1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 1999-2001 Vojtech Pavlik
4 * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
5 *
6 * Should you need to contact me, the author, you can do so either by
7 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
8 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/ide.h>
13 #include <linux/module.h>
14
15 /*
16 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
17 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
18 * for PIO 5, which is a nonstandard extension and UDMA6, which
19 * is currently supported only by Maxtor drives.
20 */
21
22 static struct ide_timing ide_timing[] = {
23
24 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
25 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
26 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
27 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
28
29 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
30 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
31 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
32
33 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
34 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
35 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
36 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
37 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
38
39 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
40 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
41 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
42
43 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
44 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
45 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
46 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
47
48 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
49 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
50 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
51
52 { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
53
54 { 0xff }
55 };
56
ide_timing_find_mode(u8 speed)57 struct ide_timing *ide_timing_find_mode(u8 speed)
58 {
59 struct ide_timing *t;
60
61 for (t = ide_timing; t->mode != speed; t++)
62 if (t->mode == 0xff)
63 return NULL;
64 return t;
65 }
66 EXPORT_SYMBOL_GPL(ide_timing_find_mode);
67
ide_pio_cycle_time(ide_drive_t * drive,u8 pio)68 u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
69 {
70 u16 *id = drive->id;
71 struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
72 u16 cycle = 0;
73
74 if (id[ATA_ID_FIELD_VALID] & 2) {
75 if (ata_id_has_iordy(drive->id))
76 cycle = id[ATA_ID_EIDE_PIO_IORDY];
77 else
78 cycle = id[ATA_ID_EIDE_PIO];
79
80 /* conservative "downgrade" for all pre-ATA2 drives */
81 if (pio < 3 && cycle < t->cycle)
82 cycle = 0; /* use standard timing */
83
84 /* Use the standard timing for the CF specific modes too */
85 if (pio > 4 && ata_id_is_cfa(id))
86 cycle = 0;
87 }
88
89 return cycle ? cycle : t->cycle;
90 }
91 EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
92
93 #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
94 #define EZ(v, unit) ((v) ? ENOUGH((v) * 1000, unit) : 0)
95
ide_timing_quantize(struct ide_timing * t,struct ide_timing * q,int T,int UT)96 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
97 int T, int UT)
98 {
99 q->setup = EZ(t->setup, T);
100 q->act8b = EZ(t->act8b, T);
101 q->rec8b = EZ(t->rec8b, T);
102 q->cyc8b = EZ(t->cyc8b, T);
103 q->active = EZ(t->active, T);
104 q->recover = EZ(t->recover, T);
105 q->cycle = EZ(t->cycle, T);
106 q->udma = EZ(t->udma, UT);
107 }
108
ide_timing_merge(struct ide_timing * a,struct ide_timing * b,struct ide_timing * m,unsigned int what)109 void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
110 struct ide_timing *m, unsigned int what)
111 {
112 if (what & IDE_TIMING_SETUP)
113 m->setup = max(a->setup, b->setup);
114 if (what & IDE_TIMING_ACT8B)
115 m->act8b = max(a->act8b, b->act8b);
116 if (what & IDE_TIMING_REC8B)
117 m->rec8b = max(a->rec8b, b->rec8b);
118 if (what & IDE_TIMING_CYC8B)
119 m->cyc8b = max(a->cyc8b, b->cyc8b);
120 if (what & IDE_TIMING_ACTIVE)
121 m->active = max(a->active, b->active);
122 if (what & IDE_TIMING_RECOVER)
123 m->recover = max(a->recover, b->recover);
124 if (what & IDE_TIMING_CYCLE)
125 m->cycle = max(a->cycle, b->cycle);
126 if (what & IDE_TIMING_UDMA)
127 m->udma = max(a->udma, b->udma);
128 }
129 EXPORT_SYMBOL_GPL(ide_timing_merge);
130
ide_timing_compute(ide_drive_t * drive,u8 speed,struct ide_timing * t,int T,int UT)131 int ide_timing_compute(ide_drive_t *drive, u8 speed,
132 struct ide_timing *t, int T, int UT)
133 {
134 u16 *id = drive->id;
135 struct ide_timing *s, p;
136
137 /*
138 * Find the mode.
139 */
140 s = ide_timing_find_mode(speed);
141 if (s == NULL)
142 return -EINVAL;
143
144 /*
145 * Copy the timing from the table.
146 */
147 *t = *s;
148
149 /*
150 * If the drive is an EIDE drive, it can tell us it needs extended
151 * PIO/MWDMA cycle timing.
152 */
153 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
154 memset(&p, 0, sizeof(p));
155
156 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
157 if (speed <= XFER_PIO_2)
158 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
159 else if ((speed <= XFER_PIO_4) ||
160 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
161 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
162 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
163 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
164
165 ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
166 }
167
168 /*
169 * Convert the timing to bus clock counts.
170 */
171 ide_timing_quantize(t, t, T, UT);
172
173 /*
174 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
175 * S.M.A.R.T and some other commands. We have to ensure that the
176 * DMA cycle timing is slower/equal than the current PIO timing.
177 */
178 if (speed >= XFER_SW_DMA_0) {
179 ide_timing_compute(drive, drive->pio_mode, &p, T, UT);
180 ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
181 }
182
183 /*
184 * Lengthen active & recovery time so that cycle time is correct.
185 */
186 if (t->act8b + t->rec8b < t->cyc8b) {
187 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
188 t->rec8b = t->cyc8b - t->act8b;
189 }
190
191 if (t->active + t->recover < t->cycle) {
192 t->active += (t->cycle - (t->active + t->recover)) / 2;
193 t->recover = t->cycle - t->active;
194 }
195
196 return 0;
197 }
198 EXPORT_SYMBOL_GPL(ide_timing_compute);
199