1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5
6 #include "iavf.h"
7 #include "iavf_trace.h"
8 #include "iavf_prototype.h"
9
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11 u32 td_tag)
12 {
13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT));
18 }
19
20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21
22 /**
23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24 * @ring: the ring that owns the buffer
25 * @tx_buffer: the buffer to free
26 **/
iavf_unmap_and_free_tx_resource(struct iavf_ring * ring,struct iavf_tx_buffer * tx_buffer)27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28 struct iavf_tx_buffer *tx_buffer)
29 {
30 if (tx_buffer->skb) {
31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32 kfree(tx_buffer->raw_buf);
33 else
34 dev_kfree_skb_any(tx_buffer->skb);
35 if (dma_unmap_len(tx_buffer, len))
36 dma_unmap_single(ring->dev,
37 dma_unmap_addr(tx_buffer, dma),
38 dma_unmap_len(tx_buffer, len),
39 DMA_TO_DEVICE);
40 } else if (dma_unmap_len(tx_buffer, len)) {
41 dma_unmap_page(ring->dev,
42 dma_unmap_addr(tx_buffer, dma),
43 dma_unmap_len(tx_buffer, len),
44 DMA_TO_DEVICE);
45 }
46
47 tx_buffer->next_to_watch = NULL;
48 tx_buffer->skb = NULL;
49 dma_unmap_len_set(tx_buffer, len, 0);
50 /* tx_buffer must be completely set up in the transmit path */
51 }
52
53 /**
54 * iavf_clean_tx_ring - Free any empty Tx buffers
55 * @tx_ring: ring to be cleaned
56 **/
iavf_clean_tx_ring(struct iavf_ring * tx_ring)57 void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58 {
59 unsigned long bi_size;
60 u16 i;
61
62 /* ring already cleared, nothing to do */
63 if (!tx_ring->tx_bi)
64 return;
65
66 /* Free all the Tx ring sk_buffs */
67 for (i = 0; i < tx_ring->count; i++)
68 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
69
70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71 memset(tx_ring->tx_bi, 0, bi_size);
72
73 /* Zero out the descriptor ring */
74 memset(tx_ring->desc, 0, tx_ring->size);
75
76 tx_ring->next_to_use = 0;
77 tx_ring->next_to_clean = 0;
78
79 if (!tx_ring->netdev)
80 return;
81
82 /* cleanup Tx queue statistics */
83 netdev_tx_reset_queue(txring_txq(tx_ring));
84 }
85
86 /**
87 * iavf_free_tx_resources - Free Tx resources per queue
88 * @tx_ring: Tx descriptor ring for a specific queue
89 *
90 * Free all transmit software resources
91 **/
iavf_free_tx_resources(struct iavf_ring * tx_ring)92 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93 {
94 iavf_clean_tx_ring(tx_ring);
95 kfree(tx_ring->tx_bi);
96 tx_ring->tx_bi = NULL;
97
98 if (tx_ring->desc) {
99 dma_free_coherent(tx_ring->dev, tx_ring->size,
100 tx_ring->desc, tx_ring->dma);
101 tx_ring->desc = NULL;
102 }
103 }
104
105 /**
106 * iavf_get_tx_pending - how many Tx descriptors not processed
107 * @ring: the ring of descriptors
108 * @in_sw: is tx_pending being checked in SW or HW
109 *
110 * Since there is no access to the ring head register
111 * in XL710, we need to use our local copies
112 **/
iavf_get_tx_pending(struct iavf_ring * ring,bool in_sw)113 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114 {
115 u32 head, tail;
116
117 head = ring->next_to_clean;
118 tail = readl(ring->tail);
119
120 if (head != tail)
121 return (head < tail) ?
122 tail - head : (tail + ring->count - head);
123
124 return 0;
125 }
126
127 /**
128 * iavf_detect_recover_hung - Function to detect and recover hung_queues
129 * @vsi: pointer to vsi struct with tx queues
130 *
131 * VSI has netdev and netdev has TX queues. This function is to check each of
132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
133 **/
iavf_detect_recover_hung(struct iavf_vsi * vsi)134 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
135 {
136 struct iavf_ring *tx_ring = NULL;
137 struct net_device *netdev;
138 unsigned int i;
139 int packets;
140
141 if (!vsi)
142 return;
143
144 if (test_bit(__IAVF_VSI_DOWN, vsi->state))
145 return;
146
147 netdev = vsi->netdev;
148 if (!netdev)
149 return;
150
151 if (!netif_carrier_ok(netdev))
152 return;
153
154 for (i = 0; i < vsi->back->num_active_queues; i++) {
155 tx_ring = &vsi->back->tx_rings[i];
156 if (tx_ring && tx_ring->desc) {
157 /* If packet counter has not changed the queue is
158 * likely stalled, so force an interrupt for this
159 * queue.
160 *
161 * prev_pkt_ctr would be negative if there was no
162 * pending work.
163 */
164 packets = tx_ring->stats.packets & INT_MAX;
165 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
166 iavf_force_wb(vsi, tx_ring->q_vector);
167 continue;
168 }
169
170 /* Memory barrier between read of packet count and call
171 * to iavf_get_tx_pending()
172 */
173 smp_rmb();
174 tx_ring->tx_stats.prev_pkt_ctr =
175 iavf_get_tx_pending(tx_ring, true) ? packets : -1;
176 }
177 }
178 }
179
180 #define WB_STRIDE 4
181
182 /**
183 * iavf_clean_tx_irq - Reclaim resources after transmit completes
184 * @vsi: the VSI we care about
185 * @tx_ring: Tx ring to clean
186 * @napi_budget: Used to determine if we are in netpoll
187 *
188 * Returns true if there's any budget left (e.g. the clean is finished)
189 **/
iavf_clean_tx_irq(struct iavf_vsi * vsi,struct iavf_ring * tx_ring,int napi_budget)190 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
191 struct iavf_ring *tx_ring, int napi_budget)
192 {
193 int i = tx_ring->next_to_clean;
194 struct iavf_tx_buffer *tx_buf;
195 struct iavf_tx_desc *tx_desc;
196 unsigned int total_bytes = 0, total_packets = 0;
197 unsigned int budget = vsi->work_limit;
198
199 tx_buf = &tx_ring->tx_bi[i];
200 tx_desc = IAVF_TX_DESC(tx_ring, i);
201 i -= tx_ring->count;
202
203 do {
204 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
205
206 /* if next_to_watch is not set then there is no work pending */
207 if (!eop_desc)
208 break;
209
210 /* prevent any other reads prior to eop_desc */
211 smp_rmb();
212
213 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
214 /* if the descriptor isn't done, no work yet to do */
215 if (!(eop_desc->cmd_type_offset_bsz &
216 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
217 break;
218
219 /* clear next_to_watch to prevent false hangs */
220 tx_buf->next_to_watch = NULL;
221
222 /* update the statistics for this packet */
223 total_bytes += tx_buf->bytecount;
224 total_packets += tx_buf->gso_segs;
225
226 /* free the skb */
227 napi_consume_skb(tx_buf->skb, napi_budget);
228
229 /* unmap skb header data */
230 dma_unmap_single(tx_ring->dev,
231 dma_unmap_addr(tx_buf, dma),
232 dma_unmap_len(tx_buf, len),
233 DMA_TO_DEVICE);
234
235 /* clear tx_buffer data */
236 tx_buf->skb = NULL;
237 dma_unmap_len_set(tx_buf, len, 0);
238
239 /* unmap remaining buffers */
240 while (tx_desc != eop_desc) {
241 iavf_trace(clean_tx_irq_unmap,
242 tx_ring, tx_desc, tx_buf);
243
244 tx_buf++;
245 tx_desc++;
246 i++;
247 if (unlikely(!i)) {
248 i -= tx_ring->count;
249 tx_buf = tx_ring->tx_bi;
250 tx_desc = IAVF_TX_DESC(tx_ring, 0);
251 }
252
253 /* unmap any remaining paged data */
254 if (dma_unmap_len(tx_buf, len)) {
255 dma_unmap_page(tx_ring->dev,
256 dma_unmap_addr(tx_buf, dma),
257 dma_unmap_len(tx_buf, len),
258 DMA_TO_DEVICE);
259 dma_unmap_len_set(tx_buf, len, 0);
260 }
261 }
262
263 /* move us one more past the eop_desc for start of next pkt */
264 tx_buf++;
265 tx_desc++;
266 i++;
267 if (unlikely(!i)) {
268 i -= tx_ring->count;
269 tx_buf = tx_ring->tx_bi;
270 tx_desc = IAVF_TX_DESC(tx_ring, 0);
271 }
272
273 prefetch(tx_desc);
274
275 /* update budget accounting */
276 budget--;
277 } while (likely(budget));
278
279 i += tx_ring->count;
280 tx_ring->next_to_clean = i;
281 u64_stats_update_begin(&tx_ring->syncp);
282 tx_ring->stats.bytes += total_bytes;
283 tx_ring->stats.packets += total_packets;
284 u64_stats_update_end(&tx_ring->syncp);
285 tx_ring->q_vector->tx.total_bytes += total_bytes;
286 tx_ring->q_vector->tx.total_packets += total_packets;
287
288 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
289 /* check to see if there are < 4 descriptors
290 * waiting to be written back, then kick the hardware to force
291 * them to be written back in case we stay in NAPI.
292 * In this mode on X722 we do not enable Interrupt.
293 */
294 unsigned int j = iavf_get_tx_pending(tx_ring, false);
295
296 if (budget &&
297 ((j / WB_STRIDE) == 0) && (j > 0) &&
298 !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
299 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
300 tx_ring->arm_wb = true;
301 }
302
303 /* notify netdev of completed buffers */
304 netdev_tx_completed_queue(txring_txq(tx_ring),
305 total_packets, total_bytes);
306
307 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
308 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
309 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
310 /* Make sure that anybody stopping the queue after this
311 * sees the new next_to_clean.
312 */
313 smp_mb();
314 if (__netif_subqueue_stopped(tx_ring->netdev,
315 tx_ring->queue_index) &&
316 !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
317 netif_wake_subqueue(tx_ring->netdev,
318 tx_ring->queue_index);
319 ++tx_ring->tx_stats.restart_queue;
320 }
321 }
322
323 return !!budget;
324 }
325
326 /**
327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
328 * @vsi: the VSI we care about
329 * @q_vector: the vector on which to enable writeback
330 *
331 **/
iavf_enable_wb_on_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)332 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
333 struct iavf_q_vector *q_vector)
334 {
335 u16 flags = q_vector->tx.ring[0].flags;
336 u32 val;
337
338 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
339 return;
340
341 if (q_vector->arm_wb_state)
342 return;
343
344 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
345 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
346
347 wr32(&vsi->back->hw,
348 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
349 q_vector->arm_wb_state = true;
350 }
351
352 /**
353 * iavf_force_wb - Issue SW Interrupt so HW does a wb
354 * @vsi: the VSI we care about
355 * @q_vector: the vector on which to force writeback
356 *
357 **/
iavf_force_wb(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)358 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
359 {
360 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
361 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
362 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
363 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
364 /* allow 00 to be written to the index */;
365
366 wr32(&vsi->back->hw,
367 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
368 val);
369 }
370
iavf_container_is_rx(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)371 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
372 struct iavf_ring_container *rc)
373 {
374 return &q_vector->rx == rc;
375 }
376
iavf_itr_divisor(struct iavf_q_vector * q_vector)377 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
378 {
379 unsigned int divisor;
380
381 switch (q_vector->adapter->link_speed) {
382 case VIRTCHNL_LINK_SPEED_40GB:
383 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
384 break;
385 case VIRTCHNL_LINK_SPEED_25GB:
386 case VIRTCHNL_LINK_SPEED_20GB:
387 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
388 break;
389 default:
390 case VIRTCHNL_LINK_SPEED_10GB:
391 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
392 break;
393 case VIRTCHNL_LINK_SPEED_1GB:
394 case VIRTCHNL_LINK_SPEED_100MB:
395 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
396 break;
397 }
398
399 return divisor;
400 }
401
402 /**
403 * iavf_update_itr - update the dynamic ITR value based on statistics
404 * @q_vector: structure containing interrupt and ring information
405 * @rc: structure containing ring performance data
406 *
407 * Stores a new ITR value based on packets and byte
408 * counts during the last interrupt. The advantage of per interrupt
409 * computation is faster updates and more accurate ITR for the current
410 * traffic pattern. Constants in this function were computed
411 * based on theoretical maximum wire speed and thresholds were set based
412 * on testing data as well as attempting to minimize response time
413 * while increasing bulk throughput.
414 **/
iavf_update_itr(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)415 static void iavf_update_itr(struct iavf_q_vector *q_vector,
416 struct iavf_ring_container *rc)
417 {
418 unsigned int avg_wire_size, packets, bytes, itr;
419 unsigned long next_update = jiffies;
420
421 /* If we don't have any rings just leave ourselves set for maximum
422 * possible latency so we take ourselves out of the equation.
423 */
424 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
425 return;
426
427 /* For Rx we want to push the delay up and default to low latency.
428 * for Tx we want to pull the delay down and default to high latency.
429 */
430 itr = iavf_container_is_rx(q_vector, rc) ?
431 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
432 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
433
434 /* If we didn't update within up to 1 - 2 jiffies we can assume
435 * that either packets are coming in so slow there hasn't been
436 * any work, or that there is so much work that NAPI is dealing
437 * with interrupt moderation and we don't need to do anything.
438 */
439 if (time_after(next_update, rc->next_update))
440 goto clear_counts;
441
442 /* If itr_countdown is set it means we programmed an ITR within
443 * the last 4 interrupt cycles. This has a side effect of us
444 * potentially firing an early interrupt. In order to work around
445 * this we need to throw out any data received for a few
446 * interrupts following the update.
447 */
448 if (q_vector->itr_countdown) {
449 itr = rc->target_itr;
450 goto clear_counts;
451 }
452
453 packets = rc->total_packets;
454 bytes = rc->total_bytes;
455
456 if (iavf_container_is_rx(q_vector, rc)) {
457 /* If Rx there are 1 to 4 packets and bytes are less than
458 * 9000 assume insufficient data to use bulk rate limiting
459 * approach unless Tx is already in bulk rate limiting. We
460 * are likely latency driven.
461 */
462 if (packets && packets < 4 && bytes < 9000 &&
463 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
464 itr = IAVF_ITR_ADAPTIVE_LATENCY;
465 goto adjust_by_size;
466 }
467 } else if (packets < 4) {
468 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
469 * bulk mode and we are receiving 4 or fewer packets just
470 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
471 * that the Rx can relax.
472 */
473 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
474 (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
475 IAVF_ITR_ADAPTIVE_MAX_USECS)
476 goto clear_counts;
477 } else if (packets > 32) {
478 /* If we have processed over 32 packets in a single interrupt
479 * for Tx assume we need to switch over to "bulk" mode.
480 */
481 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
482 }
483
484 /* We have no packets to actually measure against. This means
485 * either one of the other queues on this vector is active or
486 * we are a Tx queue doing TSO with too high of an interrupt rate.
487 *
488 * Between 4 and 56 we can assume that our current interrupt delay
489 * is only slightly too low. As such we should increase it by a small
490 * fixed amount.
491 */
492 if (packets < 56) {
493 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
494 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
495 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
496 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
497 }
498 goto clear_counts;
499 }
500
501 if (packets <= 256) {
502 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
503 itr &= IAVF_ITR_MASK;
504
505 /* Between 56 and 112 is our "goldilocks" zone where we are
506 * working out "just right". Just report that our current
507 * ITR is good for us.
508 */
509 if (packets <= 112)
510 goto clear_counts;
511
512 /* If packet count is 128 or greater we are likely looking
513 * at a slight overrun of the delay we want. Try halving
514 * our delay to see if that will cut the number of packets
515 * in half per interrupt.
516 */
517 itr /= 2;
518 itr &= IAVF_ITR_MASK;
519 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
520 itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
521
522 goto clear_counts;
523 }
524
525 /* The paths below assume we are dealing with a bulk ITR since
526 * number of packets is greater than 256. We are just going to have
527 * to compute a value and try to bring the count under control,
528 * though for smaller packet sizes there isn't much we can do as
529 * NAPI polling will likely be kicking in sooner rather than later.
530 */
531 itr = IAVF_ITR_ADAPTIVE_BULK;
532
533 adjust_by_size:
534 /* If packet counts are 256 or greater we can assume we have a gross
535 * overestimation of what the rate should be. Instead of trying to fine
536 * tune it just use the formula below to try and dial in an exact value
537 * give the current packet size of the frame.
538 */
539 avg_wire_size = bytes / packets;
540
541 /* The following is a crude approximation of:
542 * wmem_default / (size + overhead) = desired_pkts_per_int
543 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
544 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
545 *
546 * Assuming wmem_default is 212992 and overhead is 640 bytes per
547 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
548 * formula down to
549 *
550 * (170 * (size + 24)) / (size + 640) = ITR
551 *
552 * We first do some math on the packet size and then finally bitshift
553 * by 8 after rounding up. We also have to account for PCIe link speed
554 * difference as ITR scales based on this.
555 */
556 if (avg_wire_size <= 60) {
557 /* Start at 250k ints/sec */
558 avg_wire_size = 4096;
559 } else if (avg_wire_size <= 380) {
560 /* 250K ints/sec to 60K ints/sec */
561 avg_wire_size *= 40;
562 avg_wire_size += 1696;
563 } else if (avg_wire_size <= 1084) {
564 /* 60K ints/sec to 36K ints/sec */
565 avg_wire_size *= 15;
566 avg_wire_size += 11452;
567 } else if (avg_wire_size <= 1980) {
568 /* 36K ints/sec to 30K ints/sec */
569 avg_wire_size *= 5;
570 avg_wire_size += 22420;
571 } else {
572 /* plateau at a limit of 30K ints/sec */
573 avg_wire_size = 32256;
574 }
575
576 /* If we are in low latency mode halve our delay which doubles the
577 * rate to somewhere between 100K to 16K ints/sec
578 */
579 if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
580 avg_wire_size /= 2;
581
582 /* Resultant value is 256 times larger than it needs to be. This
583 * gives us room to adjust the value as needed to either increase
584 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
585 *
586 * Use addition as we have already recorded the new latency flag
587 * for the ITR value.
588 */
589 itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
590 IAVF_ITR_ADAPTIVE_MIN_INC;
591
592 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
593 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
594 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
595 }
596
597 clear_counts:
598 /* write back value */
599 rc->target_itr = itr;
600
601 /* next update should occur within next jiffy */
602 rc->next_update = next_update + 1;
603
604 rc->total_bytes = 0;
605 rc->total_packets = 0;
606 }
607
608 /**
609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
610 * @tx_ring: the tx ring to set up
611 *
612 * Return 0 on success, negative on error
613 **/
iavf_setup_tx_descriptors(struct iavf_ring * tx_ring)614 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
615 {
616 struct device *dev = tx_ring->dev;
617 int bi_size;
618
619 if (!dev)
620 return -ENOMEM;
621
622 /* warn if we are about to overwrite the pointer */
623 WARN_ON(tx_ring->tx_bi);
624 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
625 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
626 if (!tx_ring->tx_bi)
627 goto err;
628
629 /* round up to nearest 4K */
630 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
631 tx_ring->size = ALIGN(tx_ring->size, 4096);
632 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
633 &tx_ring->dma, GFP_KERNEL);
634 if (!tx_ring->desc) {
635 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
636 tx_ring->size);
637 goto err;
638 }
639
640 tx_ring->next_to_use = 0;
641 tx_ring->next_to_clean = 0;
642 tx_ring->tx_stats.prev_pkt_ctr = -1;
643 return 0;
644
645 err:
646 kfree(tx_ring->tx_bi);
647 tx_ring->tx_bi = NULL;
648 return -ENOMEM;
649 }
650
651 /**
652 * iavf_clean_rx_ring - Free Rx buffers
653 * @rx_ring: ring to be cleaned
654 **/
iavf_clean_rx_ring(struct iavf_ring * rx_ring)655 void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
656 {
657 unsigned long bi_size;
658 u16 i;
659
660 /* ring already cleared, nothing to do */
661 if (!rx_ring->rx_bi)
662 return;
663
664 if (rx_ring->skb) {
665 dev_kfree_skb(rx_ring->skb);
666 rx_ring->skb = NULL;
667 }
668
669 /* Free all the Rx ring sk_buffs */
670 for (i = 0; i < rx_ring->count; i++) {
671 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
672
673 if (!rx_bi->page)
674 continue;
675
676 /* Invalidate cache lines that may have been written to by
677 * device so that we avoid corrupting memory.
678 */
679 dma_sync_single_range_for_cpu(rx_ring->dev,
680 rx_bi->dma,
681 rx_bi->page_offset,
682 rx_ring->rx_buf_len,
683 DMA_FROM_DEVICE);
684
685 /* free resources associated with mapping */
686 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
687 iavf_rx_pg_size(rx_ring),
688 DMA_FROM_DEVICE,
689 IAVF_RX_DMA_ATTR);
690
691 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
692
693 rx_bi->page = NULL;
694 rx_bi->page_offset = 0;
695 }
696
697 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
698 memset(rx_ring->rx_bi, 0, bi_size);
699
700 /* Zero out the descriptor ring */
701 memset(rx_ring->desc, 0, rx_ring->size);
702
703 rx_ring->next_to_alloc = 0;
704 rx_ring->next_to_clean = 0;
705 rx_ring->next_to_use = 0;
706 }
707
708 /**
709 * iavf_free_rx_resources - Free Rx resources
710 * @rx_ring: ring to clean the resources from
711 *
712 * Free all receive software resources
713 **/
iavf_free_rx_resources(struct iavf_ring * rx_ring)714 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
715 {
716 iavf_clean_rx_ring(rx_ring);
717 kfree(rx_ring->rx_bi);
718 rx_ring->rx_bi = NULL;
719
720 if (rx_ring->desc) {
721 dma_free_coherent(rx_ring->dev, rx_ring->size,
722 rx_ring->desc, rx_ring->dma);
723 rx_ring->desc = NULL;
724 }
725 }
726
727 /**
728 * iavf_setup_rx_descriptors - Allocate Rx descriptors
729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
730 *
731 * Returns 0 on success, negative on failure
732 **/
iavf_setup_rx_descriptors(struct iavf_ring * rx_ring)733 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
734 {
735 struct device *dev = rx_ring->dev;
736 int bi_size;
737
738 /* warn if we are about to overwrite the pointer */
739 WARN_ON(rx_ring->rx_bi);
740 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
741 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
742 if (!rx_ring->rx_bi)
743 goto err;
744
745 u64_stats_init(&rx_ring->syncp);
746
747 /* Round up to nearest 4K */
748 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
749 rx_ring->size = ALIGN(rx_ring->size, 4096);
750 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
751 &rx_ring->dma, GFP_KERNEL);
752
753 if (!rx_ring->desc) {
754 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
755 rx_ring->size);
756 goto err;
757 }
758
759 rx_ring->next_to_alloc = 0;
760 rx_ring->next_to_clean = 0;
761 rx_ring->next_to_use = 0;
762
763 return 0;
764 err:
765 kfree(rx_ring->rx_bi);
766 rx_ring->rx_bi = NULL;
767 return -ENOMEM;
768 }
769
770 /**
771 * iavf_release_rx_desc - Store the new tail and head values
772 * @rx_ring: ring to bump
773 * @val: new head index
774 **/
iavf_release_rx_desc(struct iavf_ring * rx_ring,u32 val)775 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
776 {
777 rx_ring->next_to_use = val;
778
779 /* update next to alloc since we have filled the ring */
780 rx_ring->next_to_alloc = val;
781
782 /* Force memory writes to complete before letting h/w
783 * know there are new descriptors to fetch. (Only
784 * applicable for weak-ordered memory model archs,
785 * such as IA-64).
786 */
787 wmb();
788 writel(val, rx_ring->tail);
789 }
790
791 /**
792 * iavf_rx_offset - Return expected offset into page to access data
793 * @rx_ring: Ring we are requesting offset of
794 *
795 * Returns the offset value for ring into the data buffer.
796 */
iavf_rx_offset(struct iavf_ring * rx_ring)797 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
798 {
799 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
800 }
801
802 /**
803 * iavf_alloc_mapped_page - recycle or make a new page
804 * @rx_ring: ring to use
805 * @bi: rx_buffer struct to modify
806 *
807 * Returns true if the page was successfully allocated or
808 * reused.
809 **/
iavf_alloc_mapped_page(struct iavf_ring * rx_ring,struct iavf_rx_buffer * bi)810 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
811 struct iavf_rx_buffer *bi)
812 {
813 struct page *page = bi->page;
814 dma_addr_t dma;
815
816 /* since we are recycling buffers we should seldom need to alloc */
817 if (likely(page)) {
818 rx_ring->rx_stats.page_reuse_count++;
819 return true;
820 }
821
822 /* alloc new page for storage */
823 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
824 if (unlikely(!page)) {
825 rx_ring->rx_stats.alloc_page_failed++;
826 return false;
827 }
828
829 /* map page for use */
830 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
831 iavf_rx_pg_size(rx_ring),
832 DMA_FROM_DEVICE,
833 IAVF_RX_DMA_ATTR);
834
835 /* if mapping failed free memory back to system since
836 * there isn't much point in holding memory we can't use
837 */
838 if (dma_mapping_error(rx_ring->dev, dma)) {
839 __free_pages(page, iavf_rx_pg_order(rx_ring));
840 rx_ring->rx_stats.alloc_page_failed++;
841 return false;
842 }
843
844 bi->dma = dma;
845 bi->page = page;
846 bi->page_offset = iavf_rx_offset(rx_ring);
847
848 /* initialize pagecnt_bias to 1 representing we fully own page */
849 bi->pagecnt_bias = 1;
850
851 return true;
852 }
853
854 /**
855 * iavf_receive_skb - Send a completed packet up the stack
856 * @rx_ring: rx ring in play
857 * @skb: packet to send up
858 * @vlan_tag: vlan tag for packet
859 **/
iavf_receive_skb(struct iavf_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)860 static void iavf_receive_skb(struct iavf_ring *rx_ring,
861 struct sk_buff *skb, u16 vlan_tag)
862 {
863 struct iavf_q_vector *q_vector = rx_ring->q_vector;
864
865 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
866 (vlan_tag & VLAN_VID_MASK))
867 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
868
869 napi_gro_receive(&q_vector->napi, skb);
870 }
871
872 /**
873 * iavf_alloc_rx_buffers - Replace used receive buffers
874 * @rx_ring: ring to place buffers on
875 * @cleaned_count: number of buffers to replace
876 *
877 * Returns false if all allocations were successful, true if any fail
878 **/
iavf_alloc_rx_buffers(struct iavf_ring * rx_ring,u16 cleaned_count)879 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
880 {
881 u16 ntu = rx_ring->next_to_use;
882 union iavf_rx_desc *rx_desc;
883 struct iavf_rx_buffer *bi;
884
885 /* do nothing if no valid netdev defined */
886 if (!rx_ring->netdev || !cleaned_count)
887 return false;
888
889 rx_desc = IAVF_RX_DESC(rx_ring, ntu);
890 bi = &rx_ring->rx_bi[ntu];
891
892 do {
893 if (!iavf_alloc_mapped_page(rx_ring, bi))
894 goto no_buffers;
895
896 /* sync the buffer for use by the device */
897 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
898 bi->page_offset,
899 rx_ring->rx_buf_len,
900 DMA_FROM_DEVICE);
901
902 /* Refresh the desc even if buffer_addrs didn't change
903 * because each write-back erases this info.
904 */
905 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
906
907 rx_desc++;
908 bi++;
909 ntu++;
910 if (unlikely(ntu == rx_ring->count)) {
911 rx_desc = IAVF_RX_DESC(rx_ring, 0);
912 bi = rx_ring->rx_bi;
913 ntu = 0;
914 }
915
916 /* clear the status bits for the next_to_use descriptor */
917 rx_desc->wb.qword1.status_error_len = 0;
918
919 cleaned_count--;
920 } while (cleaned_count);
921
922 if (rx_ring->next_to_use != ntu)
923 iavf_release_rx_desc(rx_ring, ntu);
924
925 return false;
926
927 no_buffers:
928 if (rx_ring->next_to_use != ntu)
929 iavf_release_rx_desc(rx_ring, ntu);
930
931 /* make sure to come back via polling to try again after
932 * allocation failure
933 */
934 return true;
935 }
936
937 /**
938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
939 * @vsi: the VSI we care about
940 * @skb: skb currently being received and modified
941 * @rx_desc: the receive descriptor
942 **/
iavf_rx_checksum(struct iavf_vsi * vsi,struct sk_buff * skb,union iavf_rx_desc * rx_desc)943 static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
944 struct sk_buff *skb,
945 union iavf_rx_desc *rx_desc)
946 {
947 struct iavf_rx_ptype_decoded decoded;
948 u32 rx_error, rx_status;
949 bool ipv4, ipv6;
950 u8 ptype;
951 u64 qword;
952
953 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
954 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
955 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
956 IAVF_RXD_QW1_ERROR_SHIFT;
957 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
958 IAVF_RXD_QW1_STATUS_SHIFT;
959 decoded = decode_rx_desc_ptype(ptype);
960
961 skb->ip_summed = CHECKSUM_NONE;
962
963 skb_checksum_none_assert(skb);
964
965 /* Rx csum enabled and ip headers found? */
966 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
967 return;
968
969 /* did the hardware decode the packet and checksum? */
970 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
971 return;
972
973 /* both known and outer_ip must be set for the below code to work */
974 if (!(decoded.known && decoded.outer_ip))
975 return;
976
977 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
978 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
979 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
980 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
981
982 if (ipv4 &&
983 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
984 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
985 goto checksum_fail;
986
987 /* likely incorrect csum if alternate IP extension headers found */
988 if (ipv6 &&
989 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
990 /* don't increment checksum err here, non-fatal err */
991 return;
992
993 /* there was some L4 error, count error and punt packet to the stack */
994 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
995 goto checksum_fail;
996
997 /* handle packets that were not able to be checksummed due
998 * to arrival speed, in this case the stack can compute
999 * the csum.
1000 */
1001 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1002 return;
1003
1004 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1005 switch (decoded.inner_prot) {
1006 case IAVF_RX_PTYPE_INNER_PROT_TCP:
1007 case IAVF_RX_PTYPE_INNER_PROT_UDP:
1008 case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1009 skb->ip_summed = CHECKSUM_UNNECESSARY;
1010 fallthrough;
1011 default:
1012 break;
1013 }
1014
1015 return;
1016
1017 checksum_fail:
1018 vsi->back->hw_csum_rx_error++;
1019 }
1020
1021 /**
1022 * iavf_ptype_to_htype - get a hash type
1023 * @ptype: the ptype value from the descriptor
1024 *
1025 * Returns a hash type to be used by skb_set_hash
1026 **/
iavf_ptype_to_htype(u8 ptype)1027 static inline int iavf_ptype_to_htype(u8 ptype)
1028 {
1029 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1030
1031 if (!decoded.known)
1032 return PKT_HASH_TYPE_NONE;
1033
1034 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1035 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1036 return PKT_HASH_TYPE_L4;
1037 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1039 return PKT_HASH_TYPE_L3;
1040 else
1041 return PKT_HASH_TYPE_L2;
1042 }
1043
1044 /**
1045 * iavf_rx_hash - set the hash value in the skb
1046 * @ring: descriptor ring
1047 * @rx_desc: specific descriptor
1048 * @skb: skb currently being received and modified
1049 * @rx_ptype: Rx packet type
1050 **/
iavf_rx_hash(struct iavf_ring * ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1051 static inline void iavf_rx_hash(struct iavf_ring *ring,
1052 union iavf_rx_desc *rx_desc,
1053 struct sk_buff *skb,
1054 u8 rx_ptype)
1055 {
1056 u32 hash;
1057 const __le64 rss_mask =
1058 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1059 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1060
1061 if (ring->netdev->features & NETIF_F_RXHASH)
1062 return;
1063
1064 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1065 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1066 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1067 }
1068 }
1069
1070 /**
1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1072 * @rx_ring: rx descriptor ring packet is being transacted on
1073 * @rx_desc: pointer to the EOP Rx descriptor
1074 * @skb: pointer to current skb being populated
1075 * @rx_ptype: the packet type decoded by hardware
1076 *
1077 * This function checks the ring, descriptor, and packet information in
1078 * order to populate the hash, checksum, VLAN, protocol, and
1079 * other fields within the skb.
1080 **/
1081 static inline
iavf_process_skb_fields(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1082 void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1083 union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1084 u8 rx_ptype)
1085 {
1086 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1087
1088 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1089
1090 skb_record_rx_queue(skb, rx_ring->queue_index);
1091
1092 /* modifies the skb - consumes the enet header */
1093 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1094 }
1095
1096 /**
1097 * iavf_cleanup_headers - Correct empty headers
1098 * @rx_ring: rx descriptor ring packet is being transacted on
1099 * @skb: pointer to current skb being fixed
1100 *
1101 * Also address the case where we are pulling data in on pages only
1102 * and as such no data is present in the skb header.
1103 *
1104 * In addition if skb is not at least 60 bytes we need to pad it so that
1105 * it is large enough to qualify as a valid Ethernet frame.
1106 *
1107 * Returns true if an error was encountered and skb was freed.
1108 **/
iavf_cleanup_headers(struct iavf_ring * rx_ring,struct sk_buff * skb)1109 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1110 {
1111 /* if eth_skb_pad returns an error the skb was freed */
1112 if (eth_skb_pad(skb))
1113 return true;
1114
1115 return false;
1116 }
1117
1118 /**
1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1120 * @rx_ring: rx descriptor ring to store buffers on
1121 * @old_buff: donor buffer to have page reused
1122 *
1123 * Synchronizes page for reuse by the adapter
1124 **/
iavf_reuse_rx_page(struct iavf_ring * rx_ring,struct iavf_rx_buffer * old_buff)1125 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1126 struct iavf_rx_buffer *old_buff)
1127 {
1128 struct iavf_rx_buffer *new_buff;
1129 u16 nta = rx_ring->next_to_alloc;
1130
1131 new_buff = &rx_ring->rx_bi[nta];
1132
1133 /* update, and store next to alloc */
1134 nta++;
1135 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1136
1137 /* transfer page from old buffer to new buffer */
1138 new_buff->dma = old_buff->dma;
1139 new_buff->page = old_buff->page;
1140 new_buff->page_offset = old_buff->page_offset;
1141 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1142 }
1143
1144 /**
1145 * iavf_page_is_reusable - check if any reuse is possible
1146 * @page: page struct to check
1147 *
1148 * A page is not reusable if it was allocated under low memory
1149 * conditions, or it's not in the same NUMA node as this CPU.
1150 */
iavf_page_is_reusable(struct page * page)1151 static inline bool iavf_page_is_reusable(struct page *page)
1152 {
1153 return (page_to_nid(page) == numa_mem_id()) &&
1154 !page_is_pfmemalloc(page);
1155 }
1156
1157 /**
1158 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1159 * the adapter for another receive
1160 *
1161 * @rx_buffer: buffer containing the page
1162 *
1163 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1164 * an unused region in the page.
1165 *
1166 * For small pages, @truesize will be a constant value, half the size
1167 * of the memory at page. We'll attempt to alternate between high and
1168 * low halves of the page, with one half ready for use by the hardware
1169 * and the other half being consumed by the stack. We use the page
1170 * ref count to determine whether the stack has finished consuming the
1171 * portion of this page that was passed up with a previous packet. If
1172 * the page ref count is >1, we'll assume the "other" half page is
1173 * still busy, and this page cannot be reused.
1174 *
1175 * For larger pages, @truesize will be the actual space used by the
1176 * received packet (adjusted upward to an even multiple of the cache
1177 * line size). This will advance through the page by the amount
1178 * actually consumed by the received packets while there is still
1179 * space for a buffer. Each region of larger pages will be used at
1180 * most once, after which the page will not be reused.
1181 *
1182 * In either case, if the page is reusable its refcount is increased.
1183 **/
iavf_can_reuse_rx_page(struct iavf_rx_buffer * rx_buffer)1184 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1185 {
1186 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1187 struct page *page = rx_buffer->page;
1188
1189 /* Is any reuse possible? */
1190 if (unlikely(!iavf_page_is_reusable(page)))
1191 return false;
1192
1193 #if (PAGE_SIZE < 8192)
1194 /* if we are only owner of page we can reuse it */
1195 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1196 return false;
1197 #else
1198 #define IAVF_LAST_OFFSET \
1199 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1200 if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1201 return false;
1202 #endif
1203
1204 /* If we have drained the page fragment pool we need to update
1205 * the pagecnt_bias and page count so that we fully restock the
1206 * number of references the driver holds.
1207 */
1208 if (unlikely(!pagecnt_bias)) {
1209 page_ref_add(page, USHRT_MAX);
1210 rx_buffer->pagecnt_bias = USHRT_MAX;
1211 }
1212
1213 return true;
1214 }
1215
1216 /**
1217 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1218 * @rx_ring: rx descriptor ring to transact packets on
1219 * @rx_buffer: buffer containing page to add
1220 * @skb: sk_buff to place the data into
1221 * @size: packet length from rx_desc
1222 *
1223 * This function will add the data contained in rx_buffer->page to the skb.
1224 * It will just attach the page as a frag to the skb.
1225 *
1226 * The function will then update the page offset.
1227 **/
iavf_add_rx_frag(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1228 static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1229 struct iavf_rx_buffer *rx_buffer,
1230 struct sk_buff *skb,
1231 unsigned int size)
1232 {
1233 #if (PAGE_SIZE < 8192)
1234 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1235 #else
1236 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1237 #endif
1238
1239 if (!size)
1240 return;
1241
1242 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1243 rx_buffer->page_offset, size, truesize);
1244
1245 /* page is being used so we must update the page offset */
1246 #if (PAGE_SIZE < 8192)
1247 rx_buffer->page_offset ^= truesize;
1248 #else
1249 rx_buffer->page_offset += truesize;
1250 #endif
1251 }
1252
1253 /**
1254 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1255 * @rx_ring: rx descriptor ring to transact packets on
1256 * @size: size of buffer to add to skb
1257 *
1258 * This function will pull an Rx buffer from the ring and synchronize it
1259 * for use by the CPU.
1260 */
iavf_get_rx_buffer(struct iavf_ring * rx_ring,const unsigned int size)1261 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1262 const unsigned int size)
1263 {
1264 struct iavf_rx_buffer *rx_buffer;
1265
1266 if (!size)
1267 return NULL;
1268
1269 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1270 prefetchw(rx_buffer->page);
1271
1272 /* we are reusing so sync this buffer for CPU use */
1273 dma_sync_single_range_for_cpu(rx_ring->dev,
1274 rx_buffer->dma,
1275 rx_buffer->page_offset,
1276 size,
1277 DMA_FROM_DEVICE);
1278
1279 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1280 rx_buffer->pagecnt_bias--;
1281
1282 return rx_buffer;
1283 }
1284
1285 /**
1286 * iavf_construct_skb - Allocate skb and populate it
1287 * @rx_ring: rx descriptor ring to transact packets on
1288 * @rx_buffer: rx buffer to pull data from
1289 * @size: size of buffer to add to skb
1290 *
1291 * This function allocates an skb. It then populates it with the page
1292 * data from the current receive descriptor, taking care to set up the
1293 * skb correctly.
1294 */
iavf_construct_skb(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,unsigned int size)1295 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1296 struct iavf_rx_buffer *rx_buffer,
1297 unsigned int size)
1298 {
1299 void *va;
1300 #if (PAGE_SIZE < 8192)
1301 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1302 #else
1303 unsigned int truesize = SKB_DATA_ALIGN(size);
1304 #endif
1305 unsigned int headlen;
1306 struct sk_buff *skb;
1307
1308 if (!rx_buffer)
1309 return NULL;
1310 /* prefetch first cache line of first page */
1311 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1312 net_prefetch(va);
1313
1314 /* allocate a skb to store the frags */
1315 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1316 IAVF_RX_HDR_SIZE,
1317 GFP_ATOMIC | __GFP_NOWARN);
1318 if (unlikely(!skb))
1319 return NULL;
1320
1321 /* Determine available headroom for copy */
1322 headlen = size;
1323 if (headlen > IAVF_RX_HDR_SIZE)
1324 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1325
1326 /* align pull length to size of long to optimize memcpy performance */
1327 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1328
1329 /* update all of the pointers */
1330 size -= headlen;
1331 if (size) {
1332 skb_add_rx_frag(skb, 0, rx_buffer->page,
1333 rx_buffer->page_offset + headlen,
1334 size, truesize);
1335
1336 /* buffer is used by skb, update page_offset */
1337 #if (PAGE_SIZE < 8192)
1338 rx_buffer->page_offset ^= truesize;
1339 #else
1340 rx_buffer->page_offset += truesize;
1341 #endif
1342 } else {
1343 /* buffer is unused, reset bias back to rx_buffer */
1344 rx_buffer->pagecnt_bias++;
1345 }
1346
1347 return skb;
1348 }
1349
1350 /**
1351 * iavf_build_skb - Build skb around an existing buffer
1352 * @rx_ring: Rx descriptor ring to transact packets on
1353 * @rx_buffer: Rx buffer to pull data from
1354 * @size: size of buffer to add to skb
1355 *
1356 * This function builds an skb around an existing Rx buffer, taking care
1357 * to set up the skb correctly and avoid any memcpy overhead.
1358 */
iavf_build_skb(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,unsigned int size)1359 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1360 struct iavf_rx_buffer *rx_buffer,
1361 unsigned int size)
1362 {
1363 void *va;
1364 #if (PAGE_SIZE < 8192)
1365 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1366 #else
1367 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1368 SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1369 #endif
1370 struct sk_buff *skb;
1371
1372 if (!rx_buffer)
1373 return NULL;
1374 /* prefetch first cache line of first page */
1375 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1376 net_prefetch(va);
1377
1378 /* build an skb around the page buffer */
1379 skb = build_skb(va - IAVF_SKB_PAD, truesize);
1380 if (unlikely(!skb))
1381 return NULL;
1382
1383 /* update pointers within the skb to store the data */
1384 skb_reserve(skb, IAVF_SKB_PAD);
1385 __skb_put(skb, size);
1386
1387 /* buffer is used by skb, update page_offset */
1388 #if (PAGE_SIZE < 8192)
1389 rx_buffer->page_offset ^= truesize;
1390 #else
1391 rx_buffer->page_offset += truesize;
1392 #endif
1393
1394 return skb;
1395 }
1396
1397 /**
1398 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1399 * @rx_ring: rx descriptor ring to transact packets on
1400 * @rx_buffer: rx buffer to pull data from
1401 *
1402 * This function will clean up the contents of the rx_buffer. It will
1403 * either recycle the buffer or unmap it and free the associated resources.
1404 */
iavf_put_rx_buffer(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer)1405 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1406 struct iavf_rx_buffer *rx_buffer)
1407 {
1408 if (!rx_buffer)
1409 return;
1410
1411 if (iavf_can_reuse_rx_page(rx_buffer)) {
1412 /* hand second half of page back to the ring */
1413 iavf_reuse_rx_page(rx_ring, rx_buffer);
1414 rx_ring->rx_stats.page_reuse_count++;
1415 } else {
1416 /* we are not reusing the buffer so unmap it */
1417 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1418 iavf_rx_pg_size(rx_ring),
1419 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1420 __page_frag_cache_drain(rx_buffer->page,
1421 rx_buffer->pagecnt_bias);
1422 }
1423
1424 /* clear contents of buffer_info */
1425 rx_buffer->page = NULL;
1426 }
1427
1428 /**
1429 * iavf_is_non_eop - process handling of non-EOP buffers
1430 * @rx_ring: Rx ring being processed
1431 * @rx_desc: Rx descriptor for current buffer
1432 * @skb: Current socket buffer containing buffer in progress
1433 *
1434 * This function updates next to clean. If the buffer is an EOP buffer
1435 * this function exits returning false, otherwise it will place the
1436 * sk_buff in the next buffer to be chained and return true indicating
1437 * that this is in fact a non-EOP buffer.
1438 **/
iavf_is_non_eop(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb)1439 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1440 union iavf_rx_desc *rx_desc,
1441 struct sk_buff *skb)
1442 {
1443 u32 ntc = rx_ring->next_to_clean + 1;
1444
1445 /* fetch, update, and store next to clean */
1446 ntc = (ntc < rx_ring->count) ? ntc : 0;
1447 rx_ring->next_to_clean = ntc;
1448
1449 prefetch(IAVF_RX_DESC(rx_ring, ntc));
1450
1451 /* if we are the last buffer then there is nothing else to do */
1452 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1453 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1454 return false;
1455
1456 rx_ring->rx_stats.non_eop_descs++;
1457
1458 return true;
1459 }
1460
1461 /**
1462 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1463 * @rx_ring: rx descriptor ring to transact packets on
1464 * @budget: Total limit on number of packets to process
1465 *
1466 * This function provides a "bounce buffer" approach to Rx interrupt
1467 * processing. The advantage to this is that on systems that have
1468 * expensive overhead for IOMMU access this provides a means of avoiding
1469 * it by maintaining the mapping of the page to the system.
1470 *
1471 * Returns amount of work completed
1472 **/
iavf_clean_rx_irq(struct iavf_ring * rx_ring,int budget)1473 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1474 {
1475 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1476 struct sk_buff *skb = rx_ring->skb;
1477 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1478 bool failure = false;
1479
1480 while (likely(total_rx_packets < (unsigned int)budget)) {
1481 struct iavf_rx_buffer *rx_buffer;
1482 union iavf_rx_desc *rx_desc;
1483 unsigned int size;
1484 u16 vlan_tag;
1485 u8 rx_ptype;
1486 u64 qword;
1487
1488 /* return some buffers to hardware, one at a time is too slow */
1489 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1490 failure = failure ||
1491 iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1492 cleaned_count = 0;
1493 }
1494
1495 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1496
1497 /* status_error_len will always be zero for unused descriptors
1498 * because it's cleared in cleanup, and overlaps with hdr_addr
1499 * which is always zero because packet split isn't used, if the
1500 * hardware wrote DD then the length will be non-zero
1501 */
1502 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1503
1504 /* This memory barrier is needed to keep us from reading
1505 * any other fields out of the rx_desc until we have
1506 * verified the descriptor has been written back.
1507 */
1508 dma_rmb();
1509 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1510 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1511 break;
1512
1513 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1514 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1515
1516 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1517 rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1518
1519 /* retrieve a buffer from the ring */
1520 if (skb)
1521 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1522 else if (ring_uses_build_skb(rx_ring))
1523 skb = iavf_build_skb(rx_ring, rx_buffer, size);
1524 else
1525 skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1526
1527 /* exit if we failed to retrieve a buffer */
1528 if (!skb) {
1529 rx_ring->rx_stats.alloc_buff_failed++;
1530 if (rx_buffer)
1531 rx_buffer->pagecnt_bias++;
1532 break;
1533 }
1534
1535 iavf_put_rx_buffer(rx_ring, rx_buffer);
1536 cleaned_count++;
1537
1538 if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1539 continue;
1540
1541 /* ERR_MASK will only have valid bits if EOP set, and
1542 * what we are doing here is actually checking
1543 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1544 * the error field
1545 */
1546 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1547 dev_kfree_skb_any(skb);
1548 skb = NULL;
1549 continue;
1550 }
1551
1552 if (iavf_cleanup_headers(rx_ring, skb)) {
1553 skb = NULL;
1554 continue;
1555 }
1556
1557 /* probably a little skewed due to removing CRC */
1558 total_rx_bytes += skb->len;
1559
1560 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1561 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1562 IAVF_RXD_QW1_PTYPE_SHIFT;
1563
1564 /* populate checksum, VLAN, and protocol */
1565 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1566
1567
1568 vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1569 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1570
1571 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1572 iavf_receive_skb(rx_ring, skb, vlan_tag);
1573 skb = NULL;
1574
1575 /* update budget accounting */
1576 total_rx_packets++;
1577 }
1578
1579 rx_ring->skb = skb;
1580
1581 u64_stats_update_begin(&rx_ring->syncp);
1582 rx_ring->stats.packets += total_rx_packets;
1583 rx_ring->stats.bytes += total_rx_bytes;
1584 u64_stats_update_end(&rx_ring->syncp);
1585 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1586 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1587
1588 /* guarantee a trip back through this routine if there was a failure */
1589 return failure ? budget : (int)total_rx_packets;
1590 }
1591
iavf_buildreg_itr(const int type,u16 itr)1592 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1593 {
1594 u32 val;
1595
1596 /* We don't bother with setting the CLEARPBA bit as the data sheet
1597 * points out doing so is "meaningless since it was already
1598 * auto-cleared". The auto-clearing happens when the interrupt is
1599 * asserted.
1600 *
1601 * Hardware errata 28 for also indicates that writing to a
1602 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1603 * an event in the PBA anyway so we need to rely on the automask
1604 * to hold pending events for us until the interrupt is re-enabled
1605 *
1606 * The itr value is reported in microseconds, and the register
1607 * value is recorded in 2 microsecond units. For this reason we
1608 * only need to shift by the interval shift - 1 instead of the
1609 * full value.
1610 */
1611 itr &= IAVF_ITR_MASK;
1612
1613 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1614 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1615 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1616
1617 return val;
1618 }
1619
1620 /* a small macro to shorten up some long lines */
1621 #define INTREG IAVF_VFINT_DYN_CTLN1
1622
1623 /* The act of updating the ITR will cause it to immediately trigger. In order
1624 * to prevent this from throwing off adaptive update statistics we defer the
1625 * update so that it can only happen so often. So after either Tx or Rx are
1626 * updated we make the adaptive scheme wait until either the ITR completely
1627 * expires via the next_update expiration or we have been through at least
1628 * 3 interrupts.
1629 */
1630 #define ITR_COUNTDOWN_START 3
1631
1632 /**
1633 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1634 * @vsi: the VSI we care about
1635 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1636 *
1637 **/
iavf_update_enable_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)1638 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1639 struct iavf_q_vector *q_vector)
1640 {
1641 struct iavf_hw *hw = &vsi->back->hw;
1642 u32 intval;
1643
1644 /* These will do nothing if dynamic updates are not enabled */
1645 iavf_update_itr(q_vector, &q_vector->tx);
1646 iavf_update_itr(q_vector, &q_vector->rx);
1647
1648 /* This block of logic allows us to get away with only updating
1649 * one ITR value with each interrupt. The idea is to perform a
1650 * pseudo-lazy update with the following criteria.
1651 *
1652 * 1. Rx is given higher priority than Tx if both are in same state
1653 * 2. If we must reduce an ITR that is given highest priority.
1654 * 3. We then give priority to increasing ITR based on amount.
1655 */
1656 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1657 /* Rx ITR needs to be reduced, this is highest priority */
1658 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1659 q_vector->rx.target_itr);
1660 q_vector->rx.current_itr = q_vector->rx.target_itr;
1661 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1662 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1663 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1664 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1665 /* Tx ITR needs to be reduced, this is second priority
1666 * Tx ITR needs to be increased more than Rx, fourth priority
1667 */
1668 intval = iavf_buildreg_itr(IAVF_TX_ITR,
1669 q_vector->tx.target_itr);
1670 q_vector->tx.current_itr = q_vector->tx.target_itr;
1671 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1672 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1673 /* Rx ITR needs to be increased, third priority */
1674 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1675 q_vector->rx.target_itr);
1676 q_vector->rx.current_itr = q_vector->rx.target_itr;
1677 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1678 } else {
1679 /* No ITR update, lowest priority */
1680 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1681 if (q_vector->itr_countdown)
1682 q_vector->itr_countdown--;
1683 }
1684
1685 if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1686 wr32(hw, INTREG(q_vector->reg_idx), intval);
1687 }
1688
1689 /**
1690 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1691 * @napi: napi struct with our devices info in it
1692 * @budget: amount of work driver is allowed to do this pass, in packets
1693 *
1694 * This function will clean all queues associated with a q_vector.
1695 *
1696 * Returns the amount of work done
1697 **/
iavf_napi_poll(struct napi_struct * napi,int budget)1698 int iavf_napi_poll(struct napi_struct *napi, int budget)
1699 {
1700 struct iavf_q_vector *q_vector =
1701 container_of(napi, struct iavf_q_vector, napi);
1702 struct iavf_vsi *vsi = q_vector->vsi;
1703 struct iavf_ring *ring;
1704 bool clean_complete = true;
1705 bool arm_wb = false;
1706 int budget_per_ring;
1707 int work_done = 0;
1708
1709 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1710 napi_complete(napi);
1711 return 0;
1712 }
1713
1714 /* Since the actual Tx work is minimal, we can give the Tx a larger
1715 * budget and be more aggressive about cleaning up the Tx descriptors.
1716 */
1717 iavf_for_each_ring(ring, q_vector->tx) {
1718 if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1719 clean_complete = false;
1720 continue;
1721 }
1722 arm_wb |= ring->arm_wb;
1723 ring->arm_wb = false;
1724 }
1725
1726 /* Handle case where we are called by netpoll with a budget of 0 */
1727 if (budget <= 0)
1728 goto tx_only;
1729
1730 /* We attempt to distribute budget to each Rx queue fairly, but don't
1731 * allow the budget to go below 1 because that would exit polling early.
1732 */
1733 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1734
1735 iavf_for_each_ring(ring, q_vector->rx) {
1736 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1737
1738 work_done += cleaned;
1739 /* if we clean as many as budgeted, we must not be done */
1740 if (cleaned >= budget_per_ring)
1741 clean_complete = false;
1742 }
1743
1744 /* If work not completed, return budget and polling will return */
1745 if (!clean_complete) {
1746 int cpu_id = smp_processor_id();
1747
1748 /* It is possible that the interrupt affinity has changed but,
1749 * if the cpu is pegged at 100%, polling will never exit while
1750 * traffic continues and the interrupt will be stuck on this
1751 * cpu. We check to make sure affinity is correct before we
1752 * continue to poll, otherwise we must stop polling so the
1753 * interrupt can move to the correct cpu.
1754 */
1755 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1756 /* Tell napi that we are done polling */
1757 napi_complete_done(napi, work_done);
1758
1759 /* Force an interrupt */
1760 iavf_force_wb(vsi, q_vector);
1761
1762 /* Return budget-1 so that polling stops */
1763 return budget - 1;
1764 }
1765 tx_only:
1766 if (arm_wb) {
1767 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1768 iavf_enable_wb_on_itr(vsi, q_vector);
1769 }
1770 return budget;
1771 }
1772
1773 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1774 q_vector->arm_wb_state = false;
1775
1776 /* Exit the polling mode, but don't re-enable interrupts if stack might
1777 * poll us due to busy-polling
1778 */
1779 if (likely(napi_complete_done(napi, work_done)))
1780 iavf_update_enable_itr(vsi, q_vector);
1781
1782 return min(work_done, budget - 1);
1783 }
1784
1785 /**
1786 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1787 * @skb: send buffer
1788 * @tx_ring: ring to send buffer on
1789 * @flags: the tx flags to be set
1790 *
1791 * Checks the skb and set up correspondingly several generic transmit flags
1792 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1793 *
1794 * Returns error code indicate the frame should be dropped upon error and the
1795 * otherwise returns 0 to indicate the flags has been set properly.
1796 **/
iavf_tx_prepare_vlan_flags(struct sk_buff * skb,struct iavf_ring * tx_ring,u32 * flags)1797 static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1798 struct iavf_ring *tx_ring,
1799 u32 *flags)
1800 {
1801 __be16 protocol = skb->protocol;
1802 u32 tx_flags = 0;
1803
1804 if (protocol == htons(ETH_P_8021Q) &&
1805 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1806 /* When HW VLAN acceleration is turned off by the user the
1807 * stack sets the protocol to 8021q so that the driver
1808 * can take any steps required to support the SW only
1809 * VLAN handling. In our case the driver doesn't need
1810 * to take any further steps so just set the protocol
1811 * to the encapsulated ethertype.
1812 */
1813 skb->protocol = vlan_get_protocol(skb);
1814 goto out;
1815 }
1816
1817 /* if we have a HW VLAN tag being added, default to the HW one */
1818 if (skb_vlan_tag_present(skb)) {
1819 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1820 tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1821 /* else if it is a SW VLAN, check the next protocol and store the tag */
1822 } else if (protocol == htons(ETH_P_8021Q)) {
1823 struct vlan_hdr *vhdr, _vhdr;
1824
1825 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1826 if (!vhdr)
1827 return -EINVAL;
1828
1829 protocol = vhdr->h_vlan_encapsulated_proto;
1830 tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1831 tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1832 }
1833
1834 out:
1835 *flags = tx_flags;
1836 return 0;
1837 }
1838
1839 /**
1840 * iavf_tso - set up the tso context descriptor
1841 * @first: pointer to first Tx buffer for xmit
1842 * @hdr_len: ptr to the size of the packet header
1843 * @cd_type_cmd_tso_mss: Quad Word 1
1844 *
1845 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1846 **/
iavf_tso(struct iavf_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)1847 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1848 u64 *cd_type_cmd_tso_mss)
1849 {
1850 struct sk_buff *skb = first->skb;
1851 u64 cd_cmd, cd_tso_len, cd_mss;
1852 union {
1853 struct iphdr *v4;
1854 struct ipv6hdr *v6;
1855 unsigned char *hdr;
1856 } ip;
1857 union {
1858 struct tcphdr *tcp;
1859 struct udphdr *udp;
1860 unsigned char *hdr;
1861 } l4;
1862 u32 paylen, l4_offset;
1863 u16 gso_segs, gso_size;
1864 int err;
1865
1866 if (skb->ip_summed != CHECKSUM_PARTIAL)
1867 return 0;
1868
1869 if (!skb_is_gso(skb))
1870 return 0;
1871
1872 err = skb_cow_head(skb, 0);
1873 if (err < 0)
1874 return err;
1875
1876 ip.hdr = skb_network_header(skb);
1877 l4.hdr = skb_transport_header(skb);
1878
1879 /* initialize outer IP header fields */
1880 if (ip.v4->version == 4) {
1881 ip.v4->tot_len = 0;
1882 ip.v4->check = 0;
1883 } else {
1884 ip.v6->payload_len = 0;
1885 }
1886
1887 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1888 SKB_GSO_GRE_CSUM |
1889 SKB_GSO_IPXIP4 |
1890 SKB_GSO_IPXIP6 |
1891 SKB_GSO_UDP_TUNNEL |
1892 SKB_GSO_UDP_TUNNEL_CSUM)) {
1893 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1894 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1895 l4.udp->len = 0;
1896
1897 /* determine offset of outer transport header */
1898 l4_offset = l4.hdr - skb->data;
1899
1900 /* remove payload length from outer checksum */
1901 paylen = skb->len - l4_offset;
1902 csum_replace_by_diff(&l4.udp->check,
1903 (__force __wsum)htonl(paylen));
1904 }
1905
1906 /* reset pointers to inner headers */
1907 ip.hdr = skb_inner_network_header(skb);
1908 l4.hdr = skb_inner_transport_header(skb);
1909
1910 /* initialize inner IP header fields */
1911 if (ip.v4->version == 4) {
1912 ip.v4->tot_len = 0;
1913 ip.v4->check = 0;
1914 } else {
1915 ip.v6->payload_len = 0;
1916 }
1917 }
1918
1919 /* determine offset of inner transport header */
1920 l4_offset = l4.hdr - skb->data;
1921
1922 /* remove payload length from inner checksum */
1923 paylen = skb->len - l4_offset;
1924 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1925
1926 /* compute length of segmentation header */
1927 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1928
1929 /* pull values out of skb_shinfo */
1930 gso_size = skb_shinfo(skb)->gso_size;
1931 gso_segs = skb_shinfo(skb)->gso_segs;
1932
1933 /* update GSO size and bytecount with header size */
1934 first->gso_segs = gso_segs;
1935 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1936
1937 /* find the field values */
1938 cd_cmd = IAVF_TX_CTX_DESC_TSO;
1939 cd_tso_len = skb->len - *hdr_len;
1940 cd_mss = gso_size;
1941 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1942 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1943 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1944 return 1;
1945 }
1946
1947 /**
1948 * iavf_tx_enable_csum - Enable Tx checksum offloads
1949 * @skb: send buffer
1950 * @tx_flags: pointer to Tx flags currently set
1951 * @td_cmd: Tx descriptor command bits to set
1952 * @td_offset: Tx descriptor header offsets to set
1953 * @tx_ring: Tx descriptor ring
1954 * @cd_tunneling: ptr to context desc bits
1955 **/
iavf_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct iavf_ring * tx_ring,u32 * cd_tunneling)1956 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1957 u32 *td_cmd, u32 *td_offset,
1958 struct iavf_ring *tx_ring,
1959 u32 *cd_tunneling)
1960 {
1961 union {
1962 struct iphdr *v4;
1963 struct ipv6hdr *v6;
1964 unsigned char *hdr;
1965 } ip;
1966 union {
1967 struct tcphdr *tcp;
1968 struct udphdr *udp;
1969 unsigned char *hdr;
1970 } l4;
1971 unsigned char *exthdr;
1972 u32 offset, cmd = 0;
1973 __be16 frag_off;
1974 u8 l4_proto = 0;
1975
1976 if (skb->ip_summed != CHECKSUM_PARTIAL)
1977 return 0;
1978
1979 ip.hdr = skb_network_header(skb);
1980 l4.hdr = skb_transport_header(skb);
1981
1982 /* compute outer L2 header size */
1983 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1984
1985 if (skb->encapsulation) {
1986 u32 tunnel = 0;
1987 /* define outer network header type */
1988 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1989 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1990 IAVF_TX_CTX_EXT_IP_IPV4 :
1991 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1992
1993 l4_proto = ip.v4->protocol;
1994 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1995 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1996
1997 exthdr = ip.hdr + sizeof(*ip.v6);
1998 l4_proto = ip.v6->nexthdr;
1999 if (l4.hdr != exthdr)
2000 ipv6_skip_exthdr(skb, exthdr - skb->data,
2001 &l4_proto, &frag_off);
2002 }
2003
2004 /* define outer transport */
2005 switch (l4_proto) {
2006 case IPPROTO_UDP:
2007 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2008 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2009 break;
2010 case IPPROTO_GRE:
2011 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2012 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2013 break;
2014 case IPPROTO_IPIP:
2015 case IPPROTO_IPV6:
2016 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2017 l4.hdr = skb_inner_network_header(skb);
2018 break;
2019 default:
2020 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2021 return -1;
2022
2023 skb_checksum_help(skb);
2024 return 0;
2025 }
2026
2027 /* compute outer L3 header size */
2028 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2029 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2030
2031 /* switch IP header pointer from outer to inner header */
2032 ip.hdr = skb_inner_network_header(skb);
2033
2034 /* compute tunnel header size */
2035 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2036 IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2037
2038 /* indicate if we need to offload outer UDP header */
2039 if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2040 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2041 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2042 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2043
2044 /* record tunnel offload values */
2045 *cd_tunneling |= tunnel;
2046
2047 /* switch L4 header pointer from outer to inner */
2048 l4.hdr = skb_inner_transport_header(skb);
2049 l4_proto = 0;
2050
2051 /* reset type as we transition from outer to inner headers */
2052 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2053 if (ip.v4->version == 4)
2054 *tx_flags |= IAVF_TX_FLAGS_IPV4;
2055 if (ip.v6->version == 6)
2056 *tx_flags |= IAVF_TX_FLAGS_IPV6;
2057 }
2058
2059 /* Enable IP checksum offloads */
2060 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2061 l4_proto = ip.v4->protocol;
2062 /* the stack computes the IP header already, the only time we
2063 * need the hardware to recompute it is in the case of TSO.
2064 */
2065 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2066 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2067 IAVF_TX_DESC_CMD_IIPT_IPV4;
2068 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2069 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2070
2071 exthdr = ip.hdr + sizeof(*ip.v6);
2072 l4_proto = ip.v6->nexthdr;
2073 if (l4.hdr != exthdr)
2074 ipv6_skip_exthdr(skb, exthdr - skb->data,
2075 &l4_proto, &frag_off);
2076 }
2077
2078 /* compute inner L3 header size */
2079 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2080
2081 /* Enable L4 checksum offloads */
2082 switch (l4_proto) {
2083 case IPPROTO_TCP:
2084 /* enable checksum offloads */
2085 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2086 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2087 break;
2088 case IPPROTO_SCTP:
2089 /* enable SCTP checksum offload */
2090 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2091 offset |= (sizeof(struct sctphdr) >> 2) <<
2092 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2093 break;
2094 case IPPROTO_UDP:
2095 /* enable UDP checksum offload */
2096 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2097 offset |= (sizeof(struct udphdr) >> 2) <<
2098 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2099 break;
2100 default:
2101 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2102 return -1;
2103 skb_checksum_help(skb);
2104 return 0;
2105 }
2106
2107 *td_cmd |= cmd;
2108 *td_offset |= offset;
2109
2110 return 1;
2111 }
2112
2113 /**
2114 * iavf_create_tx_ctx Build the Tx context descriptor
2115 * @tx_ring: ring to create the descriptor on
2116 * @cd_type_cmd_tso_mss: Quad Word 1
2117 * @cd_tunneling: Quad Word 0 - bits 0-31
2118 * @cd_l2tag2: Quad Word 0 - bits 32-63
2119 **/
iavf_create_tx_ctx(struct iavf_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)2120 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2121 const u64 cd_type_cmd_tso_mss,
2122 const u32 cd_tunneling, const u32 cd_l2tag2)
2123 {
2124 struct iavf_tx_context_desc *context_desc;
2125 int i = tx_ring->next_to_use;
2126
2127 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2128 !cd_tunneling && !cd_l2tag2)
2129 return;
2130
2131 /* grab the next descriptor */
2132 context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2133
2134 i++;
2135 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2136
2137 /* cpu_to_le32 and assign to struct fields */
2138 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2139 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2140 context_desc->rsvd = cpu_to_le16(0);
2141 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2142 }
2143
2144 /**
2145 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2146 * @skb: send buffer
2147 *
2148 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2149 * and so we need to figure out the cases where we need to linearize the skb.
2150 *
2151 * For TSO we need to count the TSO header and segment payload separately.
2152 * As such we need to check cases where we have 7 fragments or more as we
2153 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2154 * the segment payload in the first descriptor, and another 7 for the
2155 * fragments.
2156 **/
__iavf_chk_linearize(struct sk_buff * skb)2157 bool __iavf_chk_linearize(struct sk_buff *skb)
2158 {
2159 const skb_frag_t *frag, *stale;
2160 int nr_frags, sum;
2161
2162 /* no need to check if number of frags is less than 7 */
2163 nr_frags = skb_shinfo(skb)->nr_frags;
2164 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2165 return false;
2166
2167 /* We need to walk through the list and validate that each group
2168 * of 6 fragments totals at least gso_size.
2169 */
2170 nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2171 frag = &skb_shinfo(skb)->frags[0];
2172
2173 /* Initialize size to the negative value of gso_size minus 1. We
2174 * use this as the worst case scenerio in which the frag ahead
2175 * of us only provides one byte which is why we are limited to 6
2176 * descriptors for a single transmit as the header and previous
2177 * fragment are already consuming 2 descriptors.
2178 */
2179 sum = 1 - skb_shinfo(skb)->gso_size;
2180
2181 /* Add size of frags 0 through 4 to create our initial sum */
2182 sum += skb_frag_size(frag++);
2183 sum += skb_frag_size(frag++);
2184 sum += skb_frag_size(frag++);
2185 sum += skb_frag_size(frag++);
2186 sum += skb_frag_size(frag++);
2187
2188 /* Walk through fragments adding latest fragment, testing it, and
2189 * then removing stale fragments from the sum.
2190 */
2191 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2192 int stale_size = skb_frag_size(stale);
2193
2194 sum += skb_frag_size(frag++);
2195
2196 /* The stale fragment may present us with a smaller
2197 * descriptor than the actual fragment size. To account
2198 * for that we need to remove all the data on the front and
2199 * figure out what the remainder would be in the last
2200 * descriptor associated with the fragment.
2201 */
2202 if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2203 int align_pad = -(skb_frag_off(stale)) &
2204 (IAVF_MAX_READ_REQ_SIZE - 1);
2205
2206 sum -= align_pad;
2207 stale_size -= align_pad;
2208
2209 do {
2210 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2211 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2212 } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2213 }
2214
2215 /* if sum is negative we failed to make sufficient progress */
2216 if (sum < 0)
2217 return true;
2218
2219 if (!nr_frags--)
2220 break;
2221
2222 sum -= stale_size;
2223 }
2224
2225 return false;
2226 }
2227
2228 /**
2229 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2230 * @tx_ring: the ring to be checked
2231 * @size: the size buffer we want to assure is available
2232 *
2233 * Returns -EBUSY if a stop is needed, else 0
2234 **/
__iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)2235 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2236 {
2237 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2238 /* Memory barrier before checking head and tail */
2239 smp_mb();
2240
2241 /* Check again in a case another CPU has just made room available. */
2242 if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2243 return -EBUSY;
2244
2245 /* A reprieve! - use start_queue because it doesn't call schedule */
2246 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2247 ++tx_ring->tx_stats.restart_queue;
2248 return 0;
2249 }
2250
2251 /**
2252 * iavf_tx_map - Build the Tx descriptor
2253 * @tx_ring: ring to send buffer on
2254 * @skb: send buffer
2255 * @first: first buffer info buffer to use
2256 * @tx_flags: collected send information
2257 * @hdr_len: size of the packet header
2258 * @td_cmd: the command field in the descriptor
2259 * @td_offset: offset for checksum or crc
2260 **/
iavf_tx_map(struct iavf_ring * tx_ring,struct sk_buff * skb,struct iavf_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)2261 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2262 struct iavf_tx_buffer *first, u32 tx_flags,
2263 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2264 {
2265 unsigned int data_len = skb->data_len;
2266 unsigned int size = skb_headlen(skb);
2267 skb_frag_t *frag;
2268 struct iavf_tx_buffer *tx_bi;
2269 struct iavf_tx_desc *tx_desc;
2270 u16 i = tx_ring->next_to_use;
2271 u32 td_tag = 0;
2272 dma_addr_t dma;
2273
2274 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2275 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2276 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2277 IAVF_TX_FLAGS_VLAN_SHIFT;
2278 }
2279
2280 first->tx_flags = tx_flags;
2281
2282 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2283
2284 tx_desc = IAVF_TX_DESC(tx_ring, i);
2285 tx_bi = first;
2286
2287 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2288 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2289
2290 if (dma_mapping_error(tx_ring->dev, dma))
2291 goto dma_error;
2292
2293 /* record length, and DMA address */
2294 dma_unmap_len_set(tx_bi, len, size);
2295 dma_unmap_addr_set(tx_bi, dma, dma);
2296
2297 /* align size to end of page */
2298 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2299 tx_desc->buffer_addr = cpu_to_le64(dma);
2300
2301 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2302 tx_desc->cmd_type_offset_bsz =
2303 build_ctob(td_cmd, td_offset,
2304 max_data, td_tag);
2305
2306 tx_desc++;
2307 i++;
2308
2309 if (i == tx_ring->count) {
2310 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2311 i = 0;
2312 }
2313
2314 dma += max_data;
2315 size -= max_data;
2316
2317 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2318 tx_desc->buffer_addr = cpu_to_le64(dma);
2319 }
2320
2321 if (likely(!data_len))
2322 break;
2323
2324 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2325 size, td_tag);
2326
2327 tx_desc++;
2328 i++;
2329
2330 if (i == tx_ring->count) {
2331 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2332 i = 0;
2333 }
2334
2335 size = skb_frag_size(frag);
2336 data_len -= size;
2337
2338 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2339 DMA_TO_DEVICE);
2340
2341 tx_bi = &tx_ring->tx_bi[i];
2342 }
2343
2344 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2345
2346 i++;
2347 if (i == tx_ring->count)
2348 i = 0;
2349
2350 tx_ring->next_to_use = i;
2351
2352 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2353
2354 /* write last descriptor with RS and EOP bits */
2355 td_cmd |= IAVF_TXD_CMD;
2356 tx_desc->cmd_type_offset_bsz =
2357 build_ctob(td_cmd, td_offset, size, td_tag);
2358
2359 skb_tx_timestamp(skb);
2360
2361 /* Force memory writes to complete before letting h/w know there
2362 * are new descriptors to fetch.
2363 *
2364 * We also use this memory barrier to make certain all of the
2365 * status bits have been updated before next_to_watch is written.
2366 */
2367 wmb();
2368
2369 /* set next_to_watch value indicating a packet is present */
2370 first->next_to_watch = tx_desc;
2371
2372 /* notify HW of packet */
2373 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2374 writel(i, tx_ring->tail);
2375 }
2376
2377 return;
2378
2379 dma_error:
2380 dev_info(tx_ring->dev, "TX DMA map failed\n");
2381
2382 /* clear dma mappings for failed tx_bi map */
2383 for (;;) {
2384 tx_bi = &tx_ring->tx_bi[i];
2385 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2386 if (tx_bi == first)
2387 break;
2388 if (i == 0)
2389 i = tx_ring->count;
2390 i--;
2391 }
2392
2393 tx_ring->next_to_use = i;
2394 }
2395
2396 /**
2397 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2398 * @skb: send buffer
2399 * @tx_ring: ring to send buffer on
2400 *
2401 * Returns NETDEV_TX_OK if sent, else an error code
2402 **/
iavf_xmit_frame_ring(struct sk_buff * skb,struct iavf_ring * tx_ring)2403 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2404 struct iavf_ring *tx_ring)
2405 {
2406 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2407 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2408 struct iavf_tx_buffer *first;
2409 u32 td_offset = 0;
2410 u32 tx_flags = 0;
2411 __be16 protocol;
2412 u32 td_cmd = 0;
2413 u8 hdr_len = 0;
2414 int tso, count;
2415
2416 /* prefetch the data, we'll need it later */
2417 prefetch(skb->data);
2418
2419 iavf_trace(xmit_frame_ring, skb, tx_ring);
2420
2421 count = iavf_xmit_descriptor_count(skb);
2422 if (iavf_chk_linearize(skb, count)) {
2423 if (__skb_linearize(skb)) {
2424 dev_kfree_skb_any(skb);
2425 return NETDEV_TX_OK;
2426 }
2427 count = iavf_txd_use_count(skb->len);
2428 tx_ring->tx_stats.tx_linearize++;
2429 }
2430
2431 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2432 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2433 * + 4 desc gap to avoid the cache line where head is,
2434 * + 1 desc for context descriptor,
2435 * otherwise try next time
2436 */
2437 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2438 tx_ring->tx_stats.tx_busy++;
2439 return NETDEV_TX_BUSY;
2440 }
2441
2442 /* record the location of the first descriptor for this packet */
2443 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2444 first->skb = skb;
2445 first->bytecount = skb->len;
2446 first->gso_segs = 1;
2447
2448 /* prepare the xmit flags */
2449 if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2450 goto out_drop;
2451
2452 /* obtain protocol of skb */
2453 protocol = vlan_get_protocol(skb);
2454
2455 /* setup IPv4/IPv6 offloads */
2456 if (protocol == htons(ETH_P_IP))
2457 tx_flags |= IAVF_TX_FLAGS_IPV4;
2458 else if (protocol == htons(ETH_P_IPV6))
2459 tx_flags |= IAVF_TX_FLAGS_IPV6;
2460
2461 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2462
2463 if (tso < 0)
2464 goto out_drop;
2465 else if (tso)
2466 tx_flags |= IAVF_TX_FLAGS_TSO;
2467
2468 /* Always offload the checksum, since it's in the data descriptor */
2469 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2470 tx_ring, &cd_tunneling);
2471 if (tso < 0)
2472 goto out_drop;
2473
2474 /* always enable CRC insertion offload */
2475 td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2476
2477 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2478 cd_tunneling, cd_l2tag2);
2479
2480 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2481 td_cmd, td_offset);
2482
2483 return NETDEV_TX_OK;
2484
2485 out_drop:
2486 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2487 dev_kfree_skb_any(first->skb);
2488 first->skb = NULL;
2489 return NETDEV_TX_OK;
2490 }
2491
2492 /**
2493 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2494 * @skb: send buffer
2495 * @netdev: network interface device structure
2496 *
2497 * Returns NETDEV_TX_OK if sent, else an error code
2498 **/
iavf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2499 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2500 {
2501 struct iavf_adapter *adapter = netdev_priv(netdev);
2502 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2503
2504 /* hardware can't handle really short frames, hardware padding works
2505 * beyond this point
2506 */
2507 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2508 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2509 return NETDEV_TX_OK;
2510 skb->len = IAVF_MIN_TX_LEN;
2511 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2512 }
2513
2514 return iavf_xmit_frame_ring(skb, tx_ring);
2515 }
2516