1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2021 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
ieee80211_rx_stats(struct net_device * dev,u32 len)35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 /*
46 * monitor mode reception
47 *
48 * This function cleans up the SKB, i.e. it removes all the stuff
49 * only useful for monitoring.
50 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)51 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
52 unsigned int present_fcs_len,
53 unsigned int rtap_space)
54 {
55 struct ieee80211_hdr *hdr;
56 unsigned int hdrlen;
57 __le16 fc;
58
59 if (present_fcs_len)
60 __pskb_trim(skb, skb->len - present_fcs_len);
61 __pskb_pull(skb, rtap_space);
62
63 hdr = (void *)skb->data;
64 fc = hdr->frame_control;
65
66 /*
67 * Remove the HT-Control field (if present) on management
68 * frames after we've sent the frame to monitoring. We
69 * (currently) don't need it, and don't properly parse
70 * frames with it present, due to the assumption of a
71 * fixed management header length.
72 */
73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
74 return skb;
75
76 hdrlen = ieee80211_hdrlen(fc);
77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
78
79 if (!pskb_may_pull(skb, hdrlen)) {
80 dev_kfree_skb(skb);
81 return NULL;
82 }
83
84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
85 hdrlen - IEEE80211_HT_CTL_LEN);
86 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
87
88 return skb;
89 }
90
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
92 unsigned int rtap_space)
93 {
94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
95 struct ieee80211_hdr *hdr;
96
97 hdr = (void *)(skb->data + rtap_space);
98
99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
100 RX_FLAG_FAILED_PLCP_CRC |
101 RX_FLAG_ONLY_MONITOR |
102 RX_FLAG_NO_PSDU))
103 return true;
104
105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
106 return true;
107
108 if (ieee80211_is_ctl(hdr->frame_control) &&
109 !ieee80211_is_pspoll(hdr->frame_control) &&
110 !ieee80211_is_back_req(hdr->frame_control))
111 return true;
112
113 return false;
114 }
115
116 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
118 struct ieee80211_rx_status *status,
119 struct sk_buff *skb)
120 {
121 int len;
122
123 /* always present fields */
124 len = sizeof(struct ieee80211_radiotap_header) + 8;
125
126 /* allocate extra bitmaps */
127 if (status->chains)
128 len += 4 * hweight8(status->chains);
129 /* vendor presence bitmap */
130 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
131 len += 4;
132
133 if (ieee80211_have_rx_timestamp(status)) {
134 len = ALIGN(len, 8);
135 len += 8;
136 }
137 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
138 len += 1;
139
140 /* antenna field, if we don't have per-chain info */
141 if (!status->chains)
142 len += 1;
143
144 /* padding for RX_FLAGS if necessary */
145 len = ALIGN(len, 2);
146
147 if (status->encoding == RX_ENC_HT) /* HT info */
148 len += 3;
149
150 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
151 len = ALIGN(len, 4);
152 len += 8;
153 }
154
155 if (status->encoding == RX_ENC_VHT) {
156 len = ALIGN(len, 2);
157 len += 12;
158 }
159
160 if (local->hw.radiotap_timestamp.units_pos >= 0) {
161 len = ALIGN(len, 8);
162 len += 12;
163 }
164
165 if (status->encoding == RX_ENC_HE &&
166 status->flag & RX_FLAG_RADIOTAP_HE) {
167 len = ALIGN(len, 2);
168 len += 12;
169 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
170 }
171
172 if (status->encoding == RX_ENC_HE &&
173 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
174 len = ALIGN(len, 2);
175 len += 12;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
177 }
178
179 if (status->flag & RX_FLAG_NO_PSDU)
180 len += 1;
181
182 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
183 len = ALIGN(len, 2);
184 len += 4;
185 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
186 }
187
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
191 }
192
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap;
195 int vendor_data_offset = 0;
196
197 /*
198 * The position to look at depends on the existence (or non-
199 * existence) of other elements, so take that into account...
200 */
201 if (status->flag & RX_FLAG_RADIOTAP_HE)
202 vendor_data_offset +=
203 sizeof(struct ieee80211_radiotap_he);
204 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
205 vendor_data_offset +=
206 sizeof(struct ieee80211_radiotap_he_mu);
207 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
208 vendor_data_offset +=
209 sizeof(struct ieee80211_radiotap_lsig);
210
211 rtap = (void *)&skb->data[vendor_data_offset];
212
213 /* alignment for fixed 6-byte vendor data header */
214 len = ALIGN(len, 2);
215 /* vendor data header */
216 len += 6;
217 if (WARN_ON(rtap->align == 0))
218 rtap->align = 1;
219 len = ALIGN(len, rtap->align);
220 len += rtap->len + rtap->pad;
221 }
222
223 return len;
224 }
225
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
227 struct sk_buff *skb,
228 int rtap_space)
229 {
230 struct {
231 struct ieee80211_hdr_3addr hdr;
232 u8 category;
233 u8 action_code;
234 } __packed __aligned(2) action;
235
236 if (!sdata)
237 return;
238
239 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240
241 if (skb->len < rtap_space + sizeof(action) +
242 VHT_MUMIMO_GROUPS_DATA_LEN)
243 return;
244
245 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
246 return;
247
248 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249
250 if (!ieee80211_is_action(action.hdr.frame_control))
251 return;
252
253 if (action.category != WLAN_CATEGORY_VHT)
254 return;
255
256 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
257 return;
258
259 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
260 return;
261
262 skb = skb_copy(skb, GFP_ATOMIC);
263 if (!skb)
264 return;
265
266 skb_queue_tail(&sdata->skb_queue, skb);
267 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
268 }
269
270 /*
271 * ieee80211_add_rx_radiotap_header - add radiotap header
272 *
273 * add a radiotap header containing all the fields which the hardware provided.
274 */
275 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
277 struct sk_buff *skb,
278 struct ieee80211_rate *rate,
279 int rtap_len, bool has_fcs)
280 {
281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
282 struct ieee80211_radiotap_header *rthdr;
283 unsigned char *pos;
284 __le32 *it_present;
285 u32 it_present_val;
286 u16 rx_flags = 0;
287 u16 channel_flags = 0;
288 int mpdulen, chain;
289 unsigned long chains = status->chains;
290 struct ieee80211_vendor_radiotap rtap = {};
291 struct ieee80211_radiotap_he he = {};
292 struct ieee80211_radiotap_he_mu he_mu = {};
293 struct ieee80211_radiotap_lsig lsig = {};
294
295 if (status->flag & RX_FLAG_RADIOTAP_HE) {
296 he = *(struct ieee80211_radiotap_he *)skb->data;
297 skb_pull(skb, sizeof(he));
298 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
299 }
300
301 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
302 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
303 skb_pull(skb, sizeof(he_mu));
304 }
305
306 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
307 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
308 skb_pull(skb, sizeof(lsig));
309 }
310
311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
313 /* rtap.len and rtap.pad are undone immediately */
314 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
315 }
316
317 mpdulen = skb->len;
318 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
319 mpdulen += FCS_LEN;
320
321 rthdr = skb_push(skb, rtap_len);
322 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
323 it_present = &rthdr->it_present;
324
325 /* radiotap header, set always present flags */
326 rthdr->it_len = cpu_to_le16(rtap_len);
327 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
328 BIT(IEEE80211_RADIOTAP_CHANNEL) |
329 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330
331 if (!status->chains)
332 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333
334 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
335 it_present_val |=
336 BIT(IEEE80211_RADIOTAP_EXT) |
337 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
338 put_unaligned_le32(it_present_val, it_present);
339 it_present++;
340 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
341 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
342 }
343
344 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
345 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
346 BIT(IEEE80211_RADIOTAP_EXT);
347 put_unaligned_le32(it_present_val, it_present);
348 it_present++;
349 it_present_val = rtap.present;
350 }
351
352 put_unaligned_le32(it_present_val, it_present);
353
354 pos = (void *)(it_present + 1);
355
356 /* the order of the following fields is important */
357
358 /* IEEE80211_RADIOTAP_TSFT */
359 if (ieee80211_have_rx_timestamp(status)) {
360 /* padding */
361 while ((pos - (u8 *)rthdr) & 7)
362 *pos++ = 0;
363 put_unaligned_le64(
364 ieee80211_calculate_rx_timestamp(local, status,
365 mpdulen, 0),
366 pos);
367 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
368 pos += 8;
369 }
370
371 /* IEEE80211_RADIOTAP_FLAGS */
372 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
373 *pos |= IEEE80211_RADIOTAP_F_FCS;
374 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
375 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
376 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
377 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
378 pos++;
379
380 /* IEEE80211_RADIOTAP_RATE */
381 if (!rate || status->encoding != RX_ENC_LEGACY) {
382 /*
383 * Without rate information don't add it. If we have,
384 * MCS information is a separate field in radiotap,
385 * added below. The byte here is needed as padding
386 * for the channel though, so initialise it to 0.
387 */
388 *pos = 0;
389 } else {
390 int shift = 0;
391 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
392 if (status->bw == RATE_INFO_BW_10)
393 shift = 1;
394 else if (status->bw == RATE_INFO_BW_5)
395 shift = 2;
396 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 }
398 pos++;
399
400 /* IEEE80211_RADIOTAP_CHANNEL */
401 /* TODO: frequency offset in KHz */
402 put_unaligned_le16(status->freq, pos);
403 pos += 2;
404 if (status->bw == RATE_INFO_BW_10)
405 channel_flags |= IEEE80211_CHAN_HALF;
406 else if (status->bw == RATE_INFO_BW_5)
407 channel_flags |= IEEE80211_CHAN_QUARTER;
408
409 if (status->band == NL80211_BAND_5GHZ ||
410 status->band == NL80211_BAND_6GHZ)
411 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
412 else if (status->encoding != RX_ENC_LEGACY)
413 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
414 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
415 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
416 else if (rate)
417 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
418 else
419 channel_flags |= IEEE80211_CHAN_2GHZ;
420 put_unaligned_le16(channel_flags, pos);
421 pos += 2;
422
423 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
424 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
425 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
426 *pos = status->signal;
427 rthdr->it_present |=
428 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
429 pos++;
430 }
431
432 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
433
434 if (!status->chains) {
435 /* IEEE80211_RADIOTAP_ANTENNA */
436 *pos = status->antenna;
437 pos++;
438 }
439
440 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
441
442 /* IEEE80211_RADIOTAP_RX_FLAGS */
443 /* ensure 2 byte alignment for the 2 byte field as required */
444 if ((pos - (u8 *)rthdr) & 1)
445 *pos++ = 0;
446 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
447 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
448 put_unaligned_le16(rx_flags, pos);
449 pos += 2;
450
451 if (status->encoding == RX_ENC_HT) {
452 unsigned int stbc;
453
454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
455 *pos++ = local->hw.radiotap_mcs_details;
456 *pos = 0;
457 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
458 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
459 if (status->bw == RATE_INFO_BW_40)
460 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
461 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
462 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
463 if (status->enc_flags & RX_ENC_FLAG_LDPC)
464 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
465 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
466 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
467 pos++;
468 *pos++ = status->rate_idx;
469 }
470
471 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
472 u16 flags = 0;
473
474 /* ensure 4 byte alignment */
475 while ((pos - (u8 *)rthdr) & 3)
476 pos++;
477 rthdr->it_present |=
478 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
479 put_unaligned_le32(status->ampdu_reference, pos);
480 pos += 4;
481 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
482 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
483 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
484 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
486 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
487 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
488 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
489 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
490 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
491 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
492 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
493 put_unaligned_le16(flags, pos);
494 pos += 2;
495 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
496 *pos++ = status->ampdu_delimiter_crc;
497 else
498 *pos++ = 0;
499 *pos++ = 0;
500 }
501
502 if (status->encoding == RX_ENC_VHT) {
503 u16 known = local->hw.radiotap_vht_details;
504
505 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
506 put_unaligned_le16(known, pos);
507 pos += 2;
508 /* flags */
509 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
510 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
511 /* in VHT, STBC is binary */
512 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
513 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
514 if (status->enc_flags & RX_ENC_FLAG_BF)
515 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
516 pos++;
517 /* bandwidth */
518 switch (status->bw) {
519 case RATE_INFO_BW_80:
520 *pos++ = 4;
521 break;
522 case RATE_INFO_BW_160:
523 *pos++ = 11;
524 break;
525 case RATE_INFO_BW_40:
526 *pos++ = 1;
527 break;
528 default:
529 *pos++ = 0;
530 }
531 /* MCS/NSS */
532 *pos = (status->rate_idx << 4) | status->nss;
533 pos += 4;
534 /* coding field */
535 if (status->enc_flags & RX_ENC_FLAG_LDPC)
536 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
537 pos++;
538 /* group ID */
539 pos++;
540 /* partial_aid */
541 pos += 2;
542 }
543
544 if (local->hw.radiotap_timestamp.units_pos >= 0) {
545 u16 accuracy = 0;
546 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
547
548 rthdr->it_present |=
549 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
550
551 /* ensure 8 byte alignment */
552 while ((pos - (u8 *)rthdr) & 7)
553 pos++;
554
555 put_unaligned_le64(status->device_timestamp, pos);
556 pos += sizeof(u64);
557
558 if (local->hw.radiotap_timestamp.accuracy >= 0) {
559 accuracy = local->hw.radiotap_timestamp.accuracy;
560 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
561 }
562 put_unaligned_le16(accuracy, pos);
563 pos += sizeof(u16);
564
565 *pos++ = local->hw.radiotap_timestamp.units_pos;
566 *pos++ = flags;
567 }
568
569 if (status->encoding == RX_ENC_HE &&
570 status->flag & RX_FLAG_RADIOTAP_HE) {
571 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
572
573 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
574 he.data6 |= HE_PREP(DATA6_NSTS,
575 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
576 status->enc_flags));
577 he.data3 |= HE_PREP(DATA3_STBC, 1);
578 } else {
579 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
580 }
581
582 #define CHECK_GI(s) \
583 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
584 (int)NL80211_RATE_INFO_HE_GI_##s)
585
586 CHECK_GI(0_8);
587 CHECK_GI(1_6);
588 CHECK_GI(3_2);
589
590 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
591 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
592 he.data3 |= HE_PREP(DATA3_CODING,
593 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
594
595 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
596
597 switch (status->bw) {
598 case RATE_INFO_BW_20:
599 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
600 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
601 break;
602 case RATE_INFO_BW_40:
603 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
604 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
605 break;
606 case RATE_INFO_BW_80:
607 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
608 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
609 break;
610 case RATE_INFO_BW_160:
611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
613 break;
614 case RATE_INFO_BW_HE_RU:
615 #define CHECK_RU_ALLOC(s) \
616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
617 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
618
619 CHECK_RU_ALLOC(26);
620 CHECK_RU_ALLOC(52);
621 CHECK_RU_ALLOC(106);
622 CHECK_RU_ALLOC(242);
623 CHECK_RU_ALLOC(484);
624 CHECK_RU_ALLOC(996);
625 CHECK_RU_ALLOC(2x996);
626
627 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
628 status->he_ru + 4);
629 break;
630 default:
631 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
632 }
633
634 /* ensure 2 byte alignment */
635 while ((pos - (u8 *)rthdr) & 1)
636 pos++;
637 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
638 memcpy(pos, &he, sizeof(he));
639 pos += sizeof(he);
640 }
641
642 if (status->encoding == RX_ENC_HE &&
643 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
644 /* ensure 2 byte alignment */
645 while ((pos - (u8 *)rthdr) & 1)
646 pos++;
647 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
648 memcpy(pos, &he_mu, sizeof(he_mu));
649 pos += sizeof(he_mu);
650 }
651
652 if (status->flag & RX_FLAG_NO_PSDU) {
653 rthdr->it_present |=
654 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
655 *pos++ = status->zero_length_psdu_type;
656 }
657
658 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
659 /* ensure 2 byte alignment */
660 while ((pos - (u8 *)rthdr) & 1)
661 pos++;
662 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
663 memcpy(pos, &lsig, sizeof(lsig));
664 pos += sizeof(lsig);
665 }
666
667 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
668 *pos++ = status->chain_signal[chain];
669 *pos++ = chain;
670 }
671
672 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
673 /* ensure 2 byte alignment for the vendor field as required */
674 if ((pos - (u8 *)rthdr) & 1)
675 *pos++ = 0;
676 *pos++ = rtap.oui[0];
677 *pos++ = rtap.oui[1];
678 *pos++ = rtap.oui[2];
679 *pos++ = rtap.subns;
680 put_unaligned_le16(rtap.len, pos);
681 pos += 2;
682 /* align the actual payload as requested */
683 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
684 *pos++ = 0;
685 /* data (and possible padding) already follows */
686 }
687 }
688
689 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)690 ieee80211_make_monitor_skb(struct ieee80211_local *local,
691 struct sk_buff **origskb,
692 struct ieee80211_rate *rate,
693 int rtap_space, bool use_origskb)
694 {
695 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
696 int rt_hdrlen, needed_headroom;
697 struct sk_buff *skb;
698
699 /* room for the radiotap header based on driver features */
700 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
701 needed_headroom = rt_hdrlen - rtap_space;
702
703 if (use_origskb) {
704 /* only need to expand headroom if necessary */
705 skb = *origskb;
706 *origskb = NULL;
707
708 /*
709 * This shouldn't trigger often because most devices have an
710 * RX header they pull before we get here, and that should
711 * be big enough for our radiotap information. We should
712 * probably export the length to drivers so that we can have
713 * them allocate enough headroom to start with.
714 */
715 if (skb_headroom(skb) < needed_headroom &&
716 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
717 dev_kfree_skb(skb);
718 return NULL;
719 }
720 } else {
721 /*
722 * Need to make a copy and possibly remove radiotap header
723 * and FCS from the original.
724 */
725 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
726
727 if (!skb)
728 return NULL;
729 }
730
731 /* prepend radiotap information */
732 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
733
734 skb_reset_mac_header(skb);
735 skb->ip_summed = CHECKSUM_UNNECESSARY;
736 skb->pkt_type = PACKET_OTHERHOST;
737 skb->protocol = htons(ETH_P_802_2);
738
739 return skb;
740 }
741
742 /*
743 * This function copies a received frame to all monitor interfaces and
744 * returns a cleaned-up SKB that no longer includes the FCS nor the
745 * radiotap header the driver might have added.
746 */
747 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)748 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
749 struct ieee80211_rate *rate)
750 {
751 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
752 struct ieee80211_sub_if_data *sdata;
753 struct sk_buff *monskb = NULL;
754 int present_fcs_len = 0;
755 unsigned int rtap_space = 0;
756 struct ieee80211_sub_if_data *monitor_sdata =
757 rcu_dereference(local->monitor_sdata);
758 bool only_monitor = false;
759 unsigned int min_head_len;
760
761 if (status->flag & RX_FLAG_RADIOTAP_HE)
762 rtap_space += sizeof(struct ieee80211_radiotap_he);
763
764 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
765 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
766
767 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
768 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
769
770 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
771 struct ieee80211_vendor_radiotap *rtap =
772 (void *)(origskb->data + rtap_space);
773
774 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
775 }
776
777 min_head_len = rtap_space;
778
779 /*
780 * First, we may need to make a copy of the skb because
781 * (1) we need to modify it for radiotap (if not present), and
782 * (2) the other RX handlers will modify the skb we got.
783 *
784 * We don't need to, of course, if we aren't going to return
785 * the SKB because it has a bad FCS/PLCP checksum.
786 */
787
788 if (!(status->flag & RX_FLAG_NO_PSDU)) {
789 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
790 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
791 /* driver bug */
792 WARN_ON(1);
793 dev_kfree_skb(origskb);
794 return NULL;
795 }
796 present_fcs_len = FCS_LEN;
797 }
798
799 /* also consider the hdr->frame_control */
800 min_head_len += 2;
801 }
802
803 /* ensure that the expected data elements are in skb head */
804 if (!pskb_may_pull(origskb, min_head_len)) {
805 dev_kfree_skb(origskb);
806 return NULL;
807 }
808
809 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
810
811 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
812 if (only_monitor) {
813 dev_kfree_skb(origskb);
814 return NULL;
815 }
816
817 return ieee80211_clean_skb(origskb, present_fcs_len,
818 rtap_space);
819 }
820
821 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
822
823 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
824 bool last_monitor = list_is_last(&sdata->u.mntr.list,
825 &local->mon_list);
826
827 if (!monskb)
828 monskb = ieee80211_make_monitor_skb(local, &origskb,
829 rate, rtap_space,
830 only_monitor &&
831 last_monitor);
832
833 if (monskb) {
834 struct sk_buff *skb;
835
836 if (last_monitor) {
837 skb = monskb;
838 monskb = NULL;
839 } else {
840 skb = skb_clone(monskb, GFP_ATOMIC);
841 }
842
843 if (skb) {
844 skb->dev = sdata->dev;
845 ieee80211_rx_stats(skb->dev, skb->len);
846 netif_receive_skb(skb);
847 }
848 }
849
850 if (last_monitor)
851 break;
852 }
853
854 /* this happens if last_monitor was erroneously false */
855 dev_kfree_skb(monskb);
856
857 /* ditto */
858 if (!origskb)
859 return NULL;
860
861 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
862 }
863
ieee80211_parse_qos(struct ieee80211_rx_data * rx)864 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
865 {
866 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
867 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
868 int tid, seqno_idx, security_idx;
869
870 /* does the frame have a qos control field? */
871 if (ieee80211_is_data_qos(hdr->frame_control)) {
872 u8 *qc = ieee80211_get_qos_ctl(hdr);
873 /* frame has qos control */
874 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
875 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
876 status->rx_flags |= IEEE80211_RX_AMSDU;
877
878 seqno_idx = tid;
879 security_idx = tid;
880 } else {
881 /*
882 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
883 *
884 * Sequence numbers for management frames, QoS data
885 * frames with a broadcast/multicast address in the
886 * Address 1 field, and all non-QoS data frames sent
887 * by QoS STAs are assigned using an additional single
888 * modulo-4096 counter, [...]
889 *
890 * We also use that counter for non-QoS STAs.
891 */
892 seqno_idx = IEEE80211_NUM_TIDS;
893 security_idx = 0;
894 if (ieee80211_is_mgmt(hdr->frame_control))
895 security_idx = IEEE80211_NUM_TIDS;
896 tid = 0;
897 }
898
899 rx->seqno_idx = seqno_idx;
900 rx->security_idx = security_idx;
901 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
902 * For now, set skb->priority to 0 for other cases. */
903 rx->skb->priority = (tid > 7) ? 0 : tid;
904 }
905
906 /**
907 * DOC: Packet alignment
908 *
909 * Drivers always need to pass packets that are aligned to two-byte boundaries
910 * to the stack.
911 *
912 * Additionally, should, if possible, align the payload data in a way that
913 * guarantees that the contained IP header is aligned to a four-byte
914 * boundary. In the case of regular frames, this simply means aligning the
915 * payload to a four-byte boundary (because either the IP header is directly
916 * contained, or IV/RFC1042 headers that have a length divisible by four are
917 * in front of it). If the payload data is not properly aligned and the
918 * architecture doesn't support efficient unaligned operations, mac80211
919 * will align the data.
920 *
921 * With A-MSDU frames, however, the payload data address must yield two modulo
922 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
923 * push the IP header further back to a multiple of four again. Thankfully, the
924 * specs were sane enough this time around to require padding each A-MSDU
925 * subframe to a length that is a multiple of four.
926 *
927 * Padding like Atheros hardware adds which is between the 802.11 header and
928 * the payload is not supported, the driver is required to move the 802.11
929 * header to be directly in front of the payload in that case.
930 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)931 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
932 {
933 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
934 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
935 #endif
936 }
937
938
939 /* rx handlers */
940
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)941 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
942 {
943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944
945 if (is_multicast_ether_addr(hdr->addr1))
946 return 0;
947
948 return ieee80211_is_robust_mgmt_frame(skb);
949 }
950
951
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)952 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
953 {
954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
955
956 if (!is_multicast_ether_addr(hdr->addr1))
957 return 0;
958
959 return ieee80211_is_robust_mgmt_frame(skb);
960 }
961
962
963 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)964 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
965 {
966 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
967 struct ieee80211_mmie *mmie;
968 struct ieee80211_mmie_16 *mmie16;
969
970 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
971 return -1;
972
973 if (!ieee80211_is_robust_mgmt_frame(skb) &&
974 !ieee80211_is_beacon(hdr->frame_control))
975 return -1; /* not a robust management frame */
976
977 mmie = (struct ieee80211_mmie *)
978 (skb->data + skb->len - sizeof(*mmie));
979 if (mmie->element_id == WLAN_EID_MMIE &&
980 mmie->length == sizeof(*mmie) - 2)
981 return le16_to_cpu(mmie->key_id);
982
983 mmie16 = (struct ieee80211_mmie_16 *)
984 (skb->data + skb->len - sizeof(*mmie16));
985 if (skb->len >= 24 + sizeof(*mmie16) &&
986 mmie16->element_id == WLAN_EID_MMIE &&
987 mmie16->length == sizeof(*mmie16) - 2)
988 return le16_to_cpu(mmie16->key_id);
989
990 return -1;
991 }
992
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)993 static int ieee80211_get_keyid(struct sk_buff *skb,
994 const struct ieee80211_cipher_scheme *cs)
995 {
996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
997 __le16 fc;
998 int hdrlen;
999 int minlen;
1000 u8 key_idx_off;
1001 u8 key_idx_shift;
1002 u8 keyid;
1003
1004 fc = hdr->frame_control;
1005 hdrlen = ieee80211_hdrlen(fc);
1006
1007 if (cs) {
1008 minlen = hdrlen + cs->hdr_len;
1009 key_idx_off = hdrlen + cs->key_idx_off;
1010 key_idx_shift = cs->key_idx_shift;
1011 } else {
1012 /* WEP, TKIP, CCMP and GCMP */
1013 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1014 key_idx_off = hdrlen + 3;
1015 key_idx_shift = 6;
1016 }
1017
1018 if (unlikely(skb->len < minlen))
1019 return -EINVAL;
1020
1021 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1022
1023 if (cs)
1024 keyid &= cs->key_idx_mask;
1025 keyid >>= key_idx_shift;
1026
1027 /* cs could use more than the usual two bits for the keyid */
1028 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1029 return -EINVAL;
1030
1031 return keyid;
1032 }
1033
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1034 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1035 {
1036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1037 char *dev_addr = rx->sdata->vif.addr;
1038
1039 if (ieee80211_is_data(hdr->frame_control)) {
1040 if (is_multicast_ether_addr(hdr->addr1)) {
1041 if (ieee80211_has_tods(hdr->frame_control) ||
1042 !ieee80211_has_fromds(hdr->frame_control))
1043 return RX_DROP_MONITOR;
1044 if (ether_addr_equal(hdr->addr3, dev_addr))
1045 return RX_DROP_MONITOR;
1046 } else {
1047 if (!ieee80211_has_a4(hdr->frame_control))
1048 return RX_DROP_MONITOR;
1049 if (ether_addr_equal(hdr->addr4, dev_addr))
1050 return RX_DROP_MONITOR;
1051 }
1052 }
1053
1054 /* If there is not an established peer link and this is not a peer link
1055 * establisment frame, beacon or probe, drop the frame.
1056 */
1057
1058 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1059 struct ieee80211_mgmt *mgmt;
1060
1061 if (!ieee80211_is_mgmt(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063
1064 if (ieee80211_is_action(hdr->frame_control)) {
1065 u8 category;
1066
1067 /* make sure category field is present */
1068 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1069 return RX_DROP_MONITOR;
1070
1071 mgmt = (struct ieee80211_mgmt *)hdr;
1072 category = mgmt->u.action.category;
1073 if (category != WLAN_CATEGORY_MESH_ACTION &&
1074 category != WLAN_CATEGORY_SELF_PROTECTED)
1075 return RX_DROP_MONITOR;
1076 return RX_CONTINUE;
1077 }
1078
1079 if (ieee80211_is_probe_req(hdr->frame_control) ||
1080 ieee80211_is_probe_resp(hdr->frame_control) ||
1081 ieee80211_is_beacon(hdr->frame_control) ||
1082 ieee80211_is_auth(hdr->frame_control))
1083 return RX_CONTINUE;
1084
1085 return RX_DROP_MONITOR;
1086 }
1087
1088 return RX_CONTINUE;
1089 }
1090
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1091 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1092 int index)
1093 {
1094 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1095 struct sk_buff *tail = skb_peek_tail(frames);
1096 struct ieee80211_rx_status *status;
1097
1098 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1099 return true;
1100
1101 if (!tail)
1102 return false;
1103
1104 status = IEEE80211_SKB_RXCB(tail);
1105 if (status->flag & RX_FLAG_AMSDU_MORE)
1106 return false;
1107
1108 return true;
1109 }
1110
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1111 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1112 struct tid_ampdu_rx *tid_agg_rx,
1113 int index,
1114 struct sk_buff_head *frames)
1115 {
1116 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1117 struct sk_buff *skb;
1118 struct ieee80211_rx_status *status;
1119
1120 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1121
1122 if (skb_queue_empty(skb_list))
1123 goto no_frame;
1124
1125 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1126 __skb_queue_purge(skb_list);
1127 goto no_frame;
1128 }
1129
1130 /* release frames from the reorder ring buffer */
1131 tid_agg_rx->stored_mpdu_num--;
1132 while ((skb = __skb_dequeue(skb_list))) {
1133 status = IEEE80211_SKB_RXCB(skb);
1134 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1135 __skb_queue_tail(frames, skb);
1136 }
1137
1138 no_frame:
1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1141 }
1142
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1144 struct tid_ampdu_rx *tid_agg_rx,
1145 u16 head_seq_num,
1146 struct sk_buff_head *frames)
1147 {
1148 int index;
1149
1150 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1151
1152 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1155 frames);
1156 }
1157 }
1158
1159 /*
1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1161 * the skb was added to the buffer longer than this time ago, the earlier
1162 * frames that have not yet been received are assumed to be lost and the skb
1163 * can be released for processing. This may also release other skb's from the
1164 * reorder buffer if there are no additional gaps between the frames.
1165 *
1166 * Callers must hold tid_agg_rx->reorder_lock.
1167 */
1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1169
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1171 struct tid_ampdu_rx *tid_agg_rx,
1172 struct sk_buff_head *frames)
1173 {
1174 int index, i, j;
1175
1176 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1177
1178 /* release the buffer until next missing frame */
1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1181 tid_agg_rx->stored_mpdu_num) {
1182 /*
1183 * No buffers ready to be released, but check whether any
1184 * frames in the reorder buffer have timed out.
1185 */
1186 int skipped = 1;
1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1188 j = (j + 1) % tid_agg_rx->buf_size) {
1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1190 skipped++;
1191 continue;
1192 }
1193 if (skipped &&
1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1195 HT_RX_REORDER_BUF_TIMEOUT))
1196 goto set_release_timer;
1197
1198 /* don't leave incomplete A-MSDUs around */
1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1200 i = (i + 1) % tid_agg_rx->buf_size)
1201 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1202
1203 ht_dbg_ratelimited(sdata,
1204 "release an RX reorder frame due to timeout on earlier frames\n");
1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1206 frames);
1207
1208 /*
1209 * Increment the head seq# also for the skipped slots.
1210 */
1211 tid_agg_rx->head_seq_num =
1212 (tid_agg_rx->head_seq_num +
1213 skipped) & IEEE80211_SN_MASK;
1214 skipped = 0;
1215 }
1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1218 frames);
1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 }
1221
1222 if (tid_agg_rx->stored_mpdu_num) {
1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1224
1225 for (; j != (index - 1) % tid_agg_rx->buf_size;
1226 j = (j + 1) % tid_agg_rx->buf_size) {
1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1228 break;
1229 }
1230
1231 set_release_timer:
1232
1233 if (!tid_agg_rx->removed)
1234 mod_timer(&tid_agg_rx->reorder_timer,
1235 tid_agg_rx->reorder_time[j] + 1 +
1236 HT_RX_REORDER_BUF_TIMEOUT);
1237 } else {
1238 del_timer(&tid_agg_rx->reorder_timer);
1239 }
1240 }
1241
1242 /*
1243 * As this function belongs to the RX path it must be under
1244 * rcu_read_lock protection. It returns false if the frame
1245 * can be processed immediately, true if it was consumed.
1246 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1248 struct tid_ampdu_rx *tid_agg_rx,
1249 struct sk_buff *skb,
1250 struct sk_buff_head *frames)
1251 {
1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1254 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1255 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1256 u16 head_seq_num, buf_size;
1257 int index;
1258 bool ret = true;
1259
1260 spin_lock(&tid_agg_rx->reorder_lock);
1261
1262 /*
1263 * Offloaded BA sessions have no known starting sequence number so pick
1264 * one from first Rxed frame for this tid after BA was started.
1265 */
1266 if (unlikely(tid_agg_rx->auto_seq)) {
1267 tid_agg_rx->auto_seq = false;
1268 tid_agg_rx->ssn = mpdu_seq_num;
1269 tid_agg_rx->head_seq_num = mpdu_seq_num;
1270 }
1271
1272 buf_size = tid_agg_rx->buf_size;
1273 head_seq_num = tid_agg_rx->head_seq_num;
1274
1275 /*
1276 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1277 * be reordered.
1278 */
1279 if (unlikely(!tid_agg_rx->started)) {
1280 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1281 ret = false;
1282 goto out;
1283 }
1284 tid_agg_rx->started = true;
1285 }
1286
1287 /* frame with out of date sequence number */
1288 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1289 dev_kfree_skb(skb);
1290 goto out;
1291 }
1292
1293 /*
1294 * If frame the sequence number exceeds our buffering window
1295 * size release some previous frames to make room for this one.
1296 */
1297 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1298 head_seq_num = ieee80211_sn_inc(
1299 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1300 /* release stored frames up to new head to stack */
1301 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1302 head_seq_num, frames);
1303 }
1304
1305 /* Now the new frame is always in the range of the reordering buffer */
1306
1307 index = mpdu_seq_num % tid_agg_rx->buf_size;
1308
1309 /* check if we already stored this frame */
1310 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1311 dev_kfree_skb(skb);
1312 goto out;
1313 }
1314
1315 /*
1316 * If the current MPDU is in the right order and nothing else
1317 * is stored we can process it directly, no need to buffer it.
1318 * If it is first but there's something stored, we may be able
1319 * to release frames after this one.
1320 */
1321 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1322 tid_agg_rx->stored_mpdu_num == 0) {
1323 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1324 tid_agg_rx->head_seq_num =
1325 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1326 ret = false;
1327 goto out;
1328 }
1329
1330 /* put the frame in the reordering buffer */
1331 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1332 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1333 tid_agg_rx->reorder_time[index] = jiffies;
1334 tid_agg_rx->stored_mpdu_num++;
1335 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1336 }
1337
1338 out:
1339 spin_unlock(&tid_agg_rx->reorder_lock);
1340 return ret;
1341 }
1342
1343 /*
1344 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1345 * true if the MPDU was buffered, false if it should be processed.
1346 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1348 struct sk_buff_head *frames)
1349 {
1350 struct sk_buff *skb = rx->skb;
1351 struct ieee80211_local *local = rx->local;
1352 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1353 struct sta_info *sta = rx->sta;
1354 struct tid_ampdu_rx *tid_agg_rx;
1355 u16 sc;
1356 u8 tid, ack_policy;
1357
1358 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1359 is_multicast_ether_addr(hdr->addr1))
1360 goto dont_reorder;
1361
1362 /*
1363 * filter the QoS data rx stream according to
1364 * STA/TID and check if this STA/TID is on aggregation
1365 */
1366
1367 if (!sta)
1368 goto dont_reorder;
1369
1370 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1371 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1372 tid = ieee80211_get_tid(hdr);
1373
1374 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1375 if (!tid_agg_rx) {
1376 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1377 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1378 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1379 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1380 WLAN_BACK_RECIPIENT,
1381 WLAN_REASON_QSTA_REQUIRE_SETUP);
1382 goto dont_reorder;
1383 }
1384
1385 /* qos null data frames are excluded */
1386 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1387 goto dont_reorder;
1388
1389 /* not part of a BA session */
1390 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1391 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1392 goto dont_reorder;
1393
1394 /* new, potentially un-ordered, ampdu frame - process it */
1395
1396 /* reset session timer */
1397 if (tid_agg_rx->timeout)
1398 tid_agg_rx->last_rx = jiffies;
1399
1400 /* if this mpdu is fragmented - terminate rx aggregation session */
1401 sc = le16_to_cpu(hdr->seq_ctrl);
1402 if (sc & IEEE80211_SCTL_FRAG) {
1403 skb_queue_tail(&rx->sdata->skb_queue, skb);
1404 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1405 return;
1406 }
1407
1408 /*
1409 * No locking needed -- we will only ever process one
1410 * RX packet at a time, and thus own tid_agg_rx. All
1411 * other code manipulating it needs to (and does) make
1412 * sure that we cannot get to it any more before doing
1413 * anything with it.
1414 */
1415 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1416 frames))
1417 return;
1418
1419 dont_reorder:
1420 __skb_queue_tail(frames, skb);
1421 }
1422
1423 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1424 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1425 {
1426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1427 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1428
1429 if (status->flag & RX_FLAG_DUP_VALIDATED)
1430 return RX_CONTINUE;
1431
1432 /*
1433 * Drop duplicate 802.11 retransmissions
1434 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1435 */
1436
1437 if (rx->skb->len < 24)
1438 return RX_CONTINUE;
1439
1440 if (ieee80211_is_ctl(hdr->frame_control) ||
1441 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1442 is_multicast_ether_addr(hdr->addr1))
1443 return RX_CONTINUE;
1444
1445 if (!rx->sta)
1446 return RX_CONTINUE;
1447
1448 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1449 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1450 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1451 rx->sta->rx_stats.num_duplicates++;
1452 return RX_DROP_UNUSABLE;
1453 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1454 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1455 }
1456
1457 return RX_CONTINUE;
1458 }
1459
1460 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1461 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1462 {
1463 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1464
1465 /* Drop disallowed frame classes based on STA auth/assoc state;
1466 * IEEE 802.11, Chap 5.5.
1467 *
1468 * mac80211 filters only based on association state, i.e. it drops
1469 * Class 3 frames from not associated stations. hostapd sends
1470 * deauth/disassoc frames when needed. In addition, hostapd is
1471 * responsible for filtering on both auth and assoc states.
1472 */
1473
1474 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1475 return ieee80211_rx_mesh_check(rx);
1476
1477 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1478 ieee80211_is_pspoll(hdr->frame_control)) &&
1479 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1480 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1481 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1482 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1483 /*
1484 * accept port control frames from the AP even when it's not
1485 * yet marked ASSOC to prevent a race where we don't set the
1486 * assoc bit quickly enough before it sends the first frame
1487 */
1488 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1489 ieee80211_is_data_present(hdr->frame_control)) {
1490 unsigned int hdrlen;
1491 __be16 ethertype;
1492
1493 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1494
1495 if (rx->skb->len < hdrlen + 8)
1496 return RX_DROP_MONITOR;
1497
1498 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1499 if (ethertype == rx->sdata->control_port_protocol)
1500 return RX_CONTINUE;
1501 }
1502
1503 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1504 cfg80211_rx_spurious_frame(rx->sdata->dev,
1505 hdr->addr2,
1506 GFP_ATOMIC))
1507 return RX_DROP_UNUSABLE;
1508
1509 return RX_DROP_MONITOR;
1510 }
1511
1512 return RX_CONTINUE;
1513 }
1514
1515
1516 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1517 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1518 {
1519 struct ieee80211_local *local;
1520 struct ieee80211_hdr *hdr;
1521 struct sk_buff *skb;
1522
1523 local = rx->local;
1524 skb = rx->skb;
1525 hdr = (struct ieee80211_hdr *) skb->data;
1526
1527 if (!local->pspolling)
1528 return RX_CONTINUE;
1529
1530 if (!ieee80211_has_fromds(hdr->frame_control))
1531 /* this is not from AP */
1532 return RX_CONTINUE;
1533
1534 if (!ieee80211_is_data(hdr->frame_control))
1535 return RX_CONTINUE;
1536
1537 if (!ieee80211_has_moredata(hdr->frame_control)) {
1538 /* AP has no more frames buffered for us */
1539 local->pspolling = false;
1540 return RX_CONTINUE;
1541 }
1542
1543 /* more data bit is set, let's request a new frame from the AP */
1544 ieee80211_send_pspoll(local, rx->sdata);
1545
1546 return RX_CONTINUE;
1547 }
1548
sta_ps_start(struct sta_info * sta)1549 static void sta_ps_start(struct sta_info *sta)
1550 {
1551 struct ieee80211_sub_if_data *sdata = sta->sdata;
1552 struct ieee80211_local *local = sdata->local;
1553 struct ps_data *ps;
1554 int tid;
1555
1556 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1557 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1558 ps = &sdata->bss->ps;
1559 else
1560 return;
1561
1562 atomic_inc(&ps->num_sta_ps);
1563 set_sta_flag(sta, WLAN_STA_PS_STA);
1564 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1565 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1566 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1567 sta->sta.addr, sta->sta.aid);
1568
1569 ieee80211_clear_fast_xmit(sta);
1570
1571 if (!sta->sta.txq[0])
1572 return;
1573
1574 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1575 struct ieee80211_txq *txq = sta->sta.txq[tid];
1576 struct txq_info *txqi = to_txq_info(txq);
1577
1578 spin_lock(&local->active_txq_lock[txq->ac]);
1579 if (!list_empty(&txqi->schedule_order))
1580 list_del_init(&txqi->schedule_order);
1581 spin_unlock(&local->active_txq_lock[txq->ac]);
1582
1583 if (txq_has_queue(txq))
1584 set_bit(tid, &sta->txq_buffered_tids);
1585 else
1586 clear_bit(tid, &sta->txq_buffered_tids);
1587 }
1588 }
1589
sta_ps_end(struct sta_info * sta)1590 static void sta_ps_end(struct sta_info *sta)
1591 {
1592 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1593 sta->sta.addr, sta->sta.aid);
1594
1595 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1596 /*
1597 * Clear the flag only if the other one is still set
1598 * so that the TX path won't start TX'ing new frames
1599 * directly ... In the case that the driver flag isn't
1600 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1601 */
1602 clear_sta_flag(sta, WLAN_STA_PS_STA);
1603 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1604 sta->sta.addr, sta->sta.aid);
1605 return;
1606 }
1607
1608 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1609 clear_sta_flag(sta, WLAN_STA_PS_STA);
1610 ieee80211_sta_ps_deliver_wakeup(sta);
1611 }
1612
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1613 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1614 {
1615 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1616 bool in_ps;
1617
1618 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1619
1620 /* Don't let the same PS state be set twice */
1621 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1622 if ((start && in_ps) || (!start && !in_ps))
1623 return -EINVAL;
1624
1625 if (start)
1626 sta_ps_start(sta);
1627 else
1628 sta_ps_end(sta);
1629
1630 return 0;
1631 }
1632 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1633
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1634 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1635 {
1636 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1637
1638 if (test_sta_flag(sta, WLAN_STA_SP))
1639 return;
1640
1641 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1642 ieee80211_sta_ps_deliver_poll_response(sta);
1643 else
1644 set_sta_flag(sta, WLAN_STA_PSPOLL);
1645 }
1646 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1647
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1648 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1649 {
1650 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1651 int ac = ieee80211_ac_from_tid(tid);
1652
1653 /*
1654 * If this AC is not trigger-enabled do nothing unless the
1655 * driver is calling us after it already checked.
1656 *
1657 * NB: This could/should check a separate bitmap of trigger-
1658 * enabled queues, but for now we only implement uAPSD w/o
1659 * TSPEC changes to the ACs, so they're always the same.
1660 */
1661 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1662 tid != IEEE80211_NUM_TIDS)
1663 return;
1664
1665 /* if we are in a service period, do nothing */
1666 if (test_sta_flag(sta, WLAN_STA_SP))
1667 return;
1668
1669 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1670 ieee80211_sta_ps_deliver_uapsd(sta);
1671 else
1672 set_sta_flag(sta, WLAN_STA_UAPSD);
1673 }
1674 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1675
1676 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1677 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1678 {
1679 struct ieee80211_sub_if_data *sdata = rx->sdata;
1680 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1681 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1682
1683 if (!rx->sta)
1684 return RX_CONTINUE;
1685
1686 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1687 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1688 return RX_CONTINUE;
1689
1690 /*
1691 * The device handles station powersave, so don't do anything about
1692 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1693 * it to mac80211 since they're handled.)
1694 */
1695 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1696 return RX_CONTINUE;
1697
1698 /*
1699 * Don't do anything if the station isn't already asleep. In
1700 * the uAPSD case, the station will probably be marked asleep,
1701 * in the PS-Poll case the station must be confused ...
1702 */
1703 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1704 return RX_CONTINUE;
1705
1706 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1707 ieee80211_sta_pspoll(&rx->sta->sta);
1708
1709 /* Free PS Poll skb here instead of returning RX_DROP that would
1710 * count as an dropped frame. */
1711 dev_kfree_skb(rx->skb);
1712
1713 return RX_QUEUED;
1714 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1715 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1716 ieee80211_has_pm(hdr->frame_control) &&
1717 (ieee80211_is_data_qos(hdr->frame_control) ||
1718 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1719 u8 tid = ieee80211_get_tid(hdr);
1720
1721 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1722 }
1723
1724 return RX_CONTINUE;
1725 }
1726
1727 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1728 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1729 {
1730 struct sta_info *sta = rx->sta;
1731 struct sk_buff *skb = rx->skb;
1732 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1733 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1734 int i;
1735
1736 if (!sta)
1737 return RX_CONTINUE;
1738
1739 /*
1740 * Update last_rx only for IBSS packets which are for the current
1741 * BSSID and for station already AUTHORIZED to avoid keeping the
1742 * current IBSS network alive in cases where other STAs start
1743 * using different BSSID. This will also give the station another
1744 * chance to restart the authentication/authorization in case
1745 * something went wrong the first time.
1746 */
1747 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1748 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1749 NL80211_IFTYPE_ADHOC);
1750 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1751 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1752 sta->rx_stats.last_rx = jiffies;
1753 if (ieee80211_is_data(hdr->frame_control) &&
1754 !is_multicast_ether_addr(hdr->addr1))
1755 sta->rx_stats.last_rate =
1756 sta_stats_encode_rate(status);
1757 }
1758 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1759 sta->rx_stats.last_rx = jiffies;
1760 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1761 !is_multicast_ether_addr(hdr->addr1)) {
1762 /*
1763 * Mesh beacons will update last_rx when if they are found to
1764 * match the current local configuration when processed.
1765 */
1766 sta->rx_stats.last_rx = jiffies;
1767 if (ieee80211_is_data(hdr->frame_control))
1768 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1769 }
1770
1771 sta->rx_stats.fragments++;
1772
1773 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1774 sta->rx_stats.bytes += rx->skb->len;
1775 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1776
1777 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1778 sta->rx_stats.last_signal = status->signal;
1779 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1780 }
1781
1782 if (status->chains) {
1783 sta->rx_stats.chains = status->chains;
1784 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1785 int signal = status->chain_signal[i];
1786
1787 if (!(status->chains & BIT(i)))
1788 continue;
1789
1790 sta->rx_stats.chain_signal_last[i] = signal;
1791 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1792 -signal);
1793 }
1794 }
1795
1796 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1797 return RX_CONTINUE;
1798
1799 /*
1800 * Change STA power saving mode only at the end of a frame
1801 * exchange sequence, and only for a data or management
1802 * frame as specified in IEEE 802.11-2016 11.2.3.2
1803 */
1804 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1805 !ieee80211_has_morefrags(hdr->frame_control) &&
1806 !is_multicast_ether_addr(hdr->addr1) &&
1807 (ieee80211_is_mgmt(hdr->frame_control) ||
1808 ieee80211_is_data(hdr->frame_control)) &&
1809 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1810 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1811 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1812 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1813 if (!ieee80211_has_pm(hdr->frame_control))
1814 sta_ps_end(sta);
1815 } else {
1816 if (ieee80211_has_pm(hdr->frame_control))
1817 sta_ps_start(sta);
1818 }
1819 }
1820
1821 /* mesh power save support */
1822 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1823 ieee80211_mps_rx_h_sta_process(sta, hdr);
1824
1825 /*
1826 * Drop (qos-)data::nullfunc frames silently, since they
1827 * are used only to control station power saving mode.
1828 */
1829 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1830 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1831
1832 /*
1833 * If we receive a 4-addr nullfunc frame from a STA
1834 * that was not moved to a 4-addr STA vlan yet send
1835 * the event to userspace and for older hostapd drop
1836 * the frame to the monitor interface.
1837 */
1838 if (ieee80211_has_a4(hdr->frame_control) &&
1839 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1840 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1841 !rx->sdata->u.vlan.sta))) {
1842 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1843 cfg80211_rx_unexpected_4addr_frame(
1844 rx->sdata->dev, sta->sta.addr,
1845 GFP_ATOMIC);
1846 return RX_DROP_MONITOR;
1847 }
1848 /*
1849 * Update counter and free packet here to avoid
1850 * counting this as a dropped packed.
1851 */
1852 sta->rx_stats.packets++;
1853 dev_kfree_skb(rx->skb);
1854 return RX_QUEUED;
1855 }
1856
1857 return RX_CONTINUE;
1858 } /* ieee80211_rx_h_sta_process */
1859
1860 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1861 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1862 {
1863 struct ieee80211_key *key = NULL;
1864 struct ieee80211_sub_if_data *sdata = rx->sdata;
1865 int idx2;
1866
1867 /* Make sure key gets set if either BIGTK key index is set so that
1868 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1869 * Beacon frames and Beacon frames that claim to use another BIGTK key
1870 * index (i.e., a key that we do not have).
1871 */
1872
1873 if (idx < 0) {
1874 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1875 idx2 = idx + 1;
1876 } else {
1877 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1878 idx2 = idx + 1;
1879 else
1880 idx2 = idx - 1;
1881 }
1882
1883 if (rx->sta)
1884 key = rcu_dereference(rx->sta->gtk[idx]);
1885 if (!key)
1886 key = rcu_dereference(sdata->keys[idx]);
1887 if (!key && rx->sta)
1888 key = rcu_dereference(rx->sta->gtk[idx2]);
1889 if (!key)
1890 key = rcu_dereference(sdata->keys[idx2]);
1891
1892 return key;
1893 }
1894
1895 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1896 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1897 {
1898 struct sk_buff *skb = rx->skb;
1899 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1900 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1901 int keyidx;
1902 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1903 struct ieee80211_key *sta_ptk = NULL;
1904 struct ieee80211_key *ptk_idx = NULL;
1905 int mmie_keyidx = -1;
1906 __le16 fc;
1907 const struct ieee80211_cipher_scheme *cs = NULL;
1908
1909 if (ieee80211_is_ext(hdr->frame_control))
1910 return RX_CONTINUE;
1911
1912 /*
1913 * Key selection 101
1914 *
1915 * There are five types of keys:
1916 * - GTK (group keys)
1917 * - IGTK (group keys for management frames)
1918 * - BIGTK (group keys for Beacon frames)
1919 * - PTK (pairwise keys)
1920 * - STK (station-to-station pairwise keys)
1921 *
1922 * When selecting a key, we have to distinguish between multicast
1923 * (including broadcast) and unicast frames, the latter can only
1924 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1925 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1926 * then unicast frames can also use key indices like GTKs. Hence, if we
1927 * don't have a PTK/STK we check the key index for a WEP key.
1928 *
1929 * Note that in a regular BSS, multicast frames are sent by the
1930 * AP only, associated stations unicast the frame to the AP first
1931 * which then multicasts it on their behalf.
1932 *
1933 * There is also a slight problem in IBSS mode: GTKs are negotiated
1934 * with each station, that is something we don't currently handle.
1935 * The spec seems to expect that one negotiates the same key with
1936 * every station but there's no such requirement; VLANs could be
1937 * possible.
1938 */
1939
1940 /* start without a key */
1941 rx->key = NULL;
1942 fc = hdr->frame_control;
1943
1944 if (rx->sta) {
1945 int keyid = rx->sta->ptk_idx;
1946 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1947
1948 if (ieee80211_has_protected(fc) &&
1949 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1950 cs = rx->sta->cipher_scheme;
1951 keyid = ieee80211_get_keyid(rx->skb, cs);
1952
1953 if (unlikely(keyid < 0))
1954 return RX_DROP_UNUSABLE;
1955
1956 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1957 }
1958 }
1959
1960 if (!ieee80211_has_protected(fc))
1961 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1962
1963 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1964 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1965 if ((status->flag & RX_FLAG_DECRYPTED) &&
1966 (status->flag & RX_FLAG_IV_STRIPPED))
1967 return RX_CONTINUE;
1968 /* Skip decryption if the frame is not protected. */
1969 if (!ieee80211_has_protected(fc))
1970 return RX_CONTINUE;
1971 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1972 /* Broadcast/multicast robust management frame / BIP */
1973 if ((status->flag & RX_FLAG_DECRYPTED) &&
1974 (status->flag & RX_FLAG_IV_STRIPPED))
1975 return RX_CONTINUE;
1976
1977 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1978 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1979 NUM_DEFAULT_BEACON_KEYS) {
1980 if (rx->sdata->dev)
1981 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1982 skb->data,
1983 skb->len);
1984 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1985 }
1986
1987 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1988 if (!rx->key)
1989 return RX_CONTINUE; /* Beacon protection not in use */
1990 } else if (mmie_keyidx >= 0) {
1991 /* Broadcast/multicast robust management frame / BIP */
1992 if ((status->flag & RX_FLAG_DECRYPTED) &&
1993 (status->flag & RX_FLAG_IV_STRIPPED))
1994 return RX_CONTINUE;
1995
1996 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1997 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1998 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1999 if (rx->sta) {
2000 if (ieee80211_is_group_privacy_action(skb) &&
2001 test_sta_flag(rx->sta, WLAN_STA_MFP))
2002 return RX_DROP_MONITOR;
2003
2004 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2005 }
2006 if (!rx->key)
2007 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2008 } else if (!ieee80211_has_protected(fc)) {
2009 /*
2010 * The frame was not protected, so skip decryption. However, we
2011 * need to set rx->key if there is a key that could have been
2012 * used so that the frame may be dropped if encryption would
2013 * have been expected.
2014 */
2015 struct ieee80211_key *key = NULL;
2016 struct ieee80211_sub_if_data *sdata = rx->sdata;
2017 int i;
2018
2019 if (ieee80211_is_beacon(fc)) {
2020 key = ieee80211_rx_get_bigtk(rx, -1);
2021 } else if (ieee80211_is_mgmt(fc) &&
2022 is_multicast_ether_addr(hdr->addr1)) {
2023 key = rcu_dereference(rx->sdata->default_mgmt_key);
2024 } else {
2025 if (rx->sta) {
2026 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2027 key = rcu_dereference(rx->sta->gtk[i]);
2028 if (key)
2029 break;
2030 }
2031 }
2032 if (!key) {
2033 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2034 key = rcu_dereference(sdata->keys[i]);
2035 if (key)
2036 break;
2037 }
2038 }
2039 }
2040 if (key)
2041 rx->key = key;
2042 return RX_CONTINUE;
2043 } else {
2044 /*
2045 * The device doesn't give us the IV so we won't be
2046 * able to look up the key. That's ok though, we
2047 * don't need to decrypt the frame, we just won't
2048 * be able to keep statistics accurate.
2049 * Except for key threshold notifications, should
2050 * we somehow allow the driver to tell us which key
2051 * the hardware used if this flag is set?
2052 */
2053 if ((status->flag & RX_FLAG_DECRYPTED) &&
2054 (status->flag & RX_FLAG_IV_STRIPPED))
2055 return RX_CONTINUE;
2056
2057 keyidx = ieee80211_get_keyid(rx->skb, cs);
2058
2059 if (unlikely(keyidx < 0))
2060 return RX_DROP_UNUSABLE;
2061
2062 /* check per-station GTK first, if multicast packet */
2063 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2064 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2065
2066 /* if not found, try default key */
2067 if (!rx->key) {
2068 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2069
2070 /*
2071 * RSNA-protected unicast frames should always be
2072 * sent with pairwise or station-to-station keys,
2073 * but for WEP we allow using a key index as well.
2074 */
2075 if (rx->key &&
2076 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2077 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2078 !is_multicast_ether_addr(hdr->addr1))
2079 rx->key = NULL;
2080 }
2081 }
2082
2083 if (rx->key) {
2084 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2085 return RX_DROP_MONITOR;
2086
2087 /* TODO: add threshold stuff again */
2088 } else {
2089 return RX_DROP_MONITOR;
2090 }
2091
2092 switch (rx->key->conf.cipher) {
2093 case WLAN_CIPHER_SUITE_WEP40:
2094 case WLAN_CIPHER_SUITE_WEP104:
2095 result = ieee80211_crypto_wep_decrypt(rx);
2096 break;
2097 case WLAN_CIPHER_SUITE_TKIP:
2098 result = ieee80211_crypto_tkip_decrypt(rx);
2099 break;
2100 case WLAN_CIPHER_SUITE_CCMP:
2101 result = ieee80211_crypto_ccmp_decrypt(
2102 rx, IEEE80211_CCMP_MIC_LEN);
2103 break;
2104 case WLAN_CIPHER_SUITE_CCMP_256:
2105 result = ieee80211_crypto_ccmp_decrypt(
2106 rx, IEEE80211_CCMP_256_MIC_LEN);
2107 break;
2108 case WLAN_CIPHER_SUITE_AES_CMAC:
2109 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2110 break;
2111 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2112 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2113 break;
2114 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2115 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2116 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2117 break;
2118 case WLAN_CIPHER_SUITE_GCMP:
2119 case WLAN_CIPHER_SUITE_GCMP_256:
2120 result = ieee80211_crypto_gcmp_decrypt(rx);
2121 break;
2122 default:
2123 result = ieee80211_crypto_hw_decrypt(rx);
2124 }
2125
2126 /* the hdr variable is invalid after the decrypt handlers */
2127
2128 /* either the frame has been decrypted or will be dropped */
2129 status->flag |= RX_FLAG_DECRYPTED;
2130
2131 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2132 rx->sdata->dev))
2133 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2134 skb->data, skb->len);
2135
2136 return result;
2137 }
2138
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2139 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2140 {
2141 int i;
2142
2143 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2144 skb_queue_head_init(&cache->entries[i].skb_list);
2145 }
2146
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2147 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2148 {
2149 int i;
2150
2151 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2152 __skb_queue_purge(&cache->entries[i].skb_list);
2153 }
2154
2155 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2156 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2157 unsigned int frag, unsigned int seq, int rx_queue,
2158 struct sk_buff **skb)
2159 {
2160 struct ieee80211_fragment_entry *entry;
2161
2162 entry = &cache->entries[cache->next++];
2163 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2164 cache->next = 0;
2165
2166 __skb_queue_purge(&entry->skb_list);
2167
2168 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2169 *skb = NULL;
2170 entry->first_frag_time = jiffies;
2171 entry->seq = seq;
2172 entry->rx_queue = rx_queue;
2173 entry->last_frag = frag;
2174 entry->check_sequential_pn = false;
2175 entry->extra_len = 0;
2176
2177 return entry;
2178 }
2179
2180 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2181 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2182 unsigned int frag, unsigned int seq,
2183 int rx_queue, struct ieee80211_hdr *hdr)
2184 {
2185 struct ieee80211_fragment_entry *entry;
2186 int i, idx;
2187
2188 idx = cache->next;
2189 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2190 struct ieee80211_hdr *f_hdr;
2191 struct sk_buff *f_skb;
2192
2193 idx--;
2194 if (idx < 0)
2195 idx = IEEE80211_FRAGMENT_MAX - 1;
2196
2197 entry = &cache->entries[idx];
2198 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2199 entry->rx_queue != rx_queue ||
2200 entry->last_frag + 1 != frag)
2201 continue;
2202
2203 f_skb = __skb_peek(&entry->skb_list);
2204 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2205
2206 /*
2207 * Check ftype and addresses are equal, else check next fragment
2208 */
2209 if (((hdr->frame_control ^ f_hdr->frame_control) &
2210 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2211 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2212 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2213 continue;
2214
2215 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2216 __skb_queue_purge(&entry->skb_list);
2217 continue;
2218 }
2219 return entry;
2220 }
2221
2222 return NULL;
2223 }
2224
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2225 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2226 {
2227 return rx->key &&
2228 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2229 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2230 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2231 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2232 ieee80211_has_protected(fc);
2233 }
2234
2235 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2236 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2237 {
2238 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2239 struct ieee80211_hdr *hdr;
2240 u16 sc;
2241 __le16 fc;
2242 unsigned int frag, seq;
2243 struct ieee80211_fragment_entry *entry;
2244 struct sk_buff *skb;
2245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2246
2247 hdr = (struct ieee80211_hdr *)rx->skb->data;
2248 fc = hdr->frame_control;
2249
2250 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2251 return RX_CONTINUE;
2252
2253 sc = le16_to_cpu(hdr->seq_ctrl);
2254 frag = sc & IEEE80211_SCTL_FRAG;
2255
2256 if (rx->sta)
2257 cache = &rx->sta->frags;
2258
2259 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2260 goto out;
2261
2262 if (is_multicast_ether_addr(hdr->addr1))
2263 return RX_DROP_MONITOR;
2264
2265 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2266
2267 if (skb_linearize(rx->skb))
2268 return RX_DROP_UNUSABLE;
2269
2270 /*
2271 * skb_linearize() might change the skb->data and
2272 * previously cached variables (in this case, hdr) need to
2273 * be refreshed with the new data.
2274 */
2275 hdr = (struct ieee80211_hdr *)rx->skb->data;
2276 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2277
2278 if (frag == 0) {
2279 /* This is the first fragment of a new frame. */
2280 entry = ieee80211_reassemble_add(cache, frag, seq,
2281 rx->seqno_idx, &(rx->skb));
2282 if (requires_sequential_pn(rx, fc)) {
2283 int queue = rx->security_idx;
2284
2285 /* Store CCMP/GCMP PN so that we can verify that the
2286 * next fragment has a sequential PN value.
2287 */
2288 entry->check_sequential_pn = true;
2289 entry->is_protected = true;
2290 entry->key_color = rx->key->color;
2291 memcpy(entry->last_pn,
2292 rx->key->u.ccmp.rx_pn[queue],
2293 IEEE80211_CCMP_PN_LEN);
2294 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2295 u.ccmp.rx_pn) !=
2296 offsetof(struct ieee80211_key,
2297 u.gcmp.rx_pn));
2298 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2299 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2300 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2301 IEEE80211_GCMP_PN_LEN);
2302 } else if (rx->key &&
2303 (ieee80211_has_protected(fc) ||
2304 (status->flag & RX_FLAG_DECRYPTED))) {
2305 entry->is_protected = true;
2306 entry->key_color = rx->key->color;
2307 }
2308 return RX_QUEUED;
2309 }
2310
2311 /* This is a fragment for a frame that should already be pending in
2312 * fragment cache. Add this fragment to the end of the pending entry.
2313 */
2314 entry = ieee80211_reassemble_find(cache, frag, seq,
2315 rx->seqno_idx, hdr);
2316 if (!entry) {
2317 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2318 return RX_DROP_MONITOR;
2319 }
2320
2321 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2322 * MPDU PN values are not incrementing in steps of 1."
2323 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2324 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2325 */
2326 if (entry->check_sequential_pn) {
2327 int i;
2328 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2329
2330 if (!requires_sequential_pn(rx, fc))
2331 return RX_DROP_UNUSABLE;
2332
2333 /* Prevent mixed key and fragment cache attacks */
2334 if (entry->key_color != rx->key->color)
2335 return RX_DROP_UNUSABLE;
2336
2337 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2338 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2339 pn[i]++;
2340 if (pn[i])
2341 break;
2342 }
2343
2344 rpn = rx->ccm_gcm.pn;
2345 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2346 return RX_DROP_UNUSABLE;
2347 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2348 } else if (entry->is_protected &&
2349 (!rx->key ||
2350 (!ieee80211_has_protected(fc) &&
2351 !(status->flag & RX_FLAG_DECRYPTED)) ||
2352 rx->key->color != entry->key_color)) {
2353 /* Drop this as a mixed key or fragment cache attack, even
2354 * if for TKIP Michael MIC should protect us, and WEP is a
2355 * lost cause anyway.
2356 */
2357 return RX_DROP_UNUSABLE;
2358 } else if (entry->is_protected && rx->key &&
2359 entry->key_color != rx->key->color &&
2360 (status->flag & RX_FLAG_DECRYPTED)) {
2361 return RX_DROP_UNUSABLE;
2362 }
2363
2364 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2365 __skb_queue_tail(&entry->skb_list, rx->skb);
2366 entry->last_frag = frag;
2367 entry->extra_len += rx->skb->len;
2368 if (ieee80211_has_morefrags(fc)) {
2369 rx->skb = NULL;
2370 return RX_QUEUED;
2371 }
2372
2373 rx->skb = __skb_dequeue(&entry->skb_list);
2374 if (skb_tailroom(rx->skb) < entry->extra_len) {
2375 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2376 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2377 GFP_ATOMIC))) {
2378 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2379 __skb_queue_purge(&entry->skb_list);
2380 return RX_DROP_UNUSABLE;
2381 }
2382 }
2383 while ((skb = __skb_dequeue(&entry->skb_list))) {
2384 skb_put_data(rx->skb, skb->data, skb->len);
2385 dev_kfree_skb(skb);
2386 }
2387
2388 out:
2389 ieee80211_led_rx(rx->local);
2390 if (rx->sta)
2391 rx->sta->rx_stats.packets++;
2392 return RX_CONTINUE;
2393 }
2394
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2395 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2396 {
2397 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2398 return -EACCES;
2399
2400 return 0;
2401 }
2402
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2403 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2404 {
2405 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2406 struct sk_buff *skb = rx->skb;
2407 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2408
2409 /*
2410 * Pass through unencrypted frames if the hardware has
2411 * decrypted them already.
2412 */
2413 if (status->flag & RX_FLAG_DECRYPTED)
2414 return 0;
2415
2416 /* check mesh EAPOL frames first */
2417 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2418 ieee80211_is_data(fc))) {
2419 struct ieee80211s_hdr *mesh_hdr;
2420 u16 hdr_len = ieee80211_hdrlen(fc);
2421 u16 ethertype_offset;
2422 __be16 ethertype;
2423
2424 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2425 goto drop_check;
2426
2427 /* make sure fixed part of mesh header is there, also checks skb len */
2428 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2429 goto drop_check;
2430
2431 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2432 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2433 sizeof(rfc1042_header);
2434
2435 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
2436 ethertype == rx->sdata->control_port_protocol)
2437 return 0;
2438 }
2439
2440 drop_check:
2441 /* Drop unencrypted frames if key is set. */
2442 if (unlikely(!ieee80211_has_protected(fc) &&
2443 !ieee80211_is_any_nullfunc(fc) &&
2444 ieee80211_is_data(fc) && rx->key))
2445 return -EACCES;
2446
2447 return 0;
2448 }
2449
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2450 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2451 {
2452 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2453 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2454 __le16 fc = hdr->frame_control;
2455
2456 /*
2457 * Pass through unencrypted frames if the hardware has
2458 * decrypted them already.
2459 */
2460 if (status->flag & RX_FLAG_DECRYPTED)
2461 return 0;
2462
2463 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2464 if (unlikely(!ieee80211_has_protected(fc) &&
2465 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2466 rx->key)) {
2467 if (ieee80211_is_deauth(fc) ||
2468 ieee80211_is_disassoc(fc))
2469 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2470 rx->skb->data,
2471 rx->skb->len);
2472 return -EACCES;
2473 }
2474 /* BIP does not use Protected field, so need to check MMIE */
2475 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2476 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2477 if (ieee80211_is_deauth(fc) ||
2478 ieee80211_is_disassoc(fc))
2479 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2480 rx->skb->data,
2481 rx->skb->len);
2482 return -EACCES;
2483 }
2484 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2485 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2486 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2487 rx->skb->data,
2488 rx->skb->len);
2489 return -EACCES;
2490 }
2491 /*
2492 * When using MFP, Action frames are not allowed prior to
2493 * having configured keys.
2494 */
2495 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2496 ieee80211_is_robust_mgmt_frame(rx->skb)))
2497 return -EACCES;
2498 }
2499
2500 return 0;
2501 }
2502
2503 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2504 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2505 {
2506 struct ieee80211_sub_if_data *sdata = rx->sdata;
2507 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2508 bool check_port_control = false;
2509 struct ethhdr *ehdr;
2510 int ret;
2511
2512 *port_control = false;
2513 if (ieee80211_has_a4(hdr->frame_control) &&
2514 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2515 return -1;
2516
2517 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2518 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2519
2520 if (!sdata->u.mgd.use_4addr)
2521 return -1;
2522 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2523 check_port_control = true;
2524 }
2525
2526 if (is_multicast_ether_addr(hdr->addr1) &&
2527 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2528 return -1;
2529
2530 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2531 if (ret < 0)
2532 return ret;
2533
2534 ehdr = (struct ethhdr *) rx->skb->data;
2535 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2536 *port_control = true;
2537 else if (check_port_control)
2538 return -1;
2539
2540 return 0;
2541 }
2542
2543 /*
2544 * requires that rx->skb is a frame with ethernet header
2545 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2546 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2547 {
2548 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2549 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2550 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2551
2552 /*
2553 * Allow EAPOL frames to us/the PAE group address regardless of
2554 * whether the frame was encrypted or not, and always disallow
2555 * all other destination addresses for them.
2556 */
2557 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2558 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2559 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2560
2561 if (ieee80211_802_1x_port_control(rx) ||
2562 ieee80211_drop_unencrypted(rx, fc))
2563 return false;
2564
2565 return true;
2566 }
2567
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2568 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2569 struct ieee80211_rx_data *rx)
2570 {
2571 struct ieee80211_sub_if_data *sdata = rx->sdata;
2572 struct net_device *dev = sdata->dev;
2573
2574 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2575 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2576 !sdata->control_port_no_preauth)) &&
2577 sdata->control_port_over_nl80211)) {
2578 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2579 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2580
2581 cfg80211_rx_control_port(dev, skb, noencrypt);
2582 dev_kfree_skb(skb);
2583 } else {
2584 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2585
2586 memset(skb->cb, 0, sizeof(skb->cb));
2587
2588 /*
2589 * 802.1X over 802.11 requires that the authenticator address
2590 * be used for EAPOL frames. However, 802.1X allows the use of
2591 * the PAE group address instead. If the interface is part of
2592 * a bridge and we pass the frame with the PAE group address,
2593 * then the bridge will forward it to the network (even if the
2594 * client was not associated yet), which isn't supposed to
2595 * happen.
2596 * To avoid that, rewrite the destination address to our own
2597 * address, so that the authenticator (e.g. hostapd) will see
2598 * the frame, but bridge won't forward it anywhere else. Note
2599 * that due to earlier filtering, the only other address can
2600 * be the PAE group address.
2601 */
2602 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2603 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2604 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2605
2606 /* deliver to local stack */
2607 if (rx->list)
2608 list_add_tail(&skb->list, rx->list);
2609 else
2610 netif_receive_skb(skb);
2611 }
2612 }
2613
2614 /*
2615 * requires that rx->skb is a frame with ethernet header
2616 */
2617 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2618 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2619 {
2620 struct ieee80211_sub_if_data *sdata = rx->sdata;
2621 struct net_device *dev = sdata->dev;
2622 struct sk_buff *skb, *xmit_skb;
2623 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2624 struct sta_info *dsta;
2625
2626 skb = rx->skb;
2627 xmit_skb = NULL;
2628
2629 ieee80211_rx_stats(dev, skb->len);
2630
2631 if (rx->sta) {
2632 /* The seqno index has the same property as needed
2633 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2634 * for non-QoS-data frames. Here we know it's a data
2635 * frame, so count MSDUs.
2636 */
2637 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2638 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2639 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2640 }
2641
2642 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2643 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2644 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2645 ehdr->h_proto != rx->sdata->control_port_protocol &&
2646 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2647 if (is_multicast_ether_addr(ehdr->h_dest) &&
2648 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2649 /*
2650 * send multicast frames both to higher layers in
2651 * local net stack and back to the wireless medium
2652 */
2653 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2654 if (!xmit_skb)
2655 net_info_ratelimited("%s: failed to clone multicast frame\n",
2656 dev->name);
2657 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2658 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2659 dsta = sta_info_get(sdata, ehdr->h_dest);
2660 if (dsta) {
2661 /*
2662 * The destination station is associated to
2663 * this AP (in this VLAN), so send the frame
2664 * directly to it and do not pass it to local
2665 * net stack.
2666 */
2667 xmit_skb = skb;
2668 skb = NULL;
2669 }
2670 }
2671 }
2672
2673 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2674 if (skb) {
2675 /* 'align' will only take the values 0 or 2 here since all
2676 * frames are required to be aligned to 2-byte boundaries
2677 * when being passed to mac80211; the code here works just
2678 * as well if that isn't true, but mac80211 assumes it can
2679 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2680 */
2681 int align;
2682
2683 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2684 if (align) {
2685 if (WARN_ON(skb_headroom(skb) < 3)) {
2686 dev_kfree_skb(skb);
2687 skb = NULL;
2688 } else {
2689 u8 *data = skb->data;
2690 size_t len = skb_headlen(skb);
2691 skb->data -= align;
2692 memmove(skb->data, data, len);
2693 skb_set_tail_pointer(skb, len);
2694 }
2695 }
2696 }
2697 #endif
2698
2699 if (skb) {
2700 skb->protocol = eth_type_trans(skb, dev);
2701 ieee80211_deliver_skb_to_local_stack(skb, rx);
2702 }
2703
2704 if (xmit_skb) {
2705 /*
2706 * Send to wireless media and increase priority by 256 to
2707 * keep the received priority instead of reclassifying
2708 * the frame (see cfg80211_classify8021d).
2709 */
2710 xmit_skb->priority += 256;
2711 xmit_skb->protocol = htons(ETH_P_802_3);
2712 skb_reset_network_header(xmit_skb);
2713 skb_reset_mac_header(xmit_skb);
2714 dev_queue_xmit(xmit_skb);
2715 }
2716 }
2717
2718 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2719 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2720 {
2721 struct net_device *dev = rx->sdata->dev;
2722 struct sk_buff *skb = rx->skb;
2723 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2724 __le16 fc = hdr->frame_control;
2725 struct sk_buff_head frame_list;
2726 struct ethhdr ethhdr;
2727 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2728
2729 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2730 check_da = NULL;
2731 check_sa = NULL;
2732 } else switch (rx->sdata->vif.type) {
2733 case NL80211_IFTYPE_AP:
2734 case NL80211_IFTYPE_AP_VLAN:
2735 check_da = NULL;
2736 break;
2737 case NL80211_IFTYPE_STATION:
2738 if (!rx->sta ||
2739 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2740 check_sa = NULL;
2741 break;
2742 case NL80211_IFTYPE_MESH_POINT:
2743 check_sa = NULL;
2744 break;
2745 default:
2746 break;
2747 }
2748
2749 skb->dev = dev;
2750 __skb_queue_head_init(&frame_list);
2751
2752 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
2753 rx->sdata->vif.addr,
2754 rx->sdata->vif.type,
2755 data_offset, true))
2756 return RX_DROP_UNUSABLE;
2757
2758 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2759 rx->sdata->vif.type,
2760 rx->local->hw.extra_tx_headroom,
2761 check_da, check_sa);
2762
2763 while (!skb_queue_empty(&frame_list)) {
2764 rx->skb = __skb_dequeue(&frame_list);
2765
2766 if (!ieee80211_frame_allowed(rx, fc)) {
2767 dev_kfree_skb(rx->skb);
2768 continue;
2769 }
2770
2771 ieee80211_deliver_skb(rx);
2772 }
2773
2774 return RX_QUEUED;
2775 }
2776
2777 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2778 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2779 {
2780 struct sk_buff *skb = rx->skb;
2781 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2782 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2783 __le16 fc = hdr->frame_control;
2784
2785 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2786 return RX_CONTINUE;
2787
2788 if (unlikely(!ieee80211_is_data(fc)))
2789 return RX_CONTINUE;
2790
2791 if (unlikely(!ieee80211_is_data_present(fc)))
2792 return RX_DROP_MONITOR;
2793
2794 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2795 switch (rx->sdata->vif.type) {
2796 case NL80211_IFTYPE_AP_VLAN:
2797 if (!rx->sdata->u.vlan.sta)
2798 return RX_DROP_UNUSABLE;
2799 break;
2800 case NL80211_IFTYPE_STATION:
2801 if (!rx->sdata->u.mgd.use_4addr)
2802 return RX_DROP_UNUSABLE;
2803 break;
2804 default:
2805 return RX_DROP_UNUSABLE;
2806 }
2807 }
2808
2809 if (is_multicast_ether_addr(hdr->addr1))
2810 return RX_DROP_UNUSABLE;
2811
2812 if (rx->key) {
2813 /*
2814 * We should not receive A-MSDUs on pre-HT connections,
2815 * and HT connections cannot use old ciphers. Thus drop
2816 * them, as in those cases we couldn't even have SPP
2817 * A-MSDUs or such.
2818 */
2819 switch (rx->key->conf.cipher) {
2820 case WLAN_CIPHER_SUITE_WEP40:
2821 case WLAN_CIPHER_SUITE_WEP104:
2822 case WLAN_CIPHER_SUITE_TKIP:
2823 return RX_DROP_UNUSABLE;
2824 default:
2825 break;
2826 }
2827 }
2828
2829 return __ieee80211_rx_h_amsdu(rx, 0);
2830 }
2831
2832 #ifdef CONFIG_MAC80211_MESH
2833 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2834 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2835 {
2836 struct ieee80211_hdr *fwd_hdr, *hdr;
2837 struct ieee80211_tx_info *info;
2838 struct ieee80211s_hdr *mesh_hdr;
2839 struct sk_buff *skb = rx->skb, *fwd_skb;
2840 struct ieee80211_local *local = rx->local;
2841 struct ieee80211_sub_if_data *sdata = rx->sdata;
2842 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2843 u16 ac, q, hdrlen;
2844 int tailroom = 0;
2845
2846 hdr = (struct ieee80211_hdr *) skb->data;
2847 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2848
2849 /* make sure fixed part of mesh header is there, also checks skb len */
2850 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2851 return RX_DROP_MONITOR;
2852
2853 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2854
2855 /* make sure full mesh header is there, also checks skb len */
2856 if (!pskb_may_pull(rx->skb,
2857 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2858 return RX_DROP_MONITOR;
2859
2860 /* reload pointers */
2861 hdr = (struct ieee80211_hdr *) skb->data;
2862 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2863
2864 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2865 return RX_DROP_MONITOR;
2866
2867 /* frame is in RMC, don't forward */
2868 if (ieee80211_is_data(hdr->frame_control) &&
2869 is_multicast_ether_addr(hdr->addr1) &&
2870 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2871 return RX_DROP_MONITOR;
2872
2873 if (!ieee80211_is_data(hdr->frame_control))
2874 return RX_CONTINUE;
2875
2876 if (!mesh_hdr->ttl)
2877 return RX_DROP_MONITOR;
2878
2879 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2880 struct mesh_path *mppath;
2881 char *proxied_addr;
2882 char *mpp_addr;
2883
2884 if (is_multicast_ether_addr(hdr->addr1)) {
2885 mpp_addr = hdr->addr3;
2886 proxied_addr = mesh_hdr->eaddr1;
2887 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2888 MESH_FLAGS_AE_A5_A6) {
2889 /* has_a4 already checked in ieee80211_rx_mesh_check */
2890 mpp_addr = hdr->addr4;
2891 proxied_addr = mesh_hdr->eaddr2;
2892 } else {
2893 return RX_DROP_MONITOR;
2894 }
2895
2896 rcu_read_lock();
2897 mppath = mpp_path_lookup(sdata, proxied_addr);
2898 if (!mppath) {
2899 mpp_path_add(sdata, proxied_addr, mpp_addr);
2900 } else {
2901 spin_lock_bh(&mppath->state_lock);
2902 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2903 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2904 mppath->exp_time = jiffies;
2905 spin_unlock_bh(&mppath->state_lock);
2906 }
2907 rcu_read_unlock();
2908 }
2909
2910 /* Frame has reached destination. Don't forward */
2911 if (!is_multicast_ether_addr(hdr->addr1) &&
2912 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2913 return RX_CONTINUE;
2914
2915 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2916 q = sdata->vif.hw_queue[ac];
2917 if (ieee80211_queue_stopped(&local->hw, q)) {
2918 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2919 return RX_DROP_MONITOR;
2920 }
2921 skb_set_queue_mapping(skb, q);
2922
2923 if (!--mesh_hdr->ttl) {
2924 if (!is_multicast_ether_addr(hdr->addr1))
2925 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2926 dropped_frames_ttl);
2927 goto out;
2928 }
2929
2930 if (!ifmsh->mshcfg.dot11MeshForwarding)
2931 goto out;
2932
2933 if (sdata->crypto_tx_tailroom_needed_cnt)
2934 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2935
2936 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2937 sdata->encrypt_headroom,
2938 tailroom, GFP_ATOMIC);
2939 if (!fwd_skb)
2940 goto out;
2941
2942 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2943 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2944 info = IEEE80211_SKB_CB(fwd_skb);
2945 memset(info, 0, sizeof(*info));
2946 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2947 info->control.vif = &rx->sdata->vif;
2948 info->control.jiffies = jiffies;
2949 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2950 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2951 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2952 /* update power mode indication when forwarding */
2953 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2954 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2955 /* mesh power mode flags updated in mesh_nexthop_lookup */
2956 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2957 } else {
2958 /* unable to resolve next hop */
2959 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2960 fwd_hdr->addr3, 0,
2961 WLAN_REASON_MESH_PATH_NOFORWARD,
2962 fwd_hdr->addr2);
2963 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2964 kfree_skb(fwd_skb);
2965 return RX_DROP_MONITOR;
2966 }
2967
2968 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2969 ieee80211_add_pending_skb(local, fwd_skb);
2970 out:
2971 if (is_multicast_ether_addr(hdr->addr1))
2972 return RX_CONTINUE;
2973 return RX_DROP_MONITOR;
2974 }
2975 #endif
2976
2977 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2978 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2979 {
2980 struct ieee80211_sub_if_data *sdata = rx->sdata;
2981 struct ieee80211_local *local = rx->local;
2982 struct net_device *dev = sdata->dev;
2983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2984 __le16 fc = hdr->frame_control;
2985 bool port_control;
2986 int err;
2987
2988 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2989 return RX_CONTINUE;
2990
2991 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2992 return RX_DROP_MONITOR;
2993
2994 /*
2995 * Send unexpected-4addr-frame event to hostapd. For older versions,
2996 * also drop the frame to cooked monitor interfaces.
2997 */
2998 if (ieee80211_has_a4(hdr->frame_control) &&
2999 sdata->vif.type == NL80211_IFTYPE_AP) {
3000 if (rx->sta &&
3001 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3002 cfg80211_rx_unexpected_4addr_frame(
3003 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3004 return RX_DROP_MONITOR;
3005 }
3006
3007 err = __ieee80211_data_to_8023(rx, &port_control);
3008 if (unlikely(err))
3009 return RX_DROP_UNUSABLE;
3010
3011 if (!ieee80211_frame_allowed(rx, fc))
3012 return RX_DROP_MONITOR;
3013
3014 /* directly handle TDLS channel switch requests/responses */
3015 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3016 cpu_to_be16(ETH_P_TDLS))) {
3017 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3018
3019 if (pskb_may_pull(rx->skb,
3020 offsetof(struct ieee80211_tdls_data, u)) &&
3021 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3022 tf->category == WLAN_CATEGORY_TDLS &&
3023 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3024 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3025 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
3026 schedule_work(&local->tdls_chsw_work);
3027 if (rx->sta)
3028 rx->sta->rx_stats.packets++;
3029
3030 return RX_QUEUED;
3031 }
3032 }
3033
3034 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3035 unlikely(port_control) && sdata->bss) {
3036 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3037 u.ap);
3038 dev = sdata->dev;
3039 rx->sdata = sdata;
3040 }
3041
3042 rx->skb->dev = dev;
3043
3044 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3045 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3046 !is_multicast_ether_addr(
3047 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3048 (!local->scanning &&
3049 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3050 mod_timer(&local->dynamic_ps_timer, jiffies +
3051 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3052
3053 ieee80211_deliver_skb(rx);
3054
3055 return RX_QUEUED;
3056 }
3057
3058 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3059 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3060 {
3061 struct sk_buff *skb = rx->skb;
3062 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3063 struct tid_ampdu_rx *tid_agg_rx;
3064 u16 start_seq_num;
3065 u16 tid;
3066
3067 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3068 return RX_CONTINUE;
3069
3070 if (ieee80211_is_back_req(bar->frame_control)) {
3071 struct {
3072 __le16 control, start_seq_num;
3073 } __packed bar_data;
3074 struct ieee80211_event event = {
3075 .type = BAR_RX_EVENT,
3076 };
3077
3078 if (!rx->sta)
3079 return RX_DROP_MONITOR;
3080
3081 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3082 &bar_data, sizeof(bar_data)))
3083 return RX_DROP_MONITOR;
3084
3085 tid = le16_to_cpu(bar_data.control) >> 12;
3086
3087 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3088 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3089 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3090 WLAN_BACK_RECIPIENT,
3091 WLAN_REASON_QSTA_REQUIRE_SETUP);
3092
3093 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3094 if (!tid_agg_rx)
3095 return RX_DROP_MONITOR;
3096
3097 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3098 event.u.ba.tid = tid;
3099 event.u.ba.ssn = start_seq_num;
3100 event.u.ba.sta = &rx->sta->sta;
3101
3102 /* reset session timer */
3103 if (tid_agg_rx->timeout)
3104 mod_timer(&tid_agg_rx->session_timer,
3105 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3106
3107 spin_lock(&tid_agg_rx->reorder_lock);
3108 /* release stored frames up to start of BAR */
3109 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3110 start_seq_num, frames);
3111 spin_unlock(&tid_agg_rx->reorder_lock);
3112
3113 drv_event_callback(rx->local, rx->sdata, &event);
3114
3115 kfree_skb(skb);
3116 return RX_QUEUED;
3117 }
3118
3119 /*
3120 * After this point, we only want management frames,
3121 * so we can drop all remaining control frames to
3122 * cooked monitor interfaces.
3123 */
3124 return RX_DROP_MONITOR;
3125 }
3126
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3127 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3128 struct ieee80211_mgmt *mgmt,
3129 size_t len)
3130 {
3131 struct ieee80211_local *local = sdata->local;
3132 struct sk_buff *skb;
3133 struct ieee80211_mgmt *resp;
3134
3135 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3136 /* Not to own unicast address */
3137 return;
3138 }
3139
3140 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3141 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3142 /* Not from the current AP or not associated yet. */
3143 return;
3144 }
3145
3146 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3147 /* Too short SA Query request frame */
3148 return;
3149 }
3150
3151 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3152 if (skb == NULL)
3153 return;
3154
3155 skb_reserve(skb, local->hw.extra_tx_headroom);
3156 resp = skb_put_zero(skb, 24);
3157 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3158 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3159 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3160 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3161 IEEE80211_STYPE_ACTION);
3162 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3163 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3164 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3165 memcpy(resp->u.action.u.sa_query.trans_id,
3166 mgmt->u.action.u.sa_query.trans_id,
3167 WLAN_SA_QUERY_TR_ID_LEN);
3168
3169 ieee80211_tx_skb(sdata, skb);
3170 }
3171
3172 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3173 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3174 {
3175 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3176 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3177
3178 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3179 return RX_CONTINUE;
3180
3181 /*
3182 * From here on, look only at management frames.
3183 * Data and control frames are already handled,
3184 * and unknown (reserved) frames are useless.
3185 */
3186 if (rx->skb->len < 24)
3187 return RX_DROP_MONITOR;
3188
3189 if (!ieee80211_is_mgmt(mgmt->frame_control))
3190 return RX_DROP_MONITOR;
3191
3192 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3193 ieee80211_is_beacon(mgmt->frame_control) &&
3194 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3195 int sig = 0;
3196
3197 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3198 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3199 sig = status->signal;
3200
3201 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3202 rx->skb->data, rx->skb->len,
3203 ieee80211_rx_status_to_khz(status),
3204 sig);
3205 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3206 }
3207
3208 if (ieee80211_drop_unencrypted_mgmt(rx))
3209 return RX_DROP_UNUSABLE;
3210
3211 return RX_CONTINUE;
3212 }
3213
3214 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3215 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3216 {
3217 struct ieee80211_local *local = rx->local;
3218 struct ieee80211_sub_if_data *sdata = rx->sdata;
3219 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3220 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3221 int len = rx->skb->len;
3222
3223 if (!ieee80211_is_action(mgmt->frame_control))
3224 return RX_CONTINUE;
3225
3226 /* drop too small frames */
3227 if (len < IEEE80211_MIN_ACTION_SIZE)
3228 return RX_DROP_UNUSABLE;
3229
3230 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3231 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3232 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3233 return RX_DROP_UNUSABLE;
3234
3235 switch (mgmt->u.action.category) {
3236 case WLAN_CATEGORY_HT:
3237 /* reject HT action frames from stations not supporting HT */
3238 if (!rx->sta->sta.ht_cap.ht_supported)
3239 goto invalid;
3240
3241 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3242 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3243 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3244 sdata->vif.type != NL80211_IFTYPE_AP &&
3245 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3246 break;
3247
3248 /* verify action & smps_control/chanwidth are present */
3249 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3250 goto invalid;
3251
3252 switch (mgmt->u.action.u.ht_smps.action) {
3253 case WLAN_HT_ACTION_SMPS: {
3254 struct ieee80211_supported_band *sband;
3255 enum ieee80211_smps_mode smps_mode;
3256 struct sta_opmode_info sta_opmode = {};
3257
3258 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3259 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3260 goto handled;
3261
3262 /* convert to HT capability */
3263 switch (mgmt->u.action.u.ht_smps.smps_control) {
3264 case WLAN_HT_SMPS_CONTROL_DISABLED:
3265 smps_mode = IEEE80211_SMPS_OFF;
3266 break;
3267 case WLAN_HT_SMPS_CONTROL_STATIC:
3268 smps_mode = IEEE80211_SMPS_STATIC;
3269 break;
3270 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3271 smps_mode = IEEE80211_SMPS_DYNAMIC;
3272 break;
3273 default:
3274 goto invalid;
3275 }
3276
3277 /* if no change do nothing */
3278 if (rx->sta->sta.smps_mode == smps_mode)
3279 goto handled;
3280 rx->sta->sta.smps_mode = smps_mode;
3281 sta_opmode.smps_mode =
3282 ieee80211_smps_mode_to_smps_mode(smps_mode);
3283 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3284
3285 sband = rx->local->hw.wiphy->bands[status->band];
3286
3287 rate_control_rate_update(local, sband, rx->sta,
3288 IEEE80211_RC_SMPS_CHANGED);
3289 cfg80211_sta_opmode_change_notify(sdata->dev,
3290 rx->sta->addr,
3291 &sta_opmode,
3292 GFP_ATOMIC);
3293 goto handled;
3294 }
3295 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3296 struct ieee80211_supported_band *sband;
3297 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3298 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3299 struct sta_opmode_info sta_opmode = {};
3300
3301 /* If it doesn't support 40 MHz it can't change ... */
3302 if (!(rx->sta->sta.ht_cap.cap &
3303 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3304 goto handled;
3305
3306 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3307 max_bw = IEEE80211_STA_RX_BW_20;
3308 else
3309 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3310
3311 /* set cur_max_bandwidth and recalc sta bw */
3312 rx->sta->cur_max_bandwidth = max_bw;
3313 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3314
3315 if (rx->sta->sta.bandwidth == new_bw)
3316 goto handled;
3317
3318 rx->sta->sta.bandwidth = new_bw;
3319 sband = rx->local->hw.wiphy->bands[status->band];
3320 sta_opmode.bw =
3321 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3322 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3323
3324 rate_control_rate_update(local, sband, rx->sta,
3325 IEEE80211_RC_BW_CHANGED);
3326 cfg80211_sta_opmode_change_notify(sdata->dev,
3327 rx->sta->addr,
3328 &sta_opmode,
3329 GFP_ATOMIC);
3330 goto handled;
3331 }
3332 default:
3333 goto invalid;
3334 }
3335
3336 break;
3337 case WLAN_CATEGORY_PUBLIC:
3338 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3339 goto invalid;
3340 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3341 break;
3342 if (!rx->sta)
3343 break;
3344 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3345 break;
3346 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3347 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3348 break;
3349 if (len < offsetof(struct ieee80211_mgmt,
3350 u.action.u.ext_chan_switch.variable))
3351 goto invalid;
3352 goto queue;
3353 case WLAN_CATEGORY_VHT:
3354 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3355 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3356 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3357 sdata->vif.type != NL80211_IFTYPE_AP &&
3358 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3359 break;
3360
3361 /* verify action code is present */
3362 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3363 goto invalid;
3364
3365 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3366 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3367 /* verify opmode is present */
3368 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3369 goto invalid;
3370 goto queue;
3371 }
3372 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3373 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3374 goto invalid;
3375 goto queue;
3376 }
3377 default:
3378 break;
3379 }
3380 break;
3381 case WLAN_CATEGORY_BACK:
3382 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3383 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3384 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3385 sdata->vif.type != NL80211_IFTYPE_AP &&
3386 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3387 break;
3388
3389 /* verify action_code is present */
3390 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3391 break;
3392
3393 switch (mgmt->u.action.u.addba_req.action_code) {
3394 case WLAN_ACTION_ADDBA_REQ:
3395 if (len < (IEEE80211_MIN_ACTION_SIZE +
3396 sizeof(mgmt->u.action.u.addba_req)))
3397 goto invalid;
3398 break;
3399 case WLAN_ACTION_ADDBA_RESP:
3400 if (len < (IEEE80211_MIN_ACTION_SIZE +
3401 sizeof(mgmt->u.action.u.addba_resp)))
3402 goto invalid;
3403 break;
3404 case WLAN_ACTION_DELBA:
3405 if (len < (IEEE80211_MIN_ACTION_SIZE +
3406 sizeof(mgmt->u.action.u.delba)))
3407 goto invalid;
3408 break;
3409 default:
3410 goto invalid;
3411 }
3412
3413 goto queue;
3414 case WLAN_CATEGORY_SPECTRUM_MGMT:
3415 /* verify action_code is present */
3416 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3417 break;
3418
3419 switch (mgmt->u.action.u.measurement.action_code) {
3420 case WLAN_ACTION_SPCT_MSR_REQ:
3421 if (status->band != NL80211_BAND_5GHZ)
3422 break;
3423
3424 if (len < (IEEE80211_MIN_ACTION_SIZE +
3425 sizeof(mgmt->u.action.u.measurement)))
3426 break;
3427
3428 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3429 break;
3430
3431 ieee80211_process_measurement_req(sdata, mgmt, len);
3432 goto handled;
3433 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3434 u8 *bssid;
3435 if (len < (IEEE80211_MIN_ACTION_SIZE +
3436 sizeof(mgmt->u.action.u.chan_switch)))
3437 break;
3438
3439 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3440 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3441 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3442 break;
3443
3444 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3445 bssid = sdata->u.mgd.bssid;
3446 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3447 bssid = sdata->u.ibss.bssid;
3448 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3449 bssid = mgmt->sa;
3450 else
3451 break;
3452
3453 if (!ether_addr_equal(mgmt->bssid, bssid))
3454 break;
3455
3456 goto queue;
3457 }
3458 }
3459 break;
3460 case WLAN_CATEGORY_SELF_PROTECTED:
3461 if (len < (IEEE80211_MIN_ACTION_SIZE +
3462 sizeof(mgmt->u.action.u.self_prot.action_code)))
3463 break;
3464
3465 switch (mgmt->u.action.u.self_prot.action_code) {
3466 case WLAN_SP_MESH_PEERING_OPEN:
3467 case WLAN_SP_MESH_PEERING_CLOSE:
3468 case WLAN_SP_MESH_PEERING_CONFIRM:
3469 if (!ieee80211_vif_is_mesh(&sdata->vif))
3470 goto invalid;
3471 if (sdata->u.mesh.user_mpm)
3472 /* userspace handles this frame */
3473 break;
3474 goto queue;
3475 case WLAN_SP_MGK_INFORM:
3476 case WLAN_SP_MGK_ACK:
3477 if (!ieee80211_vif_is_mesh(&sdata->vif))
3478 goto invalid;
3479 break;
3480 }
3481 break;
3482 case WLAN_CATEGORY_MESH_ACTION:
3483 if (len < (IEEE80211_MIN_ACTION_SIZE +
3484 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3485 break;
3486
3487 if (!ieee80211_vif_is_mesh(&sdata->vif))
3488 break;
3489 if (mesh_action_is_path_sel(mgmt) &&
3490 !mesh_path_sel_is_hwmp(sdata))
3491 break;
3492 goto queue;
3493 }
3494
3495 return RX_CONTINUE;
3496
3497 invalid:
3498 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3499 /* will return in the next handlers */
3500 return RX_CONTINUE;
3501
3502 handled:
3503 if (rx->sta)
3504 rx->sta->rx_stats.packets++;
3505 dev_kfree_skb(rx->skb);
3506 return RX_QUEUED;
3507
3508 queue:
3509 skb_queue_tail(&sdata->skb_queue, rx->skb);
3510 ieee80211_queue_work(&local->hw, &sdata->work);
3511 if (rx->sta)
3512 rx->sta->rx_stats.packets++;
3513 return RX_QUEUED;
3514 }
3515
3516 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3517 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3518 {
3519 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3520 int sig = 0;
3521
3522 /* skip known-bad action frames and return them in the next handler */
3523 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3524 return RX_CONTINUE;
3525
3526 /*
3527 * Getting here means the kernel doesn't know how to handle
3528 * it, but maybe userspace does ... include returned frames
3529 * so userspace can register for those to know whether ones
3530 * it transmitted were processed or returned.
3531 */
3532
3533 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3534 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3535 sig = status->signal;
3536
3537 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3538 ieee80211_rx_status_to_khz(status), sig,
3539 rx->skb->data, rx->skb->len, 0)) {
3540 if (rx->sta)
3541 rx->sta->rx_stats.packets++;
3542 dev_kfree_skb(rx->skb);
3543 return RX_QUEUED;
3544 }
3545
3546 return RX_CONTINUE;
3547 }
3548
3549 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3550 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3551 {
3552 struct ieee80211_sub_if_data *sdata = rx->sdata;
3553 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3554 int len = rx->skb->len;
3555
3556 if (!ieee80211_is_action(mgmt->frame_control))
3557 return RX_CONTINUE;
3558
3559 switch (mgmt->u.action.category) {
3560 case WLAN_CATEGORY_SA_QUERY:
3561 if (len < (IEEE80211_MIN_ACTION_SIZE +
3562 sizeof(mgmt->u.action.u.sa_query)))
3563 break;
3564
3565 switch (mgmt->u.action.u.sa_query.action) {
3566 case WLAN_ACTION_SA_QUERY_REQUEST:
3567 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3568 break;
3569 ieee80211_process_sa_query_req(sdata, mgmt, len);
3570 goto handled;
3571 }
3572 break;
3573 }
3574
3575 return RX_CONTINUE;
3576
3577 handled:
3578 if (rx->sta)
3579 rx->sta->rx_stats.packets++;
3580 dev_kfree_skb(rx->skb);
3581 return RX_QUEUED;
3582 }
3583
3584 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3585 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3586 {
3587 struct ieee80211_local *local = rx->local;
3588 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3589 struct sk_buff *nskb;
3590 struct ieee80211_sub_if_data *sdata = rx->sdata;
3591 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3592
3593 if (!ieee80211_is_action(mgmt->frame_control))
3594 return RX_CONTINUE;
3595
3596 /*
3597 * For AP mode, hostapd is responsible for handling any action
3598 * frames that we didn't handle, including returning unknown
3599 * ones. For all other modes we will return them to the sender,
3600 * setting the 0x80 bit in the action category, as required by
3601 * 802.11-2012 9.24.4.
3602 * Newer versions of hostapd shall also use the management frame
3603 * registration mechanisms, but older ones still use cooked
3604 * monitor interfaces so push all frames there.
3605 */
3606 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3607 (sdata->vif.type == NL80211_IFTYPE_AP ||
3608 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3609 return RX_DROP_MONITOR;
3610
3611 if (is_multicast_ether_addr(mgmt->da))
3612 return RX_DROP_MONITOR;
3613
3614 /* do not return rejected action frames */
3615 if (mgmt->u.action.category & 0x80)
3616 return RX_DROP_UNUSABLE;
3617
3618 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3619 GFP_ATOMIC);
3620 if (nskb) {
3621 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3622
3623 nmgmt->u.action.category |= 0x80;
3624 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3625 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3626
3627 memset(nskb->cb, 0, sizeof(nskb->cb));
3628
3629 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3630 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3631
3632 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3633 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3634 IEEE80211_TX_CTL_NO_CCK_RATE;
3635 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3636 info->hw_queue =
3637 local->hw.offchannel_tx_hw_queue;
3638 }
3639
3640 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3641 status->band);
3642 }
3643 dev_kfree_skb(rx->skb);
3644 return RX_QUEUED;
3645 }
3646
3647 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3648 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3649 {
3650 struct ieee80211_sub_if_data *sdata = rx->sdata;
3651 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3652
3653 if (!ieee80211_is_ext(hdr->frame_control))
3654 return RX_CONTINUE;
3655
3656 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3657 return RX_DROP_MONITOR;
3658
3659 /* for now only beacons are ext, so queue them */
3660 skb_queue_tail(&sdata->skb_queue, rx->skb);
3661 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3662 if (rx->sta)
3663 rx->sta->rx_stats.packets++;
3664
3665 return RX_QUEUED;
3666 }
3667
3668 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3669 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3670 {
3671 struct ieee80211_sub_if_data *sdata = rx->sdata;
3672 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3673 __le16 stype;
3674
3675 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3676
3677 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3678 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3679 sdata->vif.type != NL80211_IFTYPE_OCB &&
3680 sdata->vif.type != NL80211_IFTYPE_STATION)
3681 return RX_DROP_MONITOR;
3682
3683 switch (stype) {
3684 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3685 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3686 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3687 /* process for all: mesh, mlme, ibss */
3688 break;
3689 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3690 if (is_multicast_ether_addr(mgmt->da) &&
3691 !is_broadcast_ether_addr(mgmt->da))
3692 return RX_DROP_MONITOR;
3693
3694 /* process only for station/IBSS */
3695 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3696 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3697 return RX_DROP_MONITOR;
3698 break;
3699 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3700 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3701 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3702 if (is_multicast_ether_addr(mgmt->da) &&
3703 !is_broadcast_ether_addr(mgmt->da))
3704 return RX_DROP_MONITOR;
3705
3706 /* process only for station */
3707 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3708 return RX_DROP_MONITOR;
3709 break;
3710 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3711 /* process only for ibss and mesh */
3712 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3713 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3714 return RX_DROP_MONITOR;
3715 break;
3716 default:
3717 return RX_DROP_MONITOR;
3718 }
3719
3720 /* queue up frame and kick off work to process it */
3721 skb_queue_tail(&sdata->skb_queue, rx->skb);
3722 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3723 if (rx->sta)
3724 rx->sta->rx_stats.packets++;
3725
3726 return RX_QUEUED;
3727 }
3728
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3729 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3730 struct ieee80211_rate *rate)
3731 {
3732 struct ieee80211_sub_if_data *sdata;
3733 struct ieee80211_local *local = rx->local;
3734 struct sk_buff *skb = rx->skb, *skb2;
3735 struct net_device *prev_dev = NULL;
3736 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3737 int needed_headroom;
3738
3739 /*
3740 * If cooked monitor has been processed already, then
3741 * don't do it again. If not, set the flag.
3742 */
3743 if (rx->flags & IEEE80211_RX_CMNTR)
3744 goto out_free_skb;
3745 rx->flags |= IEEE80211_RX_CMNTR;
3746
3747 /* If there are no cooked monitor interfaces, just free the SKB */
3748 if (!local->cooked_mntrs)
3749 goto out_free_skb;
3750
3751 /* vendor data is long removed here */
3752 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3753 /* room for the radiotap header based on driver features */
3754 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3755
3756 if (skb_headroom(skb) < needed_headroom &&
3757 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3758 goto out_free_skb;
3759
3760 /* prepend radiotap information */
3761 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3762 false);
3763
3764 skb_reset_mac_header(skb);
3765 skb->ip_summed = CHECKSUM_UNNECESSARY;
3766 skb->pkt_type = PACKET_OTHERHOST;
3767 skb->protocol = htons(ETH_P_802_2);
3768
3769 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3770 if (!ieee80211_sdata_running(sdata))
3771 continue;
3772
3773 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3774 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3775 continue;
3776
3777 if (prev_dev) {
3778 skb2 = skb_clone(skb, GFP_ATOMIC);
3779 if (skb2) {
3780 skb2->dev = prev_dev;
3781 netif_receive_skb(skb2);
3782 }
3783 }
3784
3785 prev_dev = sdata->dev;
3786 ieee80211_rx_stats(sdata->dev, skb->len);
3787 }
3788
3789 if (prev_dev) {
3790 skb->dev = prev_dev;
3791 netif_receive_skb(skb);
3792 return;
3793 }
3794
3795 out_free_skb:
3796 dev_kfree_skb(skb);
3797 }
3798
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3799 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3800 ieee80211_rx_result res)
3801 {
3802 switch (res) {
3803 case RX_DROP_MONITOR:
3804 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3805 if (rx->sta)
3806 rx->sta->rx_stats.dropped++;
3807 fallthrough;
3808 case RX_CONTINUE: {
3809 struct ieee80211_rate *rate = NULL;
3810 struct ieee80211_supported_band *sband;
3811 struct ieee80211_rx_status *status;
3812
3813 status = IEEE80211_SKB_RXCB((rx->skb));
3814
3815 sband = rx->local->hw.wiphy->bands[status->band];
3816 if (status->encoding == RX_ENC_LEGACY)
3817 rate = &sband->bitrates[status->rate_idx];
3818
3819 ieee80211_rx_cooked_monitor(rx, rate);
3820 break;
3821 }
3822 case RX_DROP_UNUSABLE:
3823 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3824 if (rx->sta)
3825 rx->sta->rx_stats.dropped++;
3826 dev_kfree_skb(rx->skb);
3827 break;
3828 case RX_QUEUED:
3829 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3830 break;
3831 }
3832 }
3833
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3834 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3835 struct sk_buff_head *frames)
3836 {
3837 ieee80211_rx_result res = RX_DROP_MONITOR;
3838 struct sk_buff *skb;
3839
3840 #define CALL_RXH(rxh) \
3841 do { \
3842 res = rxh(rx); \
3843 if (res != RX_CONTINUE) \
3844 goto rxh_next; \
3845 } while (0)
3846
3847 /* Lock here to avoid hitting all of the data used in the RX
3848 * path (e.g. key data, station data, ...) concurrently when
3849 * a frame is released from the reorder buffer due to timeout
3850 * from the timer, potentially concurrently with RX from the
3851 * driver.
3852 */
3853 spin_lock_bh(&rx->local->rx_path_lock);
3854
3855 while ((skb = __skb_dequeue(frames))) {
3856 /*
3857 * all the other fields are valid across frames
3858 * that belong to an aMPDU since they are on the
3859 * same TID from the same station
3860 */
3861 rx->skb = skb;
3862
3863 CALL_RXH(ieee80211_rx_h_check_more_data);
3864 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3865 CALL_RXH(ieee80211_rx_h_sta_process);
3866 CALL_RXH(ieee80211_rx_h_decrypt);
3867 CALL_RXH(ieee80211_rx_h_defragment);
3868 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3869 /* must be after MMIC verify so header is counted in MPDU mic */
3870 #ifdef CONFIG_MAC80211_MESH
3871 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3872 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3873 #endif
3874 CALL_RXH(ieee80211_rx_h_amsdu);
3875 CALL_RXH(ieee80211_rx_h_data);
3876
3877 /* special treatment -- needs the queue */
3878 res = ieee80211_rx_h_ctrl(rx, frames);
3879 if (res != RX_CONTINUE)
3880 goto rxh_next;
3881
3882 CALL_RXH(ieee80211_rx_h_mgmt_check);
3883 CALL_RXH(ieee80211_rx_h_action);
3884 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3885 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3886 CALL_RXH(ieee80211_rx_h_action_return);
3887 CALL_RXH(ieee80211_rx_h_ext);
3888 CALL_RXH(ieee80211_rx_h_mgmt);
3889
3890 rxh_next:
3891 ieee80211_rx_handlers_result(rx, res);
3892
3893 #undef CALL_RXH
3894 }
3895
3896 spin_unlock_bh(&rx->local->rx_path_lock);
3897 }
3898
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3899 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3900 {
3901 struct sk_buff_head reorder_release;
3902 ieee80211_rx_result res = RX_DROP_MONITOR;
3903
3904 __skb_queue_head_init(&reorder_release);
3905
3906 #define CALL_RXH(rxh) \
3907 do { \
3908 res = rxh(rx); \
3909 if (res != RX_CONTINUE) \
3910 goto rxh_next; \
3911 } while (0)
3912
3913 CALL_RXH(ieee80211_rx_h_check_dup);
3914 CALL_RXH(ieee80211_rx_h_check);
3915
3916 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3917
3918 ieee80211_rx_handlers(rx, &reorder_release);
3919 return;
3920
3921 rxh_next:
3922 ieee80211_rx_handlers_result(rx, res);
3923
3924 #undef CALL_RXH
3925 }
3926
3927 /*
3928 * This function makes calls into the RX path, therefore
3929 * it has to be invoked under RCU read lock.
3930 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3931 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3932 {
3933 struct sk_buff_head frames;
3934 struct ieee80211_rx_data rx = {
3935 .sta = sta,
3936 .sdata = sta->sdata,
3937 .local = sta->local,
3938 /* This is OK -- must be QoS data frame */
3939 .security_idx = tid,
3940 .seqno_idx = tid,
3941 };
3942 struct tid_ampdu_rx *tid_agg_rx;
3943
3944 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3945 if (!tid_agg_rx)
3946 return;
3947
3948 __skb_queue_head_init(&frames);
3949
3950 spin_lock(&tid_agg_rx->reorder_lock);
3951 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3952 spin_unlock(&tid_agg_rx->reorder_lock);
3953
3954 if (!skb_queue_empty(&frames)) {
3955 struct ieee80211_event event = {
3956 .type = BA_FRAME_TIMEOUT,
3957 .u.ba.tid = tid,
3958 .u.ba.sta = &sta->sta,
3959 };
3960 drv_event_callback(rx.local, rx.sdata, &event);
3961 }
3962
3963 ieee80211_rx_handlers(&rx, &frames);
3964 }
3965
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)3966 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3967 u16 ssn, u64 filtered,
3968 u16 received_mpdus)
3969 {
3970 struct sta_info *sta;
3971 struct tid_ampdu_rx *tid_agg_rx;
3972 struct sk_buff_head frames;
3973 struct ieee80211_rx_data rx = {
3974 /* This is OK -- must be QoS data frame */
3975 .security_idx = tid,
3976 .seqno_idx = tid,
3977 };
3978 int i, diff;
3979
3980 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3981 return;
3982
3983 __skb_queue_head_init(&frames);
3984
3985 sta = container_of(pubsta, struct sta_info, sta);
3986
3987 rx.sta = sta;
3988 rx.sdata = sta->sdata;
3989 rx.local = sta->local;
3990
3991 rcu_read_lock();
3992 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3993 if (!tid_agg_rx)
3994 goto out;
3995
3996 spin_lock_bh(&tid_agg_rx->reorder_lock);
3997
3998 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3999 int release;
4000
4001 /* release all frames in the reorder buffer */
4002 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4003 IEEE80211_SN_MODULO;
4004 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4005 release, &frames);
4006 /* update ssn to match received ssn */
4007 tid_agg_rx->head_seq_num = ssn;
4008 } else {
4009 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4010 &frames);
4011 }
4012
4013 /* handle the case that received ssn is behind the mac ssn.
4014 * it can be tid_agg_rx->buf_size behind and still be valid */
4015 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4016 if (diff >= tid_agg_rx->buf_size) {
4017 tid_agg_rx->reorder_buf_filtered = 0;
4018 goto release;
4019 }
4020 filtered = filtered >> diff;
4021 ssn += diff;
4022
4023 /* update bitmap */
4024 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4025 int index = (ssn + i) % tid_agg_rx->buf_size;
4026
4027 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4028 if (filtered & BIT_ULL(i))
4029 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4030 }
4031
4032 /* now process also frames that the filter marking released */
4033 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4034
4035 release:
4036 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4037
4038 ieee80211_rx_handlers(&rx, &frames);
4039
4040 out:
4041 rcu_read_unlock();
4042 }
4043 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4044
4045 /* main receive path */
4046
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4047 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4048 {
4049 struct ieee80211_sub_if_data *sdata = rx->sdata;
4050 struct sk_buff *skb = rx->skb;
4051 struct ieee80211_hdr *hdr = (void *)skb->data;
4052 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4053 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4054 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4055 ieee80211_is_s1g_beacon(hdr->frame_control);
4056
4057 switch (sdata->vif.type) {
4058 case NL80211_IFTYPE_STATION:
4059 if (!bssid && !sdata->u.mgd.use_4addr)
4060 return false;
4061 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4062 return false;
4063 if (multicast)
4064 return true;
4065 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4066 case NL80211_IFTYPE_ADHOC:
4067 if (!bssid)
4068 return false;
4069 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4070 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4071 !is_valid_ether_addr(hdr->addr2))
4072 return false;
4073 if (ieee80211_is_beacon(hdr->frame_control))
4074 return true;
4075 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4076 return false;
4077 if (!multicast &&
4078 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4079 return false;
4080 if (!rx->sta) {
4081 int rate_idx;
4082 if (status->encoding != RX_ENC_LEGACY)
4083 rate_idx = 0; /* TODO: HT/VHT rates */
4084 else
4085 rate_idx = status->rate_idx;
4086 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4087 BIT(rate_idx));
4088 }
4089 return true;
4090 case NL80211_IFTYPE_OCB:
4091 if (!bssid)
4092 return false;
4093 if (!ieee80211_is_data_present(hdr->frame_control))
4094 return false;
4095 if (!is_broadcast_ether_addr(bssid))
4096 return false;
4097 if (!multicast &&
4098 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4099 return false;
4100 if (!rx->sta) {
4101 int rate_idx;
4102 if (status->encoding != RX_ENC_LEGACY)
4103 rate_idx = 0; /* TODO: HT rates */
4104 else
4105 rate_idx = status->rate_idx;
4106 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4107 BIT(rate_idx));
4108 }
4109 return true;
4110 case NL80211_IFTYPE_MESH_POINT:
4111 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4112 return false;
4113 if (multicast)
4114 return true;
4115 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4116 case NL80211_IFTYPE_AP_VLAN:
4117 case NL80211_IFTYPE_AP:
4118 if (!bssid)
4119 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4120
4121 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4122 /*
4123 * Accept public action frames even when the
4124 * BSSID doesn't match, this is used for P2P
4125 * and location updates. Note that mac80211
4126 * itself never looks at these frames.
4127 */
4128 if (!multicast &&
4129 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4130 return false;
4131 if (ieee80211_is_public_action(hdr, skb->len))
4132 return true;
4133 return ieee80211_is_beacon(hdr->frame_control);
4134 }
4135
4136 if (!ieee80211_has_tods(hdr->frame_control)) {
4137 /* ignore data frames to TDLS-peers */
4138 if (ieee80211_is_data(hdr->frame_control))
4139 return false;
4140 /* ignore action frames to TDLS-peers */
4141 if (ieee80211_is_action(hdr->frame_control) &&
4142 !is_broadcast_ether_addr(bssid) &&
4143 !ether_addr_equal(bssid, hdr->addr1))
4144 return false;
4145 }
4146
4147 /*
4148 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4149 * the BSSID - we've checked that already but may have accepted
4150 * the wildcard (ff:ff:ff:ff:ff:ff).
4151 *
4152 * It also says:
4153 * The BSSID of the Data frame is determined as follows:
4154 * a) If the STA is contained within an AP or is associated
4155 * with an AP, the BSSID is the address currently in use
4156 * by the STA contained in the AP.
4157 *
4158 * So we should not accept data frames with an address that's
4159 * multicast.
4160 *
4161 * Accepting it also opens a security problem because stations
4162 * could encrypt it with the GTK and inject traffic that way.
4163 */
4164 if (ieee80211_is_data(hdr->frame_control) && multicast)
4165 return false;
4166
4167 return true;
4168 case NL80211_IFTYPE_WDS:
4169 if (bssid || !ieee80211_is_data(hdr->frame_control))
4170 return false;
4171 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
4172 case NL80211_IFTYPE_P2P_DEVICE:
4173 return ieee80211_is_public_action(hdr, skb->len) ||
4174 ieee80211_is_probe_req(hdr->frame_control) ||
4175 ieee80211_is_probe_resp(hdr->frame_control) ||
4176 ieee80211_is_beacon(hdr->frame_control);
4177 case NL80211_IFTYPE_NAN:
4178 /* Currently no frames on NAN interface are allowed */
4179 return false;
4180 default:
4181 break;
4182 }
4183
4184 WARN_ON_ONCE(1);
4185 return false;
4186 }
4187
ieee80211_check_fast_rx(struct sta_info * sta)4188 void ieee80211_check_fast_rx(struct sta_info *sta)
4189 {
4190 struct ieee80211_sub_if_data *sdata = sta->sdata;
4191 struct ieee80211_local *local = sdata->local;
4192 struct ieee80211_key *key;
4193 struct ieee80211_fast_rx fastrx = {
4194 .dev = sdata->dev,
4195 .vif_type = sdata->vif.type,
4196 .control_port_protocol = sdata->control_port_protocol,
4197 }, *old, *new = NULL;
4198 bool assign = false;
4199
4200 /* use sparse to check that we don't return without updating */
4201 __acquire(check_fast_rx);
4202
4203 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4204 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4205 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4206 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4207
4208 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4209
4210 /* fast-rx doesn't do reordering */
4211 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4212 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4213 goto clear;
4214
4215 switch (sdata->vif.type) {
4216 case NL80211_IFTYPE_STATION:
4217 if (sta->sta.tdls) {
4218 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4219 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4220 fastrx.expected_ds_bits = 0;
4221 } else {
4222 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4223 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4224 fastrx.expected_ds_bits =
4225 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4226 }
4227
4228 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4229 fastrx.expected_ds_bits |=
4230 cpu_to_le16(IEEE80211_FCTL_TODS);
4231 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4232 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4233 }
4234
4235 if (!sdata->u.mgd.powersave)
4236 break;
4237
4238 /* software powersave is a huge mess, avoid all of it */
4239 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4240 goto clear;
4241 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4242 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4243 goto clear;
4244 break;
4245 case NL80211_IFTYPE_AP_VLAN:
4246 case NL80211_IFTYPE_AP:
4247 /* parallel-rx requires this, at least with calls to
4248 * ieee80211_sta_ps_transition()
4249 */
4250 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4251 goto clear;
4252 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4253 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4254 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4255
4256 fastrx.internal_forward =
4257 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4258 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4259 !sdata->u.vlan.sta);
4260
4261 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4262 sdata->u.vlan.sta) {
4263 fastrx.expected_ds_bits |=
4264 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4265 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4266 fastrx.internal_forward = 0;
4267 }
4268
4269 break;
4270 default:
4271 goto clear;
4272 }
4273
4274 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4275 goto clear;
4276
4277 rcu_read_lock();
4278 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4279 if (!key)
4280 key = rcu_dereference(sdata->default_unicast_key);
4281 if (key) {
4282 switch (key->conf.cipher) {
4283 case WLAN_CIPHER_SUITE_TKIP:
4284 /* we don't want to deal with MMIC in fast-rx */
4285 goto clear_rcu;
4286 case WLAN_CIPHER_SUITE_CCMP:
4287 case WLAN_CIPHER_SUITE_CCMP_256:
4288 case WLAN_CIPHER_SUITE_GCMP:
4289 case WLAN_CIPHER_SUITE_GCMP_256:
4290 break;
4291 default:
4292 /* We also don't want to deal with
4293 * WEP or cipher scheme.
4294 */
4295 goto clear_rcu;
4296 }
4297
4298 fastrx.key = true;
4299 fastrx.icv_len = key->conf.icv_len;
4300 }
4301
4302 assign = true;
4303 clear_rcu:
4304 rcu_read_unlock();
4305 clear:
4306 __release(check_fast_rx);
4307
4308 if (assign)
4309 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4310
4311 spin_lock_bh(&sta->lock);
4312 old = rcu_dereference_protected(sta->fast_rx, true);
4313 rcu_assign_pointer(sta->fast_rx, new);
4314 spin_unlock_bh(&sta->lock);
4315
4316 if (old)
4317 kfree_rcu(old, rcu_head);
4318 }
4319
ieee80211_clear_fast_rx(struct sta_info * sta)4320 void ieee80211_clear_fast_rx(struct sta_info *sta)
4321 {
4322 struct ieee80211_fast_rx *old;
4323
4324 spin_lock_bh(&sta->lock);
4325 old = rcu_dereference_protected(sta->fast_rx, true);
4326 RCU_INIT_POINTER(sta->fast_rx, NULL);
4327 spin_unlock_bh(&sta->lock);
4328
4329 if (old)
4330 kfree_rcu(old, rcu_head);
4331 }
4332
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4333 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4334 {
4335 struct ieee80211_local *local = sdata->local;
4336 struct sta_info *sta;
4337
4338 lockdep_assert_held(&local->sta_mtx);
4339
4340 list_for_each_entry(sta, &local->sta_list, list) {
4341 if (sdata != sta->sdata &&
4342 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4343 continue;
4344 ieee80211_check_fast_rx(sta);
4345 }
4346 }
4347
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4348 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4349 {
4350 struct ieee80211_local *local = sdata->local;
4351
4352 mutex_lock(&local->sta_mtx);
4353 __ieee80211_check_fast_rx_iface(sdata);
4354 mutex_unlock(&local->sta_mtx);
4355 }
4356
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4357 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4358 struct ieee80211_fast_rx *fast_rx)
4359 {
4360 struct sk_buff *skb = rx->skb;
4361 struct ieee80211_hdr *hdr = (void *)skb->data;
4362 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4363 struct sta_info *sta = rx->sta;
4364 int orig_len = skb->len;
4365 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4366 int snap_offs = hdrlen;
4367 struct {
4368 u8 snap[sizeof(rfc1042_header)];
4369 __be16 proto;
4370 } *payload __aligned(2);
4371 struct {
4372 u8 da[ETH_ALEN];
4373 u8 sa[ETH_ALEN];
4374 } addrs __aligned(2);
4375 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4376
4377 if (fast_rx->uses_rss)
4378 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4379
4380 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4381 * to a common data structure; drivers can implement that per queue
4382 * but we don't have that information in mac80211
4383 */
4384 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4385 return false;
4386
4387 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4388
4389 /* If using encryption, we also need to have:
4390 * - PN_VALIDATED: similar, but the implementation is tricky
4391 * - DECRYPTED: necessary for PN_VALIDATED
4392 */
4393 if (fast_rx->key &&
4394 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4395 return false;
4396
4397 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4398 return false;
4399
4400 if (unlikely(ieee80211_is_frag(hdr)))
4401 return false;
4402
4403 /* Since our interface address cannot be multicast, this
4404 * implicitly also rejects multicast frames without the
4405 * explicit check.
4406 *
4407 * We shouldn't get any *data* frames not addressed to us
4408 * (AP mode will accept multicast *management* frames), but
4409 * punting here will make it go through the full checks in
4410 * ieee80211_accept_frame().
4411 */
4412 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4413 return false;
4414
4415 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4416 IEEE80211_FCTL_TODS)) !=
4417 fast_rx->expected_ds_bits)
4418 return false;
4419
4420 /* assign the key to drop unencrypted frames (later)
4421 * and strip the IV/MIC if necessary
4422 */
4423 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4424 /* GCMP header length is the same */
4425 snap_offs += IEEE80211_CCMP_HDR_LEN;
4426 }
4427
4428 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4429 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4430 goto drop;
4431
4432 payload = (void *)(skb->data + snap_offs);
4433
4434 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4435 return false;
4436
4437 /* Don't handle these here since they require special code.
4438 * Accept AARP and IPX even though they should come with a
4439 * bridge-tunnel header - but if we get them this way then
4440 * there's little point in discarding them.
4441 */
4442 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4443 payload->proto == fast_rx->control_port_protocol))
4444 return false;
4445 }
4446
4447 /* after this point, don't punt to the slowpath! */
4448
4449 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4450 pskb_trim(skb, skb->len - fast_rx->icv_len))
4451 goto drop;
4452
4453 /* statistics part of ieee80211_rx_h_sta_process() */
4454 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4455 stats->last_signal = status->signal;
4456 if (!fast_rx->uses_rss)
4457 ewma_signal_add(&sta->rx_stats_avg.signal,
4458 -status->signal);
4459 }
4460
4461 if (status->chains) {
4462 int i;
4463
4464 stats->chains = status->chains;
4465 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4466 int signal = status->chain_signal[i];
4467
4468 if (!(status->chains & BIT(i)))
4469 continue;
4470
4471 stats->chain_signal_last[i] = signal;
4472 if (!fast_rx->uses_rss)
4473 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4474 -signal);
4475 }
4476 }
4477 /* end of statistics */
4478
4479 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4480 goto drop;
4481
4482 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4483 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4484 RX_QUEUED)
4485 goto drop;
4486
4487 return true;
4488 }
4489
4490 stats->last_rx = jiffies;
4491 stats->last_rate = sta_stats_encode_rate(status);
4492
4493 stats->fragments++;
4494 stats->packets++;
4495
4496 /* do the header conversion - first grab the addresses */
4497 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4498 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4499 /* remove the SNAP but leave the ethertype */
4500 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4501 /* push the addresses in front */
4502 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4503
4504 skb->dev = fast_rx->dev;
4505
4506 ieee80211_rx_stats(fast_rx->dev, skb->len);
4507
4508 /* The seqno index has the same property as needed
4509 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4510 * for non-QoS-data frames. Here we know it's a data
4511 * frame, so count MSDUs.
4512 */
4513 u64_stats_update_begin(&stats->syncp);
4514 stats->msdu[rx->seqno_idx]++;
4515 stats->bytes += orig_len;
4516 u64_stats_update_end(&stats->syncp);
4517
4518 if (fast_rx->internal_forward) {
4519 struct sk_buff *xmit_skb = NULL;
4520 if (is_multicast_ether_addr(addrs.da)) {
4521 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4522 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4523 sta_info_get(rx->sdata, addrs.da)) {
4524 xmit_skb = skb;
4525 skb = NULL;
4526 }
4527
4528 if (xmit_skb) {
4529 /*
4530 * Send to wireless media and increase priority by 256
4531 * to keep the received priority instead of
4532 * reclassifying the frame (see cfg80211_classify8021d).
4533 */
4534 xmit_skb->priority += 256;
4535 xmit_skb->protocol = htons(ETH_P_802_3);
4536 skb_reset_network_header(xmit_skb);
4537 skb_reset_mac_header(xmit_skb);
4538 dev_queue_xmit(xmit_skb);
4539 }
4540
4541 if (!skb)
4542 return true;
4543 }
4544
4545 /* deliver to local stack */
4546 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4547 memset(skb->cb, 0, sizeof(skb->cb));
4548 if (rx->list)
4549 list_add_tail(&skb->list, rx->list);
4550 else
4551 netif_receive_skb(skb);
4552
4553 return true;
4554 drop:
4555 dev_kfree_skb(skb);
4556 stats->dropped++;
4557 return true;
4558 }
4559
4560 /*
4561 * This function returns whether or not the SKB
4562 * was destined for RX processing or not, which,
4563 * if consume is true, is equivalent to whether
4564 * or not the skb was consumed.
4565 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4566 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4567 struct sk_buff *skb, bool consume)
4568 {
4569 struct ieee80211_local *local = rx->local;
4570 struct ieee80211_sub_if_data *sdata = rx->sdata;
4571
4572 rx->skb = skb;
4573
4574 /* See if we can do fast-rx; if we have to copy we already lost,
4575 * so punt in that case. We should never have to deliver a data
4576 * frame to multiple interfaces anyway.
4577 *
4578 * We skip the ieee80211_accept_frame() call and do the necessary
4579 * checking inside ieee80211_invoke_fast_rx().
4580 */
4581 if (consume && rx->sta) {
4582 struct ieee80211_fast_rx *fast_rx;
4583
4584 fast_rx = rcu_dereference(rx->sta->fast_rx);
4585 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4586 return true;
4587 }
4588
4589 if (!ieee80211_accept_frame(rx))
4590 return false;
4591
4592 if (!consume) {
4593 skb = skb_copy(skb, GFP_ATOMIC);
4594 if (!skb) {
4595 if (net_ratelimit())
4596 wiphy_debug(local->hw.wiphy,
4597 "failed to copy skb for %s\n",
4598 sdata->name);
4599 return true;
4600 }
4601
4602 rx->skb = skb;
4603 }
4604
4605 ieee80211_invoke_rx_handlers(rx);
4606 return true;
4607 }
4608
4609 /*
4610 * This is the actual Rx frames handler. as it belongs to Rx path it must
4611 * be called with rcu_read_lock protection.
4612 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4613 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4614 struct ieee80211_sta *pubsta,
4615 struct sk_buff *skb,
4616 struct list_head *list)
4617 {
4618 struct ieee80211_local *local = hw_to_local(hw);
4619 struct ieee80211_sub_if_data *sdata;
4620 struct ieee80211_hdr *hdr;
4621 __le16 fc;
4622 struct ieee80211_rx_data rx;
4623 struct ieee80211_sub_if_data *prev;
4624 struct rhlist_head *tmp;
4625 int err = 0;
4626
4627 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4628 memset(&rx, 0, sizeof(rx));
4629 rx.skb = skb;
4630 rx.local = local;
4631 rx.list = list;
4632
4633 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4634 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4635
4636 if (ieee80211_is_mgmt(fc)) {
4637 /* drop frame if too short for header */
4638 if (skb->len < ieee80211_hdrlen(fc))
4639 err = -ENOBUFS;
4640 else
4641 err = skb_linearize(skb);
4642 } else {
4643 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4644 }
4645
4646 if (err) {
4647 dev_kfree_skb(skb);
4648 return;
4649 }
4650
4651 hdr = (struct ieee80211_hdr *)skb->data;
4652 ieee80211_parse_qos(&rx);
4653 ieee80211_verify_alignment(&rx);
4654
4655 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4656 ieee80211_is_beacon(hdr->frame_control) ||
4657 ieee80211_is_s1g_beacon(hdr->frame_control)))
4658 ieee80211_scan_rx(local, skb);
4659
4660 if (ieee80211_is_data(fc)) {
4661 struct sta_info *sta, *prev_sta;
4662
4663 if (pubsta) {
4664 rx.sta = container_of(pubsta, struct sta_info, sta);
4665 rx.sdata = rx.sta->sdata;
4666 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4667 return;
4668 goto out;
4669 }
4670
4671 prev_sta = NULL;
4672
4673 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4674 if (!prev_sta) {
4675 prev_sta = sta;
4676 continue;
4677 }
4678
4679 rx.sta = prev_sta;
4680 rx.sdata = prev_sta->sdata;
4681 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4682
4683 prev_sta = sta;
4684 }
4685
4686 if (prev_sta) {
4687 rx.sta = prev_sta;
4688 rx.sdata = prev_sta->sdata;
4689
4690 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4691 return;
4692 goto out;
4693 }
4694 }
4695
4696 prev = NULL;
4697
4698 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4699 if (!ieee80211_sdata_running(sdata))
4700 continue;
4701
4702 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4703 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4704 continue;
4705
4706 /*
4707 * frame is destined for this interface, but if it's
4708 * not also for the previous one we handle that after
4709 * the loop to avoid copying the SKB once too much
4710 */
4711
4712 if (!prev) {
4713 prev = sdata;
4714 continue;
4715 }
4716
4717 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4718 rx.sdata = prev;
4719 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4720
4721 prev = sdata;
4722 }
4723
4724 if (prev) {
4725 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4726 rx.sdata = prev;
4727
4728 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4729 return;
4730 }
4731
4732 out:
4733 dev_kfree_skb(skb);
4734 }
4735
4736 /*
4737 * This is the receive path handler. It is called by a low level driver when an
4738 * 802.11 MPDU is received from the hardware.
4739 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4740 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4741 struct sk_buff *skb, struct list_head *list)
4742 {
4743 struct ieee80211_local *local = hw_to_local(hw);
4744 struct ieee80211_rate *rate = NULL;
4745 struct ieee80211_supported_band *sband;
4746 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4747
4748 WARN_ON_ONCE(softirq_count() == 0);
4749
4750 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4751 goto drop;
4752
4753 sband = local->hw.wiphy->bands[status->band];
4754 if (WARN_ON(!sband))
4755 goto drop;
4756
4757 /*
4758 * If we're suspending, it is possible although not too likely
4759 * that we'd be receiving frames after having already partially
4760 * quiesced the stack. We can't process such frames then since
4761 * that might, for example, cause stations to be added or other
4762 * driver callbacks be invoked.
4763 */
4764 if (unlikely(local->quiescing || local->suspended))
4765 goto drop;
4766
4767 /* We might be during a HW reconfig, prevent Rx for the same reason */
4768 if (unlikely(local->in_reconfig))
4769 goto drop;
4770
4771 /*
4772 * The same happens when we're not even started,
4773 * but that's worth a warning.
4774 */
4775 if (WARN_ON(!local->started))
4776 goto drop;
4777
4778 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4779 /*
4780 * Validate the rate, unless a PLCP error means that
4781 * we probably can't have a valid rate here anyway.
4782 */
4783
4784 switch (status->encoding) {
4785 case RX_ENC_HT:
4786 /*
4787 * rate_idx is MCS index, which can be [0-76]
4788 * as documented on:
4789 *
4790 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4791 *
4792 * Anything else would be some sort of driver or
4793 * hardware error. The driver should catch hardware
4794 * errors.
4795 */
4796 if (WARN(status->rate_idx > 76,
4797 "Rate marked as an HT rate but passed "
4798 "status->rate_idx is not "
4799 "an MCS index [0-76]: %d (0x%02x)\n",
4800 status->rate_idx,
4801 status->rate_idx))
4802 goto drop;
4803 break;
4804 case RX_ENC_VHT:
4805 if (WARN_ONCE(status->rate_idx > 11 ||
4806 !status->nss ||
4807 status->nss > 8,
4808 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4809 status->rate_idx, status->nss))
4810 goto drop;
4811 break;
4812 case RX_ENC_HE:
4813 if (WARN_ONCE(status->rate_idx > 11 ||
4814 !status->nss ||
4815 status->nss > 8,
4816 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4817 status->rate_idx, status->nss))
4818 goto drop;
4819 break;
4820 default:
4821 WARN_ON_ONCE(1);
4822 fallthrough;
4823 case RX_ENC_LEGACY:
4824 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4825 goto drop;
4826 rate = &sband->bitrates[status->rate_idx];
4827 }
4828 }
4829
4830 status->rx_flags = 0;
4831
4832 /*
4833 * Frames with failed FCS/PLCP checksum are not returned,
4834 * all other frames are returned without radiotap header
4835 * if it was previously present.
4836 * Also, frames with less than 16 bytes are dropped.
4837 */
4838 skb = ieee80211_rx_monitor(local, skb, rate);
4839 if (!skb)
4840 return;
4841
4842 ieee80211_tpt_led_trig_rx(local,
4843 ((struct ieee80211_hdr *)skb->data)->frame_control,
4844 skb->len);
4845
4846 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4847
4848 return;
4849 drop:
4850 kfree_skb(skb);
4851 }
4852 EXPORT_SYMBOL(ieee80211_rx_list);
4853
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4854 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4855 struct sk_buff *skb, struct napi_struct *napi)
4856 {
4857 struct sk_buff *tmp;
4858 LIST_HEAD(list);
4859
4860
4861 /*
4862 * key references and virtual interfaces are protected using RCU
4863 * and this requires that we are in a read-side RCU section during
4864 * receive processing
4865 */
4866 rcu_read_lock();
4867 ieee80211_rx_list(hw, pubsta, skb, &list);
4868 rcu_read_unlock();
4869
4870 if (!napi) {
4871 netif_receive_skb_list(&list);
4872 return;
4873 }
4874
4875 list_for_each_entry_safe(skb, tmp, &list, list) {
4876 skb_list_del_init(skb);
4877 napi_gro_receive(napi, skb);
4878 }
4879 }
4880 EXPORT_SYMBOL(ieee80211_rx_napi);
4881
4882 /* This is a version of the rx handler that can be called from hard irq
4883 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)4884 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4885 {
4886 struct ieee80211_local *local = hw_to_local(hw);
4887
4888 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4889
4890 skb->pkt_type = IEEE80211_RX_MSG;
4891 skb_queue_tail(&local->skb_queue, skb);
4892 tasklet_schedule(&local->tasklet);
4893 }
4894 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4895