• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_rt.h"
28 #include "brw_eu.h"
29 #include "nir_search_helpers.h"
30 #include "util/u_math.h"
31 #include "util/bitscan.h"
32 
33 using namespace brw;
34 
35 void
emit_nir_code()36 fs_visitor::emit_nir_code()
37 {
38    emit_shader_float_controls_execution_mode();
39 
40    /* emit the arrays used for inputs and outputs - load/store intrinsics will
41     * be converted to reads/writes of these arrays
42     */
43    nir_setup_outputs();
44    nir_setup_uniforms();
45    nir_emit_system_values();
46    last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
47 
48    nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
49 
50    bld.emit(SHADER_OPCODE_HALT_TARGET);
51 }
52 
53 void
nir_setup_outputs()54 fs_visitor::nir_setup_outputs()
55 {
56    if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
57       return;
58 
59    unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
60 
61    /* Calculate the size of output registers in a separate pass, before
62     * allocating them.  With ARB_enhanced_layouts, multiple output variables
63     * may occupy the same slot, but have different type sizes.
64     */
65    nir_foreach_shader_out_variable(var, nir) {
66       const int loc = var->data.driver_location;
67       const unsigned var_vec4s =
68          var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
69                            : type_size_vec4(var->type, true);
70       vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
71    }
72 
73    for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
74       if (vec4s[loc] == 0) {
75          loc++;
76          continue;
77       }
78 
79       unsigned reg_size = vec4s[loc];
80 
81       /* Check if there are any ranges that start within this range and extend
82        * past it. If so, include them in this allocation.
83        */
84       for (unsigned i = 1; i < reg_size; i++) {
85          assert(i + loc < ARRAY_SIZE(vec4s));
86          reg_size = MAX2(vec4s[i + loc] + i, reg_size);
87       }
88 
89       fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
90       for (unsigned i = 0; i < reg_size; i++) {
91          assert(loc + i < ARRAY_SIZE(outputs));
92          outputs[loc + i] = offset(reg, bld, 4 * i);
93       }
94 
95       loc += reg_size;
96    }
97 }
98 
99 void
nir_setup_uniforms()100 fs_visitor::nir_setup_uniforms()
101 {
102    /* Only the first compile gets to set up uniforms. */
103    if (push_constant_loc) {
104       assert(pull_constant_loc);
105       return;
106    }
107 
108    uniforms = nir->num_uniforms / 4;
109 
110    if ((stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) &&
111        devinfo->verx10 < 125) {
112       /* Add uniforms for builtins after regular NIR uniforms. */
113       assert(uniforms == prog_data->nr_params);
114 
115       uint32_t *param;
116       if (nir->info.workgroup_size_variable &&
117           compiler->lower_variable_group_size) {
118          param = brw_stage_prog_data_add_params(prog_data, 3);
119          for (unsigned i = 0; i < 3; i++) {
120             param[i] = (BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X + i);
121             group_size[i] = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
122          }
123       }
124 
125       /* Subgroup ID must be the last uniform on the list.  This will make
126        * easier later to split between cross thread and per thread
127        * uniforms.
128        */
129       param = brw_stage_prog_data_add_params(prog_data, 1);
130       *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
131       subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
132    }
133 }
134 
135 static bool
emit_system_values_block(nir_block * block,fs_visitor * v)136 emit_system_values_block(nir_block *block, fs_visitor *v)
137 {
138    fs_reg *reg;
139 
140    nir_foreach_instr(instr, block) {
141       if (instr->type != nir_instr_type_intrinsic)
142          continue;
143 
144       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
145       switch (intrin->intrinsic) {
146       case nir_intrinsic_load_vertex_id:
147       case nir_intrinsic_load_base_vertex:
148          unreachable("should be lowered by nir_lower_system_values().");
149 
150       case nir_intrinsic_load_vertex_id_zero_base:
151       case nir_intrinsic_load_is_indexed_draw:
152       case nir_intrinsic_load_first_vertex:
153       case nir_intrinsic_load_instance_id:
154       case nir_intrinsic_load_base_instance:
155       case nir_intrinsic_load_draw_id:
156          unreachable("should be lowered by brw_nir_lower_vs_inputs().");
157 
158       case nir_intrinsic_load_invocation_id:
159          if (v->stage == MESA_SHADER_TESS_CTRL)
160             break;
161          assert(v->stage == MESA_SHADER_GEOMETRY);
162          reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
163          if (reg->file == BAD_FILE) {
164             const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
165             fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
166             fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
167             abld.SHR(iid, g1, brw_imm_ud(27u));
168             *reg = iid;
169          }
170          break;
171 
172       case nir_intrinsic_load_sample_pos:
173          assert(v->stage == MESA_SHADER_FRAGMENT);
174          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
175          if (reg->file == BAD_FILE)
176             *reg = *v->emit_samplepos_setup();
177          break;
178 
179       case nir_intrinsic_load_sample_id:
180          assert(v->stage == MESA_SHADER_FRAGMENT);
181          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
182          if (reg->file == BAD_FILE)
183             *reg = *v->emit_sampleid_setup();
184          break;
185 
186       case nir_intrinsic_load_sample_mask_in:
187          assert(v->stage == MESA_SHADER_FRAGMENT);
188          assert(v->devinfo->ver >= 7);
189          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
190          if (reg->file == BAD_FILE)
191             *reg = *v->emit_samplemaskin_setup();
192          break;
193 
194       case nir_intrinsic_load_workgroup_id:
195          assert(v->stage == MESA_SHADER_COMPUTE ||
196                 v->stage == MESA_SHADER_KERNEL);
197          reg = &v->nir_system_values[SYSTEM_VALUE_WORKGROUP_ID];
198          if (reg->file == BAD_FILE)
199             *reg = *v->emit_cs_work_group_id_setup();
200          break;
201 
202       case nir_intrinsic_load_helper_invocation:
203          assert(v->stage == MESA_SHADER_FRAGMENT);
204          reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
205          if (reg->file == BAD_FILE) {
206             const fs_builder abld =
207                v->bld.annotate("gl_HelperInvocation", NULL);
208 
209             /* On Gfx6+ (gl_HelperInvocation is only exposed on Gfx7+) the
210              * pixel mask is in g1.7 of the thread payload.
211              *
212              * We move the per-channel pixel enable bit to the low bit of each
213              * channel by shifting the byte containing the pixel mask by the
214              * vector immediate 0x76543210UV.
215              *
216              * The region of <1,8,0> reads only 1 byte (the pixel masks for
217              * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
218              * masks for 2 and 3) in SIMD16.
219              */
220             fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
221 
222             for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
223                const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
224                hbld.SHR(offset(shifted, hbld, i),
225                         stride(retype(brw_vec1_grf(1 + i, 7),
226                                       BRW_REGISTER_TYPE_UB),
227                                1, 8, 0),
228                         brw_imm_v(0x76543210));
229             }
230 
231             /* A set bit in the pixel mask means the channel is enabled, but
232              * that is the opposite of gl_HelperInvocation so we need to invert
233              * the mask.
234              *
235              * The negate source-modifier bit of logical instructions on Gfx8+
236              * performs 1's complement negation, so we can use that instead of
237              * a NOT instruction.
238              */
239             fs_reg inverted = negate(shifted);
240             if (v->devinfo->ver < 8) {
241                inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
242                abld.NOT(inverted, shifted);
243             }
244 
245             /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
246              * with 1 and negating.
247              */
248             fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
249             abld.AND(anded, inverted, brw_imm_uw(1));
250 
251             fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
252             abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
253             *reg = dst;
254          }
255          break;
256 
257       case nir_intrinsic_load_frag_shading_rate:
258          reg = &v->nir_system_values[SYSTEM_VALUE_FRAG_SHADING_RATE];
259          if (reg->file == BAD_FILE)
260             *reg = *v->emit_shading_rate_setup();
261          break;
262 
263       default:
264          break;
265       }
266    }
267 
268    return true;
269 }
270 
271 void
nir_emit_system_values()272 fs_visitor::nir_emit_system_values()
273 {
274    nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
275    for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
276       nir_system_values[i] = fs_reg();
277    }
278 
279    /* Always emit SUBGROUP_INVOCATION.  Dead code will clean it up if we
280     * never end up using it.
281     */
282    {
283       const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
284       fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
285       reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
286 
287       const fs_builder allbld8 = abld.group(8, 0).exec_all();
288       allbld8.MOV(reg, brw_imm_v(0x76543210));
289       if (dispatch_width > 8)
290          allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
291       if (dispatch_width > 16) {
292          const fs_builder allbld16 = abld.group(16, 0).exec_all();
293          allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
294       }
295    }
296 
297    nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
298    nir_foreach_block(block, impl)
299       emit_system_values_block(block, this);
300 }
301 
302 void
nir_emit_impl(nir_function_impl * impl)303 fs_visitor::nir_emit_impl(nir_function_impl *impl)
304 {
305    nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
306    for (unsigned i = 0; i < impl->reg_alloc; i++) {
307       nir_locals[i] = fs_reg();
308    }
309 
310    foreach_list_typed(nir_register, reg, node, &impl->registers) {
311       unsigned array_elems =
312          reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
313       unsigned size = array_elems * reg->num_components;
314       const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
315          brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
316       nir_locals[reg->index] = bld.vgrf(reg_type, size);
317    }
318 
319    nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
320                              impl->ssa_alloc);
321 
322    nir_emit_cf_list(&impl->body);
323 }
324 
325 void
nir_emit_cf_list(exec_list * list)326 fs_visitor::nir_emit_cf_list(exec_list *list)
327 {
328    exec_list_validate(list);
329    foreach_list_typed(nir_cf_node, node, node, list) {
330       switch (node->type) {
331       case nir_cf_node_if:
332          nir_emit_if(nir_cf_node_as_if(node));
333          break;
334 
335       case nir_cf_node_loop:
336          nir_emit_loop(nir_cf_node_as_loop(node));
337          break;
338 
339       case nir_cf_node_block:
340          nir_emit_block(nir_cf_node_as_block(node));
341          break;
342 
343       default:
344          unreachable("Invalid CFG node block");
345       }
346    }
347 }
348 
349 void
nir_emit_if(nir_if * if_stmt)350 fs_visitor::nir_emit_if(nir_if *if_stmt)
351 {
352    bool invert;
353    fs_reg cond_reg;
354 
355    /* If the condition has the form !other_condition, use other_condition as
356     * the source, but invert the predicate on the if instruction.
357     */
358    nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
359    if (cond != NULL && cond->op == nir_op_inot) {
360       invert = true;
361       cond_reg = get_nir_src(cond->src[0].src);
362       cond_reg = offset(cond_reg, bld, cond->src[0].swizzle[0]);
363    } else {
364       invert = false;
365       cond_reg = get_nir_src(if_stmt->condition);
366    }
367 
368    /* first, put the condition into f0 */
369    fs_inst *inst = bld.MOV(bld.null_reg_d(),
370                            retype(cond_reg, BRW_REGISTER_TYPE_D));
371    inst->conditional_mod = BRW_CONDITIONAL_NZ;
372 
373    bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
374 
375    nir_emit_cf_list(&if_stmt->then_list);
376 
377    if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
378       bld.emit(BRW_OPCODE_ELSE);
379       nir_emit_cf_list(&if_stmt->else_list);
380    }
381 
382    bld.emit(BRW_OPCODE_ENDIF);
383 
384    if (devinfo->ver < 7)
385       limit_dispatch_width(16, "Non-uniform control flow unsupported "
386                            "in SIMD32 mode.");
387 }
388 
389 void
nir_emit_loop(nir_loop * loop)390 fs_visitor::nir_emit_loop(nir_loop *loop)
391 {
392    bld.emit(BRW_OPCODE_DO);
393 
394    nir_emit_cf_list(&loop->body);
395 
396    bld.emit(BRW_OPCODE_WHILE);
397 
398    if (devinfo->ver < 7)
399       limit_dispatch_width(16, "Non-uniform control flow unsupported "
400                            "in SIMD32 mode.");
401 }
402 
403 void
nir_emit_block(nir_block * block)404 fs_visitor::nir_emit_block(nir_block *block)
405 {
406    nir_foreach_instr(instr, block) {
407       nir_emit_instr(instr);
408    }
409 }
410 
411 void
nir_emit_instr(nir_instr * instr)412 fs_visitor::nir_emit_instr(nir_instr *instr)
413 {
414    const fs_builder abld = bld.annotate(NULL, instr);
415 
416    switch (instr->type) {
417    case nir_instr_type_alu:
418       nir_emit_alu(abld, nir_instr_as_alu(instr), true);
419       break;
420 
421    case nir_instr_type_deref:
422       unreachable("All derefs should've been lowered");
423       break;
424 
425    case nir_instr_type_intrinsic:
426       switch (stage) {
427       case MESA_SHADER_VERTEX:
428          nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
429          break;
430       case MESA_SHADER_TESS_CTRL:
431          nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
432          break;
433       case MESA_SHADER_TESS_EVAL:
434          nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
435          break;
436       case MESA_SHADER_GEOMETRY:
437          nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
438          break;
439       case MESA_SHADER_FRAGMENT:
440          nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
441          break;
442       case MESA_SHADER_COMPUTE:
443       case MESA_SHADER_KERNEL:
444          nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
445          break;
446       case MESA_SHADER_RAYGEN:
447       case MESA_SHADER_ANY_HIT:
448       case MESA_SHADER_CLOSEST_HIT:
449       case MESA_SHADER_MISS:
450       case MESA_SHADER_INTERSECTION:
451       case MESA_SHADER_CALLABLE:
452          nir_emit_bs_intrinsic(abld, nir_instr_as_intrinsic(instr));
453          break;
454       default:
455          unreachable("unsupported shader stage");
456       }
457       break;
458 
459    case nir_instr_type_tex:
460       nir_emit_texture(abld, nir_instr_as_tex(instr));
461       break;
462 
463    case nir_instr_type_load_const:
464       nir_emit_load_const(abld, nir_instr_as_load_const(instr));
465       break;
466 
467    case nir_instr_type_ssa_undef:
468       /* We create a new VGRF for undefs on every use (by handling
469        * them in get_nir_src()), rather than for each definition.
470        * This helps register coalescing eliminate MOVs from undef.
471        */
472       break;
473 
474    case nir_instr_type_jump:
475       nir_emit_jump(abld, nir_instr_as_jump(instr));
476       break;
477 
478    default:
479       unreachable("unknown instruction type");
480    }
481 }
482 
483 /**
484  * Recognizes a parent instruction of nir_op_extract_* and changes the type to
485  * match instr.
486  */
487 bool
optimize_extract_to_float(nir_alu_instr * instr,const fs_reg & result)488 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
489                                       const fs_reg &result)
490 {
491    if (!instr->src[0].src.is_ssa ||
492        !instr->src[0].src.ssa->parent_instr)
493       return false;
494 
495    if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
496       return false;
497 
498    nir_alu_instr *src0 =
499       nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
500 
501    if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
502        src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
503       return false;
504 
505    unsigned element = nir_src_as_uint(src0->src[1].src);
506 
507    /* Element type to extract.*/
508    const brw_reg_type type = brw_int_type(
509       src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
510       src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
511 
512    fs_reg op0 = get_nir_src(src0->src[0].src);
513    op0.type = brw_type_for_nir_type(devinfo,
514       (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
515                      nir_src_bit_size(src0->src[0].src)));
516    op0 = offset(op0, bld, src0->src[0].swizzle[0]);
517 
518    bld.MOV(result, subscript(op0, type, element));
519    return true;
520 }
521 
522 bool
optimize_frontfacing_ternary(nir_alu_instr * instr,const fs_reg & result)523 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
524                                          const fs_reg &result)
525 {
526    nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
527    if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
528       return false;
529 
530    if (!nir_src_is_const(instr->src[1].src) ||
531        !nir_src_is_const(instr->src[2].src))
532       return false;
533 
534    const float value1 = nir_src_as_float(instr->src[1].src);
535    const float value2 = nir_src_as_float(instr->src[2].src);
536    if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
537       return false;
538 
539    /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
540    assert(value1 == -value2);
541 
542    fs_reg tmp = vgrf(glsl_type::int_type);
543 
544    if (devinfo->ver >= 12) {
545       /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
546       fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
547 
548       /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
549        *
550        *    or(8)  tmp.1<2>W  g0.0<0,1,0>W  0x00003f80W
551        *    and(8) dst<1>D    tmp<8,8,1>D   0xbf800000D
552        *
553        * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
554        */
555       bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
556              g1, brw_imm_uw(0x3f80));
557 
558       if (value1 == -1.0f)
559          bld.MOV(tmp, negate(tmp));
560 
561    } else if (devinfo->ver >= 6) {
562       /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
563       fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
564 
565       /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
566        *
567        *    or(8)  tmp.1<2>W  g0.0<0,1,0>W  0x00003f80W
568        *    and(8) dst<1>D    tmp<8,8,1>D   0xbf800000D
569        *
570        * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
571        *
572        * This negation looks like it's safe in practice, because bits 0:4 will
573        * surely be TRIANGLES
574        */
575 
576       if (value1 == -1.0f) {
577          g0.negate = true;
578       }
579 
580       bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
581              g0, brw_imm_uw(0x3f80));
582    } else {
583       /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
584       fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
585 
586       /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
587        *
588        *    or(8)  tmp<1>D  g1.6<0,1,0>D  0x3f800000D
589        *    and(8) dst<1>D  tmp<8,8,1>D   0xbf800000D
590        *
591        * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
592        *
593        * This negation looks like it's safe in practice, because bits 0:4 will
594        * surely be TRIANGLES
595        */
596 
597       if (value1 == -1.0f) {
598          g1_6.negate = true;
599       }
600 
601       bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
602    }
603    bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
604 
605    return true;
606 }
607 
608 static void
emit_find_msb_using_lzd(const fs_builder & bld,const fs_reg & result,const fs_reg & src,bool is_signed)609 emit_find_msb_using_lzd(const fs_builder &bld,
610                         const fs_reg &result,
611                         const fs_reg &src,
612                         bool is_signed)
613 {
614    fs_inst *inst;
615    fs_reg temp = src;
616 
617    if (is_signed) {
618       /* LZD of an absolute value source almost always does the right
619        * thing.  There are two problem values:
620        *
621        * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
622        *   0.  However, findMSB(int(0x80000000)) == 30.
623        *
624        * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
625        *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
626        *
627        *    For a value of zero or negative one, -1 will be returned.
628        *
629        * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
630        *   findMSB(-(1<<x)) should return x-1.
631        *
632        * For all negative number cases, including 0x80000000 and
633        * 0xffffffff, the correct value is obtained from LZD if instead of
634        * negating the (already negative) value the logical-not is used.  A
635        * conditonal logical-not can be achieved in two instructions.
636        */
637       temp = bld.vgrf(BRW_REGISTER_TYPE_D);
638 
639       bld.ASR(temp, src, brw_imm_d(31));
640       bld.XOR(temp, temp, src);
641    }
642 
643    bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
644            retype(temp, BRW_REGISTER_TYPE_UD));
645 
646    /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
647     * from the LSB side. Subtract the result from 31 to convert the MSB
648     * count into an LSB count.  If no bits are set, LZD will return 32.
649     * 31-32 = -1, which is exactly what findMSB() is supposed to return.
650     */
651    inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
652    inst->src[0].negate = true;
653 }
654 
655 static brw_rnd_mode
brw_rnd_mode_from_nir_op(const nir_op op)656 brw_rnd_mode_from_nir_op (const nir_op op) {
657    switch (op) {
658    case nir_op_f2f16_rtz:
659       return BRW_RND_MODE_RTZ;
660    case nir_op_f2f16_rtne:
661       return BRW_RND_MODE_RTNE;
662    default:
663       unreachable("Operation doesn't support rounding mode");
664    }
665 }
666 
667 static brw_rnd_mode
brw_rnd_mode_from_execution_mode(unsigned execution_mode)668 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
669 {
670    if (nir_has_any_rounding_mode_rtne(execution_mode))
671       return BRW_RND_MODE_RTNE;
672    if (nir_has_any_rounding_mode_rtz(execution_mode))
673       return BRW_RND_MODE_RTZ;
674    return BRW_RND_MODE_UNSPECIFIED;
675 }
676 
677 fs_reg
prepare_alu_destination_and_sources(const fs_builder & bld,nir_alu_instr * instr,fs_reg * op,bool need_dest)678 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
679                                                 nir_alu_instr *instr,
680                                                 fs_reg *op,
681                                                 bool need_dest)
682 {
683    fs_reg result =
684       need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
685 
686    result.type = brw_type_for_nir_type(devinfo,
687       (nir_alu_type)(nir_op_infos[instr->op].output_type |
688                      nir_dest_bit_size(instr->dest.dest)));
689 
690    assert(!instr->dest.saturate);
691 
692    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
693       /* We don't lower to source modifiers so they should not exist. */
694       assert(!instr->src[i].abs);
695       assert(!instr->src[i].negate);
696 
697       op[i] = get_nir_src(instr->src[i].src);
698       op[i].type = brw_type_for_nir_type(devinfo,
699          (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
700                         nir_src_bit_size(instr->src[i].src)));
701    }
702 
703    /* Move and vecN instrutions may still be vectored.  Return the raw,
704     * vectored source and destination so that fs_visitor::nir_emit_alu can
705     * handle it.  Other callers should not have to handle these kinds of
706     * instructions.
707     */
708    switch (instr->op) {
709    case nir_op_mov:
710    case nir_op_vec2:
711    case nir_op_vec3:
712    case nir_op_vec4:
713    case nir_op_vec8:
714    case nir_op_vec16:
715       return result;
716    default:
717       break;
718    }
719 
720    /* At this point, we have dealt with any instruction that operates on
721     * more than a single channel.  Therefore, we can just adjust the source
722     * and destination registers for that channel and emit the instruction.
723     */
724    unsigned channel = 0;
725    if (nir_op_infos[instr->op].output_size == 0) {
726       /* Since NIR is doing the scalarizing for us, we should only ever see
727        * vectorized operations with a single channel.
728        */
729       assert(util_bitcount(instr->dest.write_mask) == 1);
730       channel = ffs(instr->dest.write_mask) - 1;
731 
732       result = offset(result, bld, channel);
733    }
734 
735    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
736       assert(nir_op_infos[instr->op].input_sizes[i] < 2);
737       op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
738    }
739 
740    return result;
741 }
742 
743 void
resolve_inot_sources(const fs_builder & bld,nir_alu_instr * instr,fs_reg * op)744 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
745                                  fs_reg *op)
746 {
747    for (unsigned i = 0; i < 2; i++) {
748       nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
749 
750       if (inot_instr != NULL && inot_instr->op == nir_op_inot) {
751          /* The source of the inot is now the source of instr. */
752          prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
753 
754          assert(!op[i].negate);
755          op[i].negate = true;
756       } else {
757          op[i] = resolve_source_modifiers(op[i]);
758       }
759    }
760 }
761 
762 bool
try_emit_b2fi_of_inot(const fs_builder & bld,fs_reg result,nir_alu_instr * instr)763 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
764                                   fs_reg result,
765                                   nir_alu_instr *instr)
766 {
767    if (devinfo->ver < 6 || devinfo->ver >= 12)
768       return false;
769 
770    nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
771 
772    if (inot_instr == NULL || inot_instr->op != nir_op_inot)
773       return false;
774 
775    /* HF is also possible as a destination on BDW+.  For nir_op_b2i, the set
776     * of valid size-changing combinations is a bit more complex.
777     *
778     * The source restriction is just because I was lazy about generating the
779     * constant below.
780     */
781    if (nir_dest_bit_size(instr->dest.dest) != 32 ||
782        nir_src_bit_size(inot_instr->src[0].src) != 32)
783       return false;
784 
785    /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0.  Since a can only be 0 or -1,
786     * this is float(1 + a).
787     */
788    fs_reg op;
789 
790    prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
791 
792    /* Ignore the saturate modifier, if there is one.  The result of the
793     * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
794     */
795    bld.ADD(result, op, brw_imm_d(1));
796 
797    return true;
798 }
799 
800 /**
801  * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
802  *
803  * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
804  * the source of \c instr that is a \c nir_op_fsign.
805  */
806 void
emit_fsign(const fs_builder & bld,const nir_alu_instr * instr,fs_reg result,fs_reg * op,unsigned fsign_src)807 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
808                        fs_reg result, fs_reg *op, unsigned fsign_src)
809 {
810    fs_inst *inst;
811 
812    assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
813    assert(fsign_src < nir_op_infos[instr->op].num_inputs);
814 
815    if (instr->op != nir_op_fsign) {
816       const nir_alu_instr *const fsign_instr =
817          nir_src_as_alu_instr(instr->src[fsign_src].src);
818 
819       /* op[fsign_src] has the nominal result of the fsign, and op[1 -
820        * fsign_src] has the other multiply source.  This must be rearranged so
821        * that op[0] is the source of the fsign op[1] is the other multiply
822        * source.
823        */
824       if (fsign_src != 0)
825          op[1] = op[0];
826 
827       op[0] = get_nir_src(fsign_instr->src[0].src);
828 
829       const nir_alu_type t =
830          (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
831                         nir_src_bit_size(fsign_instr->src[0].src));
832 
833       op[0].type = brw_type_for_nir_type(devinfo, t);
834 
835       unsigned channel = 0;
836       if (nir_op_infos[instr->op].output_size == 0) {
837          /* Since NIR is doing the scalarizing for us, we should only ever see
838           * vectorized operations with a single channel.
839           */
840          assert(util_bitcount(instr->dest.write_mask) == 1);
841          channel = ffs(instr->dest.write_mask) - 1;
842       }
843 
844       op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
845    }
846 
847    if (type_sz(op[0].type) == 2) {
848       /* AND(val, 0x8000) gives the sign bit.
849        *
850        * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
851        */
852       fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
853       bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
854 
855       op[0].type = BRW_REGISTER_TYPE_UW;
856       result.type = BRW_REGISTER_TYPE_UW;
857       bld.AND(result, op[0], brw_imm_uw(0x8000u));
858 
859       if (instr->op == nir_op_fsign)
860          inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
861       else {
862          /* Use XOR here to get the result sign correct. */
863          inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
864       }
865 
866       inst->predicate = BRW_PREDICATE_NORMAL;
867    } else if (type_sz(op[0].type) == 4) {
868       /* AND(val, 0x80000000) gives the sign bit.
869        *
870        * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
871        * zero.
872        */
873       bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
874 
875       op[0].type = BRW_REGISTER_TYPE_UD;
876       result.type = BRW_REGISTER_TYPE_UD;
877       bld.AND(result, op[0], brw_imm_ud(0x80000000u));
878 
879       if (instr->op == nir_op_fsign)
880          inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
881       else {
882          /* Use XOR here to get the result sign correct. */
883          inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
884       }
885 
886       inst->predicate = BRW_PREDICATE_NORMAL;
887    } else {
888       /* For doubles we do the same but we need to consider:
889        *
890        * - 2-src instructions can't operate with 64-bit immediates
891        * - The sign is encoded in the high 32-bit of each DF
892        * - We need to produce a DF result.
893        */
894 
895       fs_reg zero = vgrf(glsl_type::double_type);
896       bld.MOV(zero, setup_imm_df(bld, 0.0));
897       bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
898 
899       bld.MOV(result, zero);
900 
901       fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
902       bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
903               brw_imm_ud(0x80000000u));
904 
905       if (instr->op == nir_op_fsign) {
906          set_predicate(BRW_PREDICATE_NORMAL,
907                        bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
908       } else {
909          /* This could be done better in some cases.  If the scale is an
910           * immediate with the low 32-bits all 0, emitting a separate XOR and
911           * OR would allow an algebraic optimization to remove the OR.  There
912           * are currently zero instances of fsign(double(x))*IMM in shader-db
913           * or any test suite, so it is hard to care at this time.
914           */
915          fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
916          inst = bld.XOR(result_int64, result_int64,
917                         retype(op[1], BRW_REGISTER_TYPE_UQ));
918       }
919    }
920 }
921 
922 /**
923  * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
924  *
925  * Checks the operands of a \c nir_op_fmul to determine whether or not
926  * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
927  *
928  * \param instr  The multiplication instruction
929  *
930  * \param fsign_src The source of \c instr that may or may not be a
931  *                  \c nir_op_fsign
932  */
933 static bool
can_fuse_fmul_fsign(nir_alu_instr * instr,unsigned fsign_src)934 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
935 {
936    assert(instr->op == nir_op_fmul);
937 
938    nir_alu_instr *const fsign_instr =
939       nir_src_as_alu_instr(instr->src[fsign_src].src);
940 
941    /* Rules:
942     *
943     * 1. instr->src[fsign_src] must be a nir_op_fsign.
944     * 2. The nir_op_fsign can only be used by this multiplication.
945     * 3. The source that is the nir_op_fsign does not have source modifiers.
946     *    \c emit_fsign only examines the source modifiers of the source of the
947     *    \c nir_op_fsign.
948     *
949     * The nir_op_fsign must also not have the saturate modifier, but steps
950     * have already been taken (in nir_opt_algebraic) to ensure that.
951     */
952    return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
953           is_used_once(fsign_instr);
954 }
955 
956 void
nir_emit_alu(const fs_builder & bld,nir_alu_instr * instr,bool need_dest)957 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
958                          bool need_dest)
959 {
960    struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
961    fs_inst *inst;
962    unsigned execution_mode =
963       bld.shader->nir->info.float_controls_execution_mode;
964 
965    fs_reg op[NIR_MAX_VEC_COMPONENTS];
966    fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
967 
968 #ifndef NDEBUG
969    /* Everything except raw moves, some type conversions, iabs, and ineg
970     * should have 8-bit sources lowered by nir_lower_bit_size in
971     * brw_preprocess_nir or by brw_nir_lower_conversions in
972     * brw_postprocess_nir.
973     */
974    switch (instr->op) {
975    case nir_op_mov:
976    case nir_op_vec2:
977    case nir_op_vec3:
978    case nir_op_vec4:
979    case nir_op_vec8:
980    case nir_op_vec16:
981    case nir_op_i2f16:
982    case nir_op_i2f32:
983    case nir_op_i2i16:
984    case nir_op_i2i32:
985    case nir_op_u2f16:
986    case nir_op_u2f32:
987    case nir_op_u2u16:
988    case nir_op_u2u32:
989    case nir_op_iabs:
990    case nir_op_ineg:
991    case nir_op_pack_32_4x8_split:
992       break;
993 
994    default:
995       for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
996          assert(type_sz(op[i].type) > 1);
997       }
998    }
999 #endif
1000 
1001    switch (instr->op) {
1002    case nir_op_mov:
1003    case nir_op_vec2:
1004    case nir_op_vec3:
1005    case nir_op_vec4:
1006    case nir_op_vec8:
1007    case nir_op_vec16: {
1008       fs_reg temp = result;
1009       bool need_extra_copy = false;
1010       for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1011          if (!instr->src[i].src.is_ssa &&
1012              instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1013             need_extra_copy = true;
1014             temp = bld.vgrf(result.type, 4);
1015             break;
1016          }
1017       }
1018 
1019       for (unsigned i = 0; i < 4; i++) {
1020          if (!(instr->dest.write_mask & (1 << i)))
1021             continue;
1022 
1023          if (instr->op == nir_op_mov) {
1024             bld.MOV(offset(temp, bld, i),
1025                            offset(op[0], bld, instr->src[0].swizzle[i]));
1026          } else {
1027             bld.MOV(offset(temp, bld, i),
1028                            offset(op[i], bld, instr->src[i].swizzle[0]));
1029          }
1030       }
1031 
1032       /* In this case the source and destination registers were the same,
1033        * so we need to insert an extra set of moves in order to deal with
1034        * any swizzling.
1035        */
1036       if (need_extra_copy) {
1037          for (unsigned i = 0; i < 4; i++) {
1038             if (!(instr->dest.write_mask & (1 << i)))
1039                continue;
1040 
1041             bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1042          }
1043       }
1044       return;
1045    }
1046 
1047    case nir_op_i2f32:
1048    case nir_op_u2f32:
1049       if (optimize_extract_to_float(instr, result))
1050          return;
1051       inst = bld.MOV(result, op[0]);
1052       break;
1053 
1054    case nir_op_f2f16_rtne:
1055    case nir_op_f2f16_rtz:
1056    case nir_op_f2f16: {
1057       brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1058 
1059       if (nir_op_f2f16 == instr->op)
1060          rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1061       else
1062          rnd = brw_rnd_mode_from_nir_op(instr->op);
1063 
1064       if (BRW_RND_MODE_UNSPECIFIED != rnd)
1065          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1066 
1067       /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1068        * on the HW gen, it is a special hw opcode or just a MOV, and
1069        * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1070        *
1071        * But if we want to use that opcode, we need to provide support on
1072        * different optimizations and lowerings. As right now HF support is
1073        * only for gfx8+, it will be better to use directly the MOV, and use
1074        * BRW_OPCODE_F32TO16 when/if we work for HF support on gfx7.
1075        */
1076       assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1077       inst = bld.MOV(result, op[0]);
1078       break;
1079    }
1080 
1081    case nir_op_b2i8:
1082    case nir_op_b2i16:
1083    case nir_op_b2i32:
1084    case nir_op_b2i64:
1085    case nir_op_b2f16:
1086    case nir_op_b2f32:
1087    case nir_op_b2f64:
1088       if (try_emit_b2fi_of_inot(bld, result, instr))
1089          break;
1090       op[0].type = BRW_REGISTER_TYPE_D;
1091       op[0].negate = !op[0].negate;
1092       FALLTHROUGH;
1093    case nir_op_i2f64:
1094    case nir_op_i2i64:
1095    case nir_op_u2f64:
1096    case nir_op_u2u64:
1097    case nir_op_f2f64:
1098    case nir_op_f2i64:
1099    case nir_op_f2u64:
1100    case nir_op_i2i32:
1101    case nir_op_u2u32:
1102    case nir_op_f2i32:
1103    case nir_op_f2u32:
1104    case nir_op_i2f16:
1105    case nir_op_u2f16:
1106    case nir_op_f2i16:
1107    case nir_op_f2u16:
1108    case nir_op_f2i8:
1109    case nir_op_f2u8:
1110       if (result.type == BRW_REGISTER_TYPE_B ||
1111           result.type == BRW_REGISTER_TYPE_UB ||
1112           result.type == BRW_REGISTER_TYPE_HF)
1113          assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1114 
1115       if (op[0].type == BRW_REGISTER_TYPE_B ||
1116           op[0].type == BRW_REGISTER_TYPE_UB ||
1117           op[0].type == BRW_REGISTER_TYPE_HF)
1118          assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1119 
1120       inst = bld.MOV(result, op[0]);
1121       break;
1122 
1123    case nir_op_i2i8:
1124    case nir_op_u2u8:
1125       assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1126       FALLTHROUGH;
1127    case nir_op_i2i16:
1128    case nir_op_u2u16: {
1129       /* Emit better code for u2u8(extract_u8(a, b)) and similar patterns.
1130        * Emitting the instructions one by one results in two MOV instructions
1131        * that won't be propagated.  By handling both instructions here, a
1132        * single MOV is emitted.
1133        */
1134       nir_alu_instr *extract_instr = nir_src_as_alu_instr(instr->src[0].src);
1135       if (extract_instr != NULL) {
1136          if (extract_instr->op == nir_op_extract_u8 ||
1137              extract_instr->op == nir_op_extract_i8) {
1138             prepare_alu_destination_and_sources(bld, extract_instr, op, false);
1139 
1140             const unsigned byte = nir_src_as_uint(extract_instr->src[1].src);
1141             const brw_reg_type type =
1142                brw_int_type(1, extract_instr->op == nir_op_extract_i8);
1143 
1144             op[0] = subscript(op[0], type, byte);
1145          } else if (extract_instr->op == nir_op_extract_u16 ||
1146                     extract_instr->op == nir_op_extract_i16) {
1147             prepare_alu_destination_and_sources(bld, extract_instr, op, false);
1148 
1149             const unsigned word = nir_src_as_uint(extract_instr->src[1].src);
1150             const brw_reg_type type =
1151                brw_int_type(2, extract_instr->op == nir_op_extract_i16);
1152 
1153             op[0] = subscript(op[0], type, word);
1154          }
1155       }
1156 
1157       inst = bld.MOV(result, op[0]);
1158       break;
1159    }
1160 
1161    case nir_op_fsat:
1162       inst = bld.MOV(result, op[0]);
1163       inst->saturate = true;
1164       break;
1165 
1166    case nir_op_fneg:
1167    case nir_op_ineg:
1168       op[0].negate = true;
1169       inst = bld.MOV(result, op[0]);
1170       break;
1171 
1172    case nir_op_fabs:
1173    case nir_op_iabs:
1174       op[0].negate = false;
1175       op[0].abs = true;
1176       inst = bld.MOV(result, op[0]);
1177       break;
1178 
1179    case nir_op_f2f32:
1180       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1181          brw_rnd_mode rnd =
1182             brw_rnd_mode_from_execution_mode(execution_mode);
1183          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1184                   brw_imm_d(rnd));
1185       }
1186 
1187       if (op[0].type == BRW_REGISTER_TYPE_HF)
1188          assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1189 
1190       inst = bld.MOV(result, op[0]);
1191       break;
1192 
1193    case nir_op_fsign:
1194       emit_fsign(bld, instr, result, op, 0);
1195       break;
1196 
1197    case nir_op_frcp:
1198       inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1199       break;
1200 
1201    case nir_op_fexp2:
1202       inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1203       break;
1204 
1205    case nir_op_flog2:
1206       inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1207       break;
1208 
1209    case nir_op_fsin:
1210       inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1211       break;
1212 
1213    case nir_op_fcos:
1214       inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1215       break;
1216 
1217    case nir_op_fddx:
1218       if (fs_key->high_quality_derivatives) {
1219          inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1220       } else {
1221          inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1222       }
1223       break;
1224    case nir_op_fddx_fine:
1225       inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1226       break;
1227    case nir_op_fddx_coarse:
1228       inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1229       break;
1230    case nir_op_fddy:
1231       if (fs_key->high_quality_derivatives) {
1232          inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1233       } else {
1234          inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1235       }
1236       break;
1237    case nir_op_fddy_fine:
1238       inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1239       break;
1240    case nir_op_fddy_coarse:
1241       inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1242       break;
1243 
1244    case nir_op_fadd:
1245       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1246          brw_rnd_mode rnd =
1247             brw_rnd_mode_from_execution_mode(execution_mode);
1248          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1249                   brw_imm_d(rnd));
1250       }
1251       FALLTHROUGH;
1252    case nir_op_iadd:
1253       inst = bld.ADD(result, op[0], op[1]);
1254       break;
1255 
1256    case nir_op_iadd3:
1257       inst = bld.ADD3(result, op[0], op[1], op[2]);
1258       break;
1259 
1260    case nir_op_iadd_sat:
1261    case nir_op_uadd_sat:
1262       inst = bld.ADD(result, op[0], op[1]);
1263       inst->saturate = true;
1264       break;
1265 
1266    case nir_op_isub_sat:
1267       bld.emit(SHADER_OPCODE_ISUB_SAT, result, op[0], op[1]);
1268       break;
1269 
1270    case nir_op_usub_sat:
1271       bld.emit(SHADER_OPCODE_USUB_SAT, result, op[0], op[1]);
1272       break;
1273 
1274    case nir_op_irhadd:
1275    case nir_op_urhadd:
1276       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1277       inst = bld.AVG(result, op[0], op[1]);
1278       break;
1279 
1280    case nir_op_ihadd:
1281    case nir_op_uhadd: {
1282       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1283       fs_reg tmp = bld.vgrf(result.type);
1284 
1285       if (devinfo->ver >= 8) {
1286          op[0] = resolve_source_modifiers(op[0]);
1287          op[1] = resolve_source_modifiers(op[1]);
1288       }
1289 
1290       /* AVG(x, y) - ((x ^ y) & 1) */
1291       bld.XOR(tmp, op[0], op[1]);
1292       bld.AND(tmp, tmp, retype(brw_imm_ud(1), result.type));
1293       bld.AVG(result, op[0], op[1]);
1294       inst = bld.ADD(result, result, tmp);
1295       inst->src[1].negate = true;
1296       break;
1297    }
1298 
1299    case nir_op_fmul:
1300       for (unsigned i = 0; i < 2; i++) {
1301          if (can_fuse_fmul_fsign(instr, i)) {
1302             emit_fsign(bld, instr, result, op, i);
1303             return;
1304          }
1305       }
1306 
1307       /* We emit the rounding mode after the previous fsign optimization since
1308        * it won't result in a MUL, but will try to negate the value by other
1309        * means.
1310        */
1311       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1312          brw_rnd_mode rnd =
1313             brw_rnd_mode_from_execution_mode(execution_mode);
1314          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1315                   brw_imm_d(rnd));
1316       }
1317 
1318       inst = bld.MUL(result, op[0], op[1]);
1319       break;
1320 
1321    case nir_op_imul_2x32_64:
1322    case nir_op_umul_2x32_64:
1323       bld.MUL(result, op[0], op[1]);
1324       break;
1325 
1326    case nir_op_imul_32x16:
1327    case nir_op_umul_32x16: {
1328       const bool ud = instr->op == nir_op_umul_32x16;
1329 
1330       assert(nir_dest_bit_size(instr->dest.dest) == 32);
1331 
1332       /* Before Gfx7, the order of the 32-bit source and the 16-bit source was
1333        * swapped.  The extension isn't enabled on those platforms, so don't
1334        * pretend to support the differences.
1335        */
1336       assert(devinfo->ver >= 7);
1337 
1338       if (op[1].file == IMM)
1339          op[1] = ud ? brw_imm_uw(op[1].ud) : brw_imm_w(op[1].d);
1340       else {
1341          const enum brw_reg_type word_type =
1342             ud ? BRW_REGISTER_TYPE_UW : BRW_REGISTER_TYPE_W;
1343 
1344          op[1] = subscript(op[1], word_type, 0);
1345       }
1346 
1347       const enum brw_reg_type dword_type =
1348          ud ? BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_D;
1349 
1350       bld.MUL(result, retype(op[0], dword_type), op[1]);
1351       break;
1352    }
1353 
1354    case nir_op_imul:
1355       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1356       bld.MUL(result, op[0], op[1]);
1357       break;
1358 
1359    case nir_op_imul_high:
1360    case nir_op_umul_high:
1361       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1362       bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1363       break;
1364 
1365    case nir_op_idiv:
1366    case nir_op_udiv:
1367       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1368       bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1369       break;
1370 
1371    case nir_op_uadd_carry:
1372       unreachable("Should have been lowered by carry_to_arith().");
1373 
1374    case nir_op_usub_borrow:
1375       unreachable("Should have been lowered by borrow_to_arith().");
1376 
1377    case nir_op_umod:
1378    case nir_op_irem:
1379       /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1380        * appears that our hardware just does the right thing for signed
1381        * remainder.
1382        */
1383       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1384       bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1385       break;
1386 
1387    case nir_op_imod: {
1388       /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
1389       bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1390 
1391       /* Math instructions don't support conditional mod */
1392       inst = bld.MOV(bld.null_reg_d(), result);
1393       inst->conditional_mod = BRW_CONDITIONAL_NZ;
1394 
1395       /* Now, we need to determine if signs of the sources are different.
1396        * When we XOR the sources, the top bit is 0 if they are the same and 1
1397        * if they are different.  We can then use a conditional modifier to
1398        * turn that into a predicate.  This leads us to an XOR.l instruction.
1399        *
1400        * Technically, according to the PRM, you're not allowed to use .l on a
1401        * XOR instruction.  However, emperical experiments and Curro's reading
1402        * of the simulator source both indicate that it's safe.
1403        */
1404       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1405       inst = bld.XOR(tmp, op[0], op[1]);
1406       inst->predicate = BRW_PREDICATE_NORMAL;
1407       inst->conditional_mod = BRW_CONDITIONAL_L;
1408 
1409       /* If the result of the initial remainder operation is non-zero and the
1410        * two sources have different signs, add in a copy of op[1] to get the
1411        * final integer modulus value.
1412        */
1413       inst = bld.ADD(result, result, op[1]);
1414       inst->predicate = BRW_PREDICATE_NORMAL;
1415       break;
1416    }
1417 
1418    case nir_op_flt32:
1419    case nir_op_fge32:
1420    case nir_op_feq32:
1421    case nir_op_fneu32: {
1422       fs_reg dest = result;
1423 
1424       const uint32_t bit_size =  nir_src_bit_size(instr->src[0].src);
1425       if (bit_size != 32)
1426          dest = bld.vgrf(op[0].type, 1);
1427 
1428       bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1429 
1430       if (bit_size > 32) {
1431          bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1432       } else if(bit_size < 32) {
1433          /* When we convert the result to 32-bit we need to be careful and do
1434           * it as a signed conversion to get sign extension (for 32-bit true)
1435           */
1436          const brw_reg_type src_type =
1437             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1438 
1439          bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1440       }
1441       break;
1442    }
1443 
1444    case nir_op_ilt32:
1445    case nir_op_ult32:
1446    case nir_op_ige32:
1447    case nir_op_uge32:
1448    case nir_op_ieq32:
1449    case nir_op_ine32: {
1450       fs_reg dest = result;
1451 
1452       const uint32_t bit_size = type_sz(op[0].type) * 8;
1453       if (bit_size != 32)
1454          dest = bld.vgrf(op[0].type, 1);
1455 
1456       bld.CMP(dest, op[0], op[1],
1457               brw_cmod_for_nir_comparison(instr->op));
1458 
1459       if (bit_size > 32) {
1460          bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1461       } else if (bit_size < 32) {
1462          /* When we convert the result to 32-bit we need to be careful and do
1463           * it as a signed conversion to get sign extension (for 32-bit true)
1464           */
1465          const brw_reg_type src_type =
1466             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1467 
1468          bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1469       }
1470       break;
1471    }
1472 
1473    case nir_op_inot:
1474       if (devinfo->ver >= 8) {
1475          nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1476 
1477          if (inot_src_instr != NULL &&
1478              (inot_src_instr->op == nir_op_ior ||
1479               inot_src_instr->op == nir_op_ixor ||
1480               inot_src_instr->op == nir_op_iand)) {
1481             /* The sources of the source logical instruction are now the
1482              * sources of the instruction that will be generated.
1483              */
1484             prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1485             resolve_inot_sources(bld, inot_src_instr, op);
1486 
1487             /* Smash all of the sources and destination to be signed.  This
1488              * doesn't matter for the operation of the instruction, but cmod
1489              * propagation fails on unsigned sources with negation (due to
1490              * fs_inst::can_do_cmod returning false).
1491              */
1492             result.type =
1493                brw_type_for_nir_type(devinfo,
1494                                      (nir_alu_type)(nir_type_int |
1495                                                     nir_dest_bit_size(instr->dest.dest)));
1496             op[0].type =
1497                brw_type_for_nir_type(devinfo,
1498                                      (nir_alu_type)(nir_type_int |
1499                                                     nir_src_bit_size(inot_src_instr->src[0].src)));
1500             op[1].type =
1501                brw_type_for_nir_type(devinfo,
1502                                      (nir_alu_type)(nir_type_int |
1503                                                     nir_src_bit_size(inot_src_instr->src[1].src)));
1504 
1505             /* For XOR, only invert one of the sources.  Arbitrarily choose
1506              * the first source.
1507              */
1508             op[0].negate = !op[0].negate;
1509             if (inot_src_instr->op != nir_op_ixor)
1510                op[1].negate = !op[1].negate;
1511 
1512             switch (inot_src_instr->op) {
1513             case nir_op_ior:
1514                bld.AND(result, op[0], op[1]);
1515                return;
1516 
1517             case nir_op_iand:
1518                bld.OR(result, op[0], op[1]);
1519                return;
1520 
1521             case nir_op_ixor:
1522                bld.XOR(result, op[0], op[1]);
1523                return;
1524 
1525             default:
1526                unreachable("impossible opcode");
1527             }
1528          }
1529          op[0] = resolve_source_modifiers(op[0]);
1530       }
1531       bld.NOT(result, op[0]);
1532       break;
1533    case nir_op_ixor:
1534       if (devinfo->ver >= 8) {
1535          resolve_inot_sources(bld, instr, op);
1536       }
1537       bld.XOR(result, op[0], op[1]);
1538       break;
1539    case nir_op_ior:
1540       if (devinfo->ver >= 8) {
1541          resolve_inot_sources(bld, instr, op);
1542       }
1543       bld.OR(result, op[0], op[1]);
1544       break;
1545    case nir_op_iand:
1546       if (devinfo->ver >= 8) {
1547          resolve_inot_sources(bld, instr, op);
1548       }
1549       bld.AND(result, op[0], op[1]);
1550       break;
1551 
1552    case nir_op_fdot2:
1553    case nir_op_fdot3:
1554    case nir_op_fdot4:
1555    case nir_op_b32all_fequal2:
1556    case nir_op_b32all_iequal2:
1557    case nir_op_b32all_fequal3:
1558    case nir_op_b32all_iequal3:
1559    case nir_op_b32all_fequal4:
1560    case nir_op_b32all_iequal4:
1561    case nir_op_b32any_fnequal2:
1562    case nir_op_b32any_inequal2:
1563    case nir_op_b32any_fnequal3:
1564    case nir_op_b32any_inequal3:
1565    case nir_op_b32any_fnequal4:
1566    case nir_op_b32any_inequal4:
1567       unreachable("Lowered by nir_lower_alu_reductions");
1568 
1569    case nir_op_ldexp:
1570       unreachable("not reached: should be handled by ldexp_to_arith()");
1571 
1572    case nir_op_fsqrt:
1573       inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1574       break;
1575 
1576    case nir_op_frsq:
1577       inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1578       break;
1579 
1580    case nir_op_i2b32:
1581    case nir_op_f2b32: {
1582       uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1583       if (bit_size == 64) {
1584          /* two-argument instructions can't take 64-bit immediates */
1585          fs_reg zero;
1586          fs_reg tmp;
1587 
1588          if (instr->op == nir_op_f2b32) {
1589             zero = vgrf(glsl_type::double_type);
1590             tmp = vgrf(glsl_type::double_type);
1591             bld.MOV(zero, setup_imm_df(bld, 0.0));
1592          } else {
1593             zero = vgrf(glsl_type::int64_t_type);
1594             tmp = vgrf(glsl_type::int64_t_type);
1595             bld.MOV(zero, brw_imm_q(0));
1596          }
1597 
1598          /* A SIMD16 execution needs to be split in two instructions, so use
1599           * a vgrf instead of the flag register as dst so instruction splitting
1600           * works
1601           */
1602          bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1603          bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1604       } else {
1605          fs_reg zero;
1606          if (bit_size == 32) {
1607             zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1608          } else {
1609             assert(bit_size == 16);
1610             zero = instr->op == nir_op_f2b32 ?
1611                retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1612          }
1613          bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1614       }
1615       break;
1616    }
1617 
1618    case nir_op_ftrunc:
1619       inst = bld.RNDZ(result, op[0]);
1620       if (devinfo->ver < 6) {
1621          set_condmod(BRW_CONDITIONAL_R, inst);
1622          set_predicate(BRW_PREDICATE_NORMAL,
1623                        bld.ADD(result, result, brw_imm_f(1.0f)));
1624          inst = bld.MOV(result, result); /* for potential saturation */
1625       }
1626       break;
1627 
1628    case nir_op_fceil: {
1629       op[0].negate = !op[0].negate;
1630       fs_reg temp = vgrf(glsl_type::float_type);
1631       bld.RNDD(temp, op[0]);
1632       temp.negate = true;
1633       inst = bld.MOV(result, temp);
1634       break;
1635    }
1636    case nir_op_ffloor:
1637       inst = bld.RNDD(result, op[0]);
1638       break;
1639    case nir_op_ffract:
1640       inst = bld.FRC(result, op[0]);
1641       break;
1642    case nir_op_fround_even:
1643       inst = bld.RNDE(result, op[0]);
1644       if (devinfo->ver < 6) {
1645          set_condmod(BRW_CONDITIONAL_R, inst);
1646          set_predicate(BRW_PREDICATE_NORMAL,
1647                        bld.ADD(result, result, brw_imm_f(1.0f)));
1648          inst = bld.MOV(result, result); /* for potential saturation */
1649       }
1650       break;
1651 
1652    case nir_op_fquantize2f16: {
1653       fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1654       fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1655       fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1656 
1657       /* The destination stride must be at least as big as the source stride. */
1658       tmp16.type = BRW_REGISTER_TYPE_W;
1659       tmp16.stride = 2;
1660 
1661       /* Check for denormal */
1662       fs_reg abs_src0 = op[0];
1663       abs_src0.abs = true;
1664       bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1665               BRW_CONDITIONAL_L);
1666       /* Get the appropriately signed zero */
1667       bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1668               retype(op[0], BRW_REGISTER_TYPE_UD),
1669               brw_imm_ud(0x80000000));
1670       /* Do the actual F32 -> F16 -> F32 conversion */
1671       bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1672       bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1673       /* Select that or zero based on normal status */
1674       inst = bld.SEL(result, zero, tmp32);
1675       inst->predicate = BRW_PREDICATE_NORMAL;
1676       break;
1677    }
1678 
1679    case nir_op_imin:
1680    case nir_op_umin:
1681    case nir_op_fmin:
1682       inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1683       break;
1684 
1685    case nir_op_imax:
1686    case nir_op_umax:
1687    case nir_op_fmax:
1688       inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1689       break;
1690 
1691    case nir_op_pack_snorm_2x16:
1692    case nir_op_pack_snorm_4x8:
1693    case nir_op_pack_unorm_2x16:
1694    case nir_op_pack_unorm_4x8:
1695    case nir_op_unpack_snorm_2x16:
1696    case nir_op_unpack_snorm_4x8:
1697    case nir_op_unpack_unorm_2x16:
1698    case nir_op_unpack_unorm_4x8:
1699    case nir_op_unpack_half_2x16:
1700    case nir_op_pack_half_2x16:
1701       unreachable("not reached: should be handled by lower_packing_builtins");
1702 
1703    case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1704       assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1705       FALLTHROUGH;
1706    case nir_op_unpack_half_2x16_split_x:
1707       inst = bld.emit(BRW_OPCODE_F16TO32, result,
1708                       subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1709       break;
1710 
1711    case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1712       assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1713       FALLTHROUGH;
1714    case nir_op_unpack_half_2x16_split_y:
1715       inst = bld.emit(BRW_OPCODE_F16TO32, result,
1716                       subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1717       break;
1718 
1719    case nir_op_pack_64_2x32_split:
1720    case nir_op_pack_32_2x16_split:
1721       bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1722       break;
1723 
1724    case nir_op_pack_32_4x8_split:
1725       bld.emit(FS_OPCODE_PACK, result, op, 4);
1726       break;
1727 
1728    case nir_op_unpack_64_2x32_split_x:
1729    case nir_op_unpack_64_2x32_split_y: {
1730       if (instr->op == nir_op_unpack_64_2x32_split_x)
1731          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1732       else
1733          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1734       break;
1735    }
1736 
1737    case nir_op_unpack_32_2x16_split_x:
1738    case nir_op_unpack_32_2x16_split_y: {
1739       if (instr->op == nir_op_unpack_32_2x16_split_x)
1740          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1741       else
1742          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1743       break;
1744    }
1745 
1746    case nir_op_fpow:
1747       inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1748       break;
1749 
1750    case nir_op_bitfield_reverse:
1751       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1752       bld.BFREV(result, op[0]);
1753       break;
1754 
1755    case nir_op_bit_count:
1756       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1757       bld.CBIT(result, op[0]);
1758       break;
1759 
1760    case nir_op_ufind_msb: {
1761       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1762       emit_find_msb_using_lzd(bld, result, op[0], false);
1763       break;
1764    }
1765 
1766    case nir_op_uclz:
1767       assert(nir_dest_bit_size(instr->dest.dest) == 32);
1768       bld.LZD(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1769       break;
1770 
1771    case nir_op_ifind_msb: {
1772       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1773 
1774       if (devinfo->ver < 7) {
1775          emit_find_msb_using_lzd(bld, result, op[0], true);
1776       } else {
1777          bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1778 
1779          /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1780           * count from the LSB side. If FBH didn't return an error
1781           * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1782           * count into an LSB count.
1783           */
1784          bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1785 
1786          inst = bld.ADD(result, result, brw_imm_d(31));
1787          inst->predicate = BRW_PREDICATE_NORMAL;
1788          inst->src[0].negate = true;
1789       }
1790       break;
1791    }
1792 
1793    case nir_op_find_lsb:
1794       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1795 
1796       if (devinfo->ver < 7) {
1797          fs_reg temp = vgrf(glsl_type::int_type);
1798 
1799          /* (x & -x) generates a value that consists of only the LSB of x.
1800           * For all powers of 2, findMSB(y) == findLSB(y).
1801           */
1802          fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1803          fs_reg negated_src = src;
1804 
1805          /* One must be negated, and the other must be non-negated.  It
1806           * doesn't matter which is which.
1807           */
1808          negated_src.negate = true;
1809          src.negate = false;
1810 
1811          bld.AND(temp, src, negated_src);
1812          emit_find_msb_using_lzd(bld, result, temp, false);
1813       } else {
1814          bld.FBL(result, op[0]);
1815       }
1816       break;
1817 
1818    case nir_op_ubitfield_extract:
1819    case nir_op_ibitfield_extract:
1820       unreachable("should have been lowered");
1821    case nir_op_ubfe:
1822    case nir_op_ibfe:
1823       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1824       bld.BFE(result, op[2], op[1], op[0]);
1825       break;
1826    case nir_op_bfm:
1827       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1828       bld.BFI1(result, op[0], op[1]);
1829       break;
1830    case nir_op_bfi:
1831       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1832       bld.BFI2(result, op[0], op[1], op[2]);
1833       break;
1834 
1835    case nir_op_bitfield_insert:
1836       unreachable("not reached: should have been lowered");
1837 
1838    /* For all shift operations:
1839     *
1840     * Gen4 - Gen7: After application of source modifiers, the low 5-bits of
1841     * src1 are used an unsigned value for the shift count.
1842     *
1843     * Gen8: As with earlier platforms, but for Q and UQ types on src0, the low
1844     * 6-bit of src1 are used.
1845     *
1846     * Gen9+: The low bits of src1 matching the size of src0 (e.g., 4-bits for
1847     * W or UW src0).
1848     *
1849     * The implication is that the following instruction will produce a
1850     * different result on Gen9+ than on previous platforms:
1851     *
1852     *    shr(8)    g4<1>UW    g12<8,8,1>UW    0x0010UW
1853     *
1854     * where Gen9+ will shift by zero, and earlier platforms will shift by 16.
1855     *
1856     * This does not seem to be the case.  Experimentally, it has been
1857     * determined that shifts of 16-bit values on Gen8 behave properly.  Shifts
1858     * of 8-bit values on both Gen8 and Gen9 do not.  Gen11+ lowers 8-bit
1859     * values, so those platforms were not tested.  No features expose access
1860     * to 8- or 16-bit types on Gen7 or earlier, so those platforms were not
1861     * tested either.  See
1862     * https://gitlab.freedesktop.org/mesa/crucible/-/merge_requests/76.
1863     *
1864     * This is part of the reason 8-bit values are lowered to 16-bit on all
1865     * platforms.
1866     */
1867    case nir_op_ishl:
1868       bld.SHL(result, op[0], op[1]);
1869       break;
1870    case nir_op_ishr:
1871       bld.ASR(result, op[0], op[1]);
1872       break;
1873    case nir_op_ushr:
1874       bld.SHR(result, op[0], op[1]);
1875       break;
1876 
1877    case nir_op_urol:
1878       bld.ROL(result, op[0], op[1]);
1879       break;
1880    case nir_op_uror:
1881       bld.ROR(result, op[0], op[1]);
1882       break;
1883 
1884    case nir_op_pack_half_2x16_split:
1885       bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1886       break;
1887 
1888    case nir_op_sdot_4x8_iadd:
1889    case nir_op_sdot_4x8_iadd_sat:
1890       inst = bld.DP4A(result,
1891                       retype(op[2], BRW_REGISTER_TYPE_D),
1892                       retype(op[0], BRW_REGISTER_TYPE_D),
1893                       retype(op[1], BRW_REGISTER_TYPE_D));
1894 
1895       if (instr->op == nir_op_sdot_4x8_iadd_sat)
1896          inst->saturate = true;
1897       break;
1898 
1899    case nir_op_udot_4x8_uadd:
1900    case nir_op_udot_4x8_uadd_sat:
1901       inst = bld.DP4A(result,
1902                       retype(op[2], BRW_REGISTER_TYPE_UD),
1903                       retype(op[0], BRW_REGISTER_TYPE_UD),
1904                       retype(op[1], BRW_REGISTER_TYPE_UD));
1905 
1906       if (instr->op == nir_op_udot_4x8_uadd_sat)
1907          inst->saturate = true;
1908       break;
1909 
1910    case nir_op_sudot_4x8_iadd:
1911    case nir_op_sudot_4x8_iadd_sat:
1912       inst = bld.DP4A(result,
1913                       retype(op[2], BRW_REGISTER_TYPE_D),
1914                       retype(op[0], BRW_REGISTER_TYPE_D),
1915                       retype(op[1], BRW_REGISTER_TYPE_UD));
1916 
1917       if (instr->op == nir_op_sudot_4x8_iadd_sat)
1918          inst->saturate = true;
1919       break;
1920 
1921    case nir_op_ffma:
1922       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1923          brw_rnd_mode rnd =
1924             brw_rnd_mode_from_execution_mode(execution_mode);
1925          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1926                   brw_imm_d(rnd));
1927       }
1928 
1929       inst = bld.MAD(result, op[2], op[1], op[0]);
1930       break;
1931 
1932    case nir_op_flrp:
1933       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1934          brw_rnd_mode rnd =
1935             brw_rnd_mode_from_execution_mode(execution_mode);
1936          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1937                   brw_imm_d(rnd));
1938       }
1939 
1940       inst = bld.LRP(result, op[0], op[1], op[2]);
1941       break;
1942 
1943    case nir_op_b32csel:
1944       if (optimize_frontfacing_ternary(instr, result))
1945          return;
1946 
1947       bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1948       inst = bld.SEL(result, op[1], op[2]);
1949       inst->predicate = BRW_PREDICATE_NORMAL;
1950       break;
1951 
1952    case nir_op_extract_u8:
1953    case nir_op_extract_i8: {
1954       unsigned byte = nir_src_as_uint(instr->src[1].src);
1955 
1956       /* The PRMs say:
1957        *
1958        *    BDW+
1959        *    There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1960        *    Use two instructions and a word or DWord intermediate integer type.
1961        */
1962       if (nir_dest_bit_size(instr->dest.dest) == 64) {
1963          const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1964 
1965          if (instr->op == nir_op_extract_i8) {
1966             /* If we need to sign extend, extract to a word first */
1967             fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1968             bld.MOV(w_temp, subscript(op[0], type, byte));
1969             bld.MOV(result, w_temp);
1970          } else if (byte & 1) {
1971             /* Extract the high byte from the word containing the desired byte
1972              * offset.
1973              */
1974             bld.SHR(result,
1975                     subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1976                     brw_imm_uw(8));
1977          } else {
1978             /* Otherwise use an AND with 0xff and a word type */
1979             bld.AND(result,
1980                     subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1981                     brw_imm_uw(0xff));
1982          }
1983       } else {
1984          const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1985          bld.MOV(result, subscript(op[0], type, byte));
1986       }
1987       break;
1988    }
1989 
1990    case nir_op_extract_u16:
1991    case nir_op_extract_i16: {
1992       const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1993       unsigned word = nir_src_as_uint(instr->src[1].src);
1994       bld.MOV(result, subscript(op[0], type, word));
1995       break;
1996    }
1997 
1998    default:
1999       unreachable("unhandled instruction");
2000    }
2001 
2002    /* If we need to do a boolean resolve, replace the result with -(x & 1)
2003     * to sign extend the low bit to 0/~0
2004     */
2005    if (devinfo->ver <= 5 &&
2006        !result.is_null() &&
2007        (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
2008       fs_reg masked = vgrf(glsl_type::int_type);
2009       bld.AND(masked, result, brw_imm_d(1));
2010       masked.negate = true;
2011       bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
2012    }
2013 }
2014 
2015 void
nir_emit_load_const(const fs_builder & bld,nir_load_const_instr * instr)2016 fs_visitor::nir_emit_load_const(const fs_builder &bld,
2017                                 nir_load_const_instr *instr)
2018 {
2019    const brw_reg_type reg_type =
2020       brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
2021    fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
2022 
2023    switch (instr->def.bit_size) {
2024    case 8:
2025       for (unsigned i = 0; i < instr->def.num_components; i++)
2026          bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
2027       break;
2028 
2029    case 16:
2030       for (unsigned i = 0; i < instr->def.num_components; i++)
2031          bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
2032       break;
2033 
2034    case 32:
2035       for (unsigned i = 0; i < instr->def.num_components; i++)
2036          bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
2037       break;
2038 
2039    case 64:
2040       assert(devinfo->ver >= 7);
2041       if (devinfo->ver == 7) {
2042          /* We don't get 64-bit integer types until gfx8 */
2043          for (unsigned i = 0; i < instr->def.num_components; i++) {
2044             bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
2045                     setup_imm_df(bld, instr->value[i].f64));
2046          }
2047       } else {
2048          for (unsigned i = 0; i < instr->def.num_components; i++)
2049             bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
2050       }
2051       break;
2052 
2053    default:
2054       unreachable("Invalid bit size");
2055    }
2056 
2057    nir_ssa_values[instr->def.index] = reg;
2058 }
2059 
2060 fs_reg
get_nir_src(const nir_src & src)2061 fs_visitor::get_nir_src(const nir_src &src)
2062 {
2063    fs_reg reg;
2064    if (src.is_ssa) {
2065       if (nir_src_is_undef(src)) {
2066          const brw_reg_type reg_type =
2067             brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
2068          reg = bld.vgrf(reg_type, src.ssa->num_components);
2069       } else {
2070          reg = nir_ssa_values[src.ssa->index];
2071       }
2072    } else {
2073       /* We don't handle indirects on locals */
2074       assert(src.reg.indirect == NULL);
2075       reg = offset(nir_locals[src.reg.reg->index], bld,
2076                    src.reg.base_offset * src.reg.reg->num_components);
2077    }
2078 
2079    if (nir_src_bit_size(src) == 64 && devinfo->ver == 7) {
2080       /* The only 64-bit type available on gfx7 is DF, so use that. */
2081       reg.type = BRW_REGISTER_TYPE_DF;
2082    } else {
2083       /* To avoid floating-point denorm flushing problems, set the type by
2084        * default to an integer type - instructions that need floating point
2085        * semantics will set this to F if they need to
2086        */
2087       reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
2088                                             BRW_REGISTER_TYPE_D);
2089    }
2090 
2091    return reg;
2092 }
2093 
2094 /**
2095  * Return an IMM for constants; otherwise call get_nir_src() as normal.
2096  *
2097  * This function should not be called on any value which may be 64 bits.
2098  * We could theoretically support 64-bit on gfx8+ but we choose not to
2099  * because it wouldn't work in general (no gfx7 support) and there are
2100  * enough restrictions in 64-bit immediates that you can't take the return
2101  * value and treat it the same as the result of get_nir_src().
2102  */
2103 fs_reg
get_nir_src_imm(const nir_src & src)2104 fs_visitor::get_nir_src_imm(const nir_src &src)
2105 {
2106    assert(nir_src_bit_size(src) == 32);
2107    return nir_src_is_const(src) ?
2108           fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2109 }
2110 
2111 fs_reg
get_nir_dest(const nir_dest & dest)2112 fs_visitor::get_nir_dest(const nir_dest &dest)
2113 {
2114    if (dest.is_ssa) {
2115       const brw_reg_type reg_type =
2116          brw_reg_type_from_bit_size(dest.ssa.bit_size,
2117                                     dest.ssa.bit_size == 8 ?
2118                                     BRW_REGISTER_TYPE_D :
2119                                     BRW_REGISTER_TYPE_F);
2120       nir_ssa_values[dest.ssa.index] =
2121          bld.vgrf(reg_type, dest.ssa.num_components);
2122       bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2123       return nir_ssa_values[dest.ssa.index];
2124    } else {
2125       /* We don't handle indirects on locals */
2126       assert(dest.reg.indirect == NULL);
2127       return offset(nir_locals[dest.reg.reg->index], bld,
2128                     dest.reg.base_offset * dest.reg.reg->num_components);
2129    }
2130 }
2131 
2132 void
emit_percomp(const fs_builder & bld,const fs_inst & inst,unsigned wr_mask)2133 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2134                          unsigned wr_mask)
2135 {
2136    for (unsigned i = 0; i < 4; i++) {
2137       if (!((wr_mask >> i) & 1))
2138          continue;
2139 
2140       fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2141       new_inst->dst = offset(new_inst->dst, bld, i);
2142       for (unsigned j = 0; j < new_inst->sources; j++)
2143          if (new_inst->src[j].file == VGRF)
2144             new_inst->src[j] = offset(new_inst->src[j], bld, i);
2145 
2146       bld.emit(new_inst);
2147    }
2148 }
2149 
2150 static fs_inst *
emit_pixel_interpolater_send(const fs_builder & bld,enum opcode opcode,const fs_reg & dst,const fs_reg & src,const fs_reg & desc,glsl_interp_mode interpolation)2151 emit_pixel_interpolater_send(const fs_builder &bld,
2152                              enum opcode opcode,
2153                              const fs_reg &dst,
2154                              const fs_reg &src,
2155                              const fs_reg &desc,
2156                              glsl_interp_mode interpolation)
2157 {
2158    struct brw_wm_prog_data *wm_prog_data =
2159       brw_wm_prog_data(bld.shader->stage_prog_data);
2160 
2161    fs_inst *inst = bld.emit(opcode, dst, src, desc);
2162    /* 2 floats per slot returned */
2163    inst->size_written = 2 * dst.component_size(inst->exec_size);
2164    inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2165 
2166    wm_prog_data->pulls_bary = true;
2167 
2168    return inst;
2169 }
2170 
2171 /**
2172  * Computes 1 << x, given a D/UD register containing some value x.
2173  */
2174 static fs_reg
intexp2(const fs_builder & bld,const fs_reg & x)2175 intexp2(const fs_builder &bld, const fs_reg &x)
2176 {
2177    assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2178 
2179    fs_reg result = bld.vgrf(x.type, 1);
2180    fs_reg one = bld.vgrf(x.type, 1);
2181 
2182    bld.MOV(one, retype(brw_imm_d(1), one.type));
2183    bld.SHL(result, one, x);
2184    return result;
2185 }
2186 
2187 void
emit_gs_end_primitive(const nir_src & vertex_count_nir_src)2188 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2189 {
2190    assert(stage == MESA_SHADER_GEOMETRY);
2191 
2192    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2193 
2194    if (gs_compile->control_data_header_size_bits == 0)
2195       return;
2196 
2197    /* We can only do EndPrimitive() functionality when the control data
2198     * consists of cut bits.  Fortunately, the only time it isn't is when the
2199     * output type is points, in which case EndPrimitive() is a no-op.
2200     */
2201    if (gs_prog_data->control_data_format !=
2202        GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2203       return;
2204    }
2205 
2206    /* Cut bits use one bit per vertex. */
2207    assert(gs_compile->control_data_bits_per_vertex == 1);
2208 
2209    fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2210    vertex_count.type = BRW_REGISTER_TYPE_UD;
2211 
2212    /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2213     * vertex n, 0 otherwise.  So all we need to do here is mark bit
2214     * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2215     * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2216     * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2217     *
2218     * Note that if EndPrimitive() is called before emitting any vertices, this
2219     * will cause us to set bit 31 of the control_data_bits register to 1.
2220     * That's fine because:
2221     *
2222     * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2223     *   output, so the hardware will ignore cut bit 31.
2224     *
2225     * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2226     *   last vertex, so setting cut bit 31 has no effect (since the primitive
2227     *   is automatically ended when the GS terminates).
2228     *
2229     * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2230     *   control_data_bits register to 0 when the first vertex is emitted.
2231     */
2232 
2233    const fs_builder abld = bld.annotate("end primitive");
2234 
2235    /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2236    fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2237    abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2238    fs_reg mask = intexp2(abld, prev_count);
2239    /* Note: we're relying on the fact that the GEN SHL instruction only pays
2240     * attention to the lower 5 bits of its second source argument, so on this
2241     * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2242     * ((vertex_count - 1) % 32).
2243     */
2244    abld.OR(this->control_data_bits, this->control_data_bits, mask);
2245 }
2246 
2247 void
emit_gs_control_data_bits(const fs_reg & vertex_count)2248 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2249 {
2250    assert(stage == MESA_SHADER_GEOMETRY);
2251    assert(gs_compile->control_data_bits_per_vertex != 0);
2252 
2253    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2254 
2255    const fs_builder abld = bld.annotate("emit control data bits");
2256    const fs_builder fwa_bld = bld.exec_all();
2257 
2258    /* We use a single UD register to accumulate control data bits (32 bits
2259     * for each of the SIMD8 channels).  So we need to write a DWord (32 bits)
2260     * at a time.
2261     *
2262     * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2263     * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2264     * use the Channel Mask phase to enable/disable which DWord within that
2265     * group to write.  (Remember, different SIMD8 channels may have emitted
2266     * different numbers of vertices, so we may need per-slot offsets.)
2267     *
2268     * Channel masking presents an annoying problem: we may have to replicate
2269     * the data up to 4 times:
2270     *
2271     * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2272     *
2273     * To avoid penalizing shaders that emit a small number of vertices, we
2274     * can avoid these sometimes: if the size of the control data header is
2275     * <= 128 bits, then there is only 1 OWord.  All SIMD8 channels will land
2276     * land in the same 128-bit group, so we can skip per-slot offsets.
2277     *
2278     * Similarly, if the control data header is <= 32 bits, there is only one
2279     * DWord, so we can skip channel masks.
2280     */
2281    enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2282 
2283    fs_reg channel_mask, per_slot_offset;
2284 
2285    if (gs_compile->control_data_header_size_bits > 32) {
2286       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2287       channel_mask = vgrf(glsl_type::uint_type);
2288    }
2289 
2290    if (gs_compile->control_data_header_size_bits > 128) {
2291       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2292       per_slot_offset = vgrf(glsl_type::uint_type);
2293    }
2294 
2295    /* Figure out which DWord we're trying to write to using the formula:
2296     *
2297     *    dword_index = (vertex_count - 1) * bits_per_vertex / 32
2298     *
2299     * Since bits_per_vertex is a power of two, and is known at compile
2300     * time, this can be optimized to:
2301     *
2302     *    dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2303     */
2304    if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2305       fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2306       fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2307       abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2308       unsigned log2_bits_per_vertex =
2309          util_last_bit(gs_compile->control_data_bits_per_vertex);
2310       abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2311 
2312       if (per_slot_offset.file != BAD_FILE) {
2313          /* Set the per-slot offset to dword_index / 4, so that we'll write to
2314           * the appropriate OWord within the control data header.
2315           */
2316          abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2317       }
2318 
2319       /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2320        * write to the appropriate DWORD within the OWORD.
2321        */
2322       fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2323       fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2324       channel_mask = intexp2(fwa_bld, channel);
2325       /* Then the channel masks need to be in bits 23:16. */
2326       fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2327    }
2328 
2329    /* Store the control data bits in the message payload and send it. */
2330    unsigned mlen = 2;
2331    if (channel_mask.file != BAD_FILE)
2332       mlen += 4; /* channel masks, plus 3 extra copies of the data */
2333    if (per_slot_offset.file != BAD_FILE)
2334       mlen++;
2335 
2336    fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2337    fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2338    unsigned i = 0;
2339    sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2340    if (per_slot_offset.file != BAD_FILE)
2341       sources[i++] = per_slot_offset;
2342    if (channel_mask.file != BAD_FILE)
2343       sources[i++] = channel_mask;
2344    while (i < mlen) {
2345       sources[i++] = this->control_data_bits;
2346    }
2347 
2348    abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2349    fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2350    inst->mlen = mlen;
2351    /* We need to increment Global Offset by 256-bits to make room for
2352     * Broadwell's extra "Vertex Count" payload at the beginning of the
2353     * URB entry.  Since this is an OWord message, Global Offset is counted
2354     * in 128-bit units, so we must set it to 2.
2355     */
2356    if (gs_prog_data->static_vertex_count == -1)
2357       inst->offset = 2;
2358 }
2359 
2360 void
set_gs_stream_control_data_bits(const fs_reg & vertex_count,unsigned stream_id)2361 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2362                                             unsigned stream_id)
2363 {
2364    /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2365 
2366    /* Note: we are calling this *before* increasing vertex_count, so
2367     * this->vertex_count == vertex_count - 1 in the formula above.
2368     */
2369 
2370    /* Stream mode uses 2 bits per vertex */
2371    assert(gs_compile->control_data_bits_per_vertex == 2);
2372 
2373    /* Must be a valid stream */
2374    assert(stream_id < MAX_VERTEX_STREAMS);
2375 
2376    /* Control data bits are initialized to 0 so we don't have to set any
2377     * bits when sending vertices to stream 0.
2378     */
2379    if (stream_id == 0)
2380       return;
2381 
2382    const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2383 
2384    /* reg::sid = stream_id */
2385    fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2386    abld.MOV(sid, brw_imm_ud(stream_id));
2387 
2388    /* reg:shift_count = 2 * (vertex_count - 1) */
2389    fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2390    abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2391 
2392    /* Note: we're relying on the fact that the GEN SHL instruction only pays
2393     * attention to the lower 5 bits of its second source argument, so on this
2394     * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2395     * stream_id << ((2 * (vertex_count - 1)) % 32).
2396     */
2397    fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2398    abld.SHL(mask, sid, shift_count);
2399    abld.OR(this->control_data_bits, this->control_data_bits, mask);
2400 }
2401 
2402 void
emit_gs_vertex(const nir_src & vertex_count_nir_src,unsigned stream_id)2403 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2404                            unsigned stream_id)
2405 {
2406    assert(stage == MESA_SHADER_GEOMETRY);
2407 
2408    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2409 
2410    fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2411    vertex_count.type = BRW_REGISTER_TYPE_UD;
2412 
2413    /* Haswell and later hardware ignores the "Render Stream Select" bits
2414     * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2415     * and instead sends all primitives down the pipeline for rasterization.
2416     * If the SOL stage is enabled, "Render Stream Select" is honored and
2417     * primitives bound to non-zero streams are discarded after stream output.
2418     *
2419     * Since the only purpose of primives sent to non-zero streams is to
2420     * be recorded by transform feedback, we can simply discard all geometry
2421     * bound to these streams when transform feedback is disabled.
2422     */
2423    if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2424       return;
2425 
2426    /* If we're outputting 32 control data bits or less, then we can wait
2427     * until the shader is over to output them all.  Otherwise we need to
2428     * output them as we go.  Now is the time to do it, since we're about to
2429     * output the vertex_count'th vertex, so it's guaranteed that the
2430     * control data bits associated with the (vertex_count - 1)th vertex are
2431     * correct.
2432     */
2433    if (gs_compile->control_data_header_size_bits > 32) {
2434       const fs_builder abld =
2435          bld.annotate("emit vertex: emit control data bits");
2436 
2437       /* Only emit control data bits if we've finished accumulating a batch
2438        * of 32 bits.  This is the case when:
2439        *
2440        *     (vertex_count * bits_per_vertex) % 32 == 0
2441        *
2442        * (in other words, when the last 5 bits of vertex_count *
2443        * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
2444        * integer n (which is always the case, since bits_per_vertex is
2445        * always 1 or 2), this is equivalent to requiring that the last 5-n
2446        * bits of vertex_count are 0:
2447        *
2448        *     vertex_count & (2^(5-n) - 1) == 0
2449        *
2450        * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2451        * equivalent to:
2452        *
2453        *     vertex_count & (32 / bits_per_vertex - 1) == 0
2454        *
2455        * TODO: If vertex_count is an immediate, we could do some of this math
2456        *       at compile time...
2457        */
2458       fs_inst *inst =
2459          abld.AND(bld.null_reg_d(), vertex_count,
2460                   brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2461       inst->conditional_mod = BRW_CONDITIONAL_Z;
2462 
2463       abld.IF(BRW_PREDICATE_NORMAL);
2464       /* If vertex_count is 0, then no control data bits have been
2465        * accumulated yet, so we can skip emitting them.
2466        */
2467       abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2468                BRW_CONDITIONAL_NEQ);
2469       abld.IF(BRW_PREDICATE_NORMAL);
2470       emit_gs_control_data_bits(vertex_count);
2471       abld.emit(BRW_OPCODE_ENDIF);
2472 
2473       /* Reset control_data_bits to 0 so we can start accumulating a new
2474        * batch.
2475        *
2476        * Note: in the case where vertex_count == 0, this neutralizes the
2477        * effect of any call to EndPrimitive() that the shader may have
2478        * made before outputting its first vertex.
2479        */
2480       inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2481       inst->force_writemask_all = true;
2482       abld.emit(BRW_OPCODE_ENDIF);
2483    }
2484 
2485    emit_urb_writes(vertex_count);
2486 
2487    /* In stream mode we have to set control data bits for all vertices
2488     * unless we have disabled control data bits completely (which we do
2489     * do for GL_POINTS outputs that don't use streams).
2490     */
2491    if (gs_compile->control_data_header_size_bits > 0 &&
2492        gs_prog_data->control_data_format ==
2493           GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2494       set_gs_stream_control_data_bits(vertex_count, stream_id);
2495    }
2496 }
2497 
2498 void
emit_gs_input_load(const fs_reg & dst,const nir_src & vertex_src,unsigned base_offset,const nir_src & offset_src,unsigned num_components,unsigned first_component)2499 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2500                                const nir_src &vertex_src,
2501                                unsigned base_offset,
2502                                const nir_src &offset_src,
2503                                unsigned num_components,
2504                                unsigned first_component)
2505 {
2506    assert(type_sz(dst.type) == 4);
2507    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2508    const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2509 
2510    /* TODO: figure out push input layout for invocations == 1 */
2511    if (gs_prog_data->invocations == 1 &&
2512        nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2513        4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2514       int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2515                        nir_src_as_uint(vertex_src) * push_reg_count;
2516       for (unsigned i = 0; i < num_components; i++) {
2517          bld.MOV(offset(dst, bld, i),
2518                  fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2519       }
2520       return;
2521    }
2522 
2523    /* Resort to the pull model.  Ensure the VUE handles are provided. */
2524    assert(gs_prog_data->base.include_vue_handles);
2525 
2526    unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2527    fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2528 
2529    if (gs_prog_data->invocations == 1) {
2530       if (nir_src_is_const(vertex_src)) {
2531          /* The vertex index is constant; just select the proper URB handle. */
2532          icp_handle =
2533             retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2534                    BRW_REGISTER_TYPE_UD);
2535       } else {
2536          /* The vertex index is non-constant.  We need to use indirect
2537           * addressing to fetch the proper URB handle.
2538           *
2539           * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2540           * indicating that channel <n> should read the handle from
2541           * DWord <n>.  We convert that to bytes by multiplying by 4.
2542           *
2543           * Next, we convert the vertex index to bytes by multiplying
2544           * by 32 (shifting by 5), and add the two together.  This is
2545           * the final indirect byte offset.
2546           */
2547          fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2548          fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2549          fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2550          fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2551 
2552          /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2553          bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2554          /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2555          bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2556          /* Convert vertex_index to bytes (multiply by 32) */
2557          bld.SHL(vertex_offset_bytes,
2558                  retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2559                  brw_imm_ud(5u));
2560          bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2561 
2562          /* Use first_icp_handle as the base offset.  There is one register
2563           * of URB handles per vertex, so inform the register allocator that
2564           * we might read up to nir->info.gs.vertices_in registers.
2565           */
2566          bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2567                   retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2568                   fs_reg(icp_offset_bytes),
2569                   brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2570       }
2571    } else {
2572       assert(gs_prog_data->invocations > 1);
2573 
2574       if (nir_src_is_const(vertex_src)) {
2575          unsigned vertex = nir_src_as_uint(vertex_src);
2576          assert(devinfo->ver >= 9 || vertex <= 5);
2577          bld.MOV(icp_handle,
2578                  retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2579                         BRW_REGISTER_TYPE_UD));
2580       } else {
2581          /* The vertex index is non-constant.  We need to use indirect
2582           * addressing to fetch the proper URB handle.
2583           *
2584           */
2585          fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2586 
2587          /* Convert vertex_index to bytes (multiply by 4) */
2588          bld.SHL(icp_offset_bytes,
2589                  retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2590                  brw_imm_ud(2u));
2591 
2592          /* Use first_icp_handle as the base offset.  There is one DWord
2593           * of URB handles per vertex, so inform the register allocator that
2594           * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2595           */
2596          bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2597                   retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2598                   fs_reg(icp_offset_bytes),
2599                   brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2600                              REG_SIZE));
2601       }
2602    }
2603 
2604    fs_inst *inst;
2605    fs_reg indirect_offset = get_nir_src(offset_src);
2606 
2607    if (nir_src_is_const(offset_src)) {
2608       /* Constant indexing - use global offset. */
2609       if (first_component != 0) {
2610          unsigned read_components = num_components + first_component;
2611          fs_reg tmp = bld.vgrf(dst.type, read_components);
2612          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2613          inst->size_written = read_components *
2614                               tmp.component_size(inst->exec_size);
2615          for (unsigned i = 0; i < num_components; i++) {
2616             bld.MOV(offset(dst, bld, i),
2617                     offset(tmp, bld, i + first_component));
2618          }
2619       } else {
2620          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2621          inst->size_written = num_components *
2622                               dst.component_size(inst->exec_size);
2623       }
2624       inst->offset = base_offset + nir_src_as_uint(offset_src);
2625       inst->mlen = 1;
2626    } else {
2627       /* Indirect indexing - use per-slot offsets as well. */
2628       const fs_reg srcs[] = { icp_handle, indirect_offset };
2629       unsigned read_components = num_components + first_component;
2630       fs_reg tmp = bld.vgrf(dst.type, read_components);
2631       fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2632       bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2633       if (first_component != 0) {
2634          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2635                          payload);
2636          inst->size_written = read_components *
2637                               tmp.component_size(inst->exec_size);
2638          for (unsigned i = 0; i < num_components; i++) {
2639             bld.MOV(offset(dst, bld, i),
2640                     offset(tmp, bld, i + first_component));
2641          }
2642       } else {
2643          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2644          inst->size_written = num_components *
2645                               dst.component_size(inst->exec_size);
2646       }
2647       inst->offset = base_offset;
2648       inst->mlen = 2;
2649    }
2650 }
2651 
2652 fs_reg
get_indirect_offset(nir_intrinsic_instr * instr)2653 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2654 {
2655    nir_src *offset_src = nir_get_io_offset_src(instr);
2656 
2657    if (nir_src_is_const(*offset_src)) {
2658       /* The only constant offset we should find is 0.  brw_nir.c's
2659        * add_const_offset_to_base() will fold other constant offsets
2660        * into instr->const_index[0].
2661        */
2662       assert(nir_src_as_uint(*offset_src) == 0);
2663       return fs_reg();
2664    }
2665 
2666    return get_nir_src(*offset_src);
2667 }
2668 
2669 void
nir_emit_vs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2670 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2671                                   nir_intrinsic_instr *instr)
2672 {
2673    assert(stage == MESA_SHADER_VERTEX);
2674 
2675    fs_reg dest;
2676    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2677       dest = get_nir_dest(instr->dest);
2678 
2679    switch (instr->intrinsic) {
2680    case nir_intrinsic_load_vertex_id:
2681    case nir_intrinsic_load_base_vertex:
2682       unreachable("should be lowered by nir_lower_system_values()");
2683 
2684    case nir_intrinsic_load_input: {
2685       assert(nir_dest_bit_size(instr->dest) == 32);
2686       fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2687       src = offset(src, bld, nir_intrinsic_component(instr));
2688       src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2689 
2690       for (unsigned i = 0; i < instr->num_components; i++)
2691          bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2692       break;
2693    }
2694 
2695    case nir_intrinsic_load_vertex_id_zero_base:
2696    case nir_intrinsic_load_instance_id:
2697    case nir_intrinsic_load_base_instance:
2698    case nir_intrinsic_load_draw_id:
2699    case nir_intrinsic_load_first_vertex:
2700    case nir_intrinsic_load_is_indexed_draw:
2701       unreachable("lowered by brw_nir_lower_vs_inputs");
2702 
2703    default:
2704       nir_emit_intrinsic(bld, instr);
2705       break;
2706    }
2707 }
2708 
2709 fs_reg
get_tcs_single_patch_icp_handle(const fs_builder & bld,nir_intrinsic_instr * instr)2710 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2711                                             nir_intrinsic_instr *instr)
2712 {
2713    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2714    const nir_src &vertex_src = instr->src[0];
2715    nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2716    fs_reg icp_handle;
2717 
2718    if (nir_src_is_const(vertex_src)) {
2719       /* Emit a MOV to resolve <0,1,0> regioning. */
2720       icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2721       unsigned vertex = nir_src_as_uint(vertex_src);
2722       bld.MOV(icp_handle,
2723               retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2724                      BRW_REGISTER_TYPE_UD));
2725    } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2726               vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2727       /* For the common case of only 1 instance, an array index of
2728        * gl_InvocationID means reading g1.  Skip all the indirect work.
2729        */
2730       icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2731    } else {
2732       /* The vertex index is non-constant.  We need to use indirect
2733        * addressing to fetch the proper URB handle.
2734        */
2735       icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2736 
2737       /* Each ICP handle is a single DWord (4 bytes) */
2738       fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2739       bld.SHL(vertex_offset_bytes,
2740               retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2741               brw_imm_ud(2u));
2742 
2743       /* Start at g1.  We might read up to 4 registers. */
2744       bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2745                retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2746                brw_imm_ud(4 * REG_SIZE));
2747    }
2748 
2749    return icp_handle;
2750 }
2751 
2752 fs_reg
get_tcs_eight_patch_icp_handle(const fs_builder & bld,nir_intrinsic_instr * instr)2753 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2754                                            nir_intrinsic_instr *instr)
2755 {
2756    struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2757    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2758    const nir_src &vertex_src = instr->src[0];
2759 
2760    unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2761 
2762    if (nir_src_is_const(vertex_src)) {
2763       return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2764                                         nir_src_as_uint(vertex_src), 0),
2765                            BRW_REGISTER_TYPE_UD));
2766    }
2767 
2768    /* The vertex index is non-constant.  We need to use indirect
2769     * addressing to fetch the proper URB handle.
2770     *
2771     * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2772     * indicating that channel <n> should read the handle from
2773     * DWord <n>.  We convert that to bytes by multiplying by 4.
2774     *
2775     * Next, we convert the vertex index to bytes by multiplying
2776     * by 32 (shifting by 5), and add the two together.  This is
2777     * the final indirect byte offset.
2778     */
2779    fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2780    fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2781    fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2782    fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2783    fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2784 
2785    /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2786    bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2787    /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2788    bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2789    /* Convert vertex_index to bytes (multiply by 32) */
2790    bld.SHL(vertex_offset_bytes,
2791            retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2792            brw_imm_ud(5u));
2793    bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2794 
2795    /* Use first_icp_handle as the base offset.  There is one register
2796     * of URB handles per vertex, so inform the register allocator that
2797     * we might read up to nir->info.gs.vertices_in registers.
2798     */
2799    bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2800             retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2801             icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2802 
2803    return icp_handle;
2804 }
2805 
2806 struct brw_reg
get_tcs_output_urb_handle()2807 fs_visitor::get_tcs_output_urb_handle()
2808 {
2809    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2810 
2811    if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2812       return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2813    } else {
2814       assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2815       return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2816    }
2817 }
2818 
2819 void
nir_emit_tcs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2820 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2821                                    nir_intrinsic_instr *instr)
2822 {
2823    assert(stage == MESA_SHADER_TESS_CTRL);
2824    struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2825    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2826    struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2827 
2828    bool eight_patch =
2829       vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2830 
2831    fs_reg dst;
2832    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2833       dst = get_nir_dest(instr->dest);
2834 
2835    switch (instr->intrinsic) {
2836    case nir_intrinsic_load_primitive_id:
2837       bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2838                                       : brw_vec1_grf(0, 1)));
2839       break;
2840    case nir_intrinsic_load_invocation_id:
2841       bld.MOV(retype(dst, invocation_id.type), invocation_id);
2842       break;
2843    case nir_intrinsic_load_patch_vertices_in:
2844       bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2845               brw_imm_d(tcs_key->input_vertices));
2846       break;
2847 
2848    case nir_intrinsic_control_barrier: {
2849       if (tcs_prog_data->instances == 1)
2850          break;
2851 
2852       fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2853       fs_reg m0_2 = component(m0, 2);
2854 
2855       const fs_builder chanbld = bld.exec_all().group(1, 0);
2856 
2857       /* Zero the message header */
2858       bld.exec_all().MOV(m0, brw_imm_ud(0u));
2859 
2860       if (devinfo->verx10 >= 125) {
2861          /* From BSpec: 54006, mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */
2862          fs_reg m0_10ub = component(retype(m0, BRW_REGISTER_TYPE_UB), 10);
2863          fs_reg r0_11ub =
2864             stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UB), 11),
2865                    0, 1, 0);
2866          bld.exec_all().group(2, 0).MOV(m0_10ub, r0_11ub);
2867       } else if (devinfo->ver >= 11) {
2868          chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2869                      brw_imm_ud(INTEL_MASK(30, 24)));
2870 
2871          /* Set the Barrier Count and the enable bit */
2872          chanbld.OR(m0_2, m0_2,
2873                     brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2874       } else {
2875          /* Copy "Barrier ID" from r0.2, bits 16:13 */
2876          chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2877                      brw_imm_ud(INTEL_MASK(16, 13)));
2878 
2879          /* Shift it up to bits 27:24. */
2880          chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2881 
2882          /* Set the Barrier Count and the enable bit */
2883          chanbld.OR(m0_2, m0_2,
2884                     brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2885       }
2886 
2887       bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2888       break;
2889    }
2890 
2891    case nir_intrinsic_load_input:
2892       unreachable("nir_lower_io should never give us these.");
2893       break;
2894 
2895    case nir_intrinsic_load_per_vertex_input: {
2896       assert(nir_dest_bit_size(instr->dest) == 32);
2897       fs_reg indirect_offset = get_indirect_offset(instr);
2898       unsigned imm_offset = instr->const_index[0];
2899       fs_inst *inst;
2900 
2901       fs_reg icp_handle =
2902          eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2903                      : get_tcs_single_patch_icp_handle(bld, instr);
2904 
2905       /* We can only read two double components with each URB read, so
2906        * we send two read messages in that case, each one loading up to
2907        * two double components.
2908        */
2909       unsigned num_components = instr->num_components;
2910       unsigned first_component = nir_intrinsic_component(instr);
2911 
2912       if (indirect_offset.file == BAD_FILE) {
2913          /* Constant indexing - use global offset. */
2914          if (first_component != 0) {
2915             unsigned read_components = num_components + first_component;
2916             fs_reg tmp = bld.vgrf(dst.type, read_components);
2917             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2918             for (unsigned i = 0; i < num_components; i++) {
2919                bld.MOV(offset(dst, bld, i),
2920                        offset(tmp, bld, i + first_component));
2921             }
2922          } else {
2923             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2924          }
2925          inst->offset = imm_offset;
2926          inst->mlen = 1;
2927       } else {
2928          /* Indirect indexing - use per-slot offsets as well. */
2929          const fs_reg srcs[] = { icp_handle, indirect_offset };
2930          fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2931          bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2932          if (first_component != 0) {
2933             unsigned read_components = num_components + first_component;
2934             fs_reg tmp = bld.vgrf(dst.type, read_components);
2935             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2936                             payload);
2937             for (unsigned i = 0; i < num_components; i++) {
2938                bld.MOV(offset(dst, bld, i),
2939                        offset(tmp, bld, i + first_component));
2940             }
2941          } else {
2942             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2943                             payload);
2944          }
2945          inst->offset = imm_offset;
2946          inst->mlen = 2;
2947       }
2948       inst->size_written = (num_components + first_component) *
2949                            inst->dst.component_size(inst->exec_size);
2950 
2951       /* Copy the temporary to the destination to deal with writemasking.
2952        *
2953        * Also attempt to deal with gl_PointSize being in the .w component.
2954        */
2955       if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2956          assert(type_sz(dst.type) == 4);
2957          inst->dst = bld.vgrf(dst.type, 4);
2958          inst->size_written = 4 * REG_SIZE;
2959          bld.MOV(dst, offset(inst->dst, bld, 3));
2960       }
2961       break;
2962    }
2963 
2964    case nir_intrinsic_load_output:
2965    case nir_intrinsic_load_per_vertex_output: {
2966       assert(nir_dest_bit_size(instr->dest) == 32);
2967       fs_reg indirect_offset = get_indirect_offset(instr);
2968       unsigned imm_offset = instr->const_index[0];
2969       unsigned first_component = nir_intrinsic_component(instr);
2970 
2971       struct brw_reg output_handles = get_tcs_output_urb_handle();
2972 
2973       fs_inst *inst;
2974       if (indirect_offset.file == BAD_FILE) {
2975          /* This MOV replicates the output handle to all enabled channels
2976           * is SINGLE_PATCH mode.
2977           */
2978          fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2979          bld.MOV(patch_handle, output_handles);
2980 
2981          {
2982             if (first_component != 0) {
2983                unsigned read_components =
2984                   instr->num_components + first_component;
2985                fs_reg tmp = bld.vgrf(dst.type, read_components);
2986                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2987                                patch_handle);
2988                inst->size_written = read_components * REG_SIZE;
2989                for (unsigned i = 0; i < instr->num_components; i++) {
2990                   bld.MOV(offset(dst, bld, i),
2991                           offset(tmp, bld, i + first_component));
2992                }
2993             } else {
2994                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2995                                patch_handle);
2996                inst->size_written = instr->num_components * REG_SIZE;
2997             }
2998             inst->offset = imm_offset;
2999             inst->mlen = 1;
3000          }
3001       } else {
3002          /* Indirect indexing - use per-slot offsets as well. */
3003          const fs_reg srcs[] = { output_handles, indirect_offset };
3004          fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3005          bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3006          if (first_component != 0) {
3007             unsigned read_components =
3008                instr->num_components + first_component;
3009             fs_reg tmp = bld.vgrf(dst.type, read_components);
3010             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3011                             payload);
3012             inst->size_written = read_components * REG_SIZE;
3013             for (unsigned i = 0; i < instr->num_components; i++) {
3014                bld.MOV(offset(dst, bld, i),
3015                        offset(tmp, bld, i + first_component));
3016             }
3017          } else {
3018             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
3019                             payload);
3020             inst->size_written = instr->num_components * REG_SIZE;
3021          }
3022          inst->offset = imm_offset;
3023          inst->mlen = 2;
3024       }
3025       break;
3026    }
3027 
3028    case nir_intrinsic_store_output:
3029    case nir_intrinsic_store_per_vertex_output: {
3030       assert(nir_src_bit_size(instr->src[0]) == 32);
3031       fs_reg value = get_nir_src(instr->src[0]);
3032       fs_reg indirect_offset = get_indirect_offset(instr);
3033       unsigned imm_offset = instr->const_index[0];
3034       unsigned mask = instr->const_index[1];
3035       unsigned header_regs = 0;
3036       struct brw_reg output_handles = get_tcs_output_urb_handle();
3037 
3038       fs_reg srcs[7];
3039       srcs[header_regs++] = output_handles;
3040 
3041       if (indirect_offset.file != BAD_FILE) {
3042          srcs[header_regs++] = indirect_offset;
3043       }
3044 
3045       if (mask == 0)
3046          break;
3047 
3048       unsigned num_components = util_last_bit(mask);
3049       enum opcode opcode;
3050 
3051       /* We can only pack two 64-bit components in a single message, so send
3052        * 2 messages if we have more components
3053        */
3054       unsigned first_component = nir_intrinsic_component(instr);
3055       mask = mask << first_component;
3056 
3057       if (mask != WRITEMASK_XYZW) {
3058          srcs[header_regs++] = brw_imm_ud(mask << 16);
3059          opcode = indirect_offset.file != BAD_FILE ?
3060             SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
3061             SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
3062       } else {
3063          opcode = indirect_offset.file != BAD_FILE ?
3064             SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
3065             SHADER_OPCODE_URB_WRITE_SIMD8;
3066       }
3067 
3068       for (unsigned i = 0; i < num_components; i++) {
3069          if (!(mask & (1 << (i + first_component))))
3070             continue;
3071 
3072          srcs[header_regs + i + first_component] = offset(value, bld, i);
3073       }
3074 
3075       unsigned mlen = header_regs + num_components + first_component;
3076       fs_reg payload =
3077          bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
3078       bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
3079 
3080       fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
3081       inst->offset = imm_offset;
3082       inst->mlen = mlen;
3083       break;
3084    }
3085 
3086    default:
3087       nir_emit_intrinsic(bld, instr);
3088       break;
3089    }
3090 }
3091 
3092 void
nir_emit_tes_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3093 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3094                                    nir_intrinsic_instr *instr)
3095 {
3096    assert(stage == MESA_SHADER_TESS_EVAL);
3097    struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3098 
3099    fs_reg dest;
3100    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3101       dest = get_nir_dest(instr->dest);
3102 
3103    switch (instr->intrinsic) {
3104    case nir_intrinsic_load_primitive_id:
3105       bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3106       break;
3107    case nir_intrinsic_load_tess_coord:
3108       /* gl_TessCoord is part of the payload in g1-3 */
3109       for (unsigned i = 0; i < 3; i++) {
3110          bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3111       }
3112       break;
3113 
3114    case nir_intrinsic_load_input:
3115    case nir_intrinsic_load_per_vertex_input: {
3116       assert(nir_dest_bit_size(instr->dest) == 32);
3117       fs_reg indirect_offset = get_indirect_offset(instr);
3118       unsigned imm_offset = instr->const_index[0];
3119       unsigned first_component = nir_intrinsic_component(instr);
3120 
3121       fs_inst *inst;
3122       if (indirect_offset.file == BAD_FILE) {
3123          /* Arbitrarily only push up to 32 vec4 slots worth of data,
3124           * which is 16 registers (since each holds 2 vec4 slots).
3125           */
3126          const unsigned max_push_slots = 32;
3127          if (imm_offset < max_push_slots) {
3128             fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3129             for (int i = 0; i < instr->num_components; i++) {
3130                unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3131                bld.MOV(offset(dest, bld, i), component(src, comp));
3132             }
3133 
3134             tes_prog_data->base.urb_read_length =
3135                MAX2(tes_prog_data->base.urb_read_length,
3136                     (imm_offset / 2) + 1);
3137          } else {
3138             /* Replicate the patch handle to all enabled channels */
3139             const fs_reg srcs[] = {
3140                retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3141             };
3142             fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3143             bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3144 
3145             if (first_component != 0) {
3146                unsigned read_components =
3147                   instr->num_components + first_component;
3148                fs_reg tmp = bld.vgrf(dest.type, read_components);
3149                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3150                                patch_handle);
3151                inst->size_written = read_components * REG_SIZE;
3152                for (unsigned i = 0; i < instr->num_components; i++) {
3153                   bld.MOV(offset(dest, bld, i),
3154                           offset(tmp, bld, i + first_component));
3155                }
3156             } else {
3157                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3158                                patch_handle);
3159                inst->size_written = instr->num_components * REG_SIZE;
3160             }
3161             inst->mlen = 1;
3162             inst->offset = imm_offset;
3163          }
3164       } else {
3165          /* Indirect indexing - use per-slot offsets as well. */
3166 
3167          /* We can only read two double components with each URB read, so
3168           * we send two read messages in that case, each one loading up to
3169           * two double components.
3170           */
3171          unsigned num_components = instr->num_components;
3172          const fs_reg srcs[] = {
3173             retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3174             indirect_offset
3175          };
3176          fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3177          bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3178 
3179          if (first_component != 0) {
3180             unsigned read_components =
3181                 num_components + first_component;
3182             fs_reg tmp = bld.vgrf(dest.type, read_components);
3183             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3184                             payload);
3185             for (unsigned i = 0; i < num_components; i++) {
3186                bld.MOV(offset(dest, bld, i),
3187                        offset(tmp, bld, i + first_component));
3188             }
3189          } else {
3190             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3191                             payload);
3192          }
3193          inst->mlen = 2;
3194          inst->offset = imm_offset;
3195          inst->size_written = (num_components + first_component) *
3196                               inst->dst.component_size(inst->exec_size);
3197       }
3198       break;
3199    }
3200    default:
3201       nir_emit_intrinsic(bld, instr);
3202       break;
3203    }
3204 }
3205 
3206 void
nir_emit_gs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3207 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3208                                   nir_intrinsic_instr *instr)
3209 {
3210    assert(stage == MESA_SHADER_GEOMETRY);
3211    fs_reg indirect_offset;
3212 
3213    fs_reg dest;
3214    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3215       dest = get_nir_dest(instr->dest);
3216 
3217    switch (instr->intrinsic) {
3218    case nir_intrinsic_load_primitive_id:
3219       assert(stage == MESA_SHADER_GEOMETRY);
3220       assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3221       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3222               retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3223       break;
3224 
3225    case nir_intrinsic_load_input:
3226       unreachable("load_input intrinsics are invalid for the GS stage");
3227 
3228    case nir_intrinsic_load_per_vertex_input:
3229       emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3230                          instr->src[1], instr->num_components,
3231                          nir_intrinsic_component(instr));
3232       break;
3233 
3234    case nir_intrinsic_emit_vertex_with_counter:
3235       emit_gs_vertex(instr->src[0], instr->const_index[0]);
3236       break;
3237 
3238    case nir_intrinsic_end_primitive_with_counter:
3239       emit_gs_end_primitive(instr->src[0]);
3240       break;
3241 
3242    case nir_intrinsic_set_vertex_and_primitive_count:
3243       bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3244       break;
3245 
3246    case nir_intrinsic_load_invocation_id: {
3247       fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3248       assert(val.file != BAD_FILE);
3249       dest.type = val.type;
3250       bld.MOV(dest, val);
3251       break;
3252    }
3253 
3254    default:
3255       nir_emit_intrinsic(bld, instr);
3256       break;
3257    }
3258 }
3259 
3260 /**
3261  * Fetch the current render target layer index.
3262  */
3263 static fs_reg
fetch_render_target_array_index(const fs_builder & bld)3264 fetch_render_target_array_index(const fs_builder &bld)
3265 {
3266    if (bld.shader->devinfo->ver >= 12) {
3267       /* The render target array index is provided in the thread payload as
3268        * bits 26:16 of r1.1.
3269        */
3270       const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3271       bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 1, 3),
3272               brw_imm_uw(0x7ff));
3273       return idx;
3274    } else if (bld.shader->devinfo->ver >= 6) {
3275       /* The render target array index is provided in the thread payload as
3276        * bits 26:16 of r0.0.
3277        */
3278       const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3279       bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3280               brw_imm_uw(0x7ff));
3281       return idx;
3282    } else {
3283       /* Pre-SNB we only ever render into the first layer of the framebuffer
3284        * since layered rendering is not implemented.
3285        */
3286       return brw_imm_ud(0);
3287    }
3288 }
3289 
3290 /**
3291  * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3292  * framebuffer at the current fragment coordinates and sample index.
3293  */
3294 fs_inst *
emit_non_coherent_fb_read(const fs_builder & bld,const fs_reg & dst,unsigned target)3295 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3296                                       unsigned target)
3297 {
3298    const struct intel_device_info *devinfo = bld.shader->devinfo;
3299 
3300    assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3301    const brw_wm_prog_key *wm_key =
3302       reinterpret_cast<const brw_wm_prog_key *>(key);
3303    assert(!wm_key->coherent_fb_fetch);
3304    const struct brw_wm_prog_data *wm_prog_data =
3305       brw_wm_prog_data(stage_prog_data);
3306 
3307    /* Calculate the surface index relative to the start of the texture binding
3308     * table block, since that's what the texturing messages expect.
3309     */
3310    const unsigned surface = target +
3311       wm_prog_data->binding_table.render_target_read_start -
3312       wm_prog_data->base.binding_table.texture_start;
3313 
3314    /* Calculate the fragment coordinates. */
3315    const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3316    bld.MOV(offset(coords, bld, 0), pixel_x);
3317    bld.MOV(offset(coords, bld, 1), pixel_y);
3318    bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3319 
3320    /* Calculate the sample index and MCS payload when multisampling.  Luckily
3321     * the MCS fetch message behaves deterministically for UMS surfaces, so it
3322     * shouldn't be necessary to recompile based on whether the framebuffer is
3323     * CMS or UMS.
3324     */
3325    if (wm_key->multisample_fbo &&
3326        nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3327       nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3328 
3329    const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3330    const fs_reg mcs = wm_key->multisample_fbo ?
3331       emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3332 
3333    /* Use either a normal or a CMS texel fetch message depending on whether
3334     * the framebuffer is single or multisample.  On SKL+ use the wide CMS
3335     * message just in case the framebuffer uses 16x multisampling, it should
3336     * be equivalent to the normal CMS fetch for lower multisampling modes.
3337     */
3338    const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3339                      devinfo->ver >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3340                      SHADER_OPCODE_TXF_CMS_LOGICAL;
3341 
3342    /* Emit the instruction. */
3343    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3344    srcs[TEX_LOGICAL_SRC_COORDINATE]       = coords;
3345    srcs[TEX_LOGICAL_SRC_LOD]              = brw_imm_ud(0);
3346    srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX]     = sample;
3347    srcs[TEX_LOGICAL_SRC_MCS]              = mcs;
3348    srcs[TEX_LOGICAL_SRC_SURFACE]          = brw_imm_ud(surface);
3349    srcs[TEX_LOGICAL_SRC_SAMPLER]          = brw_imm_ud(0);
3350    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3351    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS]  = brw_imm_ud(0);
3352 
3353    fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3354    inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3355 
3356    return inst;
3357 }
3358 
3359 /**
3360  * Actual coherent framebuffer read implemented using the native render target
3361  * read message.  Requires SKL+.
3362  */
3363 static fs_inst *
emit_coherent_fb_read(const fs_builder & bld,const fs_reg & dst,unsigned target)3364 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3365 {
3366    assert(bld.shader->devinfo->ver >= 9);
3367    fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3368    inst->target = target;
3369    inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3370 
3371    return inst;
3372 }
3373 
3374 static fs_reg
alloc_temporary(const fs_builder & bld,unsigned size,fs_reg * regs,unsigned n)3375 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3376 {
3377    if (n && regs[0].file != BAD_FILE) {
3378       return regs[0];
3379 
3380    } else {
3381       const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3382 
3383       for (unsigned i = 0; i < n; i++)
3384          regs[i] = tmp;
3385 
3386       return tmp;
3387    }
3388 }
3389 
3390 static fs_reg
alloc_frag_output(fs_visitor * v,unsigned location)3391 alloc_frag_output(fs_visitor *v, unsigned location)
3392 {
3393    assert(v->stage == MESA_SHADER_FRAGMENT);
3394    const brw_wm_prog_key *const key =
3395       reinterpret_cast<const brw_wm_prog_key *>(v->key);
3396    const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3397    const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3398 
3399    if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3400       return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3401 
3402    else if (l == FRAG_RESULT_COLOR)
3403       return alloc_temporary(v->bld, 4, v->outputs,
3404                              MAX2(key->nr_color_regions, 1));
3405 
3406    else if (l == FRAG_RESULT_DEPTH)
3407       return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3408 
3409    else if (l == FRAG_RESULT_STENCIL)
3410       return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3411 
3412    else if (l == FRAG_RESULT_SAMPLE_MASK)
3413       return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3414 
3415    else if (l >= FRAG_RESULT_DATA0 &&
3416             l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3417       return alloc_temporary(v->bld, 4,
3418                              &v->outputs[l - FRAG_RESULT_DATA0], 1);
3419 
3420    else
3421       unreachable("Invalid location");
3422 }
3423 
3424 void
nir_emit_fs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3425 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3426                                   nir_intrinsic_instr *instr)
3427 {
3428    assert(stage == MESA_SHADER_FRAGMENT);
3429 
3430    fs_reg dest;
3431    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3432       dest = get_nir_dest(instr->dest);
3433 
3434    switch (instr->intrinsic) {
3435    case nir_intrinsic_load_front_face:
3436       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3437               *emit_frontfacing_interpolation());
3438       break;
3439 
3440    case nir_intrinsic_load_sample_pos: {
3441       fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3442       assert(sample_pos.file != BAD_FILE);
3443       dest.type = sample_pos.type;
3444       bld.MOV(dest, sample_pos);
3445       bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3446       break;
3447    }
3448 
3449    case nir_intrinsic_load_layer_id:
3450       dest.type = BRW_REGISTER_TYPE_UD;
3451       bld.MOV(dest, fetch_render_target_array_index(bld));
3452       break;
3453 
3454    case nir_intrinsic_is_helper_invocation: {
3455       /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3456        * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3457        * consideration demoted invocations.  That information is stored in
3458        * f0.1.
3459        */
3460       dest.type = BRW_REGISTER_TYPE_UD;
3461 
3462       bld.MOV(dest, brw_imm_ud(0));
3463 
3464       fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3465       mov->predicate = BRW_PREDICATE_NORMAL;
3466       mov->predicate_inverse = true;
3467       mov->flag_subreg = sample_mask_flag_subreg(this);
3468       break;
3469    }
3470 
3471    case nir_intrinsic_load_helper_invocation:
3472    case nir_intrinsic_load_sample_mask_in:
3473    case nir_intrinsic_load_sample_id:
3474    case nir_intrinsic_load_frag_shading_rate: {
3475       gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3476       fs_reg val = nir_system_values[sv];
3477       assert(val.file != BAD_FILE);
3478       dest.type = val.type;
3479       bld.MOV(dest, val);
3480       break;
3481    }
3482 
3483    case nir_intrinsic_store_output: {
3484       const fs_reg src = get_nir_src(instr->src[0]);
3485       const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3486       const unsigned location = nir_intrinsic_base(instr) +
3487          SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3488       const fs_reg new_dest = retype(alloc_frag_output(this, location),
3489                                      src.type);
3490 
3491       for (unsigned j = 0; j < instr->num_components; j++)
3492          bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3493                  offset(src, bld, j));
3494 
3495       break;
3496    }
3497 
3498    case nir_intrinsic_load_output: {
3499       const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3500                                    BRW_NIR_FRAG_OUTPUT_LOCATION);
3501       assert(l >= FRAG_RESULT_DATA0);
3502       const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3503       const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3504       const fs_reg tmp = bld.vgrf(dest.type, 4);
3505 
3506       if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3507          emit_coherent_fb_read(bld, tmp, target);
3508       else
3509          emit_non_coherent_fb_read(bld, tmp, target);
3510 
3511       for (unsigned j = 0; j < instr->num_components; j++) {
3512          bld.MOV(offset(dest, bld, j),
3513                  offset(tmp, bld, nir_intrinsic_component(instr) + j));
3514       }
3515 
3516       break;
3517    }
3518 
3519    case nir_intrinsic_demote:
3520    case nir_intrinsic_discard:
3521    case nir_intrinsic_terminate:
3522    case nir_intrinsic_demote_if:
3523    case nir_intrinsic_discard_if:
3524    case nir_intrinsic_terminate_if: {
3525       /* We track our discarded pixels in f0.1/f1.0.  By predicating on it, we
3526        * can update just the flag bits that aren't yet discarded.  If there's
3527        * no condition, we emit a CMP of g0 != g0, so all currently executing
3528        * channels will get turned off.
3529        */
3530       fs_inst *cmp = NULL;
3531       if (instr->intrinsic == nir_intrinsic_demote_if ||
3532           instr->intrinsic == nir_intrinsic_discard_if ||
3533           instr->intrinsic == nir_intrinsic_terminate_if) {
3534          nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3535 
3536          if (alu != NULL &&
3537              alu->op != nir_op_bcsel &&
3538              (devinfo->ver > 5 ||
3539               (alu->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) != BRW_NIR_BOOLEAN_NEEDS_RESOLVE ||
3540               alu->op == nir_op_fneu32 || alu->op == nir_op_feq32 ||
3541               alu->op == nir_op_flt32 || alu->op == nir_op_fge32 ||
3542               alu->op == nir_op_ine32 || alu->op == nir_op_ieq32 ||
3543               alu->op == nir_op_ilt32 || alu->op == nir_op_ige32 ||
3544               alu->op == nir_op_ult32 || alu->op == nir_op_uge32)) {
3545             /* Re-emit the instruction that generated the Boolean value, but
3546              * do not store it.  Since this instruction will be conditional,
3547              * other instructions that want to use the real Boolean value may
3548              * get garbage.  This was a problem for piglit's fs-discard-exit-2
3549              * test.
3550              *
3551              * Ideally we'd detect that the instruction cannot have a
3552              * conditional modifier before emitting the instructions.  Alas,
3553              * that is nigh impossible.  Instead, we're going to assume the
3554              * instruction (or last instruction) generated can have a
3555              * conditional modifier.  If it cannot, fallback to the old-style
3556              * compare, and hope dead code elimination will clean up the
3557              * extra instructions generated.
3558              */
3559             nir_emit_alu(bld, alu, false);
3560 
3561             cmp = (fs_inst *) instructions.get_tail();
3562             if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3563                if (cmp->can_do_cmod())
3564                   cmp->conditional_mod = BRW_CONDITIONAL_Z;
3565                else
3566                   cmp = NULL;
3567             } else {
3568                /* The old sequence that would have been generated is,
3569                 * basically, bool_result == false.  This is equivalent to
3570                 * !bool_result, so negate the old modifier.
3571                 */
3572                cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3573             }
3574          }
3575 
3576          if (cmp == NULL) {
3577             cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3578                           brw_imm_d(0), BRW_CONDITIONAL_Z);
3579          }
3580       } else {
3581          fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3582                                        BRW_REGISTER_TYPE_UW));
3583          cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3584       }
3585 
3586       cmp->predicate = BRW_PREDICATE_NORMAL;
3587       cmp->flag_subreg = sample_mask_flag_subreg(this);
3588 
3589       fs_inst *jump = bld.emit(BRW_OPCODE_HALT);
3590       jump->flag_subreg = sample_mask_flag_subreg(this);
3591       jump->predicate_inverse = true;
3592 
3593       if (instr->intrinsic == nir_intrinsic_terminate ||
3594           instr->intrinsic == nir_intrinsic_terminate_if) {
3595          jump->predicate = BRW_PREDICATE_NORMAL;
3596       } else {
3597          /* Only jump when the whole quad is demoted.  For historical
3598           * reasons this is also used for discard.
3599           */
3600          jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
3601       }
3602 
3603       if (devinfo->ver < 7)
3604          limit_dispatch_width(
3605             16, "Fragment discard/demote not implemented in SIMD32 mode.\n");
3606       break;
3607    }
3608 
3609    case nir_intrinsic_load_input: {
3610       /* load_input is only used for flat inputs */
3611       assert(nir_dest_bit_size(instr->dest) == 32);
3612       unsigned base = nir_intrinsic_base(instr);
3613       unsigned comp = nir_intrinsic_component(instr);
3614       unsigned num_components = instr->num_components;
3615 
3616       /* Special case fields in the VUE header */
3617       if (base == VARYING_SLOT_LAYER)
3618          comp = 1;
3619       else if (base == VARYING_SLOT_VIEWPORT)
3620          comp = 2;
3621 
3622       for (unsigned int i = 0; i < num_components; i++) {
3623          bld.MOV(offset(dest, bld, i),
3624                  retype(component(interp_reg(base, comp + i), 3), dest.type));
3625       }
3626       break;
3627    }
3628 
3629    case nir_intrinsic_load_fs_input_interp_deltas: {
3630       assert(stage == MESA_SHADER_FRAGMENT);
3631       assert(nir_src_as_uint(instr->src[0]) == 0);
3632       fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3633                                  nir_intrinsic_component(instr));
3634       dest.type = BRW_REGISTER_TYPE_F;
3635       bld.MOV(offset(dest, bld, 0), component(interp, 3));
3636       bld.MOV(offset(dest, bld, 1), component(interp, 1));
3637       bld.MOV(offset(dest, bld, 2), component(interp, 0));
3638       break;
3639    }
3640 
3641    case nir_intrinsic_load_barycentric_pixel:
3642    case nir_intrinsic_load_barycentric_centroid:
3643    case nir_intrinsic_load_barycentric_sample: {
3644       /* Use the delta_xy values computed from the payload */
3645       const glsl_interp_mode interp_mode =
3646          (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3647       enum brw_barycentric_mode bary =
3648          brw_barycentric_mode(interp_mode, instr->intrinsic);
3649       const fs_reg srcs[] = { offset(this->delta_xy[bary], bld, 0),
3650                               offset(this->delta_xy[bary], bld, 1) };
3651       bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3652       break;
3653    }
3654 
3655    case nir_intrinsic_load_barycentric_at_sample: {
3656       const glsl_interp_mode interpolation =
3657          (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3658 
3659       if (nir_src_is_const(instr->src[0])) {
3660          unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3661 
3662          emit_pixel_interpolater_send(bld,
3663                                       FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3664                                       dest,
3665                                       fs_reg(), /* src */
3666                                       brw_imm_ud(msg_data),
3667                                       interpolation);
3668       } else {
3669          const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3670                                           BRW_REGISTER_TYPE_UD);
3671 
3672          if (nir_src_is_dynamically_uniform(instr->src[0])) {
3673             const fs_reg sample_id = bld.emit_uniformize(sample_src);
3674             const fs_reg msg_data = vgrf(glsl_type::uint_type);
3675             bld.exec_all().group(1, 0)
3676                .SHL(msg_data, sample_id, brw_imm_ud(4u));
3677             emit_pixel_interpolater_send(bld,
3678                                          FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3679                                          dest,
3680                                          fs_reg(), /* src */
3681                                          component(msg_data, 0),
3682                                          interpolation);
3683          } else {
3684             /* Make a loop that sends a message to the pixel interpolater
3685              * for the sample number in each live channel. If there are
3686              * multiple channels with the same sample number then these
3687              * will be handled simultaneously with a single interation of
3688              * the loop.
3689              */
3690             bld.emit(BRW_OPCODE_DO);
3691 
3692             /* Get the next live sample number into sample_id_reg */
3693             const fs_reg sample_id = bld.emit_uniformize(sample_src);
3694 
3695             /* Set the flag register so that we can perform the send
3696              * message on all channels that have the same sample number
3697              */
3698             bld.CMP(bld.null_reg_ud(),
3699                     sample_src, sample_id,
3700                     BRW_CONDITIONAL_EQ);
3701             const fs_reg msg_data = vgrf(glsl_type::uint_type);
3702             bld.exec_all().group(1, 0)
3703                .SHL(msg_data, sample_id, brw_imm_ud(4u));
3704             fs_inst *inst =
3705                emit_pixel_interpolater_send(bld,
3706                                             FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3707                                             dest,
3708                                             fs_reg(), /* src */
3709                                             component(msg_data, 0),
3710                                             interpolation);
3711             set_predicate(BRW_PREDICATE_NORMAL, inst);
3712 
3713             /* Continue the loop if there are any live channels left */
3714             set_predicate_inv(BRW_PREDICATE_NORMAL,
3715                               true, /* inverse */
3716                               bld.emit(BRW_OPCODE_WHILE));
3717          }
3718       }
3719       break;
3720    }
3721 
3722    case nir_intrinsic_load_barycentric_at_offset: {
3723       const glsl_interp_mode interpolation =
3724          (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3725 
3726       nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3727 
3728       if (const_offset) {
3729          assert(nir_src_bit_size(instr->src[0]) == 32);
3730          unsigned off_x = const_offset[0].u32 & 0xf;
3731          unsigned off_y = const_offset[1].u32 & 0xf;
3732 
3733          emit_pixel_interpolater_send(bld,
3734                                       FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3735                                       dest,
3736                                       fs_reg(), /* src */
3737                                       brw_imm_ud(off_x | (off_y << 4)),
3738                                       interpolation);
3739       } else {
3740          fs_reg src = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_D);
3741          const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3742          emit_pixel_interpolater_send(bld,
3743                                       opcode,
3744                                       dest,
3745                                       src,
3746                                       brw_imm_ud(0u),
3747                                       interpolation);
3748       }
3749       break;
3750    }
3751 
3752    case nir_intrinsic_load_frag_coord:
3753       emit_fragcoord_interpolation(dest);
3754       break;
3755 
3756    case nir_intrinsic_load_interpolated_input: {
3757       assert(instr->src[0].ssa &&
3758              instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3759       nir_intrinsic_instr *bary_intrinsic =
3760          nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3761       nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3762       enum glsl_interp_mode interp_mode =
3763          (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3764       fs_reg dst_xy;
3765 
3766       if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3767           bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3768          /* Use the result of the PI message. */
3769          dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3770       } else {
3771          /* Use the delta_xy values computed from the payload */
3772          enum brw_barycentric_mode bary =
3773             brw_barycentric_mode(interp_mode, bary_intrin);
3774          dst_xy = this->delta_xy[bary];
3775       }
3776 
3777       for (unsigned int i = 0; i < instr->num_components; i++) {
3778          fs_reg interp =
3779             component(interp_reg(nir_intrinsic_base(instr),
3780                                  nir_intrinsic_component(instr) + i), 0);
3781          interp.type = BRW_REGISTER_TYPE_F;
3782          dest.type = BRW_REGISTER_TYPE_F;
3783 
3784          if (devinfo->ver < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3785             fs_reg tmp = vgrf(glsl_type::float_type);
3786             bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3787             bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3788          } else {
3789             bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3790          }
3791       }
3792       break;
3793    }
3794 
3795    default:
3796       nir_emit_intrinsic(bld, instr);
3797       break;
3798    }
3799 }
3800 
3801 void
nir_emit_cs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3802 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3803                                   nir_intrinsic_instr *instr)
3804 {
3805    assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3806    struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3807 
3808    fs_reg dest;
3809    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3810       dest = get_nir_dest(instr->dest);
3811 
3812    switch (instr->intrinsic) {
3813    case nir_intrinsic_control_barrier:
3814       /* The whole workgroup fits in a single HW thread, so all the
3815        * invocations are already executed lock-step.  Instead of an actual
3816        * barrier just emit a scheduling fence, that will generate no code.
3817        */
3818       if (!nir->info.workgroup_size_variable &&
3819           workgroup_size() <= dispatch_width) {
3820          bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE);
3821          break;
3822       }
3823 
3824       emit_barrier();
3825       cs_prog_data->uses_barrier = true;
3826       break;
3827 
3828    case nir_intrinsic_load_subgroup_id:
3829       if (devinfo->verx10 >= 125)
3830          bld.AND(retype(dest, BRW_REGISTER_TYPE_UD),
3831                  retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
3832                  brw_imm_ud(INTEL_MASK(7, 0)));
3833       else
3834          bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3835       break;
3836 
3837    case nir_intrinsic_load_local_invocation_id:
3838    case nir_intrinsic_load_workgroup_id: {
3839       gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3840       fs_reg val = nir_system_values[sv];
3841       assert(val.file != BAD_FILE);
3842       dest.type = val.type;
3843       for (unsigned i = 0; i < 3; i++)
3844          bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3845       break;
3846    }
3847 
3848    case nir_intrinsic_load_num_workgroups: {
3849       assert(nir_dest_bit_size(instr->dest) == 32);
3850       const unsigned surface =
3851          cs_prog_data->binding_table.work_groups_start;
3852 
3853       cs_prog_data->uses_num_work_groups = true;
3854 
3855       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3856       srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3857       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3858       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(3); /* num components */
3859       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(0);
3860       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
3861       fs_inst *inst =
3862          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3863                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3864       inst->size_written = 3 * dispatch_width * 4;
3865       break;
3866    }
3867 
3868    case nir_intrinsic_shared_atomic_add:
3869    case nir_intrinsic_shared_atomic_imin:
3870    case nir_intrinsic_shared_atomic_umin:
3871    case nir_intrinsic_shared_atomic_imax:
3872    case nir_intrinsic_shared_atomic_umax:
3873    case nir_intrinsic_shared_atomic_and:
3874    case nir_intrinsic_shared_atomic_or:
3875    case nir_intrinsic_shared_atomic_xor:
3876    case nir_intrinsic_shared_atomic_exchange:
3877    case nir_intrinsic_shared_atomic_comp_swap:
3878       nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3879       break;
3880    case nir_intrinsic_shared_atomic_fmin:
3881    case nir_intrinsic_shared_atomic_fmax:
3882    case nir_intrinsic_shared_atomic_fcomp_swap:
3883       nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3884       break;
3885 
3886    case nir_intrinsic_load_shared: {
3887       assert(devinfo->ver >= 7);
3888       assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3889 
3890       const unsigned bit_size = nir_dest_bit_size(instr->dest);
3891       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3892       srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
3893       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3894       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3895       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
3896 
3897       /* Make dest unsigned because that's what the temporary will be */
3898       dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3899 
3900       /* Read the vector */
3901       assert(nir_dest_bit_size(instr->dest) <= 32);
3902       assert(nir_intrinsic_align(instr) > 0);
3903       if (nir_dest_bit_size(instr->dest) == 32 &&
3904           nir_intrinsic_align(instr) >= 4) {
3905          assert(nir_dest_num_components(instr->dest) <= 4);
3906          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3907          fs_inst *inst =
3908             bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3909                      dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3910          inst->size_written = instr->num_components * dispatch_width * 4;
3911       } else {
3912          assert(nir_dest_num_components(instr->dest) == 1);
3913          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3914 
3915          fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3916          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3917                   read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3918          bld.MOV(dest, subscript(read_result, dest.type, 0));
3919       }
3920       break;
3921    }
3922 
3923    case nir_intrinsic_store_shared: {
3924       assert(devinfo->ver >= 7);
3925       assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3926 
3927       const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3928       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3929       srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
3930       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3931       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3932       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
3933 
3934       fs_reg data = get_nir_src(instr->src[0]);
3935       data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3936 
3937       assert(nir_src_bit_size(instr->src[0]) <= 32);
3938       assert(nir_intrinsic_write_mask(instr) ==
3939              (1u << instr->num_components) - 1);
3940       assert(nir_intrinsic_align(instr) > 0);
3941       if (nir_src_bit_size(instr->src[0]) == 32 &&
3942           nir_intrinsic_align(instr) >= 4) {
3943          assert(nir_src_num_components(instr->src[0]) <= 4);
3944          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3945          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3946          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3947                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3948       } else {
3949          assert(nir_src_num_components(instr->src[0]) == 1);
3950          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3951 
3952          srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3953          bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3954 
3955          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3956                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3957       }
3958       break;
3959    }
3960 
3961    case nir_intrinsic_load_workgroup_size: {
3962       assert(compiler->lower_variable_group_size);
3963       assert(nir->info.workgroup_size_variable);
3964       for (unsigned i = 0; i < 3; i++) {
3965          bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
3966             group_size[i]);
3967       }
3968       break;
3969    }
3970 
3971    default:
3972       nir_emit_intrinsic(bld, instr);
3973       break;
3974    }
3975 }
3976 
3977 void
nir_emit_bs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3978 fs_visitor::nir_emit_bs_intrinsic(const fs_builder &bld,
3979                                   nir_intrinsic_instr *instr)
3980 {
3981    assert(brw_shader_stage_is_bindless(stage));
3982 
3983    fs_reg dest;
3984    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3985       dest = get_nir_dest(instr->dest);
3986 
3987    switch (instr->intrinsic) {
3988    case nir_intrinsic_load_btd_global_arg_addr_intel:
3989       bld.MOV(dest, retype(brw_vec1_grf(2, 0), dest.type));
3990       break;
3991 
3992    case nir_intrinsic_load_btd_local_arg_addr_intel:
3993       bld.MOV(dest, retype(brw_vec1_grf(2, 2), dest.type));
3994       break;
3995 
3996    case nir_intrinsic_trace_ray_initial_intel:
3997       bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL,
3998                bld.null_reg_ud(),
3999                brw_imm_ud(BRW_RT_BVH_LEVEL_WORLD),
4000                brw_imm_ud(GEN_RT_TRACE_RAY_INITAL));
4001       break;
4002 
4003    case nir_intrinsic_trace_ray_commit_intel:
4004       bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL,
4005                bld.null_reg_ud(),
4006                brw_imm_ud(BRW_RT_BVH_LEVEL_OBJECT),
4007                brw_imm_ud(GEN_RT_TRACE_RAY_COMMIT));
4008       break;
4009 
4010    case nir_intrinsic_trace_ray_continue_intel:
4011       bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL,
4012                bld.null_reg_ud(),
4013                brw_imm_ud(BRW_RT_BVH_LEVEL_OBJECT),
4014                brw_imm_ud(GEN_RT_TRACE_RAY_CONTINUE));
4015       break;
4016 
4017    default:
4018       nir_emit_intrinsic(bld, instr);
4019       break;
4020    }
4021 }
4022 
4023 static fs_reg
brw_nir_reduction_op_identity(const fs_builder & bld,nir_op op,brw_reg_type type)4024 brw_nir_reduction_op_identity(const fs_builder &bld,
4025                               nir_op op, brw_reg_type type)
4026 {
4027    nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
4028    switch (type_sz(type)) {
4029    case 1:
4030       if (type == BRW_REGISTER_TYPE_UB) {
4031          return brw_imm_uw(value.u8);
4032       } else {
4033          assert(type == BRW_REGISTER_TYPE_B);
4034          return brw_imm_w(value.i8);
4035       }
4036    case 2:
4037       return retype(brw_imm_uw(value.u16), type);
4038    case 4:
4039       return retype(brw_imm_ud(value.u32), type);
4040    case 8:
4041       if (type == BRW_REGISTER_TYPE_DF)
4042          return setup_imm_df(bld, value.f64);
4043       else
4044          return retype(brw_imm_u64(value.u64), type);
4045    default:
4046       unreachable("Invalid type size");
4047    }
4048 }
4049 
4050 static opcode
brw_op_for_nir_reduction_op(nir_op op)4051 brw_op_for_nir_reduction_op(nir_op op)
4052 {
4053    switch (op) {
4054    case nir_op_iadd: return BRW_OPCODE_ADD;
4055    case nir_op_fadd: return BRW_OPCODE_ADD;
4056    case nir_op_imul: return BRW_OPCODE_MUL;
4057    case nir_op_fmul: return BRW_OPCODE_MUL;
4058    case nir_op_imin: return BRW_OPCODE_SEL;
4059    case nir_op_umin: return BRW_OPCODE_SEL;
4060    case nir_op_fmin: return BRW_OPCODE_SEL;
4061    case nir_op_imax: return BRW_OPCODE_SEL;
4062    case nir_op_umax: return BRW_OPCODE_SEL;
4063    case nir_op_fmax: return BRW_OPCODE_SEL;
4064    case nir_op_iand: return BRW_OPCODE_AND;
4065    case nir_op_ior:  return BRW_OPCODE_OR;
4066    case nir_op_ixor: return BRW_OPCODE_XOR;
4067    default:
4068       unreachable("Invalid reduction operation");
4069    }
4070 }
4071 
4072 static brw_conditional_mod
brw_cond_mod_for_nir_reduction_op(nir_op op)4073 brw_cond_mod_for_nir_reduction_op(nir_op op)
4074 {
4075    switch (op) {
4076    case nir_op_iadd: return BRW_CONDITIONAL_NONE;
4077    case nir_op_fadd: return BRW_CONDITIONAL_NONE;
4078    case nir_op_imul: return BRW_CONDITIONAL_NONE;
4079    case nir_op_fmul: return BRW_CONDITIONAL_NONE;
4080    case nir_op_imin: return BRW_CONDITIONAL_L;
4081    case nir_op_umin: return BRW_CONDITIONAL_L;
4082    case nir_op_fmin: return BRW_CONDITIONAL_L;
4083    case nir_op_imax: return BRW_CONDITIONAL_GE;
4084    case nir_op_umax: return BRW_CONDITIONAL_GE;
4085    case nir_op_fmax: return BRW_CONDITIONAL_GE;
4086    case nir_op_iand: return BRW_CONDITIONAL_NONE;
4087    case nir_op_ior:  return BRW_CONDITIONAL_NONE;
4088    case nir_op_ixor: return BRW_CONDITIONAL_NONE;
4089    default:
4090       unreachable("Invalid reduction operation");
4091    }
4092 }
4093 
4094 fs_reg
get_nir_image_intrinsic_image(const brw::fs_builder & bld,nir_intrinsic_instr * instr)4095 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
4096                                           nir_intrinsic_instr *instr)
4097 {
4098    fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
4099    fs_reg surf_index = image;
4100 
4101    if (stage_prog_data->binding_table.image_start > 0) {
4102       if (image.file == BRW_IMMEDIATE_VALUE) {
4103          surf_index =
4104             brw_imm_ud(image.d + stage_prog_data->binding_table.image_start);
4105       } else {
4106          surf_index = vgrf(glsl_type::uint_type);
4107          bld.ADD(surf_index, image,
4108                  brw_imm_d(stage_prog_data->binding_table.image_start));
4109       }
4110    }
4111 
4112    return bld.emit_uniformize(surf_index);
4113 }
4114 
4115 fs_reg
get_nir_ssbo_intrinsic_index(const brw::fs_builder & bld,nir_intrinsic_instr * instr)4116 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
4117                                          nir_intrinsic_instr *instr)
4118 {
4119    /* SSBO stores are weird in that their index is in src[1] */
4120    const bool is_store =
4121       instr->intrinsic == nir_intrinsic_store_ssbo ||
4122       instr->intrinsic == nir_intrinsic_store_ssbo_block_intel;
4123    const unsigned src = is_store ? 1 : 0;
4124 
4125    if (nir_src_is_const(instr->src[src])) {
4126       unsigned index = stage_prog_data->binding_table.ssbo_start +
4127                        nir_src_as_uint(instr->src[src]);
4128       return brw_imm_ud(index);
4129    } else {
4130       fs_reg surf_index = vgrf(glsl_type::uint_type);
4131       bld.ADD(surf_index, get_nir_src(instr->src[src]),
4132               brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4133       return bld.emit_uniformize(surf_index);
4134    }
4135 }
4136 
4137 /**
4138  * The offsets we get from NIR act as if each SIMD channel has it's own blob
4139  * of contiguous space.  However, if we actually place each SIMD channel in
4140  * it's own space, we end up with terrible cache performance because each SIMD
4141  * channel accesses a different cache line even when they're all accessing the
4142  * same byte offset.  To deal with this problem, we swizzle the address using
4143  * a simple algorithm which ensures that any time a SIMD message reads or
4144  * writes the same address, it's all in the same cache line.  We have to keep
4145  * the bottom two bits fixed so that we can read/write up to a dword at a time
4146  * and the individual element is contiguous.  We do this by splitting the
4147  * address as follows:
4148  *
4149  *    31                             4-6           2          0
4150  *    +-------------------------------+------------+----------+
4151  *    |        Hi address bits        | chan index | addr low |
4152  *    +-------------------------------+------------+----------+
4153  *
4154  * In other words, the bottom two address bits stay, and the top 30 get
4155  * shifted up so that we can stick the SIMD channel index in the middle.  This
4156  * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
4157  * at the same logical offset, the scratch read/write instruction acts on
4158  * continuous elements and we get good cache locality.
4159  */
4160 fs_reg
swizzle_nir_scratch_addr(const brw::fs_builder & bld,const fs_reg & nir_addr,bool in_dwords)4161 fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
4162                                      const fs_reg &nir_addr,
4163                                      bool in_dwords)
4164 {
4165    const fs_reg &chan_index =
4166       nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
4167    const unsigned chan_index_bits = ffs(dispatch_width) - 1;
4168 
4169    fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4170    if (in_dwords) {
4171       /* In this case, we know the address is aligned to a DWORD and we want
4172        * the final address in DWORDs.
4173        */
4174       bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
4175       bld.OR(addr, addr, chan_index);
4176    } else {
4177       /* This case substantially more annoying because we have to pay
4178        * attention to those pesky two bottom bits.
4179        */
4180       fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
4181       bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
4182       bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
4183       fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4184       bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
4185       bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
4186       bld.OR(addr, addr, addr_hi);
4187       bld.OR(addr, addr, chan_addr);
4188    }
4189    return addr;
4190 }
4191 
4192 static unsigned
choose_oword_block_size_dwords(unsigned dwords)4193 choose_oword_block_size_dwords(unsigned dwords)
4194 {
4195    unsigned block;
4196    if (dwords >= 32) {
4197       block = 32;
4198    } else if (dwords >= 16) {
4199       block = 16;
4200    } else {
4201       block = 8;
4202    }
4203    assert(block <= dwords);
4204    return block;
4205 }
4206 
4207 static void
increment_a64_address(const fs_builder & bld,fs_reg address,uint32_t v)4208 increment_a64_address(const fs_builder &bld, fs_reg address, uint32_t v)
4209 {
4210    if (bld.shader->devinfo->has_64bit_int) {
4211       bld.ADD(address, address, brw_imm_ud(v));
4212    } else {
4213       fs_reg low = retype(address, BRW_REGISTER_TYPE_UD);
4214       fs_reg high = offset(low, bld, 1);
4215 
4216       /* Add low and if that overflows, add carry to high. */
4217       bld.ADD(low, low, brw_imm_ud(v))->conditional_mod = BRW_CONDITIONAL_O;
4218       bld.ADD(high, high, brw_imm_ud(0x1))->predicate = BRW_PREDICATE_NORMAL;
4219    }
4220 }
4221 
4222 static fs_reg
emit_fence(const fs_builder & bld,enum opcode opcode,uint8_t sfid,bool commit_enable,uint8_t bti)4223 emit_fence(const fs_builder &bld, enum opcode opcode,
4224            uint8_t sfid, bool commit_enable, uint8_t bti)
4225 {
4226    assert(opcode == SHADER_OPCODE_INTERLOCK ||
4227           opcode == SHADER_OPCODE_MEMORY_FENCE);
4228 
4229    fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD);
4230    fs_inst *fence = bld.emit(opcode, dst, brw_vec8_grf(0, 0),
4231                              brw_imm_ud(commit_enable),
4232                              brw_imm_ud(bti));
4233    fence->sfid = sfid;
4234    return dst;
4235 }
4236 
4237 void
nir_emit_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)4238 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4239 {
4240    fs_reg dest;
4241    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4242       dest = get_nir_dest(instr->dest);
4243 
4244    switch (instr->intrinsic) {
4245    case nir_intrinsic_image_load:
4246    case nir_intrinsic_image_store:
4247    case nir_intrinsic_image_atomic_add:
4248    case nir_intrinsic_image_atomic_imin:
4249    case nir_intrinsic_image_atomic_umin:
4250    case nir_intrinsic_image_atomic_imax:
4251    case nir_intrinsic_image_atomic_umax:
4252    case nir_intrinsic_image_atomic_and:
4253    case nir_intrinsic_image_atomic_or:
4254    case nir_intrinsic_image_atomic_xor:
4255    case nir_intrinsic_image_atomic_exchange:
4256    case nir_intrinsic_image_atomic_comp_swap:
4257    case nir_intrinsic_bindless_image_load:
4258    case nir_intrinsic_bindless_image_store:
4259    case nir_intrinsic_bindless_image_atomic_add:
4260    case nir_intrinsic_bindless_image_atomic_imin:
4261    case nir_intrinsic_bindless_image_atomic_umin:
4262    case nir_intrinsic_bindless_image_atomic_imax:
4263    case nir_intrinsic_bindless_image_atomic_umax:
4264    case nir_intrinsic_bindless_image_atomic_and:
4265    case nir_intrinsic_bindless_image_atomic_or:
4266    case nir_intrinsic_bindless_image_atomic_xor:
4267    case nir_intrinsic_bindless_image_atomic_exchange:
4268    case nir_intrinsic_bindless_image_atomic_comp_swap: {
4269       /* Get some metadata from the image intrinsic. */
4270       const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4271 
4272       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4273 
4274       switch (instr->intrinsic) {
4275       case nir_intrinsic_image_load:
4276       case nir_intrinsic_image_store:
4277       case nir_intrinsic_image_atomic_add:
4278       case nir_intrinsic_image_atomic_imin:
4279       case nir_intrinsic_image_atomic_umin:
4280       case nir_intrinsic_image_atomic_imax:
4281       case nir_intrinsic_image_atomic_umax:
4282       case nir_intrinsic_image_atomic_and:
4283       case nir_intrinsic_image_atomic_or:
4284       case nir_intrinsic_image_atomic_xor:
4285       case nir_intrinsic_image_atomic_exchange:
4286       case nir_intrinsic_image_atomic_comp_swap:
4287          srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4288             get_nir_image_intrinsic_image(bld, instr);
4289          break;
4290 
4291       default:
4292          /* Bindless */
4293          srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4294             bld.emit_uniformize(get_nir_src(instr->src[0]));
4295          break;
4296       }
4297 
4298       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4299       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4300          brw_imm_ud(nir_image_intrinsic_coord_components(instr));
4301 
4302       /* Emit an image load, store or atomic op. */
4303       if (instr->intrinsic == nir_intrinsic_image_load ||
4304           instr->intrinsic == nir_intrinsic_bindless_image_load) {
4305          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4306          srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4307          fs_inst *inst =
4308             bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4309                      dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4310          inst->size_written = instr->num_components * dispatch_width * 4;
4311       } else if (instr->intrinsic == nir_intrinsic_image_store ||
4312                  instr->intrinsic == nir_intrinsic_bindless_image_store) {
4313          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4314          srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4315          srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4316          bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4317                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4318       } else {
4319          unsigned num_srcs = info->num_srcs;
4320          int op = brw_aop_for_nir_intrinsic(instr);
4321          if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4322             assert(num_srcs == 4);
4323             num_srcs = 3;
4324          }
4325 
4326          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4327 
4328          fs_reg data;
4329          if (num_srcs >= 4)
4330             data = get_nir_src(instr->src[3]);
4331          if (num_srcs >= 5) {
4332             fs_reg tmp = bld.vgrf(data.type, 2);
4333             fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4334             bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4335             data = tmp;
4336          }
4337          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4338          srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4339 
4340          bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4341                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4342       }
4343       break;
4344    }
4345 
4346    case nir_intrinsic_image_size:
4347    case nir_intrinsic_bindless_image_size: {
4348       /* Cube image sizes should have previously been lowered to a 2D array */
4349       assert(nir_intrinsic_image_dim(instr) != GLSL_SAMPLER_DIM_CUBE);
4350 
4351       /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4352        * into will handle the binding table index for us in the geneerator.
4353        * Incidentally, this means that we can handle bindless with exactly the
4354        * same code.
4355        */
4356       fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4357                             BRW_REGISTER_TYPE_UD);
4358       image = bld.emit_uniformize(image);
4359 
4360       assert(nir_src_as_uint(instr->src[1]) == 0);
4361 
4362       fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4363       if (instr->intrinsic == nir_intrinsic_image_size)
4364          srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4365       else
4366          srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4367       srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4368       srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4369       srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4370 
4371       /* Since the image size is always uniform, we can just emit a SIMD8
4372        * query instruction and splat the result out.
4373        */
4374       const fs_builder ubld = bld.exec_all().group(8, 0);
4375 
4376       fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4377       fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4378                                 tmp, srcs, ARRAY_SIZE(srcs));
4379       inst->size_written = 4 * REG_SIZE;
4380 
4381       for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4382          bld.MOV(offset(retype(dest, tmp.type), bld, c),
4383                  component(offset(tmp, ubld, c), 0));
4384       }
4385       break;
4386    }
4387 
4388    case nir_intrinsic_image_load_raw_intel: {
4389       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4390       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4391          get_nir_image_intrinsic_image(bld, instr);
4392       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4393       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4394       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4395       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4396 
4397       fs_inst *inst =
4398          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4399                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4400       inst->size_written = instr->num_components * dispatch_width * 4;
4401       break;
4402    }
4403 
4404    case nir_intrinsic_image_store_raw_intel: {
4405       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4406       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4407          get_nir_image_intrinsic_image(bld, instr);
4408       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4409       srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4410       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4411       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4412       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4413 
4414       bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4415                fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4416       break;
4417    }
4418 
4419    case nir_intrinsic_scoped_barrier:
4420       assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
4421       FALLTHROUGH;
4422    case nir_intrinsic_group_memory_barrier:
4423    case nir_intrinsic_memory_barrier_shared:
4424    case nir_intrinsic_memory_barrier_buffer:
4425    case nir_intrinsic_memory_barrier_image:
4426    case nir_intrinsic_memory_barrier:
4427    case nir_intrinsic_begin_invocation_interlock:
4428    case nir_intrinsic_end_invocation_interlock: {
4429       bool ugm_fence, slm_fence, tgm_fence, urb_fence;
4430       const enum opcode opcode =
4431          instr->intrinsic == nir_intrinsic_begin_invocation_interlock ?
4432          SHADER_OPCODE_INTERLOCK : SHADER_OPCODE_MEMORY_FENCE;
4433 
4434       switch (instr->intrinsic) {
4435       case nir_intrinsic_scoped_barrier: {
4436          nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4437          ugm_fence = modes & (nir_var_mem_ssbo | nir_var_mem_global);
4438          slm_fence = modes & nir_var_mem_shared;
4439          tgm_fence = modes & nir_var_mem_ssbo;
4440          urb_fence = modes & nir_var_shader_out;
4441          break;
4442       }
4443 
4444       case nir_intrinsic_begin_invocation_interlock:
4445       case nir_intrinsic_end_invocation_interlock:
4446          /* For beginInvocationInterlockARB(), we will generate a memory fence
4447           * but with a different opcode so that generator can pick SENDC
4448           * instead of SEND.
4449           *
4450           * For endInvocationInterlockARB(), we need to insert a memory fence which
4451           * stalls in the shader until the memory transactions prior to that
4452           * fence are complete.  This ensures that the shader does not end before
4453           * any writes from its critical section have landed.  Otherwise, you can
4454           * end up with a case where the next invocation on that pixel properly
4455           * stalls for previous FS invocation on its pixel to complete but
4456           * doesn't actually wait for the dataport memory transactions from that
4457           * thread to land before submitting its own.
4458           *
4459           * Handling them here will allow the logic for IVB render cache (see
4460           * below) to be reused.
4461           */
4462          assert(stage == MESA_SHADER_FRAGMENT);
4463          ugm_fence = tgm_fence = true;
4464          slm_fence = urb_fence = false;
4465          break;
4466 
4467       default:
4468          ugm_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared &&
4469                      instr->intrinsic != nir_intrinsic_memory_barrier_image;
4470          slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4471                      instr->intrinsic == nir_intrinsic_memory_barrier ||
4472                      instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4473          tgm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4474                      instr->intrinsic == nir_intrinsic_memory_barrier ||
4475                      instr->intrinsic == nir_intrinsic_memory_barrier_image;
4476          urb_fence = instr->intrinsic == nir_intrinsic_memory_barrier;
4477          break;
4478       }
4479 
4480       if (nir->info.shared_size > 0) {
4481          assert(gl_shader_stage_uses_workgroup(stage));
4482       } else {
4483          slm_fence = false;
4484       }
4485 
4486       /* If the workgroup fits in a single HW thread, the messages for SLM are
4487        * processed in-order and the shader itself is already synchronized so
4488        * the memory fence is not necessary.
4489        *
4490        * TODO: Check if applies for many HW threads sharing same Data Port.
4491        */
4492       if (!nir->info.workgroup_size_variable &&
4493           slm_fence && workgroup_size() <= dispatch_width)
4494          slm_fence = false;
4495 
4496       if (stage != MESA_SHADER_TESS_CTRL)
4497          urb_fence = false;
4498 
4499       unsigned fence_regs_count = 0;
4500       fs_reg fence_regs[3] = {};
4501 
4502       const fs_builder ubld = bld.group(8, 0);
4503 
4504       if (devinfo->has_lsc) {
4505          assert(devinfo->verx10 >= 125);
4506          if (ugm_fence) {
4507             fence_regs[fence_regs_count++] =
4508                emit_fence(ubld, opcode, GFX12_SFID_UGM,
4509                           true /* commit_enable */,
4510                           0 /* bti; ignored for LSC */);
4511          }
4512 
4513          if (tgm_fence) {
4514             fence_regs[fence_regs_count++] =
4515                emit_fence(ubld, opcode, GFX12_SFID_TGM,
4516                           true /* commit_enable */,
4517                           0 /* bti; ignored for LSC */);
4518          }
4519 
4520          if (slm_fence) {
4521             assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4522             fence_regs[fence_regs_count++] =
4523                emit_fence(ubld, opcode, GFX12_SFID_SLM,
4524                           true /* commit_enable */,
4525                           0 /* BTI; ignored for LSC */);
4526          }
4527 
4528          if (urb_fence) {
4529             assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4530             fence_regs[fence_regs_count++] =
4531                emit_fence(ubld, opcode, BRW_SFID_URB,
4532                           true /* commit_enable */,
4533                           0 /* BTI; ignored for LSC */);
4534          }
4535       } else if (devinfo->ver >= 11) {
4536          if (tgm_fence || ugm_fence || urb_fence) {
4537             fence_regs[fence_regs_count++] =
4538                emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE,
4539                           true /* commit_enable HSD ES # 1404612949 */,
4540                           0 /* BTI = 0 means data cache */);
4541          }
4542 
4543          if (slm_fence) {
4544             assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4545             fence_regs[fence_regs_count++] =
4546                emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE,
4547                           true /* commit_enable HSD ES # 1404612949 */,
4548                           GFX7_BTI_SLM);
4549          }
4550       } else {
4551          /* Prior to Icelake, they're all lumped into a single cache except on
4552           * Ivy Bridge and Bay Trail where typed messages actually go through
4553           * the render cache.  There, we need both fences because we may
4554           * access storage images as either typed or untyped.
4555           */
4556          const bool render_fence = tgm_fence && devinfo->verx10 == 70;
4557 
4558          const bool commit_enable = render_fence ||
4559             instr->intrinsic == nir_intrinsic_end_invocation_interlock;
4560 
4561          if (tgm_fence || ugm_fence || slm_fence || urb_fence) {
4562             fence_regs[fence_regs_count++] =
4563                emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE,
4564                           commit_enable, 0 /* BTI */);
4565          }
4566 
4567          if (render_fence) {
4568             fence_regs[fence_regs_count++] =
4569                emit_fence(ubld, opcode, GFX6_SFID_DATAPORT_RENDER_CACHE,
4570                           commit_enable, /* bti */ 0);
4571          }
4572       }
4573 
4574       assert(fence_regs_count <= ARRAY_SIZE(fence_regs));
4575 
4576       /* There are three cases where we want to insert a stall:
4577        *
4578        *  1. If we're a nir_intrinsic_end_invocation_interlock.  This is
4579        *     required to ensure that the shader EOT doesn't happen until
4580        *     after the fence returns.  Otherwise, we might end up with the
4581        *     next shader invocation for that pixel not respecting our fence
4582        *     because it may happen on a different HW thread.
4583        *
4584        *  2. If we have multiple fences.  This is required to ensure that
4585        *     they all complete and nothing gets weirdly out-of-order.
4586        *
4587        *  3. If we have no fences.  In this case, we need at least a
4588        *     scheduling barrier to keep the compiler from moving things
4589        *     around in an invalid way.
4590        */
4591       if (instr->intrinsic == nir_intrinsic_end_invocation_interlock ||
4592           fence_regs_count != 1) {
4593          ubld.exec_all().group(1, 0).emit(
4594             FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(),
4595             fence_regs, fence_regs_count);
4596       }
4597 
4598       break;
4599    }
4600 
4601    case nir_intrinsic_memory_barrier_tcs_patch:
4602       break;
4603 
4604    case nir_intrinsic_shader_clock: {
4605       /* We cannot do anything if there is an event, so ignore it for now */
4606       const fs_reg shader_clock = get_timestamp(bld);
4607       const fs_reg srcs[] = { component(shader_clock, 0),
4608                               component(shader_clock, 1) };
4609       bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4610       break;
4611    }
4612 
4613    case nir_intrinsic_image_samples:
4614       /* The driver does not support multi-sampled images. */
4615       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4616       break;
4617 
4618    case nir_intrinsic_load_reloc_const_intel: {
4619       uint32_t id = nir_intrinsic_param_idx(instr);
4620       bld.emit(SHADER_OPCODE_MOV_RELOC_IMM,
4621                dest, brw_imm_ud(id));
4622       break;
4623    }
4624 
4625    case nir_intrinsic_load_uniform: {
4626       /* Offsets are in bytes but they should always aligned to
4627        * the type size
4628        */
4629       assert(instr->const_index[0] % 4 == 0 ||
4630              instr->const_index[0] % type_sz(dest.type) == 0);
4631 
4632       fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4633 
4634       if (nir_src_is_const(instr->src[0])) {
4635          unsigned load_offset = nir_src_as_uint(instr->src[0]);
4636          assert(load_offset % type_sz(dest.type) == 0);
4637          /* For 16-bit types we add the module of the const_index[0]
4638           * offset to access to not 32-bit aligned element
4639           */
4640          src.offset = load_offset + instr->const_index[0] % 4;
4641 
4642          for (unsigned j = 0; j < instr->num_components; j++) {
4643             bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4644          }
4645       } else {
4646          fs_reg indirect = retype(get_nir_src(instr->src[0]),
4647                                   BRW_REGISTER_TYPE_UD);
4648 
4649          /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4650           * go past the end of the uniform.  In order to keep the n'th
4651           * component from running past, we subtract off the size of all but
4652           * one component of the vector.
4653           */
4654          assert(instr->const_index[1] >=
4655                 instr->num_components * (int) type_sz(dest.type));
4656          unsigned read_size = instr->const_index[1] -
4657             (instr->num_components - 1) * type_sz(dest.type);
4658 
4659          bool supports_64bit_indirects =
4660             !devinfo->is_cherryview && !intel_device_info_is_9lp(devinfo);
4661 
4662          if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4663             for (unsigned j = 0; j < instr->num_components; j++) {
4664                bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4665                         offset(dest, bld, j), offset(src, bld, j),
4666                         indirect, brw_imm_ud(read_size));
4667             }
4668          } else {
4669             const unsigned num_mov_indirects =
4670                type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4671             /* We read a little bit less per MOV INDIRECT, as they are now
4672              * 32-bits ones instead of 64-bit. Fix read_size then.
4673              */
4674             const unsigned read_size_32bit = read_size -
4675                 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4676             for (unsigned j = 0; j < instr->num_components; j++) {
4677                for (unsigned i = 0; i < num_mov_indirects; i++) {
4678                   bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4679                            subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4680                            subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4681                            indirect, brw_imm_ud(read_size_32bit));
4682                }
4683             }
4684          }
4685       }
4686       break;
4687    }
4688 
4689    case nir_intrinsic_load_ubo: {
4690       fs_reg surf_index;
4691       if (nir_src_is_const(instr->src[0])) {
4692          const unsigned index = stage_prog_data->binding_table.ubo_start +
4693                                 nir_src_as_uint(instr->src[0]);
4694          surf_index = brw_imm_ud(index);
4695       } else {
4696          /* The block index is not a constant. Evaluate the index expression
4697           * per-channel and add the base UBO index; we have to select a value
4698           * from any live channel.
4699           */
4700          surf_index = vgrf(glsl_type::uint_type);
4701          bld.ADD(surf_index, get_nir_src(instr->src[0]),
4702                  brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4703          surf_index = bld.emit_uniformize(surf_index);
4704       }
4705 
4706       if (!nir_src_is_const(instr->src[1])) {
4707          fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4708                                      BRW_REGISTER_TYPE_UD);
4709 
4710          for (int i = 0; i < instr->num_components; i++)
4711             VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4712                                        base_offset, i * type_sz(dest.type),
4713                                        nir_dest_bit_size(instr->dest) / 8);
4714 
4715          prog_data->has_ubo_pull = true;
4716       } else {
4717          /* Even if we are loading doubles, a pull constant load will load
4718           * a 32-bit vec4, so should only reserve vgrf space for that. If we
4719           * need to load a full dvec4 we will have to emit 2 loads. This is
4720           * similar to demote_pull_constants(), except that in that case we
4721           * see individual accesses to each component of the vector and then
4722           * we let CSE deal with duplicate loads. Here we see a vector access
4723           * and we have to split it if necessary.
4724           */
4725          const unsigned type_size = type_sz(dest.type);
4726          const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4727 
4728          /* See if we've selected this as a push constant candidate */
4729          if (nir_src_is_const(instr->src[0])) {
4730             const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4731             const unsigned offset_256b = load_offset / 32;
4732 
4733             fs_reg push_reg;
4734             for (int i = 0; i < 4; i++) {
4735                const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4736                if (range->block == ubo_block &&
4737                    offset_256b >= range->start &&
4738                    offset_256b < range->start + range->length) {
4739 
4740                   push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4741                   push_reg.offset = load_offset - 32 * range->start;
4742                   break;
4743                }
4744             }
4745 
4746             if (push_reg.file != BAD_FILE) {
4747                for (unsigned i = 0; i < instr->num_components; i++) {
4748                   bld.MOV(offset(dest, bld, i),
4749                           byte_offset(push_reg, i * type_size));
4750                }
4751                break;
4752             }
4753          }
4754 
4755          prog_data->has_ubo_pull = true;
4756 
4757          const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4758          const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4759          const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4760 
4761          for (unsigned c = 0; c < instr->num_components;) {
4762             const unsigned base = load_offset + c * type_size;
4763             /* Number of usable components in the next block-aligned load. */
4764             const unsigned count = MIN2(instr->num_components - c,
4765                                         (block_sz - base % block_sz) / type_size);
4766 
4767             ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4768                       packed_consts, surf_index,
4769                       brw_imm_ud(base & ~(block_sz - 1)));
4770 
4771             const fs_reg consts =
4772                retype(byte_offset(packed_consts, base & (block_sz - 1)),
4773                       dest.type);
4774 
4775             for (unsigned d = 0; d < count; d++)
4776                bld.MOV(offset(dest, bld, c + d), component(consts, d));
4777 
4778             c += count;
4779          }
4780       }
4781       break;
4782    }
4783 
4784    case nir_intrinsic_load_global:
4785    case nir_intrinsic_load_global_constant: {
4786       assert(devinfo->ver >= 8);
4787 
4788       assert(nir_dest_bit_size(instr->dest) <= 32);
4789       assert(nir_intrinsic_align(instr) > 0);
4790       if (nir_dest_bit_size(instr->dest) == 32 &&
4791           nir_intrinsic_align(instr) >= 4) {
4792          assert(nir_dest_num_components(instr->dest) <= 4);
4793          fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4794                                   dest,
4795                                   get_nir_src(instr->src[0]), /* Address */
4796                                   fs_reg(), /* No source data */
4797                                   brw_imm_ud(instr->num_components));
4798          inst->size_written = instr->num_components *
4799                               inst->dst.component_size(inst->exec_size);
4800       } else {
4801          const unsigned bit_size = nir_dest_bit_size(instr->dest);
4802          assert(nir_dest_num_components(instr->dest) == 1);
4803          fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4804          bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4805                   tmp,
4806                   get_nir_src(instr->src[0]), /* Address */
4807                   fs_reg(), /* No source data */
4808                   brw_imm_ud(bit_size));
4809          bld.MOV(dest, subscript(tmp, dest.type, 0));
4810       }
4811       break;
4812    }
4813 
4814    case nir_intrinsic_store_global:
4815       assert(devinfo->ver >= 8);
4816 
4817       assert(nir_src_bit_size(instr->src[0]) <= 32);
4818       assert(nir_intrinsic_write_mask(instr) ==
4819              (1u << instr->num_components) - 1);
4820       assert(nir_intrinsic_align(instr) > 0);
4821       if (nir_src_bit_size(instr->src[0]) == 32 &&
4822           nir_intrinsic_align(instr) >= 4) {
4823          assert(nir_src_num_components(instr->src[0]) <= 4);
4824          bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4825                   fs_reg(),
4826                   get_nir_src(instr->src[1]), /* Address */
4827                   get_nir_src(instr->src[0]), /* Data */
4828                   brw_imm_ud(instr->num_components));
4829       } else {
4830          assert(nir_src_num_components(instr->src[0]) == 1);
4831          const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4832          brw_reg_type data_type =
4833             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4834          fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4835          bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4836          bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4837                   fs_reg(),
4838                   get_nir_src(instr->src[1]), /* Address */
4839                   tmp, /* Data */
4840                   brw_imm_ud(nir_src_bit_size(instr->src[0])));
4841       }
4842       break;
4843 
4844    case nir_intrinsic_global_atomic_add:
4845    case nir_intrinsic_global_atomic_imin:
4846    case nir_intrinsic_global_atomic_umin:
4847    case nir_intrinsic_global_atomic_imax:
4848    case nir_intrinsic_global_atomic_umax:
4849    case nir_intrinsic_global_atomic_and:
4850    case nir_intrinsic_global_atomic_or:
4851    case nir_intrinsic_global_atomic_xor:
4852    case nir_intrinsic_global_atomic_exchange:
4853    case nir_intrinsic_global_atomic_comp_swap:
4854       nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4855       break;
4856    case nir_intrinsic_global_atomic_fadd:
4857    case nir_intrinsic_global_atomic_fmin:
4858    case nir_intrinsic_global_atomic_fmax:
4859    case nir_intrinsic_global_atomic_fcomp_swap:
4860       nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4861       break;
4862 
4863    case nir_intrinsic_load_global_const_block_intel: {
4864       assert(nir_dest_bit_size(instr->dest) == 32);
4865       assert(instr->num_components == 8 || instr->num_components == 16);
4866 
4867       const fs_builder ubld = bld.exec_all().group(instr->num_components, 0);
4868       fs_reg load_val;
4869 
4870       bool is_pred_const = nir_src_is_const(instr->src[1]);
4871       if (is_pred_const && nir_src_as_uint(instr->src[1]) == 0) {
4872          /* In this case, we don't want the UBO load at all.  We really
4873           * shouldn't get here but it's possible.
4874           */
4875          load_val = brw_imm_ud(0);
4876       } else {
4877          /* The uniform process may stomp the flag so do this first */
4878          fs_reg addr = bld.emit_uniformize(get_nir_src(instr->src[0]));
4879 
4880          load_val = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4881 
4882          /* If the predicate is constant and we got here, then it's non-zero
4883           * and we don't need the predicate at all.
4884           */
4885          if (!is_pred_const) {
4886             /* Load the predicate */
4887             fs_reg pred = bld.emit_uniformize(get_nir_src(instr->src[1]));
4888             fs_inst *mov = ubld.MOV(bld.null_reg_d(), pred);
4889             mov->conditional_mod = BRW_CONDITIONAL_NZ;
4890 
4891             /* Stomp the destination with 0 if we're OOB */
4892             mov = ubld.MOV(load_val, brw_imm_ud(0));
4893             mov->predicate = BRW_PREDICATE_NORMAL;
4894             mov->predicate_inverse = true;
4895          }
4896 
4897          fs_inst *load = ubld.emit(SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL,
4898                                    load_val, addr,
4899                                    fs_reg(), /* No source data */
4900                                    brw_imm_ud(instr->num_components));
4901 
4902          if (!is_pred_const)
4903             load->predicate = BRW_PREDICATE_NORMAL;
4904       }
4905 
4906       /* From the HW perspective, we just did a single SIMD16 instruction
4907        * which loaded a dword in each SIMD channel.  From NIR's perspective,
4908        * this instruction returns a vec16.  Any users of this data in the
4909        * back-end will expect a vec16 per SIMD channel so we have to emit a
4910        * pile of MOVs to resolve this discrepancy.  Fortunately, copy-prop
4911        * will generally clean them up for us.
4912        */
4913       for (unsigned i = 0; i < instr->num_components; i++) {
4914          bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
4915                  component(load_val, i));
4916       }
4917       break;
4918    }
4919 
4920    case nir_intrinsic_load_ssbo: {
4921       assert(devinfo->ver >= 7);
4922 
4923       const unsigned bit_size = nir_dest_bit_size(instr->dest);
4924       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4925       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4926          get_nir_ssbo_intrinsic_index(bld, instr);
4927       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4928       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4929       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4930 
4931       /* Make dest unsigned because that's what the temporary will be */
4932       dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4933 
4934       /* Read the vector */
4935       assert(nir_dest_bit_size(instr->dest) <= 32);
4936       assert(nir_intrinsic_align(instr) > 0);
4937       if (nir_dest_bit_size(instr->dest) == 32 &&
4938           nir_intrinsic_align(instr) >= 4) {
4939          assert(nir_dest_num_components(instr->dest) <= 4);
4940          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4941          fs_inst *inst =
4942             bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4943                      dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4944          inst->size_written = instr->num_components * dispatch_width * 4;
4945       } else {
4946          assert(nir_dest_num_components(instr->dest) == 1);
4947          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4948 
4949          fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4950          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4951                   read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4952          bld.MOV(dest, subscript(read_result, dest.type, 0));
4953       }
4954       break;
4955    }
4956 
4957    case nir_intrinsic_store_ssbo: {
4958       assert(devinfo->ver >= 7);
4959 
4960       const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4961       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4962       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4963          get_nir_ssbo_intrinsic_index(bld, instr);
4964       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4965       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4966       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4967 
4968       fs_reg data = get_nir_src(instr->src[0]);
4969       data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4970 
4971       assert(nir_src_bit_size(instr->src[0]) <= 32);
4972       assert(nir_intrinsic_write_mask(instr) ==
4973              (1u << instr->num_components) - 1);
4974       assert(nir_intrinsic_align(instr) > 0);
4975       if (nir_src_bit_size(instr->src[0]) == 32 &&
4976           nir_intrinsic_align(instr) >= 4) {
4977          assert(nir_src_num_components(instr->src[0]) <= 4);
4978          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4979          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4980          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4981                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4982       } else {
4983          assert(nir_src_num_components(instr->src[0]) == 1);
4984          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4985 
4986          srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4987          bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4988 
4989          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4990                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4991       }
4992       break;
4993    }
4994 
4995    case nir_intrinsic_store_output: {
4996       assert(nir_src_bit_size(instr->src[0]) == 32);
4997       fs_reg src = get_nir_src(instr->src[0]);
4998 
4999       unsigned store_offset = nir_src_as_uint(instr->src[1]);
5000       unsigned num_components = instr->num_components;
5001       unsigned first_component = nir_intrinsic_component(instr);
5002 
5003       fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
5004                                       4 * store_offset), src.type);
5005       for (unsigned j = 0; j < num_components; j++) {
5006          bld.MOV(offset(new_dest, bld, j + first_component),
5007                  offset(src, bld, j));
5008       }
5009       break;
5010    }
5011 
5012    case nir_intrinsic_ssbo_atomic_add:
5013    case nir_intrinsic_ssbo_atomic_imin:
5014    case nir_intrinsic_ssbo_atomic_umin:
5015    case nir_intrinsic_ssbo_atomic_imax:
5016    case nir_intrinsic_ssbo_atomic_umax:
5017    case nir_intrinsic_ssbo_atomic_and:
5018    case nir_intrinsic_ssbo_atomic_or:
5019    case nir_intrinsic_ssbo_atomic_xor:
5020    case nir_intrinsic_ssbo_atomic_exchange:
5021    case nir_intrinsic_ssbo_atomic_comp_swap:
5022       nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
5023       break;
5024    case nir_intrinsic_ssbo_atomic_fadd:
5025    case nir_intrinsic_ssbo_atomic_fmin:
5026    case nir_intrinsic_ssbo_atomic_fmax:
5027    case nir_intrinsic_ssbo_atomic_fcomp_swap:
5028       nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
5029       break;
5030 
5031    case nir_intrinsic_get_ssbo_size: {
5032       assert(nir_src_num_components(instr->src[0]) == 1);
5033       unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
5034                             nir_src_as_uint(instr->src[0]) : 0;
5035 
5036       /* A resinfo's sampler message is used to get the buffer size.  The
5037        * SIMD8's writeback message consists of four registers and SIMD16's
5038        * writeback message consists of 8 destination registers (two per each
5039        * component).  Because we are only interested on the first channel of
5040        * the first returned component, where resinfo returns the buffer size
5041        * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
5042        * the dispatch width.
5043        */
5044       const fs_builder ubld = bld.exec_all().group(8, 0);
5045       fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5046       fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
5047 
5048       /* Set LOD = 0 */
5049       ubld.MOV(src_payload, brw_imm_d(0));
5050 
5051       const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
5052       fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
5053                                 src_payload, brw_imm_ud(index));
5054       inst->header_size = 0;
5055       inst->mlen = 1;
5056       inst->size_written = 4 * REG_SIZE;
5057 
5058       /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
5059        *
5060        * "Out-of-bounds checking is always performed at a DWord granularity. If
5061        * any part of the DWord is out-of-bounds then the whole DWord is
5062        * considered out-of-bounds."
5063        *
5064        * This implies that types with size smaller than 4-bytes need to be
5065        * padded if they don't complete the last dword of the buffer. But as we
5066        * need to maintain the original size we need to reverse the padding
5067        * calculation to return the correct size to know the number of elements
5068        * of an unsized array. As we stored in the last two bits of the surface
5069        * size the needed padding for the buffer, we calculate here the
5070        * original buffer_size reversing the surface_size calculation:
5071        *
5072        * surface_size = isl_align(buffer_size, 4) +
5073        *                (isl_align(buffer_size) - buffer_size)
5074        *
5075        * buffer_size = surface_size & ~3 - surface_size & 3
5076        */
5077 
5078       fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5079       fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5080       fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5081 
5082       ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
5083       ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
5084       ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
5085 
5086       bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
5087       break;
5088    }
5089 
5090    case nir_intrinsic_load_scratch: {
5091       assert(devinfo->ver >= 7);
5092 
5093       assert(nir_dest_num_components(instr->dest) == 1);
5094       const unsigned bit_size = nir_dest_bit_size(instr->dest);
5095       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5096 
5097       if (devinfo->verx10 >= 125) {
5098          const fs_builder ubld = bld.exec_all().group(1, 0);
5099          fs_reg handle = component(ubld.vgrf(BRW_REGISTER_TYPE_UD), 0);
5100          ubld.AND(handle, retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5101                           brw_imm_ud(~0x3ffu));
5102          srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] = handle;
5103       } else if (devinfo->ver >= 8) {
5104          srcs[SURFACE_LOGICAL_SRC_SURFACE] =
5105             brw_imm_ud(GFX8_BTI_STATELESS_NON_COHERENT);
5106       } else {
5107          srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
5108       }
5109 
5110       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5111       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
5112       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
5113       const fs_reg nir_addr = get_nir_src(instr->src[0]);
5114 
5115       /* Make dest unsigned because that's what the temporary will be */
5116       dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
5117 
5118       /* Read the vector */
5119       assert(nir_dest_num_components(instr->dest) == 1);
5120       assert(nir_dest_bit_size(instr->dest) <= 32);
5121       assert(nir_intrinsic_align(instr) > 0);
5122       if (devinfo->verx10 >= 125) {
5123          assert(nir_dest_bit_size(instr->dest) == 32 &&
5124                 nir_intrinsic_align(instr) >= 4);
5125 
5126          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5127             swizzle_nir_scratch_addr(bld, nir_addr, false);
5128          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1);
5129 
5130          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
5131                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5132       } else if (nir_dest_bit_size(instr->dest) >= 4 &&
5133                  nir_intrinsic_align(instr) >= 4) {
5134          /* The offset for a DWORD scattered message is in dwords. */
5135          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5136             swizzle_nir_scratch_addr(bld, nir_addr, true);
5137 
5138          bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
5139                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5140       } else {
5141          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5142             swizzle_nir_scratch_addr(bld, nir_addr, false);
5143 
5144          fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
5145          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
5146                   read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
5147          bld.MOV(dest, read_result);
5148       }
5149       break;
5150    }
5151 
5152    case nir_intrinsic_store_scratch: {
5153       assert(devinfo->ver >= 7);
5154 
5155       assert(nir_src_num_components(instr->src[0]) == 1);
5156       const unsigned bit_size = nir_src_bit_size(instr->src[0]);
5157       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5158 
5159       if (devinfo->verx10 >= 125) {
5160          const fs_builder ubld = bld.exec_all().group(1, 0);
5161          fs_reg handle = component(ubld.vgrf(BRW_REGISTER_TYPE_UD), 0);
5162          ubld.AND(handle, retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5163                           brw_imm_ud(~0x3ffu));
5164          srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] = handle;
5165       } else if (devinfo->ver >= 8) {
5166          srcs[SURFACE_LOGICAL_SRC_SURFACE] =
5167             brw_imm_ud(GFX8_BTI_STATELESS_NON_COHERENT);
5168       } else {
5169          srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
5170       }
5171 
5172       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5173       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
5174       /**
5175        * While this instruction has side-effects, it should not be predicated
5176        * on sample mask, because otherwise fs helper invocations would
5177        * load undefined values from scratch memory. And scratch memory
5178        * load-stores are produced from operations without side-effects, thus
5179        * they should not have different behaviour in the helper invocations.
5180        */
5181       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
5182       const fs_reg nir_addr = get_nir_src(instr->src[1]);
5183 
5184       fs_reg data = get_nir_src(instr->src[0]);
5185       data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
5186 
5187       assert(nir_src_num_components(instr->src[0]) == 1);
5188       assert(nir_src_bit_size(instr->src[0]) <= 32);
5189       assert(nir_intrinsic_write_mask(instr) == 1);
5190       assert(nir_intrinsic_align(instr) > 0);
5191       if (devinfo->verx10 >= 125) {
5192          assert(nir_src_bit_size(instr->src[0]) == 32 &&
5193                 nir_intrinsic_align(instr) >= 4);
5194          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5195 
5196          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5197             swizzle_nir_scratch_addr(bld, nir_addr, false);
5198          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1);
5199 
5200          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
5201                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5202       } else if (nir_src_bit_size(instr->src[0]) == 32 &&
5203                  nir_intrinsic_align(instr) >= 4) {
5204          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5205 
5206          /* The offset for a DWORD scattered message is in dwords. */
5207          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5208             swizzle_nir_scratch_addr(bld, nir_addr, true);
5209 
5210          bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
5211                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5212       } else {
5213          srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
5214          bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
5215 
5216          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5217             swizzle_nir_scratch_addr(bld, nir_addr, false);
5218 
5219          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
5220                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5221       }
5222       break;
5223    }
5224 
5225    case nir_intrinsic_load_subgroup_size:
5226       /* This should only happen for fragment shaders because every other case
5227        * is lowered in NIR so we can optimize on it.
5228        */
5229       assert(stage == MESA_SHADER_FRAGMENT);
5230       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
5231       break;
5232 
5233    case nir_intrinsic_load_subgroup_invocation:
5234       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
5235               nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
5236       break;
5237 
5238    case nir_intrinsic_load_subgroup_eq_mask:
5239    case nir_intrinsic_load_subgroup_ge_mask:
5240    case nir_intrinsic_load_subgroup_gt_mask:
5241    case nir_intrinsic_load_subgroup_le_mask:
5242    case nir_intrinsic_load_subgroup_lt_mask:
5243       unreachable("not reached");
5244 
5245    case nir_intrinsic_vote_any: {
5246       const fs_builder ubld = bld.exec_all().group(1, 0);
5247 
5248       /* The any/all predicates do not consider channel enables. To prevent
5249        * dead channels from affecting the result, we initialize the flag with
5250        * with the identity value for the logical operation.
5251        */
5252       if (dispatch_width == 32) {
5253          /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5254          ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5255                          brw_imm_ud(0));
5256       } else {
5257          ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
5258       }
5259       bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
5260 
5261       /* For some reason, the any/all predicates don't work properly with
5262        * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
5263        * doesn't read the correct subset of the flag register and you end up
5264        * getting garbage in the second half.  Work around this by using a pair
5265        * of 1-wide MOVs and scattering the result.
5266        */
5267       fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5268       ubld.MOV(res1, brw_imm_d(0));
5269       set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ANY8H :
5270                     dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
5271                                            BRW_PREDICATE_ALIGN1_ANY32H,
5272                     ubld.MOV(res1, brw_imm_d(-1)));
5273 
5274       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5275       break;
5276    }
5277    case nir_intrinsic_vote_all: {
5278       const fs_builder ubld = bld.exec_all().group(1, 0);
5279 
5280       /* The any/all predicates do not consider channel enables. To prevent
5281        * dead channels from affecting the result, we initialize the flag with
5282        * with the identity value for the logical operation.
5283        */
5284       if (dispatch_width == 32) {
5285          /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5286          ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5287                          brw_imm_ud(0xffffffff));
5288       } else {
5289          ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5290       }
5291       bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
5292 
5293       /* For some reason, the any/all predicates don't work properly with
5294        * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
5295        * doesn't read the correct subset of the flag register and you end up
5296        * getting garbage in the second half.  Work around this by using a pair
5297        * of 1-wide MOVs and scattering the result.
5298        */
5299       fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5300       ubld.MOV(res1, brw_imm_d(0));
5301       set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ALL8H :
5302                     dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5303                                            BRW_PREDICATE_ALIGN1_ALL32H,
5304                     ubld.MOV(res1, brw_imm_d(-1)));
5305 
5306       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5307       break;
5308    }
5309    case nir_intrinsic_vote_feq:
5310    case nir_intrinsic_vote_ieq: {
5311       fs_reg value = get_nir_src(instr->src[0]);
5312       if (instr->intrinsic == nir_intrinsic_vote_feq) {
5313          const unsigned bit_size = nir_src_bit_size(instr->src[0]);
5314          value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
5315             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
5316       }
5317 
5318       fs_reg uniformized = bld.emit_uniformize(value);
5319       const fs_builder ubld = bld.exec_all().group(1, 0);
5320 
5321       /* The any/all predicates do not consider channel enables. To prevent
5322        * dead channels from affecting the result, we initialize the flag with
5323        * with the identity value for the logical operation.
5324        */
5325       if (dispatch_width == 32) {
5326          /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5327          ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5328                          brw_imm_ud(0xffffffff));
5329       } else {
5330          ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5331       }
5332       bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
5333 
5334       /* For some reason, the any/all predicates don't work properly with
5335        * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
5336        * doesn't read the correct subset of the flag register and you end up
5337        * getting garbage in the second half.  Work around this by using a pair
5338        * of 1-wide MOVs and scattering the result.
5339        */
5340       fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5341       ubld.MOV(res1, brw_imm_d(0));
5342       set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ALL8H :
5343                     dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5344                                            BRW_PREDICATE_ALIGN1_ALL32H,
5345                     ubld.MOV(res1, brw_imm_d(-1)));
5346 
5347       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5348       break;
5349    }
5350 
5351    case nir_intrinsic_ballot: {
5352       const fs_reg value = retype(get_nir_src(instr->src[0]),
5353                                   BRW_REGISTER_TYPE_UD);
5354       struct brw_reg flag = brw_flag_reg(0, 0);
5355       /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
5356        * as f0.0.  This is a problem for fragment programs as we currently use
5357        * f0.1 for discards.  Fortunately, we don't support SIMD32 fragment
5358        * programs yet so this isn't a problem.  When we do, something will
5359        * have to change.
5360        */
5361       if (dispatch_width == 32)
5362          flag.type = BRW_REGISTER_TYPE_UD;
5363 
5364       bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
5365       bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
5366 
5367       if (instr->dest.ssa.bit_size > 32) {
5368          dest.type = BRW_REGISTER_TYPE_UQ;
5369       } else {
5370          dest.type = BRW_REGISTER_TYPE_UD;
5371       }
5372       bld.MOV(dest, flag);
5373       break;
5374    }
5375 
5376    case nir_intrinsic_read_invocation: {
5377       const fs_reg value = get_nir_src(instr->src[0]);
5378       const fs_reg invocation = get_nir_src(instr->src[1]);
5379       fs_reg tmp = bld.vgrf(value.type);
5380 
5381       bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5382                           bld.emit_uniformize(invocation));
5383 
5384       bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5385       break;
5386    }
5387 
5388    case nir_intrinsic_read_first_invocation: {
5389       const fs_reg value = get_nir_src(instr->src[0]);
5390       bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5391       break;
5392    }
5393 
5394    case nir_intrinsic_shuffle: {
5395       const fs_reg value = get_nir_src(instr->src[0]);
5396       const fs_reg index = get_nir_src(instr->src[1]);
5397 
5398       bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5399       break;
5400    }
5401 
5402    case nir_intrinsic_first_invocation: {
5403       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5404       bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5405       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5406               fs_reg(component(tmp, 0)));
5407       break;
5408    }
5409 
5410    case nir_intrinsic_quad_broadcast: {
5411       const fs_reg value = get_nir_src(instr->src[0]);
5412       const unsigned index = nir_src_as_uint(instr->src[1]);
5413 
5414       bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5415                value, brw_imm_ud(index), brw_imm_ud(4));
5416       break;
5417    }
5418 
5419    case nir_intrinsic_quad_swap_horizontal: {
5420       const fs_reg value = get_nir_src(instr->src[0]);
5421       const fs_reg tmp = bld.vgrf(value.type);
5422       if (devinfo->ver <= 7) {
5423          /* The hardware doesn't seem to support these crazy regions with
5424           * compressed instructions on gfx7 and earlier so we fall back to
5425           * using quad swizzles.  Fortunately, we don't support 64-bit
5426           * anything in Vulkan on gfx7.
5427           */
5428          assert(nir_src_bit_size(instr->src[0]) == 32);
5429          const fs_builder ubld = bld.exec_all();
5430          ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5431                    brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
5432          bld.MOV(retype(dest, value.type), tmp);
5433       } else {
5434          const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5435 
5436          const fs_reg src_left = horiz_stride(value, 2);
5437          const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5438          const fs_reg tmp_left = horiz_stride(tmp, 2);
5439          const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5440 
5441          ubld.MOV(tmp_left, src_right);
5442          ubld.MOV(tmp_right, src_left);
5443 
5444       }
5445       bld.MOV(retype(dest, value.type), tmp);
5446       break;
5447    }
5448 
5449    case nir_intrinsic_quad_swap_vertical: {
5450       const fs_reg value = get_nir_src(instr->src[0]);
5451       if (nir_src_bit_size(instr->src[0]) == 32) {
5452          /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5453          const fs_reg tmp = bld.vgrf(value.type);
5454          const fs_builder ubld = bld.exec_all();
5455          ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5456                    brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5457          bld.MOV(retype(dest, value.type), tmp);
5458       } else {
5459          /* For larger data types, we have to either emit dispatch_width many
5460           * MOVs or else fall back to doing indirects.
5461           */
5462          fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5463          bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5464                       brw_imm_w(0x2));
5465          bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5466       }
5467       break;
5468    }
5469 
5470    case nir_intrinsic_quad_swap_diagonal: {
5471       const fs_reg value = get_nir_src(instr->src[0]);
5472       if (nir_src_bit_size(instr->src[0]) == 32) {
5473          /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5474          const fs_reg tmp = bld.vgrf(value.type);
5475          const fs_builder ubld = bld.exec_all();
5476          ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5477                    brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5478          bld.MOV(retype(dest, value.type), tmp);
5479       } else {
5480          /* For larger data types, we have to either emit dispatch_width many
5481           * MOVs or else fall back to doing indirects.
5482           */
5483          fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5484          bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5485                       brw_imm_w(0x3));
5486          bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5487       }
5488       break;
5489    }
5490 
5491    case nir_intrinsic_reduce: {
5492       fs_reg src = get_nir_src(instr->src[0]);
5493       nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5494       unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5495       if (cluster_size == 0 || cluster_size > dispatch_width)
5496          cluster_size = dispatch_width;
5497 
5498       /* Figure out the source type */
5499       src.type = brw_type_for_nir_type(devinfo,
5500          (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5501                         nir_src_bit_size(instr->src[0])));
5502 
5503       fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5504       opcode brw_op = brw_op_for_nir_reduction_op(redop);
5505       brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5506 
5507       /* Set up a register for all of our scratching around and initialize it
5508        * to reduction operation's identity value.
5509        */
5510       fs_reg scan = bld.vgrf(src.type);
5511       bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5512 
5513       bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5514 
5515       dest.type = src.type;
5516       if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5517          /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5518           * the distance between clusters is at least 2 GRFs.  In this case,
5519           * we don't need the weird striding of the CLUSTER_BROADCAST
5520           * instruction and can just do regular MOVs.
5521           */
5522          assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5523          const unsigned groups =
5524             (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5525          const unsigned group_size = dispatch_width / groups;
5526          for (unsigned i = 0; i < groups; i++) {
5527             const unsigned cluster = (i * group_size) / cluster_size;
5528             const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5529             bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5530                                          component(scan, comp));
5531          }
5532       } else {
5533          bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5534                   brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5535       }
5536       break;
5537    }
5538 
5539    case nir_intrinsic_inclusive_scan:
5540    case nir_intrinsic_exclusive_scan: {
5541       fs_reg src = get_nir_src(instr->src[0]);
5542       nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5543 
5544       /* Figure out the source type */
5545       src.type = brw_type_for_nir_type(devinfo,
5546          (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5547                         nir_src_bit_size(instr->src[0])));
5548 
5549       fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5550       opcode brw_op = brw_op_for_nir_reduction_op(redop);
5551       brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5552 
5553       /* Set up a register for all of our scratching around and initialize it
5554        * to reduction operation's identity value.
5555        */
5556       fs_reg scan = bld.vgrf(src.type);
5557       const fs_builder allbld = bld.exec_all();
5558       allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5559 
5560       if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5561          /* Exclusive scan is a bit harder because we have to do an annoying
5562           * shift of the contents before we can begin.  To make things worse,
5563           * we can't do this with a normal stride; we have to use indirects.
5564           */
5565          fs_reg shifted = bld.vgrf(src.type);
5566          fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5567          allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5568                          brw_imm_w(-1));
5569          allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5570          allbld.group(1, 0).MOV(component(shifted, 0), identity);
5571          scan = shifted;
5572       }
5573 
5574       bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5575 
5576       bld.MOV(retype(dest, src.type), scan);
5577       break;
5578    }
5579 
5580    case nir_intrinsic_load_global_block_intel: {
5581       assert(nir_dest_bit_size(instr->dest) == 32);
5582 
5583       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[0]));
5584 
5585       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5586       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5587       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5588 
5589       const unsigned total = instr->num_components * dispatch_width;
5590       unsigned loaded = 0;
5591 
5592       while (loaded < total) {
5593          const unsigned block =
5594             choose_oword_block_size_dwords(total - loaded);
5595          const unsigned block_bytes = block * 4;
5596 
5597          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5598          ubld.emit(SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
5599                    retype(byte_offset(dest, loaded * 4), BRW_REGISTER_TYPE_UD),
5600                    address,
5601                    fs_reg(), /* No source data */
5602                    brw_imm_ud(block))->size_written = block_bytes;
5603 
5604          increment_a64_address(ubld1, address, block_bytes);
5605          loaded += block;
5606       }
5607 
5608       assert(loaded == total);
5609       break;
5610    }
5611 
5612    case nir_intrinsic_store_global_block_intel: {
5613       assert(nir_src_bit_size(instr->src[0]) == 32);
5614 
5615       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[1]));
5616       fs_reg src = get_nir_src(instr->src[0]);
5617 
5618       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5619       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5620       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5621 
5622       const unsigned total = instr->num_components * dispatch_width;
5623       unsigned written = 0;
5624 
5625       while (written < total) {
5626          const unsigned block =
5627             choose_oword_block_size_dwords(total - written);
5628 
5629          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5630          ubld.emit(SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL,
5631                    fs_reg(),
5632                    address,
5633                    retype(byte_offset(src, written * 4), BRW_REGISTER_TYPE_UD),
5634                    brw_imm_ud(block));
5635 
5636          const unsigned block_bytes = block * 4;
5637          increment_a64_address(ubld1, address, block_bytes);
5638          written += block;
5639       }
5640 
5641       assert(written == total);
5642       break;
5643    }
5644 
5645    case nir_intrinsic_load_shared_block_intel:
5646    case nir_intrinsic_load_ssbo_block_intel: {
5647       assert(nir_dest_bit_size(instr->dest) == 32);
5648 
5649       const bool is_ssbo =
5650          instr->intrinsic == nir_intrinsic_load_ssbo_block_intel;
5651       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[is_ssbo ? 1 : 0]));
5652 
5653       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5654       srcs[SURFACE_LOGICAL_SRC_SURFACE] = is_ssbo ?
5655          get_nir_ssbo_intrinsic_index(bld, instr) : fs_reg(brw_imm_ud(GFX7_BTI_SLM));
5656       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = address;
5657 
5658       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5659       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5660       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5661 
5662       const unsigned total = instr->num_components * dispatch_width;
5663       unsigned loaded = 0;
5664 
5665       while (loaded < total) {
5666          const unsigned block =
5667             choose_oword_block_size_dwords(total - loaded);
5668          const unsigned block_bytes = block * 4;
5669 
5670          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(block);
5671 
5672          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5673          ubld.emit(SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
5674                    retype(byte_offset(dest, loaded * 4), BRW_REGISTER_TYPE_UD),
5675                    srcs, SURFACE_LOGICAL_NUM_SRCS)->size_written = block_bytes;
5676 
5677          ubld1.ADD(address, address, brw_imm_ud(block_bytes));
5678          loaded += block;
5679       }
5680 
5681       assert(loaded == total);
5682       break;
5683    }
5684 
5685    case nir_intrinsic_store_shared_block_intel:
5686    case nir_intrinsic_store_ssbo_block_intel: {
5687       assert(nir_src_bit_size(instr->src[0]) == 32);
5688 
5689       const bool is_ssbo =
5690          instr->intrinsic == nir_intrinsic_store_ssbo_block_intel;
5691 
5692       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[is_ssbo ? 2 : 1]));
5693       fs_reg src = get_nir_src(instr->src[0]);
5694 
5695       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5696       srcs[SURFACE_LOGICAL_SRC_SURFACE] = is_ssbo ?
5697          get_nir_ssbo_intrinsic_index(bld, instr) : fs_reg(brw_imm_ud(GFX7_BTI_SLM));
5698       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = address;
5699 
5700       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5701       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5702       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5703 
5704       const unsigned total = instr->num_components * dispatch_width;
5705       unsigned written = 0;
5706 
5707       while (written < total) {
5708          const unsigned block =
5709             choose_oword_block_size_dwords(total - written);
5710 
5711          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(block);
5712          srcs[SURFACE_LOGICAL_SRC_DATA] =
5713             retype(byte_offset(src, written * 4), BRW_REGISTER_TYPE_UD);
5714 
5715          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5716          ubld.emit(SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL,
5717                    fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5718 
5719          const unsigned block_bytes = block * 4;
5720          ubld1.ADD(address, address, brw_imm_ud(block_bytes));
5721          written += block;
5722       }
5723 
5724       assert(written == total);
5725       break;
5726    }
5727 
5728    case nir_intrinsic_load_btd_dss_id_intel:
5729       bld.emit(SHADER_OPCODE_GET_DSS_ID,
5730                retype(dest, BRW_REGISTER_TYPE_UD));
5731       break;
5732 
5733    case nir_intrinsic_load_btd_stack_id_intel:
5734       if (stage == MESA_SHADER_COMPUTE) {
5735          assert(brw_cs_prog_data(prog_data)->uses_btd_stack_ids);
5736       } else {
5737          assert(brw_shader_stage_is_bindless(stage));
5738       }
5739       /* Stack IDs are always in R1 regardless of whether we're coming from a
5740        * bindless shader or a regular compute shader.
5741        */
5742       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5743               retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UW));
5744       break;
5745 
5746    case nir_intrinsic_btd_spawn_intel:
5747       if (stage == MESA_SHADER_COMPUTE) {
5748          assert(brw_cs_prog_data(prog_data)->uses_btd_stack_ids);
5749       } else {
5750          assert(brw_shader_stage_is_bindless(stage));
5751       }
5752       bld.emit(SHADER_OPCODE_BTD_SPAWN_LOGICAL, bld.null_reg_ud(),
5753                bld.emit_uniformize(get_nir_src(instr->src[0])),
5754                get_nir_src(instr->src[1]));
5755       break;
5756 
5757    case nir_intrinsic_btd_retire_intel:
5758       if (stage == MESA_SHADER_COMPUTE) {
5759          assert(brw_cs_prog_data(prog_data)->uses_btd_stack_ids);
5760       } else {
5761          assert(brw_shader_stage_is_bindless(stage));
5762       }
5763       bld.emit(SHADER_OPCODE_BTD_RETIRE_LOGICAL);
5764       break;
5765 
5766    default:
5767       unreachable("unknown intrinsic");
5768    }
5769 }
5770 
5771 void
nir_emit_ssbo_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5772 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5773                                  int op, nir_intrinsic_instr *instr)
5774 {
5775    /* The BTI untyped atomic messages only support 32-bit atomics.  If you
5776     * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5777     * appear to exist.  However, if you look at Vol 2a, there are no message
5778     * descriptors provided for Qword atomic ops except for A64 messages.
5779     */
5780    assert(nir_dest_bit_size(instr->dest) == 32 ||
5781           (nir_dest_bit_size(instr->dest) == 64 && devinfo->has_lsc));
5782 
5783    fs_reg dest;
5784    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5785       dest = get_nir_dest(instr->dest);
5786 
5787    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5788    srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5789    srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5790    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5791    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5792    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5793 
5794    fs_reg data;
5795    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5796       data = get_nir_src(instr->src[2]);
5797 
5798    if (op == BRW_AOP_CMPWR) {
5799       fs_reg tmp = bld.vgrf(data.type, 2);
5800       fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5801       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5802       data = tmp;
5803    }
5804    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5805 
5806    /* Emit the actual atomic operation */
5807 
5808    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5809             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5810 }
5811 
5812 void
nir_emit_ssbo_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5813 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5814                                        int op, nir_intrinsic_instr *instr)
5815 {
5816    fs_reg dest;
5817    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5818       dest = get_nir_dest(instr->dest);
5819 
5820    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5821    srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5822    srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5823    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5824    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5825    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5826 
5827    fs_reg data = get_nir_src(instr->src[2]);
5828    if (op == BRW_AOP_FCMPWR) {
5829       fs_reg tmp = bld.vgrf(data.type, 2);
5830       fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5831       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5832       data = tmp;
5833    }
5834    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5835 
5836    /* Emit the actual atomic operation */
5837 
5838    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5839             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5840 }
5841 
5842 void
nir_emit_shared_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5843 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5844                                    int op, nir_intrinsic_instr *instr)
5845 {
5846    fs_reg dest;
5847    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5848       dest = get_nir_dest(instr->dest);
5849 
5850    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5851    srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
5852    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5853    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5854    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5855 
5856    fs_reg data;
5857    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5858       data = get_nir_src(instr->src[1]);
5859    if (op == BRW_AOP_CMPWR) {
5860       fs_reg tmp = bld.vgrf(data.type, 2);
5861       fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5862       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5863       data = tmp;
5864    }
5865    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5866 
5867    /* Get the offset */
5868    if (nir_src_is_const(instr->src[0])) {
5869       srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5870          brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5871    } else {
5872       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5873       bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5874 	      retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5875 	      brw_imm_ud(instr->const_index[0]));
5876    }
5877 
5878    /* Emit the actual atomic operation operation */
5879 
5880    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5881             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5882 }
5883 
5884 void
nir_emit_shared_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5885 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5886                                          int op, nir_intrinsic_instr *instr)
5887 {
5888    fs_reg dest;
5889    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5890       dest = get_nir_dest(instr->dest);
5891 
5892    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5893    srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
5894    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5895    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5896    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5897 
5898    fs_reg data = get_nir_src(instr->src[1]);
5899    if (op == BRW_AOP_FCMPWR) {
5900       fs_reg tmp = bld.vgrf(data.type, 2);
5901       fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5902       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5903       data = tmp;
5904    }
5905    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5906 
5907    /* Get the offset */
5908    if (nir_src_is_const(instr->src[0])) {
5909       srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5910          brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5911    } else {
5912       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5913       bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5914 	      retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5915 	      brw_imm_ud(instr->const_index[0]));
5916    }
5917 
5918    /* Emit the actual atomic operation operation */
5919 
5920    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5921             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5922 }
5923 
5924 static fs_reg
expand_to_32bit(const fs_builder & bld,const fs_reg & src)5925 expand_to_32bit(const fs_builder &bld, const fs_reg &src)
5926 {
5927    if (type_sz(src.type) == 2) {
5928       fs_reg src32 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5929       bld.MOV(src32, retype(src, BRW_REGISTER_TYPE_UW));
5930       return src32;
5931    } else {
5932       return src;
5933    }
5934 }
5935 
5936 void
nir_emit_global_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5937 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5938                                    int op, nir_intrinsic_instr *instr)
5939 {
5940    fs_reg dest;
5941    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5942       dest = get_nir_dest(instr->dest);
5943 
5944    fs_reg addr = get_nir_src(instr->src[0]);
5945 
5946    fs_reg data;
5947    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5948       data = expand_to_32bit(bld, get_nir_src(instr->src[1]));
5949 
5950    if (op == BRW_AOP_CMPWR) {
5951       fs_reg tmp = bld.vgrf(data.type, 2);
5952       fs_reg sources[2] = {
5953          data,
5954          expand_to_32bit(bld, get_nir_src(instr->src[2]))
5955       };
5956       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5957       data = tmp;
5958    }
5959 
5960    switch (nir_dest_bit_size(instr->dest)) {
5961    case 16: {
5962       fs_reg dest32 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5963       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL,
5964                dest32, addr, data, brw_imm_ud(op));
5965       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UW), dest32);
5966       break;
5967    }
5968    case 32:
5969       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5970                dest, addr, data, brw_imm_ud(op));
5971       break;
5972    case 64:
5973       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5974                dest, addr, data, brw_imm_ud(op));
5975       break;
5976    default:
5977       unreachable("Unsupported bit size");
5978    }
5979 }
5980 
5981 void
nir_emit_global_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5982 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5983                                          int op, nir_intrinsic_instr *instr)
5984 {
5985    assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5986    fs_reg dest = get_nir_dest(instr->dest);
5987 
5988    fs_reg addr = get_nir_src(instr->src[0]);
5989 
5990    assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5991    fs_reg data = expand_to_32bit(bld, get_nir_src(instr->src[1]));
5992 
5993    if (op == BRW_AOP_FCMPWR) {
5994       fs_reg tmp = bld.vgrf(data.type, 2);
5995       fs_reg sources[2] = {
5996          data,
5997          expand_to_32bit(bld, get_nir_src(instr->src[2]))
5998       };
5999       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
6000       data = tmp;
6001    }
6002 
6003    switch (nir_dest_bit_size(instr->dest)) {
6004    case 16: {
6005       fs_reg dest32 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6006       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL,
6007                dest32, addr, data, brw_imm_ud(op));
6008       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UW), dest32);
6009       break;
6010    }
6011    case 32:
6012       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL,
6013                dest, addr, data, brw_imm_ud(op));
6014       break;
6015    case 64:
6016       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL,
6017                dest, addr, data, brw_imm_ud(op));
6018       break;
6019    default:
6020       unreachable("Unsupported bit size");
6021    }
6022 }
6023 
6024 void
nir_emit_texture(const fs_builder & bld,nir_tex_instr * instr)6025 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
6026 {
6027    unsigned texture = instr->texture_index;
6028    unsigned sampler = instr->sampler_index;
6029 
6030    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
6031 
6032    srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
6033    srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
6034 
6035    int lod_components = 0;
6036 
6037    /* The hardware requires a LOD for buffer textures */
6038    if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6039       srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
6040 
6041    uint32_t header_bits = 0;
6042    for (unsigned i = 0; i < instr->num_srcs; i++) {
6043       fs_reg src = get_nir_src(instr->src[i].src);
6044       switch (instr->src[i].src_type) {
6045       case nir_tex_src_bias:
6046          srcs[TEX_LOGICAL_SRC_LOD] =
6047             retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
6048          break;
6049       case nir_tex_src_comparator:
6050          srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
6051          break;
6052       case nir_tex_src_coord:
6053          switch (instr->op) {
6054          case nir_texop_txf:
6055          case nir_texop_txf_ms:
6056          case nir_texop_txf_ms_mcs_intel:
6057          case nir_texop_samples_identical:
6058             srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
6059             break;
6060          default:
6061             srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
6062             break;
6063          }
6064 
6065          /* Wa_14013363432:
6066           *
6067           * Compiler should send U,V,R parameters even if V,R are 0.
6068           */
6069          if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && devinfo->verx10 == 125)
6070             assert(instr->coord_components == 3u + instr->is_array);
6071          break;
6072       case nir_tex_src_ddx:
6073          srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
6074          lod_components = nir_tex_instr_src_size(instr, i);
6075          break;
6076       case nir_tex_src_ddy:
6077          srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
6078          break;
6079       case nir_tex_src_lod:
6080          switch (instr->op) {
6081          case nir_texop_txs:
6082             srcs[TEX_LOGICAL_SRC_LOD] =
6083                retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
6084             break;
6085          case nir_texop_txf:
6086             srcs[TEX_LOGICAL_SRC_LOD] =
6087                retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
6088             break;
6089          default:
6090             srcs[TEX_LOGICAL_SRC_LOD] =
6091                retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
6092             break;
6093          }
6094          break;
6095       case nir_tex_src_min_lod:
6096          srcs[TEX_LOGICAL_SRC_MIN_LOD] =
6097             retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
6098          break;
6099       case nir_tex_src_ms_index:
6100          srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
6101          break;
6102 
6103       case nir_tex_src_offset: {
6104          uint32_t offset_bits = 0;
6105          if (brw_texture_offset(instr, i, &offset_bits)) {
6106             header_bits |= offset_bits;
6107          } else {
6108             srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
6109                retype(src, BRW_REGISTER_TYPE_D);
6110          }
6111          break;
6112       }
6113 
6114       case nir_tex_src_projector:
6115          unreachable("should be lowered");
6116 
6117       case nir_tex_src_texture_offset: {
6118          /* Emit code to evaluate the actual indexing expression */
6119          fs_reg tmp = vgrf(glsl_type::uint_type);
6120          bld.ADD(tmp, src, brw_imm_ud(texture));
6121          srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
6122          break;
6123       }
6124 
6125       case nir_tex_src_sampler_offset: {
6126          /* Emit code to evaluate the actual indexing expression */
6127          fs_reg tmp = vgrf(glsl_type::uint_type);
6128          bld.ADD(tmp, src, brw_imm_ud(sampler));
6129          srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
6130          break;
6131       }
6132 
6133       case nir_tex_src_texture_handle:
6134          assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
6135          srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
6136          srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
6137          break;
6138 
6139       case nir_tex_src_sampler_handle:
6140          assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
6141          srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
6142          srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
6143          break;
6144 
6145       case nir_tex_src_ms_mcs_intel:
6146          assert(instr->op == nir_texop_txf_ms);
6147          srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
6148          break;
6149 
6150       case nir_tex_src_plane: {
6151          const uint32_t plane = nir_src_as_uint(instr->src[i].src);
6152          const uint32_t texture_index =
6153             instr->texture_index +
6154             stage_prog_data->binding_table.plane_start[plane] -
6155             stage_prog_data->binding_table.texture_start;
6156 
6157          srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
6158          break;
6159       }
6160 
6161       default:
6162          unreachable("unknown texture source");
6163       }
6164    }
6165 
6166    if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
6167        (instr->op == nir_texop_txf_ms ||
6168         instr->op == nir_texop_samples_identical)) {
6169       if (devinfo->ver >= 7 &&
6170           key_tex->compressed_multisample_layout_mask & (1 << texture)) {
6171          srcs[TEX_LOGICAL_SRC_MCS] =
6172             emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
6173                            instr->coord_components,
6174                            srcs[TEX_LOGICAL_SRC_SURFACE],
6175                            srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
6176       } else {
6177          srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
6178       }
6179    }
6180 
6181    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
6182    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
6183 
6184    enum opcode opcode;
6185    switch (instr->op) {
6186    case nir_texop_tex:
6187       opcode = SHADER_OPCODE_TEX_LOGICAL;
6188       break;
6189    case nir_texop_txb:
6190       opcode = FS_OPCODE_TXB_LOGICAL;
6191       break;
6192    case nir_texop_txl:
6193       opcode = SHADER_OPCODE_TXL_LOGICAL;
6194       break;
6195    case nir_texop_txd:
6196       opcode = SHADER_OPCODE_TXD_LOGICAL;
6197       break;
6198    case nir_texop_txf:
6199       opcode = SHADER_OPCODE_TXF_LOGICAL;
6200       break;
6201    case nir_texop_txf_ms:
6202       if ((key_tex->msaa_16 & (1 << sampler)))
6203          opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
6204       else
6205          opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
6206       break;
6207    case nir_texop_txf_ms_mcs_intel:
6208       opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
6209       break;
6210    case nir_texop_query_levels:
6211    case nir_texop_txs:
6212       opcode = SHADER_OPCODE_TXS_LOGICAL;
6213       break;
6214    case nir_texop_lod:
6215       opcode = SHADER_OPCODE_LOD_LOGICAL;
6216       break;
6217    case nir_texop_tg4:
6218       if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
6219          opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
6220       else
6221          opcode = SHADER_OPCODE_TG4_LOGICAL;
6222       break;
6223    case nir_texop_texture_samples:
6224       opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
6225       break;
6226    case nir_texop_samples_identical: {
6227       fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
6228 
6229       /* If mcs is an immediate value, it means there is no MCS.  In that case
6230        * just return false.
6231        */
6232       if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
6233          bld.MOV(dst, brw_imm_ud(0u));
6234       } else if ((key_tex->msaa_16 & (1 << sampler))) {
6235          fs_reg tmp = vgrf(glsl_type::uint_type);
6236          bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
6237                 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
6238          bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
6239       } else {
6240          bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
6241                  BRW_CONDITIONAL_EQ);
6242       }
6243       return;
6244    }
6245    default:
6246       unreachable("unknown texture opcode");
6247    }
6248 
6249    if (instr->op == nir_texop_tg4) {
6250       if (instr->component == 1 &&
6251           key_tex->gather_channel_quirk_mask & (1 << texture)) {
6252          /* gather4 sampler is broken for green channel on RG32F --
6253           * we must ask for blue instead.
6254           */
6255          header_bits |= 2 << 16;
6256       } else {
6257          header_bits |= instr->component << 16;
6258       }
6259    }
6260 
6261    fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
6262    fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
6263    inst->offset = header_bits;
6264 
6265    const unsigned dest_size = nir_tex_instr_dest_size(instr);
6266    if (devinfo->ver >= 9 &&
6267        instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
6268       unsigned write_mask = instr->dest.is_ssa ?
6269                             nir_ssa_def_components_read(&instr->dest.ssa):
6270                             (1 << dest_size) - 1;
6271       assert(write_mask != 0); /* dead code should have been eliminated */
6272       inst->size_written = util_last_bit(write_mask) *
6273                            inst->dst.component_size(inst->exec_size);
6274    } else {
6275       inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
6276    }
6277 
6278    if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
6279       inst->shadow_compare = true;
6280 
6281    if (instr->op == nir_texop_tg4 && devinfo->ver == 6)
6282       emit_gfx6_gather_wa(key_tex->gfx6_gather_wa[texture], dst);
6283 
6284    fs_reg nir_dest[5];
6285    for (unsigned i = 0; i < dest_size; i++)
6286       nir_dest[i] = offset(dst, bld, i);
6287 
6288    if (instr->op == nir_texop_query_levels) {
6289       /* # levels is in .w */
6290       if (devinfo->ver <= 9) {
6291          /**
6292           * Wa_1940217:
6293           *
6294           * When a surface of type SURFTYPE_NULL is accessed by resinfo, the
6295           * MIPCount returned is undefined instead of 0.
6296           */
6297          fs_inst *mov = bld.MOV(bld.null_reg_d(), dst);
6298          mov->conditional_mod = BRW_CONDITIONAL_NZ;
6299          nir_dest[0] = bld.vgrf(BRW_REGISTER_TYPE_D);
6300          fs_inst *sel = bld.SEL(nir_dest[0], offset(dst, bld, 3), brw_imm_d(0));
6301          sel->predicate = BRW_PREDICATE_NORMAL;
6302       } else {
6303          nir_dest[0] = offset(dst, bld, 3);
6304       }
6305    } else if (instr->op == nir_texop_txs &&
6306               dest_size >= 3 && devinfo->ver < 7) {
6307       /* Gfx4-6 return 0 instead of 1 for single layer surfaces. */
6308       fs_reg depth = offset(dst, bld, 2);
6309       nir_dest[2] = vgrf(glsl_type::int_type);
6310       bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
6311    }
6312 
6313    bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
6314 }
6315 
6316 void
nir_emit_jump(const fs_builder & bld,nir_jump_instr * instr)6317 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
6318 {
6319    switch (instr->type) {
6320    case nir_jump_break:
6321       bld.emit(BRW_OPCODE_BREAK);
6322       break;
6323    case nir_jump_continue:
6324       bld.emit(BRW_OPCODE_CONTINUE);
6325       break;
6326    case nir_jump_halt:
6327       bld.emit(BRW_OPCODE_HALT);
6328       break;
6329    case nir_jump_return:
6330    default:
6331       unreachable("unknown jump");
6332    }
6333 }
6334 
6335 /*
6336  * This helper takes a source register and un/shuffles it into the destination
6337  * register.
6338  *
6339  * If source type size is smaller than destination type size the operation
6340  * needed is a component shuffle. The opposite case would be an unshuffle. If
6341  * source/destination type size is equal a shuffle is done that would be
6342  * equivalent to a simple MOV.
6343  *
6344  * For example, if source is a 16-bit type and destination is 32-bit. A 3
6345  * components .xyz 16-bit vector on SIMD8 would be.
6346  *
6347  *    |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
6348  *    |z1|z2|z3|z4|z5|z6|z7|z8|  |  |  |  |  |  |  |  |
6349  *
6350  * This helper will return the following 2 32-bit components with the 16-bit
6351  * values shuffled:
6352  *
6353  *    |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
6354  *    |z1   |z2   |z3   |z4   |z5   |z6   |z7   |z8   |
6355  *
6356  * For unshuffle, the example would be the opposite, a 64-bit type source
6357  * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
6358  * would be:
6359  *
6360  *    | x1l   x1h | x2l   x2h | x3l   x3h | x4l   x4h |
6361  *    | x5l   x5h | x6l   x6h | x7l   x7h | x8l   x8h |
6362  *    | y1l   y1h | y2l   y2h | y3l   y3h | y4l   y4h |
6363  *    | y5l   y5h | y6l   y6h | y7l   y7h | y8l   y8h |
6364  *
6365  * The returned result would be the following 4 32-bit components unshuffled:
6366  *
6367  *    | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
6368  *    | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
6369  *    | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
6370  *    | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
6371  *
6372  * - Source and destination register must not be overlapped.
6373  * - components units are measured in terms of the smaller type between
6374  *   source and destination because we are un/shuffling the smaller
6375  *   components from/into the bigger ones.
6376  * - first_component parameter allows skipping source components.
6377  */
6378 void
shuffle_src_to_dst(const fs_builder & bld,const fs_reg & dst,const fs_reg & src,uint32_t first_component,uint32_t components)6379 shuffle_src_to_dst(const fs_builder &bld,
6380                    const fs_reg &dst,
6381                    const fs_reg &src,
6382                    uint32_t first_component,
6383                    uint32_t components)
6384 {
6385    if (type_sz(src.type) == type_sz(dst.type)) {
6386       assert(!regions_overlap(dst,
6387          type_sz(dst.type) * bld.dispatch_width() * components,
6388          offset(src, bld, first_component),
6389          type_sz(src.type) * bld.dispatch_width() * components));
6390       for (unsigned i = 0; i < components; i++) {
6391          bld.MOV(retype(offset(dst, bld, i), src.type),
6392                  offset(src, bld, i + first_component));
6393       }
6394    } else if (type_sz(src.type) < type_sz(dst.type)) {
6395       /* Source is shuffled into destination */
6396       unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
6397       assert(!regions_overlap(dst,
6398          type_sz(dst.type) * bld.dispatch_width() *
6399          DIV_ROUND_UP(components, size_ratio),
6400          offset(src, bld, first_component),
6401          type_sz(src.type) * bld.dispatch_width() * components));
6402 
6403       brw_reg_type shuffle_type =
6404          brw_reg_type_from_bit_size(8 * type_sz(src.type),
6405                                     BRW_REGISTER_TYPE_D);
6406       for (unsigned i = 0; i < components; i++) {
6407          fs_reg shuffle_component_i =
6408             subscript(offset(dst, bld, i / size_ratio),
6409                       shuffle_type, i % size_ratio);
6410          bld.MOV(shuffle_component_i,
6411                  retype(offset(src, bld, i + first_component), shuffle_type));
6412       }
6413    } else {
6414       /* Source is unshuffled into destination */
6415       unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
6416       assert(!regions_overlap(dst,
6417          type_sz(dst.type) * bld.dispatch_width() * components,
6418          offset(src, bld, first_component / size_ratio),
6419          type_sz(src.type) * bld.dispatch_width() *
6420          DIV_ROUND_UP(components + (first_component % size_ratio),
6421                       size_ratio)));
6422 
6423       brw_reg_type shuffle_type =
6424          brw_reg_type_from_bit_size(8 * type_sz(dst.type),
6425                                     BRW_REGISTER_TYPE_D);
6426       for (unsigned i = 0; i < components; i++) {
6427          fs_reg shuffle_component_i =
6428             subscript(offset(src, bld, (first_component + i) / size_ratio),
6429                       shuffle_type, (first_component + i) % size_ratio);
6430          bld.MOV(retype(offset(dst, bld, i), shuffle_type),
6431                  shuffle_component_i);
6432       }
6433    }
6434 }
6435 
6436 void
shuffle_from_32bit_read(const fs_builder & bld,const fs_reg & dst,const fs_reg & src,uint32_t first_component,uint32_t components)6437 shuffle_from_32bit_read(const fs_builder &bld,
6438                         const fs_reg &dst,
6439                         const fs_reg &src,
6440                         uint32_t first_component,
6441                         uint32_t components)
6442 {
6443    assert(type_sz(src.type) == 4);
6444 
6445    /* This function takes components in units of the destination type while
6446     * shuffle_src_to_dst takes components in units of the smallest type
6447     */
6448    if (type_sz(dst.type) > 4) {
6449       assert(type_sz(dst.type) == 8);
6450       first_component *= 2;
6451       components *= 2;
6452    }
6453 
6454    shuffle_src_to_dst(bld, dst, src, first_component, components);
6455 }
6456 
6457 fs_reg
setup_imm_df(const fs_builder & bld,double v)6458 setup_imm_df(const fs_builder &bld, double v)
6459 {
6460    const struct intel_device_info *devinfo = bld.shader->devinfo;
6461    assert(devinfo->ver >= 7);
6462 
6463    if (devinfo->ver >= 8)
6464       return brw_imm_df(v);
6465 
6466    /* gfx7.5 does not support DF immediates straighforward but the DIM
6467     * instruction allows to set the 64-bit immediate value.
6468     */
6469    if (devinfo->is_haswell) {
6470       const fs_builder ubld = bld.exec_all().group(1, 0);
6471       fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
6472       ubld.DIM(dst, brw_imm_df(v));
6473       return component(dst, 0);
6474    }
6475 
6476    /* gfx7 does not support DF immediates, so we generate a 64-bit constant by
6477     * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
6478     * the high 32-bit to suboffset 4 and then applying a stride of 0.
6479     *
6480     * Alternatively, we could also produce a normal VGRF (without stride 0)
6481     * by writing to all the channels in the VGRF, however, that would hit the
6482     * gfx7 bug where we have to split writes that span more than 1 register
6483     * into instructions with a width of 4 (otherwise the write to the second
6484     * register written runs into an execmask hardware bug) which isn't very
6485     * nice.
6486     */
6487    union {
6488       double d;
6489       struct {
6490          uint32_t i1;
6491          uint32_t i2;
6492       };
6493    } di;
6494 
6495    di.d = v;
6496 
6497    const fs_builder ubld = bld.exec_all().group(1, 0);
6498    const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
6499    ubld.MOV(tmp, brw_imm_ud(di.i1));
6500    ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
6501 
6502    return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
6503 }
6504 
6505 fs_reg
setup_imm_b(const fs_builder & bld,int8_t v)6506 setup_imm_b(const fs_builder &bld, int8_t v)
6507 {
6508    const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
6509    bld.MOV(tmp, brw_imm_w(v));
6510    return tmp;
6511 }
6512 
6513 fs_reg
setup_imm_ub(const fs_builder & bld,uint8_t v)6514 setup_imm_ub(const fs_builder &bld, uint8_t v)
6515 {
6516    const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
6517    bld.MOV(tmp, brw_imm_uw(v));
6518    return tmp;
6519 }
6520