary
1768 * impacts from a context switch such as cache eviction.
1769 *
1770 * The scheme used for low-latency IO is called "hybrid interrupt
1771 * polling". The suggestion there is to sleep until just before you
1772 * expect to be woken by the device interrupt and then poll for its
1773 * completion. That requires having a good predictor for the request
1774 * duration, which we currently lack.
1775 */
1776 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1777 __i915_spin_request(rq, state))
1778 goto out;
1779
1780 /*
1781 * This client is about to stall waiting for the GPU. In many cases
1782 * this is undesirable and limits the throughput of the system, as
1783 * many clients cannot continue processing user input/output whilst
1784 * blocked. RPS autotuning may take tens of milliseconds to respond
1785 * to the GPU load and thus incurs additional latency for the client.
1786 * We can circumvent that by promoting the GPU frequency to maximum
1787 * before we sleep. This makes the GPU throttle up much more quickly
1788 * (good for benchmarks and user experience, e.g. window animations),
1789 * but at a cost of spending more power processing the workload
1790 * (bad for battery).
1791 */
1792 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1793 intel_rps_boost(rq);
1794
1795 wait.tsk = current;
1796 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1797 goto out;
1798
1799 /*
1800 * Flush the submission tasklet, but only if it may help this request.
1801 *
1802 * We sometimes experience some latency between the HW interrupts and
1803 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1804 * be due to lazy CS events), so lets run the tasklet manually if there
1805 * is a chance it may submit this request. If the request is not ready
1806 * to run, as it is waiting for other fences to be signaled, flushing
1807 * the tasklet is busy work without any advantage for this client.
1808 *
1809 * If the HW is being lazy, this is the last chance before we go to
1810 * sleep to catch any pending events. We will check periodically in
1811 * the heartbeat to flush the submission tasklets as a last resort
1812 * for unhappy HW.
1813 */
1814 if (i915_request_is_ready(rq))
1815 intel_engine_flush_submission(rq->engine);
1816
1817 for (;;) {
1818 set_current_state(state);
1819
1820 if (dma_fence_is_signaled(&rq->fence))
1821 break;
1822
1823 if (signal_pending_state(state, current)) {
1824 timeout = -ERESTARTSYS;
1825 break;
1826 }
1827
1828 if (!timeout) {
1829 timeout = -ETIME;
1830 break;
1831 }
1832
1833 timeout = io_schedule_timeout(timeout);
1834 }
1835 __set_current_state(TASK_RUNNING);
1836
1837 if (READ_ONCE(wait.tsk))
1838 dma_fence_remove_callback(&rq->fence, &wait.cb);
1839 GEM_BUG_ON(!list_empty(&wait.cb.node));
1840
1841 out:
1842 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1843 trace_i915_request_wait_end(rq);
1844 return timeout;
1845 }
1846
1847 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1848 #include "selftests/mock_request.c"
1849 #include "selftests/i915_request.c"
1850 #endif
1851
i915_global_request_shrink(void)1852 static void i915_global_request_shrink(void)
1853 {
1854 kmem_cache_shrink(global.slab_execute_cbs);
1855 kmem_cache_shrink(global.slab_requests);
1856 }
1857
i915_global_request_exit(void)1858 static void i915_global_request_exit(void)
1859 {
1860 kmem_cache_destroy(global.slab_execute_cbs);
1861 kmem_cache_destroy(global.slab_requests);
1862 }
1863
1864 static struct i915_global_request global = { {
1865 .shrink = i915_global_request_shrink,
1866 .exit = i915_global_request_exit,
1867 } };
1868
i915_global_request_init(void)1869 int __init i915_global_request_init(void)
1870 {
1871 global.slab_requests =
1872 kmem_cache_create("i915_request",
1873 sizeof(struct i915_request),
1874 __alignof__(struct i915_request),
1875 SLAB_HWCACHE_ALIGN |
1876 SLAB_RECLAIM_ACCOUNT |
1877 SLAB_TYPESAFE_BY_RCU,
1878 __i915_request_ctor);
1879 if (!global.slab_requests)
1880 return -ENOMEM;
1881
1882 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1883 SLAB_HWCACHE_ALIGN |
1884 SLAB_RECLAIM_ACCOUNT |
1885 SLAB_TYPESAFE_BY_RCU);
1886 if (!global.slab_execute_cbs)
1887 goto err_requests;
1888
1889 i915_global_register(&global.base);
1890 return 0;
1891
1892 err_requests:
1893 kmem_cache_destroy(global.slab_requests);
1894 return -ENOMEM;
1895 }
1896