• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include "igc_phy.h"
5 
6 /**
7  * igc_check_reset_block - Check if PHY reset is blocked
8  * @hw: pointer to the HW structure
9  *
10  * Read the PHY management control register and check whether a PHY reset
11  * is blocked.  If a reset is not blocked return 0, otherwise
12  * return IGC_ERR_BLK_PHY_RESET (12).
13  */
igc_check_reset_block(struct igc_hw * hw)14 s32 igc_check_reset_block(struct igc_hw *hw)
15 {
16 	u32 manc;
17 
18 	manc = rd32(IGC_MANC);
19 
20 	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
21 		IGC_ERR_BLK_PHY_RESET : 0;
22 }
23 
24 /**
25  * igc_get_phy_id - Retrieve the PHY ID and revision
26  * @hw: pointer to the HW structure
27  *
28  * Reads the PHY registers and stores the PHY ID and possibly the PHY
29  * revision in the hardware structure.
30  */
igc_get_phy_id(struct igc_hw * hw)31 s32 igc_get_phy_id(struct igc_hw *hw)
32 {
33 	struct igc_phy_info *phy = &hw->phy;
34 	s32 ret_val = 0;
35 	u16 phy_id;
36 
37 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
38 	if (ret_val)
39 		goto out;
40 
41 	phy->id = (u32)(phy_id << 16);
42 	usleep_range(200, 500);
43 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
44 	if (ret_val)
45 		goto out;
46 
47 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
48 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
49 
50 out:
51 	return ret_val;
52 }
53 
54 /**
55  * igc_phy_has_link - Polls PHY for link
56  * @hw: pointer to the HW structure
57  * @iterations: number of times to poll for link
58  * @usec_interval: delay between polling attempts
59  * @success: pointer to whether polling was successful or not
60  *
61  * Polls the PHY status register for link, 'iterations' number of times.
62  */
igc_phy_has_link(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)63 s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
64 		     u32 usec_interval, bool *success)
65 {
66 	u16 i, phy_status;
67 	s32 ret_val = 0;
68 
69 	for (i = 0; i < iterations; i++) {
70 		/* Some PHYs require the PHY_STATUS register to be read
71 		 * twice due to the link bit being sticky.  No harm doing
72 		 * it across the board.
73 		 */
74 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
75 		if (ret_val && usec_interval > 0) {
76 			/* If the first read fails, another entity may have
77 			 * ownership of the resources, wait and try again to
78 			 * see if they have relinquished the resources yet.
79 			 */
80 			if (usec_interval >= 1000)
81 				mdelay(usec_interval / 1000);
82 			else
83 				udelay(usec_interval);
84 		}
85 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
86 		if (ret_val)
87 			break;
88 		if (phy_status & MII_SR_LINK_STATUS)
89 			break;
90 		if (usec_interval >= 1000)
91 			mdelay(usec_interval / 1000);
92 		else
93 			udelay(usec_interval);
94 	}
95 
96 	*success = (i < iterations) ? true : false;
97 
98 	return ret_val;
99 }
100 
101 /**
102  * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103  * @hw: pointer to the HW structure
104  *
105  * In the case of a PHY power down to save power, or to turn off link during a
106  * driver unload, restore the link to previous settings.
107  */
igc_power_up_phy_copper(struct igc_hw * hw)108 void igc_power_up_phy_copper(struct igc_hw *hw)
109 {
110 	u16 mii_reg = 0;
111 
112 	/* The PHY will retain its settings across a power down/up cycle */
113 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114 	mii_reg &= ~MII_CR_POWER_DOWN;
115 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116 }
117 
118 /**
119  * igc_power_down_phy_copper - Power down copper PHY
120  * @hw: pointer to the HW structure
121  *
122  * Power down PHY to save power when interface is down and wake on lan
123  * is not enabled.
124  */
igc_power_down_phy_copper(struct igc_hw * hw)125 void igc_power_down_phy_copper(struct igc_hw *hw)
126 {
127 	u16 mii_reg = 0;
128 
129 	/* The PHY will retain its settings across a power down/up cycle */
130 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131 	mii_reg |= MII_CR_POWER_DOWN;
132 
133 	/* Temporary workaround - should be removed when PHY will implement
134 	 * IEEE registers as properly
135 	 */
136 	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137 	usleep_range(1000, 2000);
138 }
139 
140 /**
141  * igc_check_downshift - Checks whether a downshift in speed occurred
142  * @hw: pointer to the HW structure
143  *
144  * Success returns 0, Failure returns 1
145  *
146  * A downshift is detected by querying the PHY link health.
147  */
igc_check_downshift(struct igc_hw * hw)148 s32 igc_check_downshift(struct igc_hw *hw)
149 {
150 	struct igc_phy_info *phy = &hw->phy;
151 	s32 ret_val;
152 
153 	switch (phy->type) {
154 	case igc_phy_i225:
155 	default:
156 		/* speed downshift not supported */
157 		phy->speed_downgraded = false;
158 		ret_val = 0;
159 	}
160 
161 	return ret_val;
162 }
163 
164 /**
165  * igc_phy_hw_reset - PHY hardware reset
166  * @hw: pointer to the HW structure
167  *
168  * Verify the reset block is not blocking us from resetting.  Acquire
169  * semaphore (if necessary) and read/set/write the device control reset
170  * bit in the PHY.  Wait the appropriate delay time for the device to
171  * reset and release the semaphore (if necessary).
172  */
igc_phy_hw_reset(struct igc_hw * hw)173 s32 igc_phy_hw_reset(struct igc_hw *hw)
174 {
175 	struct igc_phy_info *phy = &hw->phy;
176 	u32 phpm = 0, timeout = 10000;
177 	s32  ret_val;
178 	u32 ctrl;
179 
180 	ret_val = igc_check_reset_block(hw);
181 	if (ret_val) {
182 		ret_val = 0;
183 		goto out;
184 	}
185 
186 	ret_val = phy->ops.acquire(hw);
187 	if (ret_val)
188 		goto out;
189 
190 	phpm = rd32(IGC_I225_PHPM);
191 
192 	ctrl = rd32(IGC_CTRL);
193 	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
194 	wrfl();
195 
196 	udelay(phy->reset_delay_us);
197 
198 	wr32(IGC_CTRL, ctrl);
199 	wrfl();
200 
201 	/* SW should guarantee 100us for the completion of the PHY reset */
202 	usleep_range(100, 150);
203 	do {
204 		phpm = rd32(IGC_I225_PHPM);
205 		timeout--;
206 		udelay(1);
207 	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
208 
209 	if (!timeout)
210 		hw_dbg("Timeout is expired after a phy reset\n");
211 
212 	usleep_range(100, 150);
213 
214 	phy->ops.release(hw);
215 
216 out:
217 	return ret_val;
218 }
219 
220 /**
221  * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
222  * @hw: pointer to the HW structure
223  *
224  * Reads the MII auto-neg advertisement register and/or the 1000T control
225  * register and if the PHY is already setup for auto-negotiation, then
226  * return successful.  Otherwise, setup advertisement and flow control to
227  * the appropriate values for the wanted auto-negotiation.
228  */
igc_phy_setup_autoneg(struct igc_hw * hw)229 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
230 {
231 	struct igc_phy_info *phy = &hw->phy;
232 	u16 aneg_multigbt_an_ctrl = 0;
233 	u16 mii_1000t_ctrl_reg = 0;
234 	u16 mii_autoneg_adv_reg;
235 	s32 ret_val;
236 
237 	phy->autoneg_advertised &= phy->autoneg_mask;
238 
239 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
240 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
241 	if (ret_val)
242 		return ret_val;
243 
244 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
245 		/* Read the MII 1000Base-T Control Register (Address 9). */
246 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
247 					    &mii_1000t_ctrl_reg);
248 		if (ret_val)
249 			return ret_val;
250 	}
251 
252 	if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
253 	    hw->phy.id == I225_I_PHY_ID) {
254 		/* Read the MULTI GBT AN Control Register - reg 7.32 */
255 		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
256 					    MMD_DEVADDR_SHIFT) |
257 					    ANEG_MULTIGBT_AN_CTRL,
258 					    &aneg_multigbt_an_ctrl);
259 
260 		if (ret_val)
261 			return ret_val;
262 	}
263 
264 	/* Need to parse both autoneg_advertised and fc and set up
265 	 * the appropriate PHY registers.  First we will parse for
266 	 * autoneg_advertised software override.  Since we can advertise
267 	 * a plethora of combinations, we need to check each bit
268 	 * individually.
269 	 */
270 
271 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
272 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
273 	 * the  1000Base-T Control Register (Address 9).
274 	 */
275 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
276 				 NWAY_AR_100TX_HD_CAPS |
277 				 NWAY_AR_10T_FD_CAPS   |
278 				 NWAY_AR_10T_HD_CAPS);
279 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
280 
281 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
282 
283 	/* Do we want to advertise 10 Mb Half Duplex? */
284 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
285 		hw_dbg("Advertise 10mb Half duplex\n");
286 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
287 	}
288 
289 	/* Do we want to advertise 10 Mb Full Duplex? */
290 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
291 		hw_dbg("Advertise 10mb Full duplex\n");
292 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
293 	}
294 
295 	/* Do we want to advertise 100 Mb Half Duplex? */
296 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
297 		hw_dbg("Advertise 100mb Half duplex\n");
298 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
299 	}
300 
301 	/* Do we want to advertise 100 Mb Full Duplex? */
302 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
303 		hw_dbg("Advertise 100mb Full duplex\n");
304 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
305 	}
306 
307 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
308 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
309 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
310 
311 	/* Do we want to advertise 1000 Mb Full Duplex? */
312 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
313 		hw_dbg("Advertise 1000mb Full duplex\n");
314 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
315 	}
316 
317 	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
318 	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
319 		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
320 
321 	/* Do we want to advertise 2500 Mb Full Duplex? */
322 	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
323 		hw_dbg("Advertise 2500mb Full duplex\n");
324 		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
325 	} else {
326 		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
327 	}
328 
329 	/* Check for a software override of the flow control settings, and
330 	 * setup the PHY advertisement registers accordingly.  If
331 	 * auto-negotiation is enabled, then software will have to set the
332 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
333 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
334 	 * negotiation.
335 	 *
336 	 * The possible values of the "fc" parameter are:
337 	 *      0:  Flow control is completely disabled
338 	 *      1:  Rx flow control is enabled (we can receive pause frames
339 	 *          but not send pause frames).
340 	 *      2:  Tx flow control is enabled (we can send pause frames
341 	 *          but we do not support receiving pause frames).
342 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
343 	 *  other:  No software override.  The flow control configuration
344 	 *          in the EEPROM is used.
345 	 */
346 	switch (hw->fc.current_mode) {
347 	case igc_fc_none:
348 		/* Flow control (Rx & Tx) is completely disabled by a
349 		 * software over-ride.
350 		 */
351 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
352 		break;
353 	case igc_fc_rx_pause:
354 		/* Rx Flow control is enabled, and Tx Flow control is
355 		 * disabled, by a software over-ride.
356 		 *
357 		 * Since there really isn't a way to advertise that we are
358 		 * capable of Rx Pause ONLY, we will advertise that we
359 		 * support both symmetric and asymmetric Rx PAUSE.  Later
360 		 * (in igc_config_fc_after_link_up) we will disable the
361 		 * hw's ability to send PAUSE frames.
362 		 */
363 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
364 		break;
365 	case igc_fc_tx_pause:
366 		/* Tx Flow control is enabled, and Rx Flow control is
367 		 * disabled, by a software over-ride.
368 		 */
369 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
370 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
371 		break;
372 	case igc_fc_full:
373 		/* Flow control (both Rx and Tx) is enabled by a software
374 		 * over-ride.
375 		 */
376 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
377 		break;
378 	default:
379 		hw_dbg("Flow control param set incorrectly\n");
380 		return -IGC_ERR_CONFIG;
381 	}
382 
383 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
384 	if (ret_val)
385 		return ret_val;
386 
387 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
388 
389 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
390 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
391 					     mii_1000t_ctrl_reg);
392 
393 	if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
394 	    hw->phy.id == I225_I_PHY_ID)
395 		ret_val = phy->ops.write_reg(hw,
396 					     (STANDARD_AN_REG_MASK <<
397 					     MMD_DEVADDR_SHIFT) |
398 					     ANEG_MULTIGBT_AN_CTRL,
399 					     aneg_multigbt_an_ctrl);
400 
401 	return ret_val;
402 }
403 
404 /**
405  * igc_wait_autoneg - Wait for auto-neg completion
406  * @hw: pointer to the HW structure
407  *
408  * Waits for auto-negotiation to complete or for the auto-negotiation time
409  * limit to expire, which ever happens first.
410  */
igc_wait_autoneg(struct igc_hw * hw)411 static s32 igc_wait_autoneg(struct igc_hw *hw)
412 {
413 	u16 i, phy_status;
414 	s32 ret_val = 0;
415 
416 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
417 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
418 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
419 		if (ret_val)
420 			break;
421 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
422 		if (ret_val)
423 			break;
424 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
425 			break;
426 		msleep(100);
427 	}
428 
429 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
430 	 * has completed.
431 	 */
432 	return ret_val;
433 }
434 
435 /**
436  * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
437  * @hw: pointer to the HW structure
438  *
439  * Performs initial bounds checking on autoneg advertisement parameter, then
440  * configure to advertise the full capability.  Setup the PHY to autoneg
441  * and restart the negotiation process between the link partner.  If
442  * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
443  */
igc_copper_link_autoneg(struct igc_hw * hw)444 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
445 {
446 	struct igc_phy_info *phy = &hw->phy;
447 	u16 phy_ctrl;
448 	s32 ret_val;
449 
450 	/* Perform some bounds checking on the autoneg advertisement
451 	 * parameter.
452 	 */
453 	phy->autoneg_advertised &= phy->autoneg_mask;
454 
455 	/* If autoneg_advertised is zero, we assume it was not defaulted
456 	 * by the calling code so we set to advertise full capability.
457 	 */
458 	if (phy->autoneg_advertised == 0)
459 		phy->autoneg_advertised = phy->autoneg_mask;
460 
461 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
462 	ret_val = igc_phy_setup_autoneg(hw);
463 	if (ret_val) {
464 		hw_dbg("Error Setting up Auto-Negotiation\n");
465 		goto out;
466 	}
467 	hw_dbg("Restarting Auto-Neg\n");
468 
469 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
470 	 * the Auto Neg Restart bit in the PHY control register.
471 	 */
472 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
473 	if (ret_val)
474 		goto out;
475 
476 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
477 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
478 	if (ret_val)
479 		goto out;
480 
481 	/* Does the user want to wait for Auto-Neg to complete here, or
482 	 * check at a later time (for example, callback routine).
483 	 */
484 	if (phy->autoneg_wait_to_complete) {
485 		ret_val = igc_wait_autoneg(hw);
486 		if (ret_val) {
487 			hw_dbg("Error while waiting for autoneg to complete\n");
488 			goto out;
489 		}
490 	}
491 
492 	hw->mac.get_link_status = true;
493 
494 out:
495 	return ret_val;
496 }
497 
498 /**
499  * igc_setup_copper_link - Configure copper link settings
500  * @hw: pointer to the HW structure
501  *
502  * Calls the appropriate function to configure the link for auto-neg or forced
503  * speed and duplex.  Then we check for link, once link is established calls
504  * to configure collision distance and flow control are called.  If link is
505  * not established, we return -IGC_ERR_PHY (-2).
506  */
igc_setup_copper_link(struct igc_hw * hw)507 s32 igc_setup_copper_link(struct igc_hw *hw)
508 {
509 	s32 ret_val = 0;
510 	bool link;
511 
512 	if (hw->mac.autoneg) {
513 		/* Setup autoneg and flow control advertisement and perform
514 		 * autonegotiation.
515 		 */
516 		ret_val = igc_copper_link_autoneg(hw);
517 		if (ret_val)
518 			goto out;
519 	} else {
520 		/* PHY will be set to 10H, 10F, 100H or 100F
521 		 * depending on user settings.
522 		 */
523 		hw_dbg("Forcing Speed and Duplex\n");
524 		ret_val = hw->phy.ops.force_speed_duplex(hw);
525 		if (ret_val) {
526 			hw_dbg("Error Forcing Speed and Duplex\n");
527 			goto out;
528 		}
529 	}
530 
531 	/* Check link status. Wait up to 100 microseconds for link to become
532 	 * valid.
533 	 */
534 	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
535 	if (ret_val)
536 		goto out;
537 
538 	if (link) {
539 		hw_dbg("Valid link established!!!\n");
540 		igc_config_collision_dist(hw);
541 		ret_val = igc_config_fc_after_link_up(hw);
542 	} else {
543 		hw_dbg("Unable to establish link!!!\n");
544 	}
545 
546 out:
547 	return ret_val;
548 }
549 
550 /**
551  * igc_read_phy_reg_mdic - Read MDI control register
552  * @hw: pointer to the HW structure
553  * @offset: register offset to be read
554  * @data: pointer to the read data
555  *
556  * Reads the MDI control register in the PHY at offset and stores the
557  * information read to data.
558  */
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)559 static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
560 {
561 	struct igc_phy_info *phy = &hw->phy;
562 	u32 i, mdic = 0;
563 	s32 ret_val = 0;
564 
565 	if (offset > MAX_PHY_REG_ADDRESS) {
566 		hw_dbg("PHY Address %d is out of range\n", offset);
567 		ret_val = -IGC_ERR_PARAM;
568 		goto out;
569 	}
570 
571 	/* Set up Op-code, Phy Address, and register offset in the MDI
572 	 * Control register.  The MAC will take care of interfacing with the
573 	 * PHY to retrieve the desired data.
574 	 */
575 	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
576 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
577 		(IGC_MDIC_OP_READ));
578 
579 	wr32(IGC_MDIC, mdic);
580 
581 	/* Poll the ready bit to see if the MDI read completed
582 	 * Increasing the time out as testing showed failures with
583 	 * the lower time out
584 	 */
585 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
586 		usleep_range(500, 1000);
587 		mdic = rd32(IGC_MDIC);
588 		if (mdic & IGC_MDIC_READY)
589 			break;
590 	}
591 	if (!(mdic & IGC_MDIC_READY)) {
592 		hw_dbg("MDI Read did not complete\n");
593 		ret_val = -IGC_ERR_PHY;
594 		goto out;
595 	}
596 	if (mdic & IGC_MDIC_ERROR) {
597 		hw_dbg("MDI Error\n");
598 		ret_val = -IGC_ERR_PHY;
599 		goto out;
600 	}
601 	*data = (u16)mdic;
602 
603 out:
604 	return ret_val;
605 }
606 
607 /**
608  * igc_write_phy_reg_mdic - Write MDI control register
609  * @hw: pointer to the HW structure
610  * @offset: register offset to write to
611  * @data: data to write to register at offset
612  *
613  * Writes data to MDI control register in the PHY at offset.
614  */
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)615 static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
616 {
617 	struct igc_phy_info *phy = &hw->phy;
618 	u32 i, mdic = 0;
619 	s32 ret_val = 0;
620 
621 	if (offset > MAX_PHY_REG_ADDRESS) {
622 		hw_dbg("PHY Address %d is out of range\n", offset);
623 		ret_val = -IGC_ERR_PARAM;
624 		goto out;
625 	}
626 
627 	/* Set up Op-code, Phy Address, and register offset in the MDI
628 	 * Control register.  The MAC will take care of interfacing with the
629 	 * PHY to write the desired data.
630 	 */
631 	mdic = (((u32)data) |
632 		(offset << IGC_MDIC_REG_SHIFT) |
633 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
634 		(IGC_MDIC_OP_WRITE));
635 
636 	wr32(IGC_MDIC, mdic);
637 
638 	/* Poll the ready bit to see if the MDI read completed
639 	 * Increasing the time out as testing showed failures with
640 	 * the lower time out
641 	 */
642 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
643 		usleep_range(500, 1000);
644 		mdic = rd32(IGC_MDIC);
645 		if (mdic & IGC_MDIC_READY)
646 			break;
647 	}
648 	if (!(mdic & IGC_MDIC_READY)) {
649 		hw_dbg("MDI Write did not complete\n");
650 		ret_val = -IGC_ERR_PHY;
651 		goto out;
652 	}
653 	if (mdic & IGC_MDIC_ERROR) {
654 		hw_dbg("MDI Error\n");
655 		ret_val = -IGC_ERR_PHY;
656 		goto out;
657 	}
658 
659 out:
660 	return ret_val;
661 }
662 
663 /**
664  * __igc_access_xmdio_reg - Read/write XMDIO register
665  * @hw: pointer to the HW structure
666  * @address: XMDIO address to program
667  * @dev_addr: device address to program
668  * @data: pointer to value to read/write from/to the XMDIO address
669  * @read: boolean flag to indicate read or write
670  */
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)671 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
672 				  u8 dev_addr, u16 *data, bool read)
673 {
674 	s32 ret_val;
675 
676 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
677 	if (ret_val)
678 		return ret_val;
679 
680 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
681 	if (ret_val)
682 		return ret_val;
683 
684 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
685 					dev_addr);
686 	if (ret_val)
687 		return ret_val;
688 
689 	if (read)
690 		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
691 	else
692 		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
693 	if (ret_val)
694 		return ret_val;
695 
696 	/* Recalibrate the device back to 0 */
697 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
698 	if (ret_val)
699 		return ret_val;
700 
701 	return ret_val;
702 }
703 
704 /**
705  * igc_read_xmdio_reg - Read XMDIO register
706  * @hw: pointer to the HW structure
707  * @addr: XMDIO address to program
708  * @dev_addr: device address to program
709  * @data: value to be read from the EMI address
710  */
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)711 static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
712 			      u8 dev_addr, u16 *data)
713 {
714 	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
715 }
716 
717 /**
718  * igc_write_xmdio_reg - Write XMDIO register
719  * @hw: pointer to the HW structure
720  * @addr: XMDIO address to program
721  * @dev_addr: device address to program
722  * @data: value to be written to the XMDIO address
723  */
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)724 static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
725 			       u8 dev_addr, u16 data)
726 {
727 	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
728 }
729 
730 /**
731  * igc_write_phy_reg_gpy - Write GPY PHY register
732  * @hw: pointer to the HW structure
733  * @offset: register offset to write to
734  * @data: data to write at register offset
735  *
736  * Acquires semaphore, if necessary, then writes the data to PHY register
737  * at the offset. Release any acquired semaphores before exiting.
738  */
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)739 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
740 {
741 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
742 	s32 ret_val;
743 
744 	offset = offset & GPY_REG_MASK;
745 
746 	if (!dev_addr) {
747 		ret_val = hw->phy.ops.acquire(hw);
748 		if (ret_val)
749 			return ret_val;
750 		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
751 		if (ret_val)
752 			return ret_val;
753 		hw->phy.ops.release(hw);
754 	} else {
755 		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
756 					      data);
757 	}
758 
759 	return ret_val;
760 }
761 
762 /**
763  * igc_read_phy_reg_gpy - Read GPY PHY register
764  * @hw: pointer to the HW structure
765  * @offset: lower half is register offset to read to
766  * upper half is MMD to use.
767  * @data: data to read at register offset
768  *
769  * Acquires semaphore, if necessary, then reads the data in the PHY register
770  * at the offset. Release any acquired semaphores before exiting.
771  */
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)772 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
773 {
774 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
775 	s32 ret_val;
776 
777 	offset = offset & GPY_REG_MASK;
778 
779 	if (!dev_addr) {
780 		ret_val = hw->phy.ops.acquire(hw);
781 		if (ret_val)
782 			return ret_val;
783 		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
784 		if (ret_val)
785 			return ret_val;
786 		hw->phy.ops.release(hw);
787 	} else {
788 		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
789 					     data);
790 	}
791 
792 	return ret_val;
793 }
794