1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #ifndef _ICE_TXRX_H_
5 #define _ICE_TXRX_H_
6
7 #include "ice_type.h"
8
9 #define ICE_DFLT_IRQ_WORK 256
10 #define ICE_RXBUF_3072 3072
11 #define ICE_RXBUF_2048 2048
12 #define ICE_RXBUF_1536 1536
13 #define ICE_MAX_CHAINED_RX_BUFS 5
14 #define ICE_MAX_BUF_TXD 8
15 #define ICE_MIN_TX_LEN 17
16
17 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
18 * In order to align with the read requests we will align the value to
19 * the nearest 4K which represents our maximum read request size.
20 */
21 #define ICE_MAX_READ_REQ_SIZE 4096
22 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1)
23 #define ICE_MAX_DATA_PER_TXD_ALIGNED \
24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
25
26 #define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */
27 #define ICE_MAX_TXQ_PER_TXQG 128
28
29 /* Attempt to maximize the headroom available for incoming frames. We use a 2K
30 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
31 * This leaves us with 512 bytes of room. From that we need to deduct the
32 * space needed for the shared info and the padding needed to IP align the
33 * frame.
34 *
35 * Note: For cache line sizes 256 or larger this value is going to end
36 * up negative. In these cases we should fall back to the legacy
37 * receive path.
38 */
39 #if (PAGE_SIZE < 8192)
40 #define ICE_2K_TOO_SMALL_WITH_PADDING \
41 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
42 SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
43
44 /**
45 * ice_compute_pad - compute the padding
46 * @rx_buf_len: buffer length
47 *
48 * Figure out the size of half page based on given buffer length and
49 * then subtract the skb_shared_info followed by subtraction of the
50 * actual buffer length; this in turn results in the actual space that
51 * is left for padding usage
52 */
ice_compute_pad(int rx_buf_len)53 static inline int ice_compute_pad(int rx_buf_len)
54 {
55 int half_page_size;
56
57 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
58 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
59 }
60
61 /**
62 * ice_skb_pad - determine the padding that we can supply
63 *
64 * Figure out the right Rx buffer size and based on that calculate the
65 * padding
66 */
ice_skb_pad(void)67 static inline int ice_skb_pad(void)
68 {
69 int rx_buf_len;
70
71 /* If a 2K buffer cannot handle a standard Ethernet frame then
72 * optimize padding for a 3K buffer instead of a 1.5K buffer.
73 *
74 * For a 3K buffer we need to add enough padding to allow for
75 * tailroom due to NET_IP_ALIGN possibly shifting us out of
76 * cache-line alignment.
77 */
78 if (ICE_2K_TOO_SMALL_WITH_PADDING)
79 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
80 else
81 rx_buf_len = ICE_RXBUF_1536;
82
83 /* if needed make room for NET_IP_ALIGN */
84 rx_buf_len -= NET_IP_ALIGN;
85
86 return ice_compute_pad(rx_buf_len);
87 }
88
89 #define ICE_SKB_PAD ice_skb_pad()
90 #else
91 #define ICE_2K_TOO_SMALL_WITH_PADDING false
92 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
93 #endif
94
95 /* We are assuming that the cache line is always 64 Bytes here for ice.
96 * In order to make sure that is a correct assumption there is a check in probe
97 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
98 * size is 128 bytes. We do it this way because we do not want to read the
99 * GLPCI_CNF2 register or a variable containing the value on every pass through
100 * the Tx path.
101 */
102 #define ICE_CACHE_LINE_BYTES 64
103 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \
104 sizeof(struct ice_tx_desc))
105 #define ICE_DESCS_FOR_CTX_DESC 1
106 #define ICE_DESCS_FOR_SKB_DATA_PTR 1
107 /* Tx descriptors needed, worst case */
108 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
109 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
110 #define ICE_DESC_UNUSED(R) \
111 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
112 (R)->next_to_clean - (R)->next_to_use - 1)
113
114 #define ICE_TX_FLAGS_TSO BIT(0)
115 #define ICE_TX_FLAGS_HW_VLAN BIT(1)
116 #define ICE_TX_FLAGS_SW_VLAN BIT(2)
117 /* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be
118 * freed instead of returned like skb packets.
119 */
120 #define ICE_TX_FLAGS_DUMMY_PKT BIT(3)
121 #define ICE_TX_FLAGS_IPV4 BIT(5)
122 #define ICE_TX_FLAGS_IPV6 BIT(6)
123 #define ICE_TX_FLAGS_TUNNEL BIT(7)
124 #define ICE_TX_FLAGS_VLAN_M 0xffff0000
125 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000
126 #define ICE_TX_FLAGS_VLAN_PR_S 29
127 #define ICE_TX_FLAGS_VLAN_S 16
128
129 #define ICE_XDP_PASS 0
130 #define ICE_XDP_CONSUMED BIT(0)
131 #define ICE_XDP_TX BIT(1)
132 #define ICE_XDP_REDIR BIT(2)
133
134 #define ICE_RX_DMA_ATTR \
135 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
136
137 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
138
139 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
140
141 struct ice_tx_buf {
142 struct ice_tx_desc *next_to_watch;
143 union {
144 struct sk_buff *skb;
145 void *raw_buf; /* used for XDP */
146 };
147 unsigned int bytecount;
148 unsigned short gso_segs;
149 u32 tx_flags;
150 DEFINE_DMA_UNMAP_LEN(len);
151 DEFINE_DMA_UNMAP_ADDR(dma);
152 };
153
154 struct ice_tx_offload_params {
155 u64 cd_qw1;
156 struct ice_ring *tx_ring;
157 u32 td_cmd;
158 u32 td_offset;
159 u32 td_l2tag1;
160 u32 cd_tunnel_params;
161 u16 cd_l2tag2;
162 u8 header_len;
163 };
164
165 struct ice_rx_buf {
166 union {
167 struct {
168 struct sk_buff *skb;
169 dma_addr_t dma;
170 struct page *page;
171 unsigned int page_offset;
172 u16 pagecnt_bias;
173 };
174 struct {
175 struct xdp_buff *xdp;
176 };
177 };
178 };
179
180 struct ice_q_stats {
181 u64 pkts;
182 u64 bytes;
183 };
184
185 struct ice_txq_stats {
186 u64 restart_q;
187 u64 tx_busy;
188 u64 tx_linearize;
189 int prev_pkt; /* negative if no pending Tx descriptors */
190 };
191
192 struct ice_rxq_stats {
193 u64 non_eop_descs;
194 u64 alloc_page_failed;
195 u64 alloc_buf_failed;
196 u64 gro_dropped; /* GRO returned dropped */
197 };
198
199 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
200 * registers and QINT registers or more generally anywhere in the manual
201 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
202 * register but instead is a special value meaning "don't update" ITR0/1/2.
203 */
204 enum ice_dyn_idx_t {
205 ICE_IDX_ITR0 = 0,
206 ICE_IDX_ITR1 = 1,
207 ICE_IDX_ITR2 = 2,
208 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
209 };
210
211 /* Header split modes defined by DTYPE field of Rx RLAN context */
212 enum ice_rx_dtype {
213 ICE_RX_DTYPE_NO_SPLIT = 0,
214 ICE_RX_DTYPE_HEADER_SPLIT = 1,
215 ICE_RX_DTYPE_SPLIT_ALWAYS = 2,
216 };
217
218 /* indices into GLINT_ITR registers */
219 #define ICE_RX_ITR ICE_IDX_ITR0
220 #define ICE_TX_ITR ICE_IDX_ITR1
221 #define ICE_ITR_8K 124
222 #define ICE_ITR_20K 50
223 #define ICE_ITR_MAX 8160
224 #define ICE_DFLT_TX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC)
225 #define ICE_DFLT_RX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC)
226 #define ICE_ITR_DYNAMIC 0x8000 /* used as flag for itr_setting */
227 #define ITR_IS_DYNAMIC(setting) (!!((setting) & ICE_ITR_DYNAMIC))
228 #define ITR_TO_REG(setting) ((setting) & ~ICE_ITR_DYNAMIC)
229 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */
230 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S)
231 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */
232 #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK)
233
234 #define ICE_ITR_ADAPTIVE_MIN_INC 0x0002
235 #define ICE_ITR_ADAPTIVE_MIN_USECS 0x0002
236 #define ICE_ITR_ADAPTIVE_MAX_USECS 0x00FA
237 #define ICE_ITR_ADAPTIVE_LATENCY 0x8000
238 #define ICE_ITR_ADAPTIVE_BULK 0x0000
239
240 #define ICE_DFLT_INTRL 0
241 #define ICE_MAX_INTRL 236
242
243 #define ICE_WB_ON_ITR_USECS 2
244 #define ICE_IN_WB_ON_ITR_MODE 255
245 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
246 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
247 * set the write-back latency to the usecs passed in.
248 */
249 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \
250 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
251 GLINT_DYN_CTL_INTERVAL_M) | \
252 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
253 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
254 GLINT_DYN_CTL_WB_ON_ITR_M)
255
256 /* Legacy or Advanced Mode Queue */
257 #define ICE_TX_ADVANCED 0
258 #define ICE_TX_LEGACY 1
259
260 /* descriptor ring, associated with a VSI */
261 struct ice_ring {
262 /* CL1 - 1st cacheline starts here */
263 struct ice_ring *next; /* pointer to next ring in q_vector */
264 void *desc; /* Descriptor ring memory */
265 struct device *dev; /* Used for DMA mapping */
266 struct net_device *netdev; /* netdev ring maps to */
267 struct ice_vsi *vsi; /* Backreference to associated VSI */
268 struct ice_q_vector *q_vector; /* Backreference to associated vector */
269 u8 __iomem *tail;
270 union {
271 struct ice_tx_buf *tx_buf;
272 struct ice_rx_buf *rx_buf;
273 };
274 /* CL2 - 2nd cacheline starts here */
275 u16 q_index; /* Queue number of ring */
276 u16 q_handle; /* Queue handle per TC */
277
278 u8 ring_active:1; /* is ring online or not */
279
280 u16 count; /* Number of descriptors */
281 u16 reg_idx; /* HW register index of the ring */
282
283 /* used in interrupt processing */
284 u16 next_to_use;
285 u16 next_to_clean;
286 u16 next_to_alloc;
287
288 /* stats structs */
289 struct ice_q_stats stats;
290 struct u64_stats_sync syncp;
291 union {
292 struct ice_txq_stats tx_stats;
293 struct ice_rxq_stats rx_stats;
294 };
295
296 struct rcu_head rcu; /* to avoid race on free */
297 struct bpf_prog *xdp_prog;
298 struct xsk_buff_pool *xsk_pool;
299 /* CL3 - 3rd cacheline starts here */
300 struct xdp_rxq_info xdp_rxq;
301 /* CLX - the below items are only accessed infrequently and should be
302 * in their own cache line if possible
303 */
304 #define ICE_TX_FLAGS_RING_XDP BIT(0)
305 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1)
306 u8 flags;
307 dma_addr_t dma; /* physical address of ring */
308 unsigned int size; /* length of descriptor ring in bytes */
309 u32 txq_teid; /* Added Tx queue TEID */
310 u16 rx_buf_len;
311 u8 dcb_tc; /* Traffic class of ring */
312 } ____cacheline_internodealigned_in_smp;
313
ice_ring_uses_build_skb(struct ice_ring * ring)314 static inline bool ice_ring_uses_build_skb(struct ice_ring *ring)
315 {
316 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
317 }
318
ice_set_ring_build_skb_ena(struct ice_ring * ring)319 static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring)
320 {
321 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
322 }
323
ice_clear_ring_build_skb_ena(struct ice_ring * ring)324 static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring)
325 {
326 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
327 }
328
ice_ring_is_xdp(struct ice_ring * ring)329 static inline bool ice_ring_is_xdp(struct ice_ring *ring)
330 {
331 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
332 }
333
334 struct ice_ring_container {
335 /* head of linked-list of rings */
336 struct ice_ring *ring;
337 unsigned long next_update; /* jiffies value of next queue update */
338 unsigned int total_bytes; /* total bytes processed this int */
339 unsigned int total_pkts; /* total packets processed this int */
340 u16 itr_idx; /* index in the interrupt vector */
341 u16 target_itr; /* value in usecs divided by the hw->itr_gran */
342 u16 current_itr; /* value in usecs divided by the hw->itr_gran */
343 /* high bit set means dynamic ITR, rest is used to store user
344 * readable ITR value in usecs and must be converted before programming
345 * to a register.
346 */
347 u16 itr_setting;
348 };
349
350 struct ice_coalesce_stored {
351 u16 itr_tx;
352 u16 itr_rx;
353 u8 intrl;
354 u8 tx_valid;
355 u8 rx_valid;
356 };
357
358 /* iterator for handling rings in ring container */
359 #define ice_for_each_ring(pos, head) \
360 for (pos = (head).ring; pos; pos = pos->next)
361
ice_rx_pg_order(struct ice_ring * ring)362 static inline unsigned int ice_rx_pg_order(struct ice_ring *ring)
363 {
364 #if (PAGE_SIZE < 8192)
365 if (ring->rx_buf_len > (PAGE_SIZE / 2))
366 return 1;
367 #endif
368 return 0;
369 }
370
371 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
372
373 union ice_32b_rx_flex_desc;
374
375 bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count);
376 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
377 void ice_clean_tx_ring(struct ice_ring *tx_ring);
378 void ice_clean_rx_ring(struct ice_ring *rx_ring);
379 int ice_setup_tx_ring(struct ice_ring *tx_ring);
380 int ice_setup_rx_ring(struct ice_ring *rx_ring);
381 void ice_free_tx_ring(struct ice_ring *tx_ring);
382 void ice_free_rx_ring(struct ice_ring *rx_ring);
383 int ice_napi_poll(struct napi_struct *napi, int budget);
384 int
385 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
386 u8 *raw_packet);
387 int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget);
388 void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring);
389 #endif /* _ICE_TXRX_H_ */
390