1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_rt.h"
28 #include "brw_eu.h"
29 #include "nir_search_helpers.h"
30 #include "util/u_math.h"
31 #include "util/bitscan.h"
32
33 using namespace brw;
34
35 void
emit_nir_code()36 fs_visitor::emit_nir_code()
37 {
38 emit_shader_float_controls_execution_mode();
39
40 /* emit the arrays used for inputs and outputs - load/store intrinsics will
41 * be converted to reads/writes of these arrays
42 */
43 nir_setup_outputs();
44 nir_setup_uniforms();
45 nir_emit_system_values();
46 last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
47
48 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
49
50 bld.emit(SHADER_OPCODE_HALT_TARGET);
51 }
52
53 void
nir_setup_outputs()54 fs_visitor::nir_setup_outputs()
55 {
56 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
57 return;
58
59 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
60
61 /* Calculate the size of output registers in a separate pass, before
62 * allocating them. With ARB_enhanced_layouts, multiple output variables
63 * may occupy the same slot, but have different type sizes.
64 */
65 nir_foreach_shader_out_variable(var, nir) {
66 const int loc = var->data.driver_location;
67 const unsigned var_vec4s =
68 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
69 : type_size_vec4(var->type, true);
70 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
71 }
72
73 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
74 if (vec4s[loc] == 0) {
75 loc++;
76 continue;
77 }
78
79 unsigned reg_size = vec4s[loc];
80
81 /* Check if there are any ranges that start within this range and extend
82 * past it. If so, include them in this allocation.
83 */
84 for (unsigned i = 1; i < reg_size; i++) {
85 assert(i + loc < ARRAY_SIZE(vec4s));
86 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
87 }
88
89 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
90 for (unsigned i = 0; i < reg_size; i++) {
91 assert(loc + i < ARRAY_SIZE(outputs));
92 outputs[loc + i] = offset(reg, bld, 4 * i);
93 }
94
95 loc += reg_size;
96 }
97 }
98
99 void
nir_setup_uniforms()100 fs_visitor::nir_setup_uniforms()
101 {
102 /* Only the first compile gets to set up uniforms. */
103 if (push_constant_loc) {
104 assert(pull_constant_loc);
105 return;
106 }
107
108 uniforms = nir->num_uniforms / 4;
109
110 if ((stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) &&
111 devinfo->verx10 < 125) {
112 /* Add uniforms for builtins after regular NIR uniforms. */
113 assert(uniforms == prog_data->nr_params);
114
115 uint32_t *param;
116 if (nir->info.workgroup_size_variable &&
117 compiler->lower_variable_group_size) {
118 param = brw_stage_prog_data_add_params(prog_data, 3);
119 for (unsigned i = 0; i < 3; i++) {
120 param[i] = (BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X + i);
121 group_size[i] = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
122 }
123 }
124
125 /* Subgroup ID must be the last uniform on the list. This will make
126 * easier later to split between cross thread and per thread
127 * uniforms.
128 */
129 param = brw_stage_prog_data_add_params(prog_data, 1);
130 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
131 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
132 }
133 }
134
135 static bool
emit_system_values_block(nir_block * block,fs_visitor * v)136 emit_system_values_block(nir_block *block, fs_visitor *v)
137 {
138 fs_reg *reg;
139
140 nir_foreach_instr(instr, block) {
141 if (instr->type != nir_instr_type_intrinsic)
142 continue;
143
144 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
145 switch (intrin->intrinsic) {
146 case nir_intrinsic_load_vertex_id:
147 case nir_intrinsic_load_base_vertex:
148 unreachable("should be lowered by nir_lower_system_values().");
149
150 case nir_intrinsic_load_vertex_id_zero_base:
151 case nir_intrinsic_load_is_indexed_draw:
152 case nir_intrinsic_load_first_vertex:
153 case nir_intrinsic_load_instance_id:
154 case nir_intrinsic_load_base_instance:
155 case nir_intrinsic_load_draw_id:
156 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
157
158 case nir_intrinsic_load_invocation_id:
159 if (v->stage == MESA_SHADER_TESS_CTRL)
160 break;
161 assert(v->stage == MESA_SHADER_GEOMETRY);
162 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
163 if (reg->file == BAD_FILE) {
164 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
165 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
166 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
167 abld.SHR(iid, g1, brw_imm_ud(27u));
168 *reg = iid;
169 }
170 break;
171
172 case nir_intrinsic_load_sample_pos:
173 assert(v->stage == MESA_SHADER_FRAGMENT);
174 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
175 if (reg->file == BAD_FILE)
176 *reg = *v->emit_samplepos_setup();
177 break;
178
179 case nir_intrinsic_load_sample_id:
180 assert(v->stage == MESA_SHADER_FRAGMENT);
181 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
182 if (reg->file == BAD_FILE)
183 *reg = *v->emit_sampleid_setup();
184 break;
185
186 case nir_intrinsic_load_sample_mask_in:
187 assert(v->stage == MESA_SHADER_FRAGMENT);
188 assert(v->devinfo->ver >= 7);
189 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
190 if (reg->file == BAD_FILE)
191 *reg = *v->emit_samplemaskin_setup();
192 break;
193
194 case nir_intrinsic_load_workgroup_id:
195 assert(v->stage == MESA_SHADER_COMPUTE ||
196 v->stage == MESA_SHADER_KERNEL);
197 reg = &v->nir_system_values[SYSTEM_VALUE_WORKGROUP_ID];
198 if (reg->file == BAD_FILE)
199 *reg = *v->emit_cs_work_group_id_setup();
200 break;
201
202 case nir_intrinsic_load_helper_invocation:
203 assert(v->stage == MESA_SHADER_FRAGMENT);
204 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
205 if (reg->file == BAD_FILE) {
206 const fs_builder abld =
207 v->bld.annotate("gl_HelperInvocation", NULL);
208
209 /* On Gfx6+ (gl_HelperInvocation is only exposed on Gfx7+) the
210 * pixel mask is in g1.7 of the thread payload.
211 *
212 * We move the per-channel pixel enable bit to the low bit of each
213 * channel by shifting the byte containing the pixel mask by the
214 * vector immediate 0x76543210UV.
215 *
216 * The region of <1,8,0> reads only 1 byte (the pixel masks for
217 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
218 * masks for 2 and 3) in SIMD16.
219 */
220 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
221
222 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
223 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
224 hbld.SHR(offset(shifted, hbld, i),
225 stride(retype(brw_vec1_grf(1 + i, 7),
226 BRW_REGISTER_TYPE_UB),
227 1, 8, 0),
228 brw_imm_v(0x76543210));
229 }
230
231 /* A set bit in the pixel mask means the channel is enabled, but
232 * that is the opposite of gl_HelperInvocation so we need to invert
233 * the mask.
234 *
235 * The negate source-modifier bit of logical instructions on Gfx8+
236 * performs 1's complement negation, so we can use that instead of
237 * a NOT instruction.
238 */
239 fs_reg inverted = negate(shifted);
240 if (v->devinfo->ver < 8) {
241 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
242 abld.NOT(inverted, shifted);
243 }
244
245 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
246 * with 1 and negating.
247 */
248 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
249 abld.AND(anded, inverted, brw_imm_uw(1));
250
251 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
252 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
253 *reg = dst;
254 }
255 break;
256
257 case nir_intrinsic_load_frag_shading_rate:
258 reg = &v->nir_system_values[SYSTEM_VALUE_FRAG_SHADING_RATE];
259 if (reg->file == BAD_FILE)
260 *reg = *v->emit_shading_rate_setup();
261 break;
262
263 default:
264 break;
265 }
266 }
267
268 return true;
269 }
270
271 void
nir_emit_system_values()272 fs_visitor::nir_emit_system_values()
273 {
274 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
275 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
276 nir_system_values[i] = fs_reg();
277 }
278
279 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
280 * never end up using it.
281 */
282 {
283 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
284 fs_reg ® = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
285 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
286
287 const fs_builder allbld8 = abld.group(8, 0).exec_all();
288 allbld8.MOV(reg, brw_imm_v(0x76543210));
289 if (dispatch_width > 8)
290 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
291 if (dispatch_width > 16) {
292 const fs_builder allbld16 = abld.group(16, 0).exec_all();
293 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
294 }
295 }
296
297 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
298 nir_foreach_block(block, impl)
299 emit_system_values_block(block, this);
300 }
301
302 void
nir_emit_impl(nir_function_impl * impl)303 fs_visitor::nir_emit_impl(nir_function_impl *impl)
304 {
305 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
306 for (unsigned i = 0; i < impl->reg_alloc; i++) {
307 nir_locals[i] = fs_reg();
308 }
309
310 foreach_list_typed(nir_register, reg, node, &impl->registers) {
311 unsigned array_elems =
312 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
313 unsigned size = array_elems * reg->num_components;
314 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
315 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
316 nir_locals[reg->index] = bld.vgrf(reg_type, size);
317 }
318
319 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
320 impl->ssa_alloc);
321
322 nir_emit_cf_list(&impl->body);
323 }
324
325 void
nir_emit_cf_list(exec_list * list)326 fs_visitor::nir_emit_cf_list(exec_list *list)
327 {
328 exec_list_validate(list);
329 foreach_list_typed(nir_cf_node, node, node, list) {
330 switch (node->type) {
331 case nir_cf_node_if:
332 nir_emit_if(nir_cf_node_as_if(node));
333 break;
334
335 case nir_cf_node_loop:
336 nir_emit_loop(nir_cf_node_as_loop(node));
337 break;
338
339 case nir_cf_node_block:
340 nir_emit_block(nir_cf_node_as_block(node));
341 break;
342
343 default:
344 unreachable("Invalid CFG node block");
345 }
346 }
347 }
348
349 void
nir_emit_if(nir_if * if_stmt)350 fs_visitor::nir_emit_if(nir_if *if_stmt)
351 {
352 bool invert;
353 fs_reg cond_reg;
354
355 /* If the condition has the form !other_condition, use other_condition as
356 * the source, but invert the predicate on the if instruction.
357 */
358 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
359 if (cond != NULL && cond->op == nir_op_inot) {
360 invert = true;
361 cond_reg = get_nir_src(cond->src[0].src);
362 cond_reg = offset(cond_reg, bld, cond->src[0].swizzle[0]);
363 } else {
364 invert = false;
365 cond_reg = get_nir_src(if_stmt->condition);
366 }
367
368 /* first, put the condition into f0 */
369 fs_inst *inst = bld.MOV(bld.null_reg_d(),
370 retype(cond_reg, BRW_REGISTER_TYPE_D));
371 inst->conditional_mod = BRW_CONDITIONAL_NZ;
372
373 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
374
375 nir_emit_cf_list(&if_stmt->then_list);
376
377 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
378 bld.emit(BRW_OPCODE_ELSE);
379 nir_emit_cf_list(&if_stmt->else_list);
380 }
381
382 bld.emit(BRW_OPCODE_ENDIF);
383
384 if (devinfo->ver < 7)
385 limit_dispatch_width(16, "Non-uniform control flow unsupported "
386 "in SIMD32 mode.");
387 }
388
389 void
nir_emit_loop(nir_loop * loop)390 fs_visitor::nir_emit_loop(nir_loop *loop)
391 {
392 bld.emit(BRW_OPCODE_DO);
393
394 nir_emit_cf_list(&loop->body);
395
396 bld.emit(BRW_OPCODE_WHILE);
397
398 if (devinfo->ver < 7)
399 limit_dispatch_width(16, "Non-uniform control flow unsupported "
400 "in SIMD32 mode.");
401 }
402
403 void
nir_emit_block(nir_block * block)404 fs_visitor::nir_emit_block(nir_block *block)
405 {
406 nir_foreach_instr(instr, block) {
407 nir_emit_instr(instr);
408 }
409 }
410
411 void
nir_emit_instr(nir_instr * instr)412 fs_visitor::nir_emit_instr(nir_instr *instr)
413 {
414 const fs_builder abld = bld.annotate(NULL, instr);
415
416 switch (instr->type) {
417 case nir_instr_type_alu:
418 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
419 break;
420
421 case nir_instr_type_deref:
422 unreachable("All derefs should've been lowered");
423 break;
424
425 case nir_instr_type_intrinsic:
426 switch (stage) {
427 case MESA_SHADER_VERTEX:
428 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
429 break;
430 case MESA_SHADER_TESS_CTRL:
431 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
432 break;
433 case MESA_SHADER_TESS_EVAL:
434 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
435 break;
436 case MESA_SHADER_GEOMETRY:
437 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
438 break;
439 case MESA_SHADER_FRAGMENT:
440 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
441 break;
442 case MESA_SHADER_COMPUTE:
443 case MESA_SHADER_KERNEL:
444 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
445 break;
446 case MESA_SHADER_RAYGEN:
447 case MESA_SHADER_ANY_HIT:
448 case MESA_SHADER_CLOSEST_HIT:
449 case MESA_SHADER_MISS:
450 case MESA_SHADER_INTERSECTION:
451 case MESA_SHADER_CALLABLE:
452 nir_emit_bs_intrinsic(abld, nir_instr_as_intrinsic(instr));
453 break;
454 default:
455 unreachable("unsupported shader stage");
456 }
457 break;
458
459 case nir_instr_type_tex:
460 nir_emit_texture(abld, nir_instr_as_tex(instr));
461 break;
462
463 case nir_instr_type_load_const:
464 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
465 break;
466
467 case nir_instr_type_ssa_undef:
468 /* We create a new VGRF for undefs on every use (by handling
469 * them in get_nir_src()), rather than for each definition.
470 * This helps register coalescing eliminate MOVs from undef.
471 */
472 break;
473
474 case nir_instr_type_jump:
475 nir_emit_jump(abld, nir_instr_as_jump(instr));
476 break;
477
478 default:
479 unreachable("unknown instruction type");
480 }
481 }
482
483 /**
484 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
485 * match instr.
486 */
487 bool
optimize_extract_to_float(nir_alu_instr * instr,const fs_reg & result)488 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
489 const fs_reg &result)
490 {
491 if (!instr->src[0].src.is_ssa ||
492 !instr->src[0].src.ssa->parent_instr)
493 return false;
494
495 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
496 return false;
497
498 nir_alu_instr *src0 =
499 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
500
501 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
502 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
503 return false;
504
505 unsigned element = nir_src_as_uint(src0->src[1].src);
506
507 /* Element type to extract.*/
508 const brw_reg_type type = brw_int_type(
509 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
510 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
511
512 fs_reg op0 = get_nir_src(src0->src[0].src);
513 op0.type = brw_type_for_nir_type(devinfo,
514 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
515 nir_src_bit_size(src0->src[0].src)));
516 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
517
518 bld.MOV(result, subscript(op0, type, element));
519 return true;
520 }
521
522 bool
optimize_frontfacing_ternary(nir_alu_instr * instr,const fs_reg & result)523 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
524 const fs_reg &result)
525 {
526 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
527 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
528 return false;
529
530 if (!nir_src_is_const(instr->src[1].src) ||
531 !nir_src_is_const(instr->src[2].src))
532 return false;
533
534 const float value1 = nir_src_as_float(instr->src[1].src);
535 const float value2 = nir_src_as_float(instr->src[2].src);
536 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
537 return false;
538
539 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
540 assert(value1 == -value2);
541
542 fs_reg tmp = vgrf(glsl_type::int_type);
543
544 if (devinfo->ver >= 12) {
545 /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
546 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
547
548 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
549 *
550 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
551 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
552 *
553 * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
554 */
555 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
556 g1, brw_imm_uw(0x3f80));
557
558 if (value1 == -1.0f)
559 bld.MOV(tmp, negate(tmp));
560
561 } else if (devinfo->ver >= 6) {
562 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
563 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
564
565 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
566 *
567 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
568 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
569 *
570 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
571 *
572 * This negation looks like it's safe in practice, because bits 0:4 will
573 * surely be TRIANGLES
574 */
575
576 if (value1 == -1.0f) {
577 g0.negate = true;
578 }
579
580 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
581 g0, brw_imm_uw(0x3f80));
582 } else {
583 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
584 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
585
586 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
587 *
588 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
589 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
590 *
591 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
592 *
593 * This negation looks like it's safe in practice, because bits 0:4 will
594 * surely be TRIANGLES
595 */
596
597 if (value1 == -1.0f) {
598 g1_6.negate = true;
599 }
600
601 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
602 }
603 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
604
605 return true;
606 }
607
608 static void
emit_find_msb_using_lzd(const fs_builder & bld,const fs_reg & result,const fs_reg & src,bool is_signed)609 emit_find_msb_using_lzd(const fs_builder &bld,
610 const fs_reg &result,
611 const fs_reg &src,
612 bool is_signed)
613 {
614 fs_inst *inst;
615 fs_reg temp = src;
616
617 if (is_signed) {
618 /* LZD of an absolute value source almost always does the right
619 * thing. There are two problem values:
620 *
621 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
622 * 0. However, findMSB(int(0x80000000)) == 30.
623 *
624 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
625 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
626 *
627 * For a value of zero or negative one, -1 will be returned.
628 *
629 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
630 * findMSB(-(1<<x)) should return x-1.
631 *
632 * For all negative number cases, including 0x80000000 and
633 * 0xffffffff, the correct value is obtained from LZD if instead of
634 * negating the (already negative) value the logical-not is used. A
635 * conditonal logical-not can be achieved in two instructions.
636 */
637 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
638
639 bld.ASR(temp, src, brw_imm_d(31));
640 bld.XOR(temp, temp, src);
641 }
642
643 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
644 retype(temp, BRW_REGISTER_TYPE_UD));
645
646 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
647 * from the LSB side. Subtract the result from 31 to convert the MSB
648 * count into an LSB count. If no bits are set, LZD will return 32.
649 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
650 */
651 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
652 inst->src[0].negate = true;
653 }
654
655 static brw_rnd_mode
brw_rnd_mode_from_nir_op(const nir_op op)656 brw_rnd_mode_from_nir_op (const nir_op op) {
657 switch (op) {
658 case nir_op_f2f16_rtz:
659 return BRW_RND_MODE_RTZ;
660 case nir_op_f2f16_rtne:
661 return BRW_RND_MODE_RTNE;
662 default:
663 unreachable("Operation doesn't support rounding mode");
664 }
665 }
666
667 static brw_rnd_mode
brw_rnd_mode_from_execution_mode(unsigned execution_mode)668 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
669 {
670 if (nir_has_any_rounding_mode_rtne(execution_mode))
671 return BRW_RND_MODE_RTNE;
672 if (nir_has_any_rounding_mode_rtz(execution_mode))
673 return BRW_RND_MODE_RTZ;
674 return BRW_RND_MODE_UNSPECIFIED;
675 }
676
677 fs_reg
prepare_alu_destination_and_sources(const fs_builder & bld,nir_alu_instr * instr,fs_reg * op,bool need_dest)678 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
679 nir_alu_instr *instr,
680 fs_reg *op,
681 bool need_dest)
682 {
683 fs_reg result =
684 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
685
686 result.type = brw_type_for_nir_type(devinfo,
687 (nir_alu_type)(nir_op_infos[instr->op].output_type |
688 nir_dest_bit_size(instr->dest.dest)));
689
690 assert(!instr->dest.saturate);
691
692 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
693 /* We don't lower to source modifiers so they should not exist. */
694 assert(!instr->src[i].abs);
695 assert(!instr->src[i].negate);
696
697 op[i] = get_nir_src(instr->src[i].src);
698 op[i].type = brw_type_for_nir_type(devinfo,
699 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
700 nir_src_bit_size(instr->src[i].src)));
701 }
702
703 /* Move and vecN instrutions may still be vectored. Return the raw,
704 * vectored source and destination so that fs_visitor::nir_emit_alu can
705 * handle it. Other callers should not have to handle these kinds of
706 * instructions.
707 */
708 switch (instr->op) {
709 case nir_op_mov:
710 case nir_op_vec2:
711 case nir_op_vec3:
712 case nir_op_vec4:
713 case nir_op_vec8:
714 case nir_op_vec16:
715 return result;
716 default:
717 break;
718 }
719
720 /* At this point, we have dealt with any instruction that operates on
721 * more than a single channel. Therefore, we can just adjust the source
722 * and destination registers for that channel and emit the instruction.
723 */
724 unsigned channel = 0;
725 if (nir_op_infos[instr->op].output_size == 0) {
726 /* Since NIR is doing the scalarizing for us, we should only ever see
727 * vectorized operations with a single channel.
728 */
729 assert(util_bitcount(instr->dest.write_mask) == 1);
730 channel = ffs(instr->dest.write_mask) - 1;
731
732 result = offset(result, bld, channel);
733 }
734
735 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
736 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
737 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
738 }
739
740 return result;
741 }
742
743 void
resolve_inot_sources(const fs_builder & bld,nir_alu_instr * instr,fs_reg * op)744 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
745 fs_reg *op)
746 {
747 for (unsigned i = 0; i < 2; i++) {
748 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
749
750 if (inot_instr != NULL && inot_instr->op == nir_op_inot) {
751 /* The source of the inot is now the source of instr. */
752 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
753
754 assert(!op[i].negate);
755 op[i].negate = true;
756 } else {
757 op[i] = resolve_source_modifiers(op[i]);
758 }
759 }
760 }
761
762 bool
try_emit_b2fi_of_inot(const fs_builder & bld,fs_reg result,nir_alu_instr * instr)763 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
764 fs_reg result,
765 nir_alu_instr *instr)
766 {
767 if (devinfo->ver < 6 || devinfo->ver >= 12)
768 return false;
769
770 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
771
772 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
773 return false;
774
775 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
776 * of valid size-changing combinations is a bit more complex.
777 *
778 * The source restriction is just because I was lazy about generating the
779 * constant below.
780 */
781 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
782 nir_src_bit_size(inot_instr->src[0].src) != 32)
783 return false;
784
785 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
786 * this is float(1 + a).
787 */
788 fs_reg op;
789
790 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
791
792 /* Ignore the saturate modifier, if there is one. The result of the
793 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
794 */
795 bld.ADD(result, op, brw_imm_d(1));
796
797 return true;
798 }
799
800 /**
801 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
802 *
803 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
804 * the source of \c instr that is a \c nir_op_fsign.
805 */
806 void
emit_fsign(const fs_builder & bld,const nir_alu_instr * instr,fs_reg result,fs_reg * op,unsigned fsign_src)807 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
808 fs_reg result, fs_reg *op, unsigned fsign_src)
809 {
810 fs_inst *inst;
811
812 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
813 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
814
815 if (instr->op != nir_op_fsign) {
816 const nir_alu_instr *const fsign_instr =
817 nir_src_as_alu_instr(instr->src[fsign_src].src);
818
819 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
820 * fsign_src] has the other multiply source. This must be rearranged so
821 * that op[0] is the source of the fsign op[1] is the other multiply
822 * source.
823 */
824 if (fsign_src != 0)
825 op[1] = op[0];
826
827 op[0] = get_nir_src(fsign_instr->src[0].src);
828
829 const nir_alu_type t =
830 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
831 nir_src_bit_size(fsign_instr->src[0].src));
832
833 op[0].type = brw_type_for_nir_type(devinfo, t);
834
835 unsigned channel = 0;
836 if (nir_op_infos[instr->op].output_size == 0) {
837 /* Since NIR is doing the scalarizing for us, we should only ever see
838 * vectorized operations with a single channel.
839 */
840 assert(util_bitcount(instr->dest.write_mask) == 1);
841 channel = ffs(instr->dest.write_mask) - 1;
842 }
843
844 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
845 }
846
847 if (type_sz(op[0].type) == 2) {
848 /* AND(val, 0x8000) gives the sign bit.
849 *
850 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
851 */
852 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
853 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
854
855 op[0].type = BRW_REGISTER_TYPE_UW;
856 result.type = BRW_REGISTER_TYPE_UW;
857 bld.AND(result, op[0], brw_imm_uw(0x8000u));
858
859 if (instr->op == nir_op_fsign)
860 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
861 else {
862 /* Use XOR here to get the result sign correct. */
863 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
864 }
865
866 inst->predicate = BRW_PREDICATE_NORMAL;
867 } else if (type_sz(op[0].type) == 4) {
868 /* AND(val, 0x80000000) gives the sign bit.
869 *
870 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
871 * zero.
872 */
873 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
874
875 op[0].type = BRW_REGISTER_TYPE_UD;
876 result.type = BRW_REGISTER_TYPE_UD;
877 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
878
879 if (instr->op == nir_op_fsign)
880 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
881 else {
882 /* Use XOR here to get the result sign correct. */
883 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
884 }
885
886 inst->predicate = BRW_PREDICATE_NORMAL;
887 } else {
888 /* For doubles we do the same but we need to consider:
889 *
890 * - 2-src instructions can't operate with 64-bit immediates
891 * - The sign is encoded in the high 32-bit of each DF
892 * - We need to produce a DF result.
893 */
894
895 fs_reg zero = vgrf(glsl_type::double_type);
896 bld.MOV(zero, setup_imm_df(bld, 0.0));
897 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
898
899 bld.MOV(result, zero);
900
901 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
902 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
903 brw_imm_ud(0x80000000u));
904
905 if (instr->op == nir_op_fsign) {
906 set_predicate(BRW_PREDICATE_NORMAL,
907 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
908 } else {
909 /* This could be done better in some cases. If the scale is an
910 * immediate with the low 32-bits all 0, emitting a separate XOR and
911 * OR would allow an algebraic optimization to remove the OR. There
912 * are currently zero instances of fsign(double(x))*IMM in shader-db
913 * or any test suite, so it is hard to care at this time.
914 */
915 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
916 inst = bld.XOR(result_int64, result_int64,
917 retype(op[1], BRW_REGISTER_TYPE_UQ));
918 }
919 }
920 }
921
922 /**
923 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
924 *
925 * Checks the operands of a \c nir_op_fmul to determine whether or not
926 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
927 *
928 * \param instr The multiplication instruction
929 *
930 * \param fsign_src The source of \c instr that may or may not be a
931 * \c nir_op_fsign
932 */
933 static bool
can_fuse_fmul_fsign(nir_alu_instr * instr,unsigned fsign_src)934 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
935 {
936 assert(instr->op == nir_op_fmul);
937
938 nir_alu_instr *const fsign_instr =
939 nir_src_as_alu_instr(instr->src[fsign_src].src);
940
941 /* Rules:
942 *
943 * 1. instr->src[fsign_src] must be a nir_op_fsign.
944 * 2. The nir_op_fsign can only be used by this multiplication.
945 * 3. The source that is the nir_op_fsign does not have source modifiers.
946 * \c emit_fsign only examines the source modifiers of the source of the
947 * \c nir_op_fsign.
948 *
949 * The nir_op_fsign must also not have the saturate modifier, but steps
950 * have already been taken (in nir_opt_algebraic) to ensure that.
951 */
952 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
953 is_used_once(fsign_instr);
954 }
955
956 void
nir_emit_alu(const fs_builder & bld,nir_alu_instr * instr,bool need_dest)957 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
958 bool need_dest)
959 {
960 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
961 fs_inst *inst;
962 unsigned execution_mode =
963 bld.shader->nir->info.float_controls_execution_mode;
964
965 fs_reg op[NIR_MAX_VEC_COMPONENTS];
966 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
967
968 #ifndef NDEBUG
969 /* Everything except raw moves, some type conversions, iabs, and ineg
970 * should have 8-bit sources lowered by nir_lower_bit_size in
971 * brw_preprocess_nir or by brw_nir_lower_conversions in
972 * brw_postprocess_nir.
973 */
974 switch (instr->op) {
975 case nir_op_mov:
976 case nir_op_vec2:
977 case nir_op_vec3:
978 case nir_op_vec4:
979 case nir_op_vec8:
980 case nir_op_vec16:
981 case nir_op_i2f16:
982 case nir_op_i2f32:
983 case nir_op_i2i16:
984 case nir_op_i2i32:
985 case nir_op_u2f16:
986 case nir_op_u2f32:
987 case nir_op_u2u16:
988 case nir_op_u2u32:
989 case nir_op_iabs:
990 case nir_op_ineg:
991 case nir_op_pack_32_4x8_split:
992 break;
993
994 default:
995 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
996 assert(type_sz(op[i].type) > 1);
997 }
998 }
999 #endif
1000
1001 switch (instr->op) {
1002 case nir_op_mov:
1003 case nir_op_vec2:
1004 case nir_op_vec3:
1005 case nir_op_vec4:
1006 case nir_op_vec8:
1007 case nir_op_vec16: {
1008 fs_reg temp = result;
1009 bool need_extra_copy = false;
1010 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1011 if (!instr->src[i].src.is_ssa &&
1012 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1013 need_extra_copy = true;
1014 temp = bld.vgrf(result.type, 4);
1015 break;
1016 }
1017 }
1018
1019 for (unsigned i = 0; i < 4; i++) {
1020 if (!(instr->dest.write_mask & (1 << i)))
1021 continue;
1022
1023 if (instr->op == nir_op_mov) {
1024 bld.MOV(offset(temp, bld, i),
1025 offset(op[0], bld, instr->src[0].swizzle[i]));
1026 } else {
1027 bld.MOV(offset(temp, bld, i),
1028 offset(op[i], bld, instr->src[i].swizzle[0]));
1029 }
1030 }
1031
1032 /* In this case the source and destination registers were the same,
1033 * so we need to insert an extra set of moves in order to deal with
1034 * any swizzling.
1035 */
1036 if (need_extra_copy) {
1037 for (unsigned i = 0; i < 4; i++) {
1038 if (!(instr->dest.write_mask & (1 << i)))
1039 continue;
1040
1041 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1042 }
1043 }
1044 return;
1045 }
1046
1047 case nir_op_i2f32:
1048 case nir_op_u2f32:
1049 if (optimize_extract_to_float(instr, result))
1050 return;
1051 inst = bld.MOV(result, op[0]);
1052 break;
1053
1054 case nir_op_f2f16_rtne:
1055 case nir_op_f2f16_rtz:
1056 case nir_op_f2f16: {
1057 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1058
1059 if (nir_op_f2f16 == instr->op)
1060 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1061 else
1062 rnd = brw_rnd_mode_from_nir_op(instr->op);
1063
1064 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1065 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1066
1067 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1068 * on the HW gen, it is a special hw opcode or just a MOV, and
1069 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1070 *
1071 * But if we want to use that opcode, we need to provide support on
1072 * different optimizations and lowerings. As right now HF support is
1073 * only for gfx8+, it will be better to use directly the MOV, and use
1074 * BRW_OPCODE_F32TO16 when/if we work for HF support on gfx7.
1075 */
1076 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1077 inst = bld.MOV(result, op[0]);
1078 break;
1079 }
1080
1081 case nir_op_b2i8:
1082 case nir_op_b2i16:
1083 case nir_op_b2i32:
1084 case nir_op_b2i64:
1085 case nir_op_b2f16:
1086 case nir_op_b2f32:
1087 case nir_op_b2f64:
1088 if (try_emit_b2fi_of_inot(bld, result, instr))
1089 break;
1090 op[0].type = BRW_REGISTER_TYPE_D;
1091 op[0].negate = !op[0].negate;
1092 FALLTHROUGH;
1093 case nir_op_i2f64:
1094 case nir_op_i2i64:
1095 case nir_op_u2f64:
1096 case nir_op_u2u64:
1097 case nir_op_f2f64:
1098 case nir_op_f2i64:
1099 case nir_op_f2u64:
1100 case nir_op_i2i32:
1101 case nir_op_u2u32:
1102 case nir_op_f2i32:
1103 case nir_op_f2u32:
1104 case nir_op_i2f16:
1105 case nir_op_u2f16:
1106 case nir_op_f2i16:
1107 case nir_op_f2u16:
1108 case nir_op_f2i8:
1109 case nir_op_f2u8:
1110 if (result.type == BRW_REGISTER_TYPE_B ||
1111 result.type == BRW_REGISTER_TYPE_UB ||
1112 result.type == BRW_REGISTER_TYPE_HF)
1113 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1114
1115 if (op[0].type == BRW_REGISTER_TYPE_B ||
1116 op[0].type == BRW_REGISTER_TYPE_UB ||
1117 op[0].type == BRW_REGISTER_TYPE_HF)
1118 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1119
1120 inst = bld.MOV(result, op[0]);
1121 break;
1122
1123 case nir_op_i2i8:
1124 case nir_op_u2u8:
1125 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1126 FALLTHROUGH;
1127 case nir_op_i2i16:
1128 case nir_op_u2u16: {
1129 /* Emit better code for u2u8(extract_u8(a, b)) and similar patterns.
1130 * Emitting the instructions one by one results in two MOV instructions
1131 * that won't be propagated. By handling both instructions here, a
1132 * single MOV is emitted.
1133 */
1134 nir_alu_instr *extract_instr = nir_src_as_alu_instr(instr->src[0].src);
1135 if (extract_instr != NULL) {
1136 if (extract_instr->op == nir_op_extract_u8 ||
1137 extract_instr->op == nir_op_extract_i8) {
1138 prepare_alu_destination_and_sources(bld, extract_instr, op, false);
1139
1140 const unsigned byte = nir_src_as_uint(extract_instr->src[1].src);
1141 const brw_reg_type type =
1142 brw_int_type(1, extract_instr->op == nir_op_extract_i8);
1143
1144 op[0] = subscript(op[0], type, byte);
1145 } else if (extract_instr->op == nir_op_extract_u16 ||
1146 extract_instr->op == nir_op_extract_i16) {
1147 prepare_alu_destination_and_sources(bld, extract_instr, op, false);
1148
1149 const unsigned word = nir_src_as_uint(extract_instr->src[1].src);
1150 const brw_reg_type type =
1151 brw_int_type(2, extract_instr->op == nir_op_extract_i16);
1152
1153 op[0] = subscript(op[0], type, word);
1154 }
1155 }
1156
1157 inst = bld.MOV(result, op[0]);
1158 break;
1159 }
1160
1161 case nir_op_fsat:
1162 inst = bld.MOV(result, op[0]);
1163 inst->saturate = true;
1164 break;
1165
1166 case nir_op_fneg:
1167 case nir_op_ineg:
1168 op[0].negate = true;
1169 inst = bld.MOV(result, op[0]);
1170 break;
1171
1172 case nir_op_fabs:
1173 case nir_op_iabs:
1174 op[0].negate = false;
1175 op[0].abs = true;
1176 inst = bld.MOV(result, op[0]);
1177 break;
1178
1179 case nir_op_f2f32:
1180 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1181 brw_rnd_mode rnd =
1182 brw_rnd_mode_from_execution_mode(execution_mode);
1183 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1184 brw_imm_d(rnd));
1185 }
1186
1187 if (op[0].type == BRW_REGISTER_TYPE_HF)
1188 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1189
1190 inst = bld.MOV(result, op[0]);
1191 break;
1192
1193 case nir_op_fsign:
1194 emit_fsign(bld, instr, result, op, 0);
1195 break;
1196
1197 case nir_op_frcp:
1198 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1199 break;
1200
1201 case nir_op_fexp2:
1202 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1203 break;
1204
1205 case nir_op_flog2:
1206 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1207 break;
1208
1209 case nir_op_fsin:
1210 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1211 break;
1212
1213 case nir_op_fcos:
1214 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1215 break;
1216
1217 case nir_op_fddx:
1218 if (fs_key->high_quality_derivatives) {
1219 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1220 } else {
1221 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1222 }
1223 break;
1224 case nir_op_fddx_fine:
1225 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1226 break;
1227 case nir_op_fddx_coarse:
1228 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1229 break;
1230 case nir_op_fddy:
1231 if (fs_key->high_quality_derivatives) {
1232 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1233 } else {
1234 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1235 }
1236 break;
1237 case nir_op_fddy_fine:
1238 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1239 break;
1240 case nir_op_fddy_coarse:
1241 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1242 break;
1243
1244 case nir_op_fadd:
1245 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1246 brw_rnd_mode rnd =
1247 brw_rnd_mode_from_execution_mode(execution_mode);
1248 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1249 brw_imm_d(rnd));
1250 }
1251 FALLTHROUGH;
1252 case nir_op_iadd:
1253 inst = bld.ADD(result, op[0], op[1]);
1254 break;
1255
1256 case nir_op_iadd3:
1257 inst = bld.ADD3(result, op[0], op[1], op[2]);
1258 break;
1259
1260 case nir_op_iadd_sat:
1261 case nir_op_uadd_sat:
1262 inst = bld.ADD(result, op[0], op[1]);
1263 inst->saturate = true;
1264 break;
1265
1266 case nir_op_isub_sat:
1267 bld.emit(SHADER_OPCODE_ISUB_SAT, result, op[0], op[1]);
1268 break;
1269
1270 case nir_op_usub_sat:
1271 bld.emit(SHADER_OPCODE_USUB_SAT, result, op[0], op[1]);
1272 break;
1273
1274 case nir_op_irhadd:
1275 case nir_op_urhadd:
1276 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1277 inst = bld.AVG(result, op[0], op[1]);
1278 break;
1279
1280 case nir_op_ihadd:
1281 case nir_op_uhadd: {
1282 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1283 fs_reg tmp = bld.vgrf(result.type);
1284
1285 if (devinfo->ver >= 8) {
1286 op[0] = resolve_source_modifiers(op[0]);
1287 op[1] = resolve_source_modifiers(op[1]);
1288 }
1289
1290 /* AVG(x, y) - ((x ^ y) & 1) */
1291 bld.XOR(tmp, op[0], op[1]);
1292 bld.AND(tmp, tmp, retype(brw_imm_ud(1), result.type));
1293 bld.AVG(result, op[0], op[1]);
1294 inst = bld.ADD(result, result, tmp);
1295 inst->src[1].negate = true;
1296 break;
1297 }
1298
1299 case nir_op_fmul:
1300 for (unsigned i = 0; i < 2; i++) {
1301 if (can_fuse_fmul_fsign(instr, i)) {
1302 emit_fsign(bld, instr, result, op, i);
1303 return;
1304 }
1305 }
1306
1307 /* We emit the rounding mode after the previous fsign optimization since
1308 * it won't result in a MUL, but will try to negate the value by other
1309 * means.
1310 */
1311 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1312 brw_rnd_mode rnd =
1313 brw_rnd_mode_from_execution_mode(execution_mode);
1314 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1315 brw_imm_d(rnd));
1316 }
1317
1318 inst = bld.MUL(result, op[0], op[1]);
1319 break;
1320
1321 case nir_op_imul_2x32_64:
1322 case nir_op_umul_2x32_64:
1323 bld.MUL(result, op[0], op[1]);
1324 break;
1325
1326 case nir_op_imul_32x16:
1327 case nir_op_umul_32x16: {
1328 const bool ud = instr->op == nir_op_umul_32x16;
1329
1330 assert(nir_dest_bit_size(instr->dest.dest) == 32);
1331
1332 /* Before Gfx7, the order of the 32-bit source and the 16-bit source was
1333 * swapped. The extension isn't enabled on those platforms, so don't
1334 * pretend to support the differences.
1335 */
1336 assert(devinfo->ver >= 7);
1337
1338 if (op[1].file == IMM)
1339 op[1] = ud ? brw_imm_uw(op[1].ud) : brw_imm_w(op[1].d);
1340 else {
1341 const enum brw_reg_type word_type =
1342 ud ? BRW_REGISTER_TYPE_UW : BRW_REGISTER_TYPE_W;
1343
1344 op[1] = subscript(op[1], word_type, 0);
1345 }
1346
1347 const enum brw_reg_type dword_type =
1348 ud ? BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_D;
1349
1350 bld.MUL(result, retype(op[0], dword_type), op[1]);
1351 break;
1352 }
1353
1354 case nir_op_imul:
1355 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1356 bld.MUL(result, op[0], op[1]);
1357 break;
1358
1359 case nir_op_imul_high:
1360 case nir_op_umul_high:
1361 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1362 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1363 break;
1364
1365 case nir_op_idiv:
1366 case nir_op_udiv:
1367 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1368 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1369 break;
1370
1371 case nir_op_uadd_carry:
1372 unreachable("Should have been lowered by carry_to_arith().");
1373
1374 case nir_op_usub_borrow:
1375 unreachable("Should have been lowered by borrow_to_arith().");
1376
1377 case nir_op_umod:
1378 case nir_op_irem:
1379 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1380 * appears that our hardware just does the right thing for signed
1381 * remainder.
1382 */
1383 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1384 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1385 break;
1386
1387 case nir_op_imod: {
1388 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1389 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1390
1391 /* Math instructions don't support conditional mod */
1392 inst = bld.MOV(bld.null_reg_d(), result);
1393 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1394
1395 /* Now, we need to determine if signs of the sources are different.
1396 * When we XOR the sources, the top bit is 0 if they are the same and 1
1397 * if they are different. We can then use a conditional modifier to
1398 * turn that into a predicate. This leads us to an XOR.l instruction.
1399 *
1400 * Technically, according to the PRM, you're not allowed to use .l on a
1401 * XOR instruction. However, emperical experiments and Curro's reading
1402 * of the simulator source both indicate that it's safe.
1403 */
1404 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1405 inst = bld.XOR(tmp, op[0], op[1]);
1406 inst->predicate = BRW_PREDICATE_NORMAL;
1407 inst->conditional_mod = BRW_CONDITIONAL_L;
1408
1409 /* If the result of the initial remainder operation is non-zero and the
1410 * two sources have different signs, add in a copy of op[1] to get the
1411 * final integer modulus value.
1412 */
1413 inst = bld.ADD(result, result, op[1]);
1414 inst->predicate = BRW_PREDICATE_NORMAL;
1415 break;
1416 }
1417
1418 case nir_op_flt32:
1419 case nir_op_fge32:
1420 case nir_op_feq32:
1421 case nir_op_fneu32: {
1422 fs_reg dest = result;
1423
1424 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1425 if (bit_size != 32)
1426 dest = bld.vgrf(op[0].type, 1);
1427
1428 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1429
1430 if (bit_size > 32) {
1431 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1432 } else if(bit_size < 32) {
1433 /* When we convert the result to 32-bit we need to be careful and do
1434 * it as a signed conversion to get sign extension (for 32-bit true)
1435 */
1436 const brw_reg_type src_type =
1437 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1438
1439 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1440 }
1441 break;
1442 }
1443
1444 case nir_op_ilt32:
1445 case nir_op_ult32:
1446 case nir_op_ige32:
1447 case nir_op_uge32:
1448 case nir_op_ieq32:
1449 case nir_op_ine32: {
1450 fs_reg dest = result;
1451
1452 const uint32_t bit_size = type_sz(op[0].type) * 8;
1453 if (bit_size != 32)
1454 dest = bld.vgrf(op[0].type, 1);
1455
1456 bld.CMP(dest, op[0], op[1],
1457 brw_cmod_for_nir_comparison(instr->op));
1458
1459 if (bit_size > 32) {
1460 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1461 } else if (bit_size < 32) {
1462 /* When we convert the result to 32-bit we need to be careful and do
1463 * it as a signed conversion to get sign extension (for 32-bit true)
1464 */
1465 const brw_reg_type src_type =
1466 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1467
1468 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1469 }
1470 break;
1471 }
1472
1473 case nir_op_inot:
1474 if (devinfo->ver >= 8) {
1475 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1476
1477 if (inot_src_instr != NULL &&
1478 (inot_src_instr->op == nir_op_ior ||
1479 inot_src_instr->op == nir_op_ixor ||
1480 inot_src_instr->op == nir_op_iand)) {
1481 /* The sources of the source logical instruction are now the
1482 * sources of the instruction that will be generated.
1483 */
1484 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1485 resolve_inot_sources(bld, inot_src_instr, op);
1486
1487 /* Smash all of the sources and destination to be signed. This
1488 * doesn't matter for the operation of the instruction, but cmod
1489 * propagation fails on unsigned sources with negation (due to
1490 * fs_inst::can_do_cmod returning false).
1491 */
1492 result.type =
1493 brw_type_for_nir_type(devinfo,
1494 (nir_alu_type)(nir_type_int |
1495 nir_dest_bit_size(instr->dest.dest)));
1496 op[0].type =
1497 brw_type_for_nir_type(devinfo,
1498 (nir_alu_type)(nir_type_int |
1499 nir_src_bit_size(inot_src_instr->src[0].src)));
1500 op[1].type =
1501 brw_type_for_nir_type(devinfo,
1502 (nir_alu_type)(nir_type_int |
1503 nir_src_bit_size(inot_src_instr->src[1].src)));
1504
1505 /* For XOR, only invert one of the sources. Arbitrarily choose
1506 * the first source.
1507 */
1508 op[0].negate = !op[0].negate;
1509 if (inot_src_instr->op != nir_op_ixor)
1510 op[1].negate = !op[1].negate;
1511
1512 switch (inot_src_instr->op) {
1513 case nir_op_ior:
1514 bld.AND(result, op[0], op[1]);
1515 return;
1516
1517 case nir_op_iand:
1518 bld.OR(result, op[0], op[1]);
1519 return;
1520
1521 case nir_op_ixor:
1522 bld.XOR(result, op[0], op[1]);
1523 return;
1524
1525 default:
1526 unreachable("impossible opcode");
1527 }
1528 }
1529 op[0] = resolve_source_modifiers(op[0]);
1530 }
1531 bld.NOT(result, op[0]);
1532 break;
1533 case nir_op_ixor:
1534 if (devinfo->ver >= 8) {
1535 resolve_inot_sources(bld, instr, op);
1536 }
1537 bld.XOR(result, op[0], op[1]);
1538 break;
1539 case nir_op_ior:
1540 if (devinfo->ver >= 8) {
1541 resolve_inot_sources(bld, instr, op);
1542 }
1543 bld.OR(result, op[0], op[1]);
1544 break;
1545 case nir_op_iand:
1546 if (devinfo->ver >= 8) {
1547 resolve_inot_sources(bld, instr, op);
1548 }
1549 bld.AND(result, op[0], op[1]);
1550 break;
1551
1552 case nir_op_fdot2:
1553 case nir_op_fdot3:
1554 case nir_op_fdot4:
1555 case nir_op_b32all_fequal2:
1556 case nir_op_b32all_iequal2:
1557 case nir_op_b32all_fequal3:
1558 case nir_op_b32all_iequal3:
1559 case nir_op_b32all_fequal4:
1560 case nir_op_b32all_iequal4:
1561 case nir_op_b32any_fnequal2:
1562 case nir_op_b32any_inequal2:
1563 case nir_op_b32any_fnequal3:
1564 case nir_op_b32any_inequal3:
1565 case nir_op_b32any_fnequal4:
1566 case nir_op_b32any_inequal4:
1567 unreachable("Lowered by nir_lower_alu_reductions");
1568
1569 case nir_op_ldexp:
1570 unreachable("not reached: should be handled by ldexp_to_arith()");
1571
1572 case nir_op_fsqrt:
1573 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1574 break;
1575
1576 case nir_op_frsq:
1577 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1578 break;
1579
1580 case nir_op_i2b32:
1581 case nir_op_f2b32: {
1582 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1583 if (bit_size == 64) {
1584 /* two-argument instructions can't take 64-bit immediates */
1585 fs_reg zero;
1586 fs_reg tmp;
1587
1588 if (instr->op == nir_op_f2b32) {
1589 zero = vgrf(glsl_type::double_type);
1590 tmp = vgrf(glsl_type::double_type);
1591 bld.MOV(zero, setup_imm_df(bld, 0.0));
1592 } else {
1593 zero = vgrf(glsl_type::int64_t_type);
1594 tmp = vgrf(glsl_type::int64_t_type);
1595 bld.MOV(zero, brw_imm_q(0));
1596 }
1597
1598 /* A SIMD16 execution needs to be split in two instructions, so use
1599 * a vgrf instead of the flag register as dst so instruction splitting
1600 * works
1601 */
1602 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1603 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1604 } else {
1605 fs_reg zero;
1606 if (bit_size == 32) {
1607 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1608 } else {
1609 assert(bit_size == 16);
1610 zero = instr->op == nir_op_f2b32 ?
1611 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1612 }
1613 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1614 }
1615 break;
1616 }
1617
1618 case nir_op_ftrunc:
1619 inst = bld.RNDZ(result, op[0]);
1620 if (devinfo->ver < 6) {
1621 set_condmod(BRW_CONDITIONAL_R, inst);
1622 set_predicate(BRW_PREDICATE_NORMAL,
1623 bld.ADD(result, result, brw_imm_f(1.0f)));
1624 inst = bld.MOV(result, result); /* for potential saturation */
1625 }
1626 break;
1627
1628 case nir_op_fceil: {
1629 op[0].negate = !op[0].negate;
1630 fs_reg temp = vgrf(glsl_type::float_type);
1631 bld.RNDD(temp, op[0]);
1632 temp.negate = true;
1633 inst = bld.MOV(result, temp);
1634 break;
1635 }
1636 case nir_op_ffloor:
1637 inst = bld.RNDD(result, op[0]);
1638 break;
1639 case nir_op_ffract:
1640 inst = bld.FRC(result, op[0]);
1641 break;
1642 case nir_op_fround_even:
1643 inst = bld.RNDE(result, op[0]);
1644 if (devinfo->ver < 6) {
1645 set_condmod(BRW_CONDITIONAL_R, inst);
1646 set_predicate(BRW_PREDICATE_NORMAL,
1647 bld.ADD(result, result, brw_imm_f(1.0f)));
1648 inst = bld.MOV(result, result); /* for potential saturation */
1649 }
1650 break;
1651
1652 case nir_op_fquantize2f16: {
1653 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1654 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1655 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1656
1657 /* The destination stride must be at least as big as the source stride. */
1658 tmp16.type = BRW_REGISTER_TYPE_W;
1659 tmp16.stride = 2;
1660
1661 /* Check for denormal */
1662 fs_reg abs_src0 = op[0];
1663 abs_src0.abs = true;
1664 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1665 BRW_CONDITIONAL_L);
1666 /* Get the appropriately signed zero */
1667 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1668 retype(op[0], BRW_REGISTER_TYPE_UD),
1669 brw_imm_ud(0x80000000));
1670 /* Do the actual F32 -> F16 -> F32 conversion */
1671 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1672 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1673 /* Select that or zero based on normal status */
1674 inst = bld.SEL(result, zero, tmp32);
1675 inst->predicate = BRW_PREDICATE_NORMAL;
1676 break;
1677 }
1678
1679 case nir_op_imin:
1680 case nir_op_umin:
1681 case nir_op_fmin:
1682 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1683 break;
1684
1685 case nir_op_imax:
1686 case nir_op_umax:
1687 case nir_op_fmax:
1688 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1689 break;
1690
1691 case nir_op_pack_snorm_2x16:
1692 case nir_op_pack_snorm_4x8:
1693 case nir_op_pack_unorm_2x16:
1694 case nir_op_pack_unorm_4x8:
1695 case nir_op_unpack_snorm_2x16:
1696 case nir_op_unpack_snorm_4x8:
1697 case nir_op_unpack_unorm_2x16:
1698 case nir_op_unpack_unorm_4x8:
1699 case nir_op_unpack_half_2x16:
1700 case nir_op_pack_half_2x16:
1701 unreachable("not reached: should be handled by lower_packing_builtins");
1702
1703 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1704 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1705 FALLTHROUGH;
1706 case nir_op_unpack_half_2x16_split_x:
1707 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1708 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1709 break;
1710
1711 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1712 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1713 FALLTHROUGH;
1714 case nir_op_unpack_half_2x16_split_y:
1715 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1716 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1717 break;
1718
1719 case nir_op_pack_64_2x32_split:
1720 case nir_op_pack_32_2x16_split:
1721 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1722 break;
1723
1724 case nir_op_pack_32_4x8_split:
1725 bld.emit(FS_OPCODE_PACK, result, op, 4);
1726 break;
1727
1728 case nir_op_unpack_64_2x32_split_x:
1729 case nir_op_unpack_64_2x32_split_y: {
1730 if (instr->op == nir_op_unpack_64_2x32_split_x)
1731 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1732 else
1733 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1734 break;
1735 }
1736
1737 case nir_op_unpack_32_2x16_split_x:
1738 case nir_op_unpack_32_2x16_split_y: {
1739 if (instr->op == nir_op_unpack_32_2x16_split_x)
1740 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1741 else
1742 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1743 break;
1744 }
1745
1746 case nir_op_fpow:
1747 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1748 break;
1749
1750 case nir_op_bitfield_reverse:
1751 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1752 bld.BFREV(result, op[0]);
1753 break;
1754
1755 case nir_op_bit_count:
1756 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1757 bld.CBIT(result, op[0]);
1758 break;
1759
1760 case nir_op_ufind_msb: {
1761 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1762 emit_find_msb_using_lzd(bld, result, op[0], false);
1763 break;
1764 }
1765
1766 case nir_op_uclz:
1767 assert(nir_dest_bit_size(instr->dest.dest) == 32);
1768 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1769 break;
1770
1771 case nir_op_ifind_msb: {
1772 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1773
1774 if (devinfo->ver < 7) {
1775 emit_find_msb_using_lzd(bld, result, op[0], true);
1776 } else {
1777 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1778
1779 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1780 * count from the LSB side. If FBH didn't return an error
1781 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1782 * count into an LSB count.
1783 */
1784 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1785
1786 inst = bld.ADD(result, result, brw_imm_d(31));
1787 inst->predicate = BRW_PREDICATE_NORMAL;
1788 inst->src[0].negate = true;
1789 }
1790 break;
1791 }
1792
1793 case nir_op_find_lsb:
1794 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1795
1796 if (devinfo->ver < 7) {
1797 fs_reg temp = vgrf(glsl_type::int_type);
1798
1799 /* (x & -x) generates a value that consists of only the LSB of x.
1800 * For all powers of 2, findMSB(y) == findLSB(y).
1801 */
1802 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1803 fs_reg negated_src = src;
1804
1805 /* One must be negated, and the other must be non-negated. It
1806 * doesn't matter which is which.
1807 */
1808 negated_src.negate = true;
1809 src.negate = false;
1810
1811 bld.AND(temp, src, negated_src);
1812 emit_find_msb_using_lzd(bld, result, temp, false);
1813 } else {
1814 bld.FBL(result, op[0]);
1815 }
1816 break;
1817
1818 case nir_op_ubitfield_extract:
1819 case nir_op_ibitfield_extract:
1820 unreachable("should have been lowered");
1821 case nir_op_ubfe:
1822 case nir_op_ibfe:
1823 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1824 bld.BFE(result, op[2], op[1], op[0]);
1825 break;
1826 case nir_op_bfm:
1827 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1828 bld.BFI1(result, op[0], op[1]);
1829 break;
1830 case nir_op_bfi:
1831 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1832 bld.BFI2(result, op[0], op[1], op[2]);
1833 break;
1834
1835 case nir_op_bitfield_insert:
1836 unreachable("not reached: should have been lowered");
1837
1838 /* For all shift operations:
1839 *
1840 * Gen4 - Gen7: After application of source modifiers, the low 5-bits of
1841 * src1 are used an unsigned value for the shift count.
1842 *
1843 * Gen8: As with earlier platforms, but for Q and UQ types on src0, the low
1844 * 6-bit of src1 are used.
1845 *
1846 * Gen9+: The low bits of src1 matching the size of src0 (e.g., 4-bits for
1847 * W or UW src0).
1848 *
1849 * The implication is that the following instruction will produce a
1850 * different result on Gen9+ than on previous platforms:
1851 *
1852 * shr(8) g4<1>UW g12<8,8,1>UW 0x0010UW
1853 *
1854 * where Gen9+ will shift by zero, and earlier platforms will shift by 16.
1855 *
1856 * This does not seem to be the case. Experimentally, it has been
1857 * determined that shifts of 16-bit values on Gen8 behave properly. Shifts
1858 * of 8-bit values on both Gen8 and Gen9 do not. Gen11+ lowers 8-bit
1859 * values, so those platforms were not tested. No features expose access
1860 * to 8- or 16-bit types on Gen7 or earlier, so those platforms were not
1861 * tested either. See
1862 * https://gitlab.freedesktop.org/mesa/crucible/-/merge_requests/76.
1863 *
1864 * This is part of the reason 8-bit values are lowered to 16-bit on all
1865 * platforms.
1866 */
1867 case nir_op_ishl:
1868 bld.SHL(result, op[0], op[1]);
1869 break;
1870 case nir_op_ishr:
1871 bld.ASR(result, op[0], op[1]);
1872 break;
1873 case nir_op_ushr:
1874 bld.SHR(result, op[0], op[1]);
1875 break;
1876
1877 case nir_op_urol:
1878 bld.ROL(result, op[0], op[1]);
1879 break;
1880 case nir_op_uror:
1881 bld.ROR(result, op[0], op[1]);
1882 break;
1883
1884 case nir_op_pack_half_2x16_split:
1885 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1886 break;
1887
1888 case nir_op_sdot_4x8_iadd:
1889 case nir_op_sdot_4x8_iadd_sat:
1890 inst = bld.DP4A(result,
1891 retype(op[2], BRW_REGISTER_TYPE_D),
1892 retype(op[0], BRW_REGISTER_TYPE_D),
1893 retype(op[1], BRW_REGISTER_TYPE_D));
1894
1895 if (instr->op == nir_op_sdot_4x8_iadd_sat)
1896 inst->saturate = true;
1897 break;
1898
1899 case nir_op_udot_4x8_uadd:
1900 case nir_op_udot_4x8_uadd_sat:
1901 inst = bld.DP4A(result,
1902 retype(op[2], BRW_REGISTER_TYPE_UD),
1903 retype(op[0], BRW_REGISTER_TYPE_UD),
1904 retype(op[1], BRW_REGISTER_TYPE_UD));
1905
1906 if (instr->op == nir_op_udot_4x8_uadd_sat)
1907 inst->saturate = true;
1908 break;
1909
1910 case nir_op_sudot_4x8_iadd:
1911 case nir_op_sudot_4x8_iadd_sat:
1912 inst = bld.DP4A(result,
1913 retype(op[2], BRW_REGISTER_TYPE_D),
1914 retype(op[0], BRW_REGISTER_TYPE_D),
1915 retype(op[1], BRW_REGISTER_TYPE_UD));
1916
1917 if (instr->op == nir_op_sudot_4x8_iadd_sat)
1918 inst->saturate = true;
1919 break;
1920
1921 case nir_op_ffma:
1922 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1923 brw_rnd_mode rnd =
1924 brw_rnd_mode_from_execution_mode(execution_mode);
1925 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1926 brw_imm_d(rnd));
1927 }
1928
1929 inst = bld.MAD(result, op[2], op[1], op[0]);
1930 break;
1931
1932 case nir_op_flrp:
1933 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1934 brw_rnd_mode rnd =
1935 brw_rnd_mode_from_execution_mode(execution_mode);
1936 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1937 brw_imm_d(rnd));
1938 }
1939
1940 inst = bld.LRP(result, op[0], op[1], op[2]);
1941 break;
1942
1943 case nir_op_b32csel:
1944 if (optimize_frontfacing_ternary(instr, result))
1945 return;
1946
1947 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1948 inst = bld.SEL(result, op[1], op[2]);
1949 inst->predicate = BRW_PREDICATE_NORMAL;
1950 break;
1951
1952 case nir_op_extract_u8:
1953 case nir_op_extract_i8: {
1954 unsigned byte = nir_src_as_uint(instr->src[1].src);
1955
1956 /* The PRMs say:
1957 *
1958 * BDW+
1959 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1960 * Use two instructions and a word or DWord intermediate integer type.
1961 */
1962 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1963 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1964
1965 if (instr->op == nir_op_extract_i8) {
1966 /* If we need to sign extend, extract to a word first */
1967 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1968 bld.MOV(w_temp, subscript(op[0], type, byte));
1969 bld.MOV(result, w_temp);
1970 } else if (byte & 1) {
1971 /* Extract the high byte from the word containing the desired byte
1972 * offset.
1973 */
1974 bld.SHR(result,
1975 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1976 brw_imm_uw(8));
1977 } else {
1978 /* Otherwise use an AND with 0xff and a word type */
1979 bld.AND(result,
1980 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1981 brw_imm_uw(0xff));
1982 }
1983 } else {
1984 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1985 bld.MOV(result, subscript(op[0], type, byte));
1986 }
1987 break;
1988 }
1989
1990 case nir_op_extract_u16:
1991 case nir_op_extract_i16: {
1992 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1993 unsigned word = nir_src_as_uint(instr->src[1].src);
1994 bld.MOV(result, subscript(op[0], type, word));
1995 break;
1996 }
1997
1998 default:
1999 unreachable("unhandled instruction");
2000 }
2001
2002 /* If we need to do a boolean resolve, replace the result with -(x & 1)
2003 * to sign extend the low bit to 0/~0
2004 */
2005 if (devinfo->ver <= 5 &&
2006 !result.is_null() &&
2007 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
2008 fs_reg masked = vgrf(glsl_type::int_type);
2009 bld.AND(masked, result, brw_imm_d(1));
2010 masked.negate = true;
2011 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
2012 }
2013 }
2014
2015 void
nir_emit_load_const(const fs_builder & bld,nir_load_const_instr * instr)2016 fs_visitor::nir_emit_load_const(const fs_builder &bld,
2017 nir_load_const_instr *instr)
2018 {
2019 const brw_reg_type reg_type =
2020 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
2021 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
2022
2023 switch (instr->def.bit_size) {
2024 case 8:
2025 for (unsigned i = 0; i < instr->def.num_components; i++)
2026 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
2027 break;
2028
2029 case 16:
2030 for (unsigned i = 0; i < instr->def.num_components; i++)
2031 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
2032 break;
2033
2034 case 32:
2035 for (unsigned i = 0; i < instr->def.num_components; i++)
2036 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
2037 break;
2038
2039 case 64:
2040 assert(devinfo->ver >= 7);
2041 if (devinfo->ver == 7) {
2042 /* We don't get 64-bit integer types until gfx8 */
2043 for (unsigned i = 0; i < instr->def.num_components; i++) {
2044 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
2045 setup_imm_df(bld, instr->value[i].f64));
2046 }
2047 } else {
2048 for (unsigned i = 0; i < instr->def.num_components; i++)
2049 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
2050 }
2051 break;
2052
2053 default:
2054 unreachable("Invalid bit size");
2055 }
2056
2057 nir_ssa_values[instr->def.index] = reg;
2058 }
2059
2060 fs_reg
get_nir_src(const nir_src & src)2061 fs_visitor::get_nir_src(const nir_src &src)
2062 {
2063 fs_reg reg;
2064 if (src.is_ssa) {
2065 if (nir_src_is_undef(src)) {
2066 const brw_reg_type reg_type =
2067 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
2068 reg = bld.vgrf(reg_type, src.ssa->num_components);
2069 } else {
2070 reg = nir_ssa_values[src.ssa->index];
2071 }
2072 } else {
2073 /* We don't handle indirects on locals */
2074 assert(src.reg.indirect == NULL);
2075 reg = offset(nir_locals[src.reg.reg->index], bld,
2076 src.reg.base_offset * src.reg.reg->num_components);
2077 }
2078
2079 if (nir_src_bit_size(src) == 64 && devinfo->ver == 7) {
2080 /* The only 64-bit type available on gfx7 is DF, so use that. */
2081 reg.type = BRW_REGISTER_TYPE_DF;
2082 } else {
2083 /* To avoid floating-point denorm flushing problems, set the type by
2084 * default to an integer type - instructions that need floating point
2085 * semantics will set this to F if they need to
2086 */
2087 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
2088 BRW_REGISTER_TYPE_D);
2089 }
2090
2091 return reg;
2092 }
2093
2094 /**
2095 * Return an IMM for constants; otherwise call get_nir_src() as normal.
2096 *
2097 * This function should not be called on any value which may be 64 bits.
2098 * We could theoretically support 64-bit on gfx8+ but we choose not to
2099 * because it wouldn't work in general (no gfx7 support) and there are
2100 * enough restrictions in 64-bit immediates that you can't take the return
2101 * value and treat it the same as the result of get_nir_src().
2102 */
2103 fs_reg
get_nir_src_imm(const nir_src & src)2104 fs_visitor::get_nir_src_imm(const nir_src &src)
2105 {
2106 assert(nir_src_bit_size(src) == 32);
2107 return nir_src_is_const(src) ?
2108 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2109 }
2110
2111 fs_reg
get_nir_dest(const nir_dest & dest)2112 fs_visitor::get_nir_dest(const nir_dest &dest)
2113 {
2114 if (dest.is_ssa) {
2115 const brw_reg_type reg_type =
2116 brw_reg_type_from_bit_size(dest.ssa.bit_size,
2117 dest.ssa.bit_size == 8 ?
2118 BRW_REGISTER_TYPE_D :
2119 BRW_REGISTER_TYPE_F);
2120 nir_ssa_values[dest.ssa.index] =
2121 bld.vgrf(reg_type, dest.ssa.num_components);
2122 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2123 return nir_ssa_values[dest.ssa.index];
2124 } else {
2125 /* We don't handle indirects on locals */
2126 assert(dest.reg.indirect == NULL);
2127 return offset(nir_locals[dest.reg.reg->index], bld,
2128 dest.reg.base_offset * dest.reg.reg->num_components);
2129 }
2130 }
2131
2132 void
emit_percomp(const fs_builder & bld,const fs_inst & inst,unsigned wr_mask)2133 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2134 unsigned wr_mask)
2135 {
2136 for (unsigned i = 0; i < 4; i++) {
2137 if (!((wr_mask >> i) & 1))
2138 continue;
2139
2140 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2141 new_inst->dst = offset(new_inst->dst, bld, i);
2142 for (unsigned j = 0; j < new_inst->sources; j++)
2143 if (new_inst->src[j].file == VGRF)
2144 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2145
2146 bld.emit(new_inst);
2147 }
2148 }
2149
2150 static fs_inst *
emit_pixel_interpolater_send(const fs_builder & bld,enum opcode opcode,const fs_reg & dst,const fs_reg & src,const fs_reg & desc,glsl_interp_mode interpolation)2151 emit_pixel_interpolater_send(const fs_builder &bld,
2152 enum opcode opcode,
2153 const fs_reg &dst,
2154 const fs_reg &src,
2155 const fs_reg &desc,
2156 glsl_interp_mode interpolation)
2157 {
2158 struct brw_wm_prog_data *wm_prog_data =
2159 brw_wm_prog_data(bld.shader->stage_prog_data);
2160
2161 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2162 /* 2 floats per slot returned */
2163 inst->size_written = 2 * dst.component_size(inst->exec_size);
2164 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2165
2166 wm_prog_data->pulls_bary = true;
2167
2168 return inst;
2169 }
2170
2171 /**
2172 * Computes 1 << x, given a D/UD register containing some value x.
2173 */
2174 static fs_reg
intexp2(const fs_builder & bld,const fs_reg & x)2175 intexp2(const fs_builder &bld, const fs_reg &x)
2176 {
2177 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2178
2179 fs_reg result = bld.vgrf(x.type, 1);
2180 fs_reg one = bld.vgrf(x.type, 1);
2181
2182 bld.MOV(one, retype(brw_imm_d(1), one.type));
2183 bld.SHL(result, one, x);
2184 return result;
2185 }
2186
2187 void
emit_gs_end_primitive(const nir_src & vertex_count_nir_src)2188 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2189 {
2190 assert(stage == MESA_SHADER_GEOMETRY);
2191
2192 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2193
2194 if (gs_compile->control_data_header_size_bits == 0)
2195 return;
2196
2197 /* We can only do EndPrimitive() functionality when the control data
2198 * consists of cut bits. Fortunately, the only time it isn't is when the
2199 * output type is points, in which case EndPrimitive() is a no-op.
2200 */
2201 if (gs_prog_data->control_data_format !=
2202 GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2203 return;
2204 }
2205
2206 /* Cut bits use one bit per vertex. */
2207 assert(gs_compile->control_data_bits_per_vertex == 1);
2208
2209 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2210 vertex_count.type = BRW_REGISTER_TYPE_UD;
2211
2212 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2213 * vertex n, 0 otherwise. So all we need to do here is mark bit
2214 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2215 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2216 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2217 *
2218 * Note that if EndPrimitive() is called before emitting any vertices, this
2219 * will cause us to set bit 31 of the control_data_bits register to 1.
2220 * That's fine because:
2221 *
2222 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2223 * output, so the hardware will ignore cut bit 31.
2224 *
2225 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2226 * last vertex, so setting cut bit 31 has no effect (since the primitive
2227 * is automatically ended when the GS terminates).
2228 *
2229 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2230 * control_data_bits register to 0 when the first vertex is emitted.
2231 */
2232
2233 const fs_builder abld = bld.annotate("end primitive");
2234
2235 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2236 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2237 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2238 fs_reg mask = intexp2(abld, prev_count);
2239 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2240 * attention to the lower 5 bits of its second source argument, so on this
2241 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2242 * ((vertex_count - 1) % 32).
2243 */
2244 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2245 }
2246
2247 void
emit_gs_control_data_bits(const fs_reg & vertex_count)2248 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2249 {
2250 assert(stage == MESA_SHADER_GEOMETRY);
2251 assert(gs_compile->control_data_bits_per_vertex != 0);
2252
2253 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2254
2255 const fs_builder abld = bld.annotate("emit control data bits");
2256 const fs_builder fwa_bld = bld.exec_all();
2257
2258 /* We use a single UD register to accumulate control data bits (32 bits
2259 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2260 * at a time.
2261 *
2262 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2263 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2264 * use the Channel Mask phase to enable/disable which DWord within that
2265 * group to write. (Remember, different SIMD8 channels may have emitted
2266 * different numbers of vertices, so we may need per-slot offsets.)
2267 *
2268 * Channel masking presents an annoying problem: we may have to replicate
2269 * the data up to 4 times:
2270 *
2271 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2272 *
2273 * To avoid penalizing shaders that emit a small number of vertices, we
2274 * can avoid these sometimes: if the size of the control data header is
2275 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2276 * land in the same 128-bit group, so we can skip per-slot offsets.
2277 *
2278 * Similarly, if the control data header is <= 32 bits, there is only one
2279 * DWord, so we can skip channel masks.
2280 */
2281 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2282
2283 fs_reg channel_mask, per_slot_offset;
2284
2285 if (gs_compile->control_data_header_size_bits > 32) {
2286 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2287 channel_mask = vgrf(glsl_type::uint_type);
2288 }
2289
2290 if (gs_compile->control_data_header_size_bits > 128) {
2291 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2292 per_slot_offset = vgrf(glsl_type::uint_type);
2293 }
2294
2295 /* Figure out which DWord we're trying to write to using the formula:
2296 *
2297 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2298 *
2299 * Since bits_per_vertex is a power of two, and is known at compile
2300 * time, this can be optimized to:
2301 *
2302 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2303 */
2304 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2305 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2306 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2307 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2308 unsigned log2_bits_per_vertex =
2309 util_last_bit(gs_compile->control_data_bits_per_vertex);
2310 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2311
2312 if (per_slot_offset.file != BAD_FILE) {
2313 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2314 * the appropriate OWord within the control data header.
2315 */
2316 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2317 }
2318
2319 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2320 * write to the appropriate DWORD within the OWORD.
2321 */
2322 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2323 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2324 channel_mask = intexp2(fwa_bld, channel);
2325 /* Then the channel masks need to be in bits 23:16. */
2326 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2327 }
2328
2329 /* Store the control data bits in the message payload and send it. */
2330 unsigned mlen = 2;
2331 if (channel_mask.file != BAD_FILE)
2332 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2333 if (per_slot_offset.file != BAD_FILE)
2334 mlen++;
2335
2336 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2337 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2338 unsigned i = 0;
2339 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2340 if (per_slot_offset.file != BAD_FILE)
2341 sources[i++] = per_slot_offset;
2342 if (channel_mask.file != BAD_FILE)
2343 sources[i++] = channel_mask;
2344 while (i < mlen) {
2345 sources[i++] = this->control_data_bits;
2346 }
2347
2348 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2349 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2350 inst->mlen = mlen;
2351 /* We need to increment Global Offset by 256-bits to make room for
2352 * Broadwell's extra "Vertex Count" payload at the beginning of the
2353 * URB entry. Since this is an OWord message, Global Offset is counted
2354 * in 128-bit units, so we must set it to 2.
2355 */
2356 if (gs_prog_data->static_vertex_count == -1)
2357 inst->offset = 2;
2358 }
2359
2360 void
set_gs_stream_control_data_bits(const fs_reg & vertex_count,unsigned stream_id)2361 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2362 unsigned stream_id)
2363 {
2364 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2365
2366 /* Note: we are calling this *before* increasing vertex_count, so
2367 * this->vertex_count == vertex_count - 1 in the formula above.
2368 */
2369
2370 /* Stream mode uses 2 bits per vertex */
2371 assert(gs_compile->control_data_bits_per_vertex == 2);
2372
2373 /* Must be a valid stream */
2374 assert(stream_id < MAX_VERTEX_STREAMS);
2375
2376 /* Control data bits are initialized to 0 so we don't have to set any
2377 * bits when sending vertices to stream 0.
2378 */
2379 if (stream_id == 0)
2380 return;
2381
2382 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2383
2384 /* reg::sid = stream_id */
2385 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2386 abld.MOV(sid, brw_imm_ud(stream_id));
2387
2388 /* reg:shift_count = 2 * (vertex_count - 1) */
2389 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2390 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2391
2392 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2393 * attention to the lower 5 bits of its second source argument, so on this
2394 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2395 * stream_id << ((2 * (vertex_count - 1)) % 32).
2396 */
2397 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2398 abld.SHL(mask, sid, shift_count);
2399 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2400 }
2401
2402 void
emit_gs_vertex(const nir_src & vertex_count_nir_src,unsigned stream_id)2403 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2404 unsigned stream_id)
2405 {
2406 assert(stage == MESA_SHADER_GEOMETRY);
2407
2408 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2409
2410 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2411 vertex_count.type = BRW_REGISTER_TYPE_UD;
2412
2413 /* Haswell and later hardware ignores the "Render Stream Select" bits
2414 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2415 * and instead sends all primitives down the pipeline for rasterization.
2416 * If the SOL stage is enabled, "Render Stream Select" is honored and
2417 * primitives bound to non-zero streams are discarded after stream output.
2418 *
2419 * Since the only purpose of primives sent to non-zero streams is to
2420 * be recorded by transform feedback, we can simply discard all geometry
2421 * bound to these streams when transform feedback is disabled.
2422 */
2423 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2424 return;
2425
2426 /* If we're outputting 32 control data bits or less, then we can wait
2427 * until the shader is over to output them all. Otherwise we need to
2428 * output them as we go. Now is the time to do it, since we're about to
2429 * output the vertex_count'th vertex, so it's guaranteed that the
2430 * control data bits associated with the (vertex_count - 1)th vertex are
2431 * correct.
2432 */
2433 if (gs_compile->control_data_header_size_bits > 32) {
2434 const fs_builder abld =
2435 bld.annotate("emit vertex: emit control data bits");
2436
2437 /* Only emit control data bits if we've finished accumulating a batch
2438 * of 32 bits. This is the case when:
2439 *
2440 * (vertex_count * bits_per_vertex) % 32 == 0
2441 *
2442 * (in other words, when the last 5 bits of vertex_count *
2443 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2444 * integer n (which is always the case, since bits_per_vertex is
2445 * always 1 or 2), this is equivalent to requiring that the last 5-n
2446 * bits of vertex_count are 0:
2447 *
2448 * vertex_count & (2^(5-n) - 1) == 0
2449 *
2450 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2451 * equivalent to:
2452 *
2453 * vertex_count & (32 / bits_per_vertex - 1) == 0
2454 *
2455 * TODO: If vertex_count is an immediate, we could do some of this math
2456 * at compile time...
2457 */
2458 fs_inst *inst =
2459 abld.AND(bld.null_reg_d(), vertex_count,
2460 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2461 inst->conditional_mod = BRW_CONDITIONAL_Z;
2462
2463 abld.IF(BRW_PREDICATE_NORMAL);
2464 /* If vertex_count is 0, then no control data bits have been
2465 * accumulated yet, so we can skip emitting them.
2466 */
2467 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2468 BRW_CONDITIONAL_NEQ);
2469 abld.IF(BRW_PREDICATE_NORMAL);
2470 emit_gs_control_data_bits(vertex_count);
2471 abld.emit(BRW_OPCODE_ENDIF);
2472
2473 /* Reset control_data_bits to 0 so we can start accumulating a new
2474 * batch.
2475 *
2476 * Note: in the case where vertex_count == 0, this neutralizes the
2477 * effect of any call to EndPrimitive() that the shader may have
2478 * made before outputting its first vertex.
2479 */
2480 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2481 inst->force_writemask_all = true;
2482 abld.emit(BRW_OPCODE_ENDIF);
2483 }
2484
2485 emit_urb_writes(vertex_count);
2486
2487 /* In stream mode we have to set control data bits for all vertices
2488 * unless we have disabled control data bits completely (which we do
2489 * do for GL_POINTS outputs that don't use streams).
2490 */
2491 if (gs_compile->control_data_header_size_bits > 0 &&
2492 gs_prog_data->control_data_format ==
2493 GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2494 set_gs_stream_control_data_bits(vertex_count, stream_id);
2495 }
2496 }
2497
2498 void
emit_gs_input_load(const fs_reg & dst,const nir_src & vertex_src,unsigned base_offset,const nir_src & offset_src,unsigned num_components,unsigned first_component)2499 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2500 const nir_src &vertex_src,
2501 unsigned base_offset,
2502 const nir_src &offset_src,
2503 unsigned num_components,
2504 unsigned first_component)
2505 {
2506 assert(type_sz(dst.type) == 4);
2507 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2508 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2509
2510 /* TODO: figure out push input layout for invocations == 1 */
2511 if (gs_prog_data->invocations == 1 &&
2512 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2513 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2514 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2515 nir_src_as_uint(vertex_src) * push_reg_count;
2516 for (unsigned i = 0; i < num_components; i++) {
2517 bld.MOV(offset(dst, bld, i),
2518 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2519 }
2520 return;
2521 }
2522
2523 /* Resort to the pull model. Ensure the VUE handles are provided. */
2524 assert(gs_prog_data->base.include_vue_handles);
2525
2526 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2527 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2528
2529 if (gs_prog_data->invocations == 1) {
2530 if (nir_src_is_const(vertex_src)) {
2531 /* The vertex index is constant; just select the proper URB handle. */
2532 icp_handle =
2533 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2534 BRW_REGISTER_TYPE_UD);
2535 } else {
2536 /* The vertex index is non-constant. We need to use indirect
2537 * addressing to fetch the proper URB handle.
2538 *
2539 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2540 * indicating that channel <n> should read the handle from
2541 * DWord <n>. We convert that to bytes by multiplying by 4.
2542 *
2543 * Next, we convert the vertex index to bytes by multiplying
2544 * by 32 (shifting by 5), and add the two together. This is
2545 * the final indirect byte offset.
2546 */
2547 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2548 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2549 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2550 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2551
2552 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2553 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2554 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2555 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2556 /* Convert vertex_index to bytes (multiply by 32) */
2557 bld.SHL(vertex_offset_bytes,
2558 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2559 brw_imm_ud(5u));
2560 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2561
2562 /* Use first_icp_handle as the base offset. There is one register
2563 * of URB handles per vertex, so inform the register allocator that
2564 * we might read up to nir->info.gs.vertices_in registers.
2565 */
2566 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2567 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2568 fs_reg(icp_offset_bytes),
2569 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2570 }
2571 } else {
2572 assert(gs_prog_data->invocations > 1);
2573
2574 if (nir_src_is_const(vertex_src)) {
2575 unsigned vertex = nir_src_as_uint(vertex_src);
2576 assert(devinfo->ver >= 9 || vertex <= 5);
2577 bld.MOV(icp_handle,
2578 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2579 BRW_REGISTER_TYPE_UD));
2580 } else {
2581 /* The vertex index is non-constant. We need to use indirect
2582 * addressing to fetch the proper URB handle.
2583 *
2584 */
2585 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2586
2587 /* Convert vertex_index to bytes (multiply by 4) */
2588 bld.SHL(icp_offset_bytes,
2589 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2590 brw_imm_ud(2u));
2591
2592 /* Use first_icp_handle as the base offset. There is one DWord
2593 * of URB handles per vertex, so inform the register allocator that
2594 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2595 */
2596 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2597 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2598 fs_reg(icp_offset_bytes),
2599 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2600 REG_SIZE));
2601 }
2602 }
2603
2604 fs_inst *inst;
2605 fs_reg indirect_offset = get_nir_src(offset_src);
2606
2607 if (nir_src_is_const(offset_src)) {
2608 /* Constant indexing - use global offset. */
2609 if (first_component != 0) {
2610 unsigned read_components = num_components + first_component;
2611 fs_reg tmp = bld.vgrf(dst.type, read_components);
2612 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2613 inst->size_written = read_components *
2614 tmp.component_size(inst->exec_size);
2615 for (unsigned i = 0; i < num_components; i++) {
2616 bld.MOV(offset(dst, bld, i),
2617 offset(tmp, bld, i + first_component));
2618 }
2619 } else {
2620 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2621 inst->size_written = num_components *
2622 dst.component_size(inst->exec_size);
2623 }
2624 inst->offset = base_offset + nir_src_as_uint(offset_src);
2625 inst->mlen = 1;
2626 } else {
2627 /* Indirect indexing - use per-slot offsets as well. */
2628 const fs_reg srcs[] = { icp_handle, indirect_offset };
2629 unsigned read_components = num_components + first_component;
2630 fs_reg tmp = bld.vgrf(dst.type, read_components);
2631 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2632 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2633 if (first_component != 0) {
2634 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2635 payload);
2636 inst->size_written = read_components *
2637 tmp.component_size(inst->exec_size);
2638 for (unsigned i = 0; i < num_components; i++) {
2639 bld.MOV(offset(dst, bld, i),
2640 offset(tmp, bld, i + first_component));
2641 }
2642 } else {
2643 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2644 inst->size_written = num_components *
2645 dst.component_size(inst->exec_size);
2646 }
2647 inst->offset = base_offset;
2648 inst->mlen = 2;
2649 }
2650 }
2651
2652 fs_reg
get_indirect_offset(nir_intrinsic_instr * instr)2653 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2654 {
2655 nir_src *offset_src = nir_get_io_offset_src(instr);
2656
2657 if (nir_src_is_const(*offset_src)) {
2658 /* The only constant offset we should find is 0. brw_nir.c's
2659 * add_const_offset_to_base() will fold other constant offsets
2660 * into instr->const_index[0].
2661 */
2662 assert(nir_src_as_uint(*offset_src) == 0);
2663 return fs_reg();
2664 }
2665
2666 return get_nir_src(*offset_src);
2667 }
2668
2669 void
nir_emit_vs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2670 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2671 nir_intrinsic_instr *instr)
2672 {
2673 assert(stage == MESA_SHADER_VERTEX);
2674
2675 fs_reg dest;
2676 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2677 dest = get_nir_dest(instr->dest);
2678
2679 switch (instr->intrinsic) {
2680 case nir_intrinsic_load_vertex_id:
2681 case nir_intrinsic_load_base_vertex:
2682 unreachable("should be lowered by nir_lower_system_values()");
2683
2684 case nir_intrinsic_load_input: {
2685 assert(nir_dest_bit_size(instr->dest) == 32);
2686 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2687 src = offset(src, bld, nir_intrinsic_component(instr));
2688 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2689
2690 for (unsigned i = 0; i < instr->num_components; i++)
2691 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2692 break;
2693 }
2694
2695 case nir_intrinsic_load_vertex_id_zero_base:
2696 case nir_intrinsic_load_instance_id:
2697 case nir_intrinsic_load_base_instance:
2698 case nir_intrinsic_load_draw_id:
2699 case nir_intrinsic_load_first_vertex:
2700 case nir_intrinsic_load_is_indexed_draw:
2701 unreachable("lowered by brw_nir_lower_vs_inputs");
2702
2703 default:
2704 nir_emit_intrinsic(bld, instr);
2705 break;
2706 }
2707 }
2708
2709 fs_reg
get_tcs_single_patch_icp_handle(const fs_builder & bld,nir_intrinsic_instr * instr)2710 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2711 nir_intrinsic_instr *instr)
2712 {
2713 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2714 const nir_src &vertex_src = instr->src[0];
2715 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2716 fs_reg icp_handle;
2717
2718 if (nir_src_is_const(vertex_src)) {
2719 /* Emit a MOV to resolve <0,1,0> regioning. */
2720 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2721 unsigned vertex = nir_src_as_uint(vertex_src);
2722 bld.MOV(icp_handle,
2723 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2724 BRW_REGISTER_TYPE_UD));
2725 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2726 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2727 /* For the common case of only 1 instance, an array index of
2728 * gl_InvocationID means reading g1. Skip all the indirect work.
2729 */
2730 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2731 } else {
2732 /* The vertex index is non-constant. We need to use indirect
2733 * addressing to fetch the proper URB handle.
2734 */
2735 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2736
2737 /* Each ICP handle is a single DWord (4 bytes) */
2738 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2739 bld.SHL(vertex_offset_bytes,
2740 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2741 brw_imm_ud(2u));
2742
2743 /* Start at g1. We might read up to 4 registers. */
2744 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2745 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2746 brw_imm_ud(4 * REG_SIZE));
2747 }
2748
2749 return icp_handle;
2750 }
2751
2752 fs_reg
get_tcs_eight_patch_icp_handle(const fs_builder & bld,nir_intrinsic_instr * instr)2753 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2754 nir_intrinsic_instr *instr)
2755 {
2756 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2757 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2758 const nir_src &vertex_src = instr->src[0];
2759
2760 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2761
2762 if (nir_src_is_const(vertex_src)) {
2763 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2764 nir_src_as_uint(vertex_src), 0),
2765 BRW_REGISTER_TYPE_UD));
2766 }
2767
2768 /* The vertex index is non-constant. We need to use indirect
2769 * addressing to fetch the proper URB handle.
2770 *
2771 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2772 * indicating that channel <n> should read the handle from
2773 * DWord <n>. We convert that to bytes by multiplying by 4.
2774 *
2775 * Next, we convert the vertex index to bytes by multiplying
2776 * by 32 (shifting by 5), and add the two together. This is
2777 * the final indirect byte offset.
2778 */
2779 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2780 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2781 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2782 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2783 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2784
2785 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2786 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2787 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2788 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2789 /* Convert vertex_index to bytes (multiply by 32) */
2790 bld.SHL(vertex_offset_bytes,
2791 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2792 brw_imm_ud(5u));
2793 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2794
2795 /* Use first_icp_handle as the base offset. There is one register
2796 * of URB handles per vertex, so inform the register allocator that
2797 * we might read up to nir->info.gs.vertices_in registers.
2798 */
2799 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2800 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2801 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2802
2803 return icp_handle;
2804 }
2805
2806 struct brw_reg
get_tcs_output_urb_handle()2807 fs_visitor::get_tcs_output_urb_handle()
2808 {
2809 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2810
2811 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2812 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2813 } else {
2814 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2815 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2816 }
2817 }
2818
2819 void
nir_emit_tcs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2820 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2821 nir_intrinsic_instr *instr)
2822 {
2823 assert(stage == MESA_SHADER_TESS_CTRL);
2824 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2825 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2826 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2827
2828 bool eight_patch =
2829 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2830
2831 fs_reg dst;
2832 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2833 dst = get_nir_dest(instr->dest);
2834
2835 switch (instr->intrinsic) {
2836 case nir_intrinsic_load_primitive_id:
2837 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2838 : brw_vec1_grf(0, 1)));
2839 break;
2840 case nir_intrinsic_load_invocation_id:
2841 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2842 break;
2843 case nir_intrinsic_load_patch_vertices_in:
2844 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2845 brw_imm_d(tcs_key->input_vertices));
2846 break;
2847
2848 case nir_intrinsic_control_barrier: {
2849 if (tcs_prog_data->instances == 1)
2850 break;
2851
2852 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2853 fs_reg m0_2 = component(m0, 2);
2854
2855 const fs_builder chanbld = bld.exec_all().group(1, 0);
2856
2857 /* Zero the message header */
2858 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2859
2860 if (devinfo->verx10 >= 125) {
2861 /* From BSpec: 54006, mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */
2862 fs_reg m0_10ub = component(retype(m0, BRW_REGISTER_TYPE_UB), 10);
2863 fs_reg r0_11ub =
2864 stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UB), 11),
2865 0, 1, 0);
2866 bld.exec_all().group(2, 0).MOV(m0_10ub, r0_11ub);
2867 } else if (devinfo->ver >= 11) {
2868 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2869 brw_imm_ud(INTEL_MASK(30, 24)));
2870
2871 /* Set the Barrier Count and the enable bit */
2872 chanbld.OR(m0_2, m0_2,
2873 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2874 } else {
2875 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2876 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2877 brw_imm_ud(INTEL_MASK(16, 13)));
2878
2879 /* Shift it up to bits 27:24. */
2880 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2881
2882 /* Set the Barrier Count and the enable bit */
2883 chanbld.OR(m0_2, m0_2,
2884 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2885 }
2886
2887 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2888 break;
2889 }
2890
2891 case nir_intrinsic_load_input:
2892 unreachable("nir_lower_io should never give us these.");
2893 break;
2894
2895 case nir_intrinsic_load_per_vertex_input: {
2896 assert(nir_dest_bit_size(instr->dest) == 32);
2897 fs_reg indirect_offset = get_indirect_offset(instr);
2898 unsigned imm_offset = instr->const_index[0];
2899 fs_inst *inst;
2900
2901 fs_reg icp_handle =
2902 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2903 : get_tcs_single_patch_icp_handle(bld, instr);
2904
2905 /* We can only read two double components with each URB read, so
2906 * we send two read messages in that case, each one loading up to
2907 * two double components.
2908 */
2909 unsigned num_components = instr->num_components;
2910 unsigned first_component = nir_intrinsic_component(instr);
2911
2912 if (indirect_offset.file == BAD_FILE) {
2913 /* Constant indexing - use global offset. */
2914 if (first_component != 0) {
2915 unsigned read_components = num_components + first_component;
2916 fs_reg tmp = bld.vgrf(dst.type, read_components);
2917 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2918 for (unsigned i = 0; i < num_components; i++) {
2919 bld.MOV(offset(dst, bld, i),
2920 offset(tmp, bld, i + first_component));
2921 }
2922 } else {
2923 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2924 }
2925 inst->offset = imm_offset;
2926 inst->mlen = 1;
2927 } else {
2928 /* Indirect indexing - use per-slot offsets as well. */
2929 const fs_reg srcs[] = { icp_handle, indirect_offset };
2930 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2931 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2932 if (first_component != 0) {
2933 unsigned read_components = num_components + first_component;
2934 fs_reg tmp = bld.vgrf(dst.type, read_components);
2935 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2936 payload);
2937 for (unsigned i = 0; i < num_components; i++) {
2938 bld.MOV(offset(dst, bld, i),
2939 offset(tmp, bld, i + first_component));
2940 }
2941 } else {
2942 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2943 payload);
2944 }
2945 inst->offset = imm_offset;
2946 inst->mlen = 2;
2947 }
2948 inst->size_written = (num_components + first_component) *
2949 inst->dst.component_size(inst->exec_size);
2950
2951 /* Copy the temporary to the destination to deal with writemasking.
2952 *
2953 * Also attempt to deal with gl_PointSize being in the .w component.
2954 */
2955 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2956 assert(type_sz(dst.type) == 4);
2957 inst->dst = bld.vgrf(dst.type, 4);
2958 inst->size_written = 4 * REG_SIZE;
2959 bld.MOV(dst, offset(inst->dst, bld, 3));
2960 }
2961 break;
2962 }
2963
2964 case nir_intrinsic_load_output:
2965 case nir_intrinsic_load_per_vertex_output: {
2966 assert(nir_dest_bit_size(instr->dest) == 32);
2967 fs_reg indirect_offset = get_indirect_offset(instr);
2968 unsigned imm_offset = instr->const_index[0];
2969 unsigned first_component = nir_intrinsic_component(instr);
2970
2971 struct brw_reg output_handles = get_tcs_output_urb_handle();
2972
2973 fs_inst *inst;
2974 if (indirect_offset.file == BAD_FILE) {
2975 /* This MOV replicates the output handle to all enabled channels
2976 * is SINGLE_PATCH mode.
2977 */
2978 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2979 bld.MOV(patch_handle, output_handles);
2980
2981 {
2982 if (first_component != 0) {
2983 unsigned read_components =
2984 instr->num_components + first_component;
2985 fs_reg tmp = bld.vgrf(dst.type, read_components);
2986 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2987 patch_handle);
2988 inst->size_written = read_components * REG_SIZE;
2989 for (unsigned i = 0; i < instr->num_components; i++) {
2990 bld.MOV(offset(dst, bld, i),
2991 offset(tmp, bld, i + first_component));
2992 }
2993 } else {
2994 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2995 patch_handle);
2996 inst->size_written = instr->num_components * REG_SIZE;
2997 }
2998 inst->offset = imm_offset;
2999 inst->mlen = 1;
3000 }
3001 } else {
3002 /* Indirect indexing - use per-slot offsets as well. */
3003 const fs_reg srcs[] = { output_handles, indirect_offset };
3004 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3005 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3006 if (first_component != 0) {
3007 unsigned read_components =
3008 instr->num_components + first_component;
3009 fs_reg tmp = bld.vgrf(dst.type, read_components);
3010 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3011 payload);
3012 inst->size_written = read_components * REG_SIZE;
3013 for (unsigned i = 0; i < instr->num_components; i++) {
3014 bld.MOV(offset(dst, bld, i),
3015 offset(tmp, bld, i + first_component));
3016 }
3017 } else {
3018 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
3019 payload);
3020 inst->size_written = instr->num_components * REG_SIZE;
3021 }
3022 inst->offset = imm_offset;
3023 inst->mlen = 2;
3024 }
3025 break;
3026 }
3027
3028 case nir_intrinsic_store_output:
3029 case nir_intrinsic_store_per_vertex_output: {
3030 assert(nir_src_bit_size(instr->src[0]) == 32);
3031 fs_reg value = get_nir_src(instr->src[0]);
3032 fs_reg indirect_offset = get_indirect_offset(instr);
3033 unsigned imm_offset = instr->const_index[0];
3034 unsigned mask = instr->const_index[1];
3035 unsigned header_regs = 0;
3036 struct brw_reg output_handles = get_tcs_output_urb_handle();
3037
3038 fs_reg srcs[7];
3039 srcs[header_regs++] = output_handles;
3040
3041 if (indirect_offset.file != BAD_FILE) {
3042 srcs[header_regs++] = indirect_offset;
3043 }
3044
3045 if (mask == 0)
3046 break;
3047
3048 unsigned num_components = util_last_bit(mask);
3049 enum opcode opcode;
3050
3051 /* We can only pack two 64-bit components in a single message, so send
3052 * 2 messages if we have more components
3053 */
3054 unsigned first_component = nir_intrinsic_component(instr);
3055 mask = mask << first_component;
3056
3057 if (mask != WRITEMASK_XYZW) {
3058 srcs[header_regs++] = brw_imm_ud(mask << 16);
3059 opcode = indirect_offset.file != BAD_FILE ?
3060 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
3061 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
3062 } else {
3063 opcode = indirect_offset.file != BAD_FILE ?
3064 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
3065 SHADER_OPCODE_URB_WRITE_SIMD8;
3066 }
3067
3068 for (unsigned i = 0; i < num_components; i++) {
3069 if (!(mask & (1 << (i + first_component))))
3070 continue;
3071
3072 srcs[header_regs + i + first_component] = offset(value, bld, i);
3073 }
3074
3075 unsigned mlen = header_regs + num_components + first_component;
3076 fs_reg payload =
3077 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
3078 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
3079
3080 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
3081 inst->offset = imm_offset;
3082 inst->mlen = mlen;
3083 break;
3084 }
3085
3086 default:
3087 nir_emit_intrinsic(bld, instr);
3088 break;
3089 }
3090 }
3091
3092 void
nir_emit_tes_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3093 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3094 nir_intrinsic_instr *instr)
3095 {
3096 assert(stage == MESA_SHADER_TESS_EVAL);
3097 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3098
3099 fs_reg dest;
3100 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3101 dest = get_nir_dest(instr->dest);
3102
3103 switch (instr->intrinsic) {
3104 case nir_intrinsic_load_primitive_id:
3105 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3106 break;
3107 case nir_intrinsic_load_tess_coord:
3108 /* gl_TessCoord is part of the payload in g1-3 */
3109 for (unsigned i = 0; i < 3; i++) {
3110 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3111 }
3112 break;
3113
3114 case nir_intrinsic_load_input:
3115 case nir_intrinsic_load_per_vertex_input: {
3116 assert(nir_dest_bit_size(instr->dest) == 32);
3117 fs_reg indirect_offset = get_indirect_offset(instr);
3118 unsigned imm_offset = instr->const_index[0];
3119 unsigned first_component = nir_intrinsic_component(instr);
3120
3121 fs_inst *inst;
3122 if (indirect_offset.file == BAD_FILE) {
3123 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3124 * which is 16 registers (since each holds 2 vec4 slots).
3125 */
3126 const unsigned max_push_slots = 32;
3127 if (imm_offset < max_push_slots) {
3128 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3129 for (int i = 0; i < instr->num_components; i++) {
3130 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3131 bld.MOV(offset(dest, bld, i), component(src, comp));
3132 }
3133
3134 tes_prog_data->base.urb_read_length =
3135 MAX2(tes_prog_data->base.urb_read_length,
3136 (imm_offset / 2) + 1);
3137 } else {
3138 /* Replicate the patch handle to all enabled channels */
3139 const fs_reg srcs[] = {
3140 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3141 };
3142 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3143 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3144
3145 if (first_component != 0) {
3146 unsigned read_components =
3147 instr->num_components + first_component;
3148 fs_reg tmp = bld.vgrf(dest.type, read_components);
3149 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3150 patch_handle);
3151 inst->size_written = read_components * REG_SIZE;
3152 for (unsigned i = 0; i < instr->num_components; i++) {
3153 bld.MOV(offset(dest, bld, i),
3154 offset(tmp, bld, i + first_component));
3155 }
3156 } else {
3157 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3158 patch_handle);
3159 inst->size_written = instr->num_components * REG_SIZE;
3160 }
3161 inst->mlen = 1;
3162 inst->offset = imm_offset;
3163 }
3164 } else {
3165 /* Indirect indexing - use per-slot offsets as well. */
3166
3167 /* We can only read two double components with each URB read, so
3168 * we send two read messages in that case, each one loading up to
3169 * two double components.
3170 */
3171 unsigned num_components = instr->num_components;
3172 const fs_reg srcs[] = {
3173 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3174 indirect_offset
3175 };
3176 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3177 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3178
3179 if (first_component != 0) {
3180 unsigned read_components =
3181 num_components + first_component;
3182 fs_reg tmp = bld.vgrf(dest.type, read_components);
3183 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3184 payload);
3185 for (unsigned i = 0; i < num_components; i++) {
3186 bld.MOV(offset(dest, bld, i),
3187 offset(tmp, bld, i + first_component));
3188 }
3189 } else {
3190 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3191 payload);
3192 }
3193 inst->mlen = 2;
3194 inst->offset = imm_offset;
3195 inst->size_written = (num_components + first_component) *
3196 inst->dst.component_size(inst->exec_size);
3197 }
3198 break;
3199 }
3200 default:
3201 nir_emit_intrinsic(bld, instr);
3202 break;
3203 }
3204 }
3205
3206 void
nir_emit_gs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3207 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3208 nir_intrinsic_instr *instr)
3209 {
3210 assert(stage == MESA_SHADER_GEOMETRY);
3211 fs_reg indirect_offset;
3212
3213 fs_reg dest;
3214 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3215 dest = get_nir_dest(instr->dest);
3216
3217 switch (instr->intrinsic) {
3218 case nir_intrinsic_load_primitive_id:
3219 assert(stage == MESA_SHADER_GEOMETRY);
3220 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3221 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3222 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3223 break;
3224
3225 case nir_intrinsic_load_input:
3226 unreachable("load_input intrinsics are invalid for the GS stage");
3227
3228 case nir_intrinsic_load_per_vertex_input:
3229 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3230 instr->src[1], instr->num_components,
3231 nir_intrinsic_component(instr));
3232 break;
3233
3234 case nir_intrinsic_emit_vertex_with_counter:
3235 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3236 break;
3237
3238 case nir_intrinsic_end_primitive_with_counter:
3239 emit_gs_end_primitive(instr->src[0]);
3240 break;
3241
3242 case nir_intrinsic_set_vertex_and_primitive_count:
3243 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3244 break;
3245
3246 case nir_intrinsic_load_invocation_id: {
3247 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3248 assert(val.file != BAD_FILE);
3249 dest.type = val.type;
3250 bld.MOV(dest, val);
3251 break;
3252 }
3253
3254 default:
3255 nir_emit_intrinsic(bld, instr);
3256 break;
3257 }
3258 }
3259
3260 /**
3261 * Fetch the current render target layer index.
3262 */
3263 static fs_reg
fetch_render_target_array_index(const fs_builder & bld)3264 fetch_render_target_array_index(const fs_builder &bld)
3265 {
3266 if (bld.shader->devinfo->ver >= 12) {
3267 /* The render target array index is provided in the thread payload as
3268 * bits 26:16 of r1.1.
3269 */
3270 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3271 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 1, 3),
3272 brw_imm_uw(0x7ff));
3273 return idx;
3274 } else if (bld.shader->devinfo->ver >= 6) {
3275 /* The render target array index is provided in the thread payload as
3276 * bits 26:16 of r0.0.
3277 */
3278 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3279 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3280 brw_imm_uw(0x7ff));
3281 return idx;
3282 } else {
3283 /* Pre-SNB we only ever render into the first layer of the framebuffer
3284 * since layered rendering is not implemented.
3285 */
3286 return brw_imm_ud(0);
3287 }
3288 }
3289
3290 /**
3291 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3292 * framebuffer at the current fragment coordinates and sample index.
3293 */
3294 fs_inst *
emit_non_coherent_fb_read(const fs_builder & bld,const fs_reg & dst,unsigned target)3295 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3296 unsigned target)
3297 {
3298 const struct intel_device_info *devinfo = bld.shader->devinfo;
3299
3300 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3301 const brw_wm_prog_key *wm_key =
3302 reinterpret_cast<const brw_wm_prog_key *>(key);
3303 assert(!wm_key->coherent_fb_fetch);
3304 const struct brw_wm_prog_data *wm_prog_data =
3305 brw_wm_prog_data(stage_prog_data);
3306
3307 /* Calculate the surface index relative to the start of the texture binding
3308 * table block, since that's what the texturing messages expect.
3309 */
3310 const unsigned surface = target +
3311 wm_prog_data->binding_table.render_target_read_start -
3312 wm_prog_data->base.binding_table.texture_start;
3313
3314 /* Calculate the fragment coordinates. */
3315 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3316 bld.MOV(offset(coords, bld, 0), pixel_x);
3317 bld.MOV(offset(coords, bld, 1), pixel_y);
3318 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3319
3320 /* Calculate the sample index and MCS payload when multisampling. Luckily
3321 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3322 * shouldn't be necessary to recompile based on whether the framebuffer is
3323 * CMS or UMS.
3324 */
3325 if (wm_key->multisample_fbo &&
3326 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3327 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3328
3329 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3330 const fs_reg mcs = wm_key->multisample_fbo ?
3331 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3332
3333 /* Use either a normal or a CMS texel fetch message depending on whether
3334 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3335 * message just in case the framebuffer uses 16x multisampling, it should
3336 * be equivalent to the normal CMS fetch for lower multisampling modes.
3337 */
3338 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3339 devinfo->ver >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3340 SHADER_OPCODE_TXF_CMS_LOGICAL;
3341
3342 /* Emit the instruction. */
3343 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3344 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3345 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3346 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3347 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3348 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3349 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3350 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3351 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3352
3353 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3354 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3355
3356 return inst;
3357 }
3358
3359 /**
3360 * Actual coherent framebuffer read implemented using the native render target
3361 * read message. Requires SKL+.
3362 */
3363 static fs_inst *
emit_coherent_fb_read(const fs_builder & bld,const fs_reg & dst,unsigned target)3364 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3365 {
3366 assert(bld.shader->devinfo->ver >= 9);
3367 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3368 inst->target = target;
3369 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3370
3371 return inst;
3372 }
3373
3374 static fs_reg
alloc_temporary(const fs_builder & bld,unsigned size,fs_reg * regs,unsigned n)3375 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3376 {
3377 if (n && regs[0].file != BAD_FILE) {
3378 return regs[0];
3379
3380 } else {
3381 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3382
3383 for (unsigned i = 0; i < n; i++)
3384 regs[i] = tmp;
3385
3386 return tmp;
3387 }
3388 }
3389
3390 static fs_reg
alloc_frag_output(fs_visitor * v,unsigned location)3391 alloc_frag_output(fs_visitor *v, unsigned location)
3392 {
3393 assert(v->stage == MESA_SHADER_FRAGMENT);
3394 const brw_wm_prog_key *const key =
3395 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3396 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3397 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3398
3399 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3400 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3401
3402 else if (l == FRAG_RESULT_COLOR)
3403 return alloc_temporary(v->bld, 4, v->outputs,
3404 MAX2(key->nr_color_regions, 1));
3405
3406 else if (l == FRAG_RESULT_DEPTH)
3407 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3408
3409 else if (l == FRAG_RESULT_STENCIL)
3410 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3411
3412 else if (l == FRAG_RESULT_SAMPLE_MASK)
3413 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3414
3415 else if (l >= FRAG_RESULT_DATA0 &&
3416 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3417 return alloc_temporary(v->bld, 4,
3418 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3419
3420 else
3421 unreachable("Invalid location");
3422 }
3423
3424 void
nir_emit_fs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3425 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3426 nir_intrinsic_instr *instr)
3427 {
3428 assert(stage == MESA_SHADER_FRAGMENT);
3429
3430 fs_reg dest;
3431 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3432 dest = get_nir_dest(instr->dest);
3433
3434 switch (instr->intrinsic) {
3435 case nir_intrinsic_load_front_face:
3436 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3437 *emit_frontfacing_interpolation());
3438 break;
3439
3440 case nir_intrinsic_load_sample_pos: {
3441 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3442 assert(sample_pos.file != BAD_FILE);
3443 dest.type = sample_pos.type;
3444 bld.MOV(dest, sample_pos);
3445 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3446 break;
3447 }
3448
3449 case nir_intrinsic_load_layer_id:
3450 dest.type = BRW_REGISTER_TYPE_UD;
3451 bld.MOV(dest, fetch_render_target_array_index(bld));
3452 break;
3453
3454 case nir_intrinsic_is_helper_invocation: {
3455 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3456 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3457 * consideration demoted invocations. That information is stored in
3458 * f0.1.
3459 */
3460 dest.type = BRW_REGISTER_TYPE_UD;
3461
3462 bld.MOV(dest, brw_imm_ud(0));
3463
3464 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3465 mov->predicate = BRW_PREDICATE_NORMAL;
3466 mov->predicate_inverse = true;
3467 mov->flag_subreg = sample_mask_flag_subreg(this);
3468 break;
3469 }
3470
3471 case nir_intrinsic_load_helper_invocation:
3472 case nir_intrinsic_load_sample_mask_in:
3473 case nir_intrinsic_load_sample_id:
3474 case nir_intrinsic_load_frag_shading_rate: {
3475 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3476 fs_reg val = nir_system_values[sv];
3477 assert(val.file != BAD_FILE);
3478 dest.type = val.type;
3479 bld.MOV(dest, val);
3480 break;
3481 }
3482
3483 case nir_intrinsic_store_output: {
3484 const fs_reg src = get_nir_src(instr->src[0]);
3485 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3486 const unsigned location = nir_intrinsic_base(instr) +
3487 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3488 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3489 src.type);
3490
3491 for (unsigned j = 0; j < instr->num_components; j++)
3492 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3493 offset(src, bld, j));
3494
3495 break;
3496 }
3497
3498 case nir_intrinsic_load_output: {
3499 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3500 BRW_NIR_FRAG_OUTPUT_LOCATION);
3501 assert(l >= FRAG_RESULT_DATA0);
3502 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3503 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3504 const fs_reg tmp = bld.vgrf(dest.type, 4);
3505
3506 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3507 emit_coherent_fb_read(bld, tmp, target);
3508 else
3509 emit_non_coherent_fb_read(bld, tmp, target);
3510
3511 for (unsigned j = 0; j < instr->num_components; j++) {
3512 bld.MOV(offset(dest, bld, j),
3513 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3514 }
3515
3516 break;
3517 }
3518
3519 case nir_intrinsic_demote:
3520 case nir_intrinsic_discard:
3521 case nir_intrinsic_terminate:
3522 case nir_intrinsic_demote_if:
3523 case nir_intrinsic_discard_if:
3524 case nir_intrinsic_terminate_if: {
3525 /* We track our discarded pixels in f0.1/f1.0. By predicating on it, we
3526 * can update just the flag bits that aren't yet discarded. If there's
3527 * no condition, we emit a CMP of g0 != g0, so all currently executing
3528 * channels will get turned off.
3529 */
3530 fs_inst *cmp = NULL;
3531 if (instr->intrinsic == nir_intrinsic_demote_if ||
3532 instr->intrinsic == nir_intrinsic_discard_if ||
3533 instr->intrinsic == nir_intrinsic_terminate_if) {
3534 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3535
3536 if (alu != NULL &&
3537 alu->op != nir_op_bcsel &&
3538 (devinfo->ver > 5 ||
3539 (alu->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) != BRW_NIR_BOOLEAN_NEEDS_RESOLVE ||
3540 alu->op == nir_op_fneu32 || alu->op == nir_op_feq32 ||
3541 alu->op == nir_op_flt32 || alu->op == nir_op_fge32 ||
3542 alu->op == nir_op_ine32 || alu->op == nir_op_ieq32 ||
3543 alu->op == nir_op_ilt32 || alu->op == nir_op_ige32 ||
3544 alu->op == nir_op_ult32 || alu->op == nir_op_uge32)) {
3545 /* Re-emit the instruction that generated the Boolean value, but
3546 * do not store it. Since this instruction will be conditional,
3547 * other instructions that want to use the real Boolean value may
3548 * get garbage. This was a problem for piglit's fs-discard-exit-2
3549 * test.
3550 *
3551 * Ideally we'd detect that the instruction cannot have a
3552 * conditional modifier before emitting the instructions. Alas,
3553 * that is nigh impossible. Instead, we're going to assume the
3554 * instruction (or last instruction) generated can have a
3555 * conditional modifier. If it cannot, fallback to the old-style
3556 * compare, and hope dead code elimination will clean up the
3557 * extra instructions generated.
3558 */
3559 nir_emit_alu(bld, alu, false);
3560
3561 cmp = (fs_inst *) instructions.get_tail();
3562 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3563 if (cmp->can_do_cmod())
3564 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3565 else
3566 cmp = NULL;
3567 } else {
3568 /* The old sequence that would have been generated is,
3569 * basically, bool_result == false. This is equivalent to
3570 * !bool_result, so negate the old modifier.
3571 */
3572 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3573 }
3574 }
3575
3576 if (cmp == NULL) {
3577 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3578 brw_imm_d(0), BRW_CONDITIONAL_Z);
3579 }
3580 } else {
3581 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3582 BRW_REGISTER_TYPE_UW));
3583 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3584 }
3585
3586 cmp->predicate = BRW_PREDICATE_NORMAL;
3587 cmp->flag_subreg = sample_mask_flag_subreg(this);
3588
3589 fs_inst *jump = bld.emit(BRW_OPCODE_HALT);
3590 jump->flag_subreg = sample_mask_flag_subreg(this);
3591 jump->predicate_inverse = true;
3592
3593 if (instr->intrinsic == nir_intrinsic_terminate ||
3594 instr->intrinsic == nir_intrinsic_terminate_if) {
3595 jump->predicate = BRW_PREDICATE_NORMAL;
3596 } else {
3597 /* Only jump when the whole quad is demoted. For historical
3598 * reasons this is also used for discard.
3599 */
3600 jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
3601 }
3602
3603 if (devinfo->ver < 7)
3604 limit_dispatch_width(
3605 16, "Fragment discard/demote not implemented in SIMD32 mode.\n");
3606 break;
3607 }
3608
3609 case nir_intrinsic_load_input: {
3610 /* load_input is only used for flat inputs */
3611 assert(nir_dest_bit_size(instr->dest) == 32);
3612 unsigned base = nir_intrinsic_base(instr);
3613 unsigned comp = nir_intrinsic_component(instr);
3614 unsigned num_components = instr->num_components;
3615
3616 /* Special case fields in the VUE header */
3617 if (base == VARYING_SLOT_LAYER)
3618 comp = 1;
3619 else if (base == VARYING_SLOT_VIEWPORT)
3620 comp = 2;
3621
3622 for (unsigned int i = 0; i < num_components; i++) {
3623 bld.MOV(offset(dest, bld, i),
3624 retype(component(interp_reg(base, comp + i), 3), dest.type));
3625 }
3626 break;
3627 }
3628
3629 case nir_intrinsic_load_fs_input_interp_deltas: {
3630 assert(stage == MESA_SHADER_FRAGMENT);
3631 assert(nir_src_as_uint(instr->src[0]) == 0);
3632 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3633 nir_intrinsic_component(instr));
3634 dest.type = BRW_REGISTER_TYPE_F;
3635 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3636 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3637 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3638 break;
3639 }
3640
3641 case nir_intrinsic_load_barycentric_pixel:
3642 case nir_intrinsic_load_barycentric_centroid:
3643 case nir_intrinsic_load_barycentric_sample: {
3644 /* Use the delta_xy values computed from the payload */
3645 const glsl_interp_mode interp_mode =
3646 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3647 enum brw_barycentric_mode bary =
3648 brw_barycentric_mode(interp_mode, instr->intrinsic);
3649 const fs_reg srcs[] = { offset(this->delta_xy[bary], bld, 0),
3650 offset(this->delta_xy[bary], bld, 1) };
3651 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3652 break;
3653 }
3654
3655 case nir_intrinsic_load_barycentric_at_sample: {
3656 const glsl_interp_mode interpolation =
3657 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3658
3659 if (nir_src_is_const(instr->src[0])) {
3660 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3661
3662 emit_pixel_interpolater_send(bld,
3663 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3664 dest,
3665 fs_reg(), /* src */
3666 brw_imm_ud(msg_data),
3667 interpolation);
3668 } else {
3669 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3670 BRW_REGISTER_TYPE_UD);
3671
3672 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3673 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3674 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3675 bld.exec_all().group(1, 0)
3676 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3677 emit_pixel_interpolater_send(bld,
3678 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3679 dest,
3680 fs_reg(), /* src */
3681 component(msg_data, 0),
3682 interpolation);
3683 } else {
3684 /* Make a loop that sends a message to the pixel interpolater
3685 * for the sample number in each live channel. If there are
3686 * multiple channels with the same sample number then these
3687 * will be handled simultaneously with a single interation of
3688 * the loop.
3689 */
3690 bld.emit(BRW_OPCODE_DO);
3691
3692 /* Get the next live sample number into sample_id_reg */
3693 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3694
3695 /* Set the flag register so that we can perform the send
3696 * message on all channels that have the same sample number
3697 */
3698 bld.CMP(bld.null_reg_ud(),
3699 sample_src, sample_id,
3700 BRW_CONDITIONAL_EQ);
3701 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3702 bld.exec_all().group(1, 0)
3703 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3704 fs_inst *inst =
3705 emit_pixel_interpolater_send(bld,
3706 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3707 dest,
3708 fs_reg(), /* src */
3709 component(msg_data, 0),
3710 interpolation);
3711 set_predicate(BRW_PREDICATE_NORMAL, inst);
3712
3713 /* Continue the loop if there are any live channels left */
3714 set_predicate_inv(BRW_PREDICATE_NORMAL,
3715 true, /* inverse */
3716 bld.emit(BRW_OPCODE_WHILE));
3717 }
3718 }
3719 break;
3720 }
3721
3722 case nir_intrinsic_load_barycentric_at_offset: {
3723 const glsl_interp_mode interpolation =
3724 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3725
3726 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3727
3728 if (const_offset) {
3729 assert(nir_src_bit_size(instr->src[0]) == 32);
3730 unsigned off_x = const_offset[0].u32 & 0xf;
3731 unsigned off_y = const_offset[1].u32 & 0xf;
3732
3733 emit_pixel_interpolater_send(bld,
3734 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3735 dest,
3736 fs_reg(), /* src */
3737 brw_imm_ud(off_x | (off_y << 4)),
3738 interpolation);
3739 } else {
3740 fs_reg src = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_D);
3741 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3742 emit_pixel_interpolater_send(bld,
3743 opcode,
3744 dest,
3745 src,
3746 brw_imm_ud(0u),
3747 interpolation);
3748 }
3749 break;
3750 }
3751
3752 case nir_intrinsic_load_frag_coord:
3753 emit_fragcoord_interpolation(dest);
3754 break;
3755
3756 case nir_intrinsic_load_interpolated_input: {
3757 assert(instr->src[0].ssa &&
3758 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3759 nir_intrinsic_instr *bary_intrinsic =
3760 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3761 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3762 enum glsl_interp_mode interp_mode =
3763 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3764 fs_reg dst_xy;
3765
3766 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3767 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3768 /* Use the result of the PI message. */
3769 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3770 } else {
3771 /* Use the delta_xy values computed from the payload */
3772 enum brw_barycentric_mode bary =
3773 brw_barycentric_mode(interp_mode, bary_intrin);
3774 dst_xy = this->delta_xy[bary];
3775 }
3776
3777 for (unsigned int i = 0; i < instr->num_components; i++) {
3778 fs_reg interp =
3779 component(interp_reg(nir_intrinsic_base(instr),
3780 nir_intrinsic_component(instr) + i), 0);
3781 interp.type = BRW_REGISTER_TYPE_F;
3782 dest.type = BRW_REGISTER_TYPE_F;
3783
3784 if (devinfo->ver < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3785 fs_reg tmp = vgrf(glsl_type::float_type);
3786 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3787 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3788 } else {
3789 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3790 }
3791 }
3792 break;
3793 }
3794
3795 default:
3796 nir_emit_intrinsic(bld, instr);
3797 break;
3798 }
3799 }
3800
3801 void
nir_emit_cs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3802 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3803 nir_intrinsic_instr *instr)
3804 {
3805 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3806 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3807
3808 fs_reg dest;
3809 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3810 dest = get_nir_dest(instr->dest);
3811
3812 switch (instr->intrinsic) {
3813 case nir_intrinsic_control_barrier:
3814 /* The whole workgroup fits in a single HW thread, so all the
3815 * invocations are already executed lock-step. Instead of an actual
3816 * barrier just emit a scheduling fence, that will generate no code.
3817 */
3818 if (!nir->info.workgroup_size_variable &&
3819 workgroup_size() <= dispatch_width) {
3820 bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE);
3821 break;
3822 }
3823
3824 emit_barrier();
3825 cs_prog_data->uses_barrier = true;
3826 break;
3827
3828 case nir_intrinsic_load_subgroup_id:
3829 if (devinfo->verx10 >= 125)
3830 bld.AND(retype(dest, BRW_REGISTER_TYPE_UD),
3831 retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
3832 brw_imm_ud(INTEL_MASK(7, 0)));
3833 else
3834 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3835 break;
3836
3837 case nir_intrinsic_load_local_invocation_id:
3838 case nir_intrinsic_load_workgroup_id: {
3839 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3840 fs_reg val = nir_system_values[sv];
3841 assert(val.file != BAD_FILE);
3842 dest.type = val.type;
3843 for (unsigned i = 0; i < 3; i++)
3844 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3845 break;
3846 }
3847
3848 case nir_intrinsic_load_num_workgroups: {
3849 assert(nir_dest_bit_size(instr->dest) == 32);
3850 const unsigned surface =
3851 cs_prog_data->binding_table.work_groups_start;
3852
3853 cs_prog_data->uses_num_work_groups = true;
3854
3855 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3856 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3857 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3858 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(3); /* num components */
3859 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(0);
3860 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
3861 fs_inst *inst =
3862 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3863 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3864 inst->size_written = 3 * dispatch_width * 4;
3865 break;
3866 }
3867
3868 case nir_intrinsic_shared_atomic_add:
3869 case nir_intrinsic_shared_atomic_imin:
3870 case nir_intrinsic_shared_atomic_umin:
3871 case nir_intrinsic_shared_atomic_imax:
3872 case nir_intrinsic_shared_atomic_umax:
3873 case nir_intrinsic_shared_atomic_and:
3874 case nir_intrinsic_shared_atomic_or:
3875 case nir_intrinsic_shared_atomic_xor:
3876 case nir_intrinsic_shared_atomic_exchange:
3877 case nir_intrinsic_shared_atomic_comp_swap:
3878 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3879 break;
3880 case nir_intrinsic_shared_atomic_fmin:
3881 case nir_intrinsic_shared_atomic_fmax:
3882 case nir_intrinsic_shared_atomic_fcomp_swap:
3883 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3884 break;
3885
3886 case nir_intrinsic_load_shared: {
3887 assert(devinfo->ver >= 7);
3888 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3889
3890 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3891 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3892 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
3893 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3894 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3895 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
3896
3897 /* Make dest unsigned because that's what the temporary will be */
3898 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3899
3900 /* Read the vector */
3901 assert(nir_dest_bit_size(instr->dest) <= 32);
3902 assert(nir_intrinsic_align(instr) > 0);
3903 if (nir_dest_bit_size(instr->dest) == 32 &&
3904 nir_intrinsic_align(instr) >= 4) {
3905 assert(nir_dest_num_components(instr->dest) <= 4);
3906 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3907 fs_inst *inst =
3908 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3909 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3910 inst->size_written = instr->num_components * dispatch_width * 4;
3911 } else {
3912 assert(nir_dest_num_components(instr->dest) == 1);
3913 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3914
3915 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3916 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3917 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3918 bld.MOV(dest, subscript(read_result, dest.type, 0));
3919 }
3920 break;
3921 }
3922
3923 case nir_intrinsic_store_shared: {
3924 assert(devinfo->ver >= 7);
3925 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3926
3927 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3928 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3929 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
3930 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3931 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3932 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
3933
3934 fs_reg data = get_nir_src(instr->src[0]);
3935 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3936
3937 assert(nir_src_bit_size(instr->src[0]) <= 32);
3938 assert(nir_intrinsic_write_mask(instr) ==
3939 (1u << instr->num_components) - 1);
3940 assert(nir_intrinsic_align(instr) > 0);
3941 if (nir_src_bit_size(instr->src[0]) == 32 &&
3942 nir_intrinsic_align(instr) >= 4) {
3943 assert(nir_src_num_components(instr->src[0]) <= 4);
3944 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3945 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3946 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3947 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3948 } else {
3949 assert(nir_src_num_components(instr->src[0]) == 1);
3950 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3951
3952 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3953 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3954
3955 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3956 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3957 }
3958 break;
3959 }
3960
3961 case nir_intrinsic_load_workgroup_size: {
3962 assert(compiler->lower_variable_group_size);
3963 assert(nir->info.workgroup_size_variable);
3964 for (unsigned i = 0; i < 3; i++) {
3965 bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
3966 group_size[i]);
3967 }
3968 break;
3969 }
3970
3971 default:
3972 nir_emit_intrinsic(bld, instr);
3973 break;
3974 }
3975 }
3976
3977 void
nir_emit_bs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3978 fs_visitor::nir_emit_bs_intrinsic(const fs_builder &bld,
3979 nir_intrinsic_instr *instr)
3980 {
3981 assert(brw_shader_stage_is_bindless(stage));
3982
3983 fs_reg dest;
3984 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3985 dest = get_nir_dest(instr->dest);
3986
3987 switch (instr->intrinsic) {
3988 case nir_intrinsic_load_btd_global_arg_addr_intel:
3989 bld.MOV(dest, retype(brw_vec1_grf(2, 0), dest.type));
3990 break;
3991
3992 case nir_intrinsic_load_btd_local_arg_addr_intel:
3993 bld.MOV(dest, retype(brw_vec1_grf(2, 2), dest.type));
3994 break;
3995
3996 case nir_intrinsic_trace_ray_initial_intel:
3997 bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL,
3998 bld.null_reg_ud(),
3999 brw_imm_ud(BRW_RT_BVH_LEVEL_WORLD),
4000 brw_imm_ud(GEN_RT_TRACE_RAY_INITAL));
4001 break;
4002
4003 case nir_intrinsic_trace_ray_commit_intel:
4004 bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL,
4005 bld.null_reg_ud(),
4006 brw_imm_ud(BRW_RT_BVH_LEVEL_OBJECT),
4007 brw_imm_ud(GEN_RT_TRACE_RAY_COMMIT));
4008 break;
4009
4010 case nir_intrinsic_trace_ray_continue_intel:
4011 bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL,
4012 bld.null_reg_ud(),
4013 brw_imm_ud(BRW_RT_BVH_LEVEL_OBJECT),
4014 brw_imm_ud(GEN_RT_TRACE_RAY_CONTINUE));
4015 break;
4016
4017 default:
4018 nir_emit_intrinsic(bld, instr);
4019 break;
4020 }
4021 }
4022
4023 static fs_reg
brw_nir_reduction_op_identity(const fs_builder & bld,nir_op op,brw_reg_type type)4024 brw_nir_reduction_op_identity(const fs_builder &bld,
4025 nir_op op, brw_reg_type type)
4026 {
4027 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
4028 switch (type_sz(type)) {
4029 case 1:
4030 if (type == BRW_REGISTER_TYPE_UB) {
4031 return brw_imm_uw(value.u8);
4032 } else {
4033 assert(type == BRW_REGISTER_TYPE_B);
4034 return brw_imm_w(value.i8);
4035 }
4036 case 2:
4037 return retype(brw_imm_uw(value.u16), type);
4038 case 4:
4039 return retype(brw_imm_ud(value.u32), type);
4040 case 8:
4041 if (type == BRW_REGISTER_TYPE_DF)
4042 return setup_imm_df(bld, value.f64);
4043 else
4044 return retype(brw_imm_u64(value.u64), type);
4045 default:
4046 unreachable("Invalid type size");
4047 }
4048 }
4049
4050 static opcode
brw_op_for_nir_reduction_op(nir_op op)4051 brw_op_for_nir_reduction_op(nir_op op)
4052 {
4053 switch (op) {
4054 case nir_op_iadd: return BRW_OPCODE_ADD;
4055 case nir_op_fadd: return BRW_OPCODE_ADD;
4056 case nir_op_imul: return BRW_OPCODE_MUL;
4057 case nir_op_fmul: return BRW_OPCODE_MUL;
4058 case nir_op_imin: return BRW_OPCODE_SEL;
4059 case nir_op_umin: return BRW_OPCODE_SEL;
4060 case nir_op_fmin: return BRW_OPCODE_SEL;
4061 case nir_op_imax: return BRW_OPCODE_SEL;
4062 case nir_op_umax: return BRW_OPCODE_SEL;
4063 case nir_op_fmax: return BRW_OPCODE_SEL;
4064 case nir_op_iand: return BRW_OPCODE_AND;
4065 case nir_op_ior: return BRW_OPCODE_OR;
4066 case nir_op_ixor: return BRW_OPCODE_XOR;
4067 default:
4068 unreachable("Invalid reduction operation");
4069 }
4070 }
4071
4072 static brw_conditional_mod
brw_cond_mod_for_nir_reduction_op(nir_op op)4073 brw_cond_mod_for_nir_reduction_op(nir_op op)
4074 {
4075 switch (op) {
4076 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
4077 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
4078 case nir_op_imul: return BRW_CONDITIONAL_NONE;
4079 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
4080 case nir_op_imin: return BRW_CONDITIONAL_L;
4081 case nir_op_umin: return BRW_CONDITIONAL_L;
4082 case nir_op_fmin: return BRW_CONDITIONAL_L;
4083 case nir_op_imax: return BRW_CONDITIONAL_GE;
4084 case nir_op_umax: return BRW_CONDITIONAL_GE;
4085 case nir_op_fmax: return BRW_CONDITIONAL_GE;
4086 case nir_op_iand: return BRW_CONDITIONAL_NONE;
4087 case nir_op_ior: return BRW_CONDITIONAL_NONE;
4088 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
4089 default:
4090 unreachable("Invalid reduction operation");
4091 }
4092 }
4093
4094 fs_reg
get_nir_image_intrinsic_image(const brw::fs_builder & bld,nir_intrinsic_instr * instr)4095 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
4096 nir_intrinsic_instr *instr)
4097 {
4098 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
4099 fs_reg surf_index = image;
4100
4101 if (stage_prog_data->binding_table.image_start > 0) {
4102 if (image.file == BRW_IMMEDIATE_VALUE) {
4103 surf_index =
4104 brw_imm_ud(image.d + stage_prog_data->binding_table.image_start);
4105 } else {
4106 surf_index = vgrf(glsl_type::uint_type);
4107 bld.ADD(surf_index, image,
4108 brw_imm_d(stage_prog_data->binding_table.image_start));
4109 }
4110 }
4111
4112 return bld.emit_uniformize(surf_index);
4113 }
4114
4115 fs_reg
get_nir_ssbo_intrinsic_index(const brw::fs_builder & bld,nir_intrinsic_instr * instr)4116 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
4117 nir_intrinsic_instr *instr)
4118 {
4119 /* SSBO stores are weird in that their index is in src[1] */
4120 const bool is_store =
4121 instr->intrinsic == nir_intrinsic_store_ssbo ||
4122 instr->intrinsic == nir_intrinsic_store_ssbo_block_intel;
4123 const unsigned src = is_store ? 1 : 0;
4124
4125 if (nir_src_is_const(instr->src[src])) {
4126 unsigned index = stage_prog_data->binding_table.ssbo_start +
4127 nir_src_as_uint(instr->src[src]);
4128 return brw_imm_ud(index);
4129 } else {
4130 fs_reg surf_index = vgrf(glsl_type::uint_type);
4131 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4132 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4133 return bld.emit_uniformize(surf_index);
4134 }
4135 }
4136
4137 /**
4138 * The offsets we get from NIR act as if each SIMD channel has it's own blob
4139 * of contiguous space. However, if we actually place each SIMD channel in
4140 * it's own space, we end up with terrible cache performance because each SIMD
4141 * channel accesses a different cache line even when they're all accessing the
4142 * same byte offset. To deal with this problem, we swizzle the address using
4143 * a simple algorithm which ensures that any time a SIMD message reads or
4144 * writes the same address, it's all in the same cache line. We have to keep
4145 * the bottom two bits fixed so that we can read/write up to a dword at a time
4146 * and the individual element is contiguous. We do this by splitting the
4147 * address as follows:
4148 *
4149 * 31 4-6 2 0
4150 * +-------------------------------+------------+----------+
4151 * | Hi address bits | chan index | addr low |
4152 * +-------------------------------+------------+----------+
4153 *
4154 * In other words, the bottom two address bits stay, and the top 30 get
4155 * shifted up so that we can stick the SIMD channel index in the middle. This
4156 * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
4157 * at the same logical offset, the scratch read/write instruction acts on
4158 * continuous elements and we get good cache locality.
4159 */
4160 fs_reg
swizzle_nir_scratch_addr(const brw::fs_builder & bld,const fs_reg & nir_addr,bool in_dwords)4161 fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
4162 const fs_reg &nir_addr,
4163 bool in_dwords)
4164 {
4165 const fs_reg &chan_index =
4166 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
4167 const unsigned chan_index_bits = ffs(dispatch_width) - 1;
4168
4169 fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4170 if (in_dwords) {
4171 /* In this case, we know the address is aligned to a DWORD and we want
4172 * the final address in DWORDs.
4173 */
4174 bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
4175 bld.OR(addr, addr, chan_index);
4176 } else {
4177 /* This case substantially more annoying because we have to pay
4178 * attention to those pesky two bottom bits.
4179 */
4180 fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
4181 bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
4182 bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
4183 fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4184 bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
4185 bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
4186 bld.OR(addr, addr, addr_hi);
4187 bld.OR(addr, addr, chan_addr);
4188 }
4189 return addr;
4190 }
4191
4192 static unsigned
choose_oword_block_size_dwords(unsigned dwords)4193 choose_oword_block_size_dwords(unsigned dwords)
4194 {
4195 unsigned block;
4196 if (dwords >= 32) {
4197 block = 32;
4198 } else if (dwords >= 16) {
4199 block = 16;
4200 } else {
4201 block = 8;
4202 }
4203 assert(block <= dwords);
4204 return block;
4205 }
4206
4207 static void
increment_a64_address(const fs_builder & bld,fs_reg address,uint32_t v)4208 increment_a64_address(const fs_builder &bld, fs_reg address, uint32_t v)
4209 {
4210 if (bld.shader->devinfo->has_64bit_int) {
4211 bld.ADD(address, address, brw_imm_ud(v));
4212 } else {
4213 fs_reg low = retype(address, BRW_REGISTER_TYPE_UD);
4214 fs_reg high = offset(low, bld, 1);
4215
4216 /* Add low and if that overflows, add carry to high. */
4217 bld.ADD(low, low, brw_imm_ud(v))->conditional_mod = BRW_CONDITIONAL_O;
4218 bld.ADD(high, high, brw_imm_ud(0x1))->predicate = BRW_PREDICATE_NORMAL;
4219 }
4220 }
4221
4222 static fs_reg
emit_fence(const fs_builder & bld,enum opcode opcode,uint8_t sfid,bool commit_enable,uint8_t bti)4223 emit_fence(const fs_builder &bld, enum opcode opcode,
4224 uint8_t sfid, bool commit_enable, uint8_t bti)
4225 {
4226 assert(opcode == SHADER_OPCODE_INTERLOCK ||
4227 opcode == SHADER_OPCODE_MEMORY_FENCE);
4228
4229 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD);
4230 fs_inst *fence = bld.emit(opcode, dst, brw_vec8_grf(0, 0),
4231 brw_imm_ud(commit_enable),
4232 brw_imm_ud(bti));
4233 fence->sfid = sfid;
4234 return dst;
4235 }
4236
4237 void
nir_emit_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)4238 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4239 {
4240 fs_reg dest;
4241 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4242 dest = get_nir_dest(instr->dest);
4243
4244 switch (instr->intrinsic) {
4245 case nir_intrinsic_image_load:
4246 case nir_intrinsic_image_store:
4247 case nir_intrinsic_image_atomic_add:
4248 case nir_intrinsic_image_atomic_imin:
4249 case nir_intrinsic_image_atomic_umin:
4250 case nir_intrinsic_image_atomic_imax:
4251 case nir_intrinsic_image_atomic_umax:
4252 case nir_intrinsic_image_atomic_and:
4253 case nir_intrinsic_image_atomic_or:
4254 case nir_intrinsic_image_atomic_xor:
4255 case nir_intrinsic_image_atomic_exchange:
4256 case nir_intrinsic_image_atomic_comp_swap:
4257 case nir_intrinsic_bindless_image_load:
4258 case nir_intrinsic_bindless_image_store:
4259 case nir_intrinsic_bindless_image_atomic_add:
4260 case nir_intrinsic_bindless_image_atomic_imin:
4261 case nir_intrinsic_bindless_image_atomic_umin:
4262 case nir_intrinsic_bindless_image_atomic_imax:
4263 case nir_intrinsic_bindless_image_atomic_umax:
4264 case nir_intrinsic_bindless_image_atomic_and:
4265 case nir_intrinsic_bindless_image_atomic_or:
4266 case nir_intrinsic_bindless_image_atomic_xor:
4267 case nir_intrinsic_bindless_image_atomic_exchange:
4268 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4269 /* Get some metadata from the image intrinsic. */
4270 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4271
4272 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4273
4274 switch (instr->intrinsic) {
4275 case nir_intrinsic_image_load:
4276 case nir_intrinsic_image_store:
4277 case nir_intrinsic_image_atomic_add:
4278 case nir_intrinsic_image_atomic_imin:
4279 case nir_intrinsic_image_atomic_umin:
4280 case nir_intrinsic_image_atomic_imax:
4281 case nir_intrinsic_image_atomic_umax:
4282 case nir_intrinsic_image_atomic_and:
4283 case nir_intrinsic_image_atomic_or:
4284 case nir_intrinsic_image_atomic_xor:
4285 case nir_intrinsic_image_atomic_exchange:
4286 case nir_intrinsic_image_atomic_comp_swap:
4287 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4288 get_nir_image_intrinsic_image(bld, instr);
4289 break;
4290
4291 default:
4292 /* Bindless */
4293 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4294 bld.emit_uniformize(get_nir_src(instr->src[0]));
4295 break;
4296 }
4297
4298 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4299 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4300 brw_imm_ud(nir_image_intrinsic_coord_components(instr));
4301
4302 /* Emit an image load, store or atomic op. */
4303 if (instr->intrinsic == nir_intrinsic_image_load ||
4304 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4305 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4306 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4307 fs_inst *inst =
4308 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4309 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4310 inst->size_written = instr->num_components * dispatch_width * 4;
4311 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4312 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4313 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4314 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4315 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4316 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4317 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4318 } else {
4319 unsigned num_srcs = info->num_srcs;
4320 int op = brw_aop_for_nir_intrinsic(instr);
4321 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4322 assert(num_srcs == 4);
4323 num_srcs = 3;
4324 }
4325
4326 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4327
4328 fs_reg data;
4329 if (num_srcs >= 4)
4330 data = get_nir_src(instr->src[3]);
4331 if (num_srcs >= 5) {
4332 fs_reg tmp = bld.vgrf(data.type, 2);
4333 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4334 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4335 data = tmp;
4336 }
4337 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4338 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4339
4340 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4341 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4342 }
4343 break;
4344 }
4345
4346 case nir_intrinsic_image_size:
4347 case nir_intrinsic_bindless_image_size: {
4348 /* Cube image sizes should have previously been lowered to a 2D array */
4349 assert(nir_intrinsic_image_dim(instr) != GLSL_SAMPLER_DIM_CUBE);
4350
4351 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4352 * into will handle the binding table index for us in the geneerator.
4353 * Incidentally, this means that we can handle bindless with exactly the
4354 * same code.
4355 */
4356 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4357 BRW_REGISTER_TYPE_UD);
4358 image = bld.emit_uniformize(image);
4359
4360 assert(nir_src_as_uint(instr->src[1]) == 0);
4361
4362 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4363 if (instr->intrinsic == nir_intrinsic_image_size)
4364 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4365 else
4366 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4367 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4368 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4369 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4370
4371 /* Since the image size is always uniform, we can just emit a SIMD8
4372 * query instruction and splat the result out.
4373 */
4374 const fs_builder ubld = bld.exec_all().group(8, 0);
4375
4376 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4377 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4378 tmp, srcs, ARRAY_SIZE(srcs));
4379 inst->size_written = 4 * REG_SIZE;
4380
4381 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4382 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4383 component(offset(tmp, ubld, c), 0));
4384 }
4385 break;
4386 }
4387
4388 case nir_intrinsic_image_load_raw_intel: {
4389 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4390 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4391 get_nir_image_intrinsic_image(bld, instr);
4392 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4393 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4394 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4395 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4396
4397 fs_inst *inst =
4398 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4399 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4400 inst->size_written = instr->num_components * dispatch_width * 4;
4401 break;
4402 }
4403
4404 case nir_intrinsic_image_store_raw_intel: {
4405 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4406 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4407 get_nir_image_intrinsic_image(bld, instr);
4408 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4409 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4410 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4411 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4412 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4413
4414 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4415 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4416 break;
4417 }
4418
4419 case nir_intrinsic_scoped_barrier:
4420 assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
4421 FALLTHROUGH;
4422 case nir_intrinsic_group_memory_barrier:
4423 case nir_intrinsic_memory_barrier_shared:
4424 case nir_intrinsic_memory_barrier_buffer:
4425 case nir_intrinsic_memory_barrier_image:
4426 case nir_intrinsic_memory_barrier:
4427 case nir_intrinsic_begin_invocation_interlock:
4428 case nir_intrinsic_end_invocation_interlock: {
4429 bool ugm_fence, slm_fence, tgm_fence, urb_fence;
4430 const enum opcode opcode =
4431 instr->intrinsic == nir_intrinsic_begin_invocation_interlock ?
4432 SHADER_OPCODE_INTERLOCK : SHADER_OPCODE_MEMORY_FENCE;
4433
4434 switch (instr->intrinsic) {
4435 case nir_intrinsic_scoped_barrier: {
4436 nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4437 ugm_fence = modes & (nir_var_mem_ssbo | nir_var_mem_global);
4438 slm_fence = modes & nir_var_mem_shared;
4439 tgm_fence = modes & nir_var_mem_ssbo;
4440 urb_fence = modes & nir_var_shader_out;
4441 break;
4442 }
4443
4444 case nir_intrinsic_begin_invocation_interlock:
4445 case nir_intrinsic_end_invocation_interlock:
4446 /* For beginInvocationInterlockARB(), we will generate a memory fence
4447 * but with a different opcode so that generator can pick SENDC
4448 * instead of SEND.
4449 *
4450 * For endInvocationInterlockARB(), we need to insert a memory fence which
4451 * stalls in the shader until the memory transactions prior to that
4452 * fence are complete. This ensures that the shader does not end before
4453 * any writes from its critical section have landed. Otherwise, you can
4454 * end up with a case where the next invocation on that pixel properly
4455 * stalls for previous FS invocation on its pixel to complete but
4456 * doesn't actually wait for the dataport memory transactions from that
4457 * thread to land before submitting its own.
4458 *
4459 * Handling them here will allow the logic for IVB render cache (see
4460 * below) to be reused.
4461 */
4462 assert(stage == MESA_SHADER_FRAGMENT);
4463 ugm_fence = tgm_fence = true;
4464 slm_fence = urb_fence = false;
4465 break;
4466
4467 default:
4468 ugm_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared &&
4469 instr->intrinsic != nir_intrinsic_memory_barrier_image;
4470 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4471 instr->intrinsic == nir_intrinsic_memory_barrier ||
4472 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4473 tgm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4474 instr->intrinsic == nir_intrinsic_memory_barrier ||
4475 instr->intrinsic == nir_intrinsic_memory_barrier_image;
4476 urb_fence = instr->intrinsic == nir_intrinsic_memory_barrier;
4477 break;
4478 }
4479
4480 if (nir->info.shared_size > 0) {
4481 assert(gl_shader_stage_uses_workgroup(stage));
4482 } else {
4483 slm_fence = false;
4484 }
4485
4486 /* If the workgroup fits in a single HW thread, the messages for SLM are
4487 * processed in-order and the shader itself is already synchronized so
4488 * the memory fence is not necessary.
4489 *
4490 * TODO: Check if applies for many HW threads sharing same Data Port.
4491 */
4492 if (!nir->info.workgroup_size_variable &&
4493 slm_fence && workgroup_size() <= dispatch_width)
4494 slm_fence = false;
4495
4496 if (stage != MESA_SHADER_TESS_CTRL)
4497 urb_fence = false;
4498
4499 unsigned fence_regs_count = 0;
4500 fs_reg fence_regs[3] = {};
4501
4502 const fs_builder ubld = bld.group(8, 0);
4503
4504 if (devinfo->has_lsc) {
4505 assert(devinfo->verx10 >= 125);
4506 if (ugm_fence) {
4507 fence_regs[fence_regs_count++] =
4508 emit_fence(ubld, opcode, GFX12_SFID_UGM,
4509 true /* commit_enable */,
4510 0 /* bti; ignored for LSC */);
4511 }
4512
4513 if (tgm_fence) {
4514 fence_regs[fence_regs_count++] =
4515 emit_fence(ubld, opcode, GFX12_SFID_TGM,
4516 true /* commit_enable */,
4517 0 /* bti; ignored for LSC */);
4518 }
4519
4520 if (slm_fence) {
4521 assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4522 fence_regs[fence_regs_count++] =
4523 emit_fence(ubld, opcode, GFX12_SFID_SLM,
4524 true /* commit_enable */,
4525 0 /* BTI; ignored for LSC */);
4526 }
4527
4528 if (urb_fence) {
4529 assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4530 fence_regs[fence_regs_count++] =
4531 emit_fence(ubld, opcode, BRW_SFID_URB,
4532 true /* commit_enable */,
4533 0 /* BTI; ignored for LSC */);
4534 }
4535 } else if (devinfo->ver >= 11) {
4536 if (tgm_fence || ugm_fence || urb_fence) {
4537 fence_regs[fence_regs_count++] =
4538 emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE,
4539 true /* commit_enable HSD ES # 1404612949 */,
4540 0 /* BTI = 0 means data cache */);
4541 }
4542
4543 if (slm_fence) {
4544 assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4545 fence_regs[fence_regs_count++] =
4546 emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE,
4547 true /* commit_enable HSD ES # 1404612949 */,
4548 GFX7_BTI_SLM);
4549 }
4550 } else {
4551 /* Prior to Icelake, they're all lumped into a single cache except on
4552 * Ivy Bridge and Bay Trail where typed messages actually go through
4553 * the render cache. There, we need both fences because we may
4554 * access storage images as either typed or untyped.
4555 */
4556 const bool render_fence = tgm_fence && devinfo->verx10 == 70;
4557
4558 const bool commit_enable = render_fence ||
4559 instr->intrinsic == nir_intrinsic_end_invocation_interlock;
4560
4561 if (tgm_fence || ugm_fence || slm_fence || urb_fence) {
4562 fence_regs[fence_regs_count++] =
4563 emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE,
4564 commit_enable, 0 /* BTI */);
4565 }
4566
4567 if (render_fence) {
4568 fence_regs[fence_regs_count++] =
4569 emit_fence(ubld, opcode, GFX6_SFID_DATAPORT_RENDER_CACHE,
4570 commit_enable, /* bti */ 0);
4571 }
4572 }
4573
4574 assert(fence_regs_count <= ARRAY_SIZE(fence_regs));
4575
4576 /* There are three cases where we want to insert a stall:
4577 *
4578 * 1. If we're a nir_intrinsic_end_invocation_interlock. This is
4579 * required to ensure that the shader EOT doesn't happen until
4580 * after the fence returns. Otherwise, we might end up with the
4581 * next shader invocation for that pixel not respecting our fence
4582 * because it may happen on a different HW thread.
4583 *
4584 * 2. If we have multiple fences. This is required to ensure that
4585 * they all complete and nothing gets weirdly out-of-order.
4586 *
4587 * 3. If we have no fences. In this case, we need at least a
4588 * scheduling barrier to keep the compiler from moving things
4589 * around in an invalid way.
4590 */
4591 if (instr->intrinsic == nir_intrinsic_end_invocation_interlock ||
4592 fence_regs_count != 1) {
4593 ubld.exec_all().group(1, 0).emit(
4594 FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(),
4595 fence_regs, fence_regs_count);
4596 }
4597
4598 break;
4599 }
4600
4601 case nir_intrinsic_memory_barrier_tcs_patch:
4602 break;
4603
4604 case nir_intrinsic_shader_clock: {
4605 /* We cannot do anything if there is an event, so ignore it for now */
4606 const fs_reg shader_clock = get_timestamp(bld);
4607 const fs_reg srcs[] = { component(shader_clock, 0),
4608 component(shader_clock, 1) };
4609 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4610 break;
4611 }
4612
4613 case nir_intrinsic_image_samples:
4614 /* The driver does not support multi-sampled images. */
4615 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4616 break;
4617
4618 case nir_intrinsic_load_reloc_const_intel: {
4619 uint32_t id = nir_intrinsic_param_idx(instr);
4620 bld.emit(SHADER_OPCODE_MOV_RELOC_IMM,
4621 dest, brw_imm_ud(id));
4622 break;
4623 }
4624
4625 case nir_intrinsic_load_uniform: {
4626 /* Offsets are in bytes but they should always aligned to
4627 * the type size
4628 */
4629 assert(instr->const_index[0] % 4 == 0 ||
4630 instr->const_index[0] % type_sz(dest.type) == 0);
4631
4632 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4633
4634 if (nir_src_is_const(instr->src[0])) {
4635 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4636 assert(load_offset % type_sz(dest.type) == 0);
4637 /* For 16-bit types we add the module of the const_index[0]
4638 * offset to access to not 32-bit aligned element
4639 */
4640 src.offset = load_offset + instr->const_index[0] % 4;
4641
4642 for (unsigned j = 0; j < instr->num_components; j++) {
4643 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4644 }
4645 } else {
4646 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4647 BRW_REGISTER_TYPE_UD);
4648
4649 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4650 * go past the end of the uniform. In order to keep the n'th
4651 * component from running past, we subtract off the size of all but
4652 * one component of the vector.
4653 */
4654 assert(instr->const_index[1] >=
4655 instr->num_components * (int) type_sz(dest.type));
4656 unsigned read_size = instr->const_index[1] -
4657 (instr->num_components - 1) * type_sz(dest.type);
4658
4659 bool supports_64bit_indirects =
4660 !devinfo->is_cherryview && !intel_device_info_is_9lp(devinfo);
4661
4662 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4663 for (unsigned j = 0; j < instr->num_components; j++) {
4664 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4665 offset(dest, bld, j), offset(src, bld, j),
4666 indirect, brw_imm_ud(read_size));
4667 }
4668 } else {
4669 const unsigned num_mov_indirects =
4670 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4671 /* We read a little bit less per MOV INDIRECT, as they are now
4672 * 32-bits ones instead of 64-bit. Fix read_size then.
4673 */
4674 const unsigned read_size_32bit = read_size -
4675 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4676 for (unsigned j = 0; j < instr->num_components; j++) {
4677 for (unsigned i = 0; i < num_mov_indirects; i++) {
4678 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4679 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4680 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4681 indirect, brw_imm_ud(read_size_32bit));
4682 }
4683 }
4684 }
4685 }
4686 break;
4687 }
4688
4689 case nir_intrinsic_load_ubo: {
4690 fs_reg surf_index;
4691 if (nir_src_is_const(instr->src[0])) {
4692 const unsigned index = stage_prog_data->binding_table.ubo_start +
4693 nir_src_as_uint(instr->src[0]);
4694 surf_index = brw_imm_ud(index);
4695 } else {
4696 /* The block index is not a constant. Evaluate the index expression
4697 * per-channel and add the base UBO index; we have to select a value
4698 * from any live channel.
4699 */
4700 surf_index = vgrf(glsl_type::uint_type);
4701 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4702 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4703 surf_index = bld.emit_uniformize(surf_index);
4704 }
4705
4706 if (!nir_src_is_const(instr->src[1])) {
4707 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4708 BRW_REGISTER_TYPE_UD);
4709
4710 for (int i = 0; i < instr->num_components; i++)
4711 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4712 base_offset, i * type_sz(dest.type),
4713 nir_dest_bit_size(instr->dest) / 8);
4714
4715 prog_data->has_ubo_pull = true;
4716 } else {
4717 /* Even if we are loading doubles, a pull constant load will load
4718 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4719 * need to load a full dvec4 we will have to emit 2 loads. This is
4720 * similar to demote_pull_constants(), except that in that case we
4721 * see individual accesses to each component of the vector and then
4722 * we let CSE deal with duplicate loads. Here we see a vector access
4723 * and we have to split it if necessary.
4724 */
4725 const unsigned type_size = type_sz(dest.type);
4726 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4727
4728 /* See if we've selected this as a push constant candidate */
4729 if (nir_src_is_const(instr->src[0])) {
4730 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4731 const unsigned offset_256b = load_offset / 32;
4732
4733 fs_reg push_reg;
4734 for (int i = 0; i < 4; i++) {
4735 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4736 if (range->block == ubo_block &&
4737 offset_256b >= range->start &&
4738 offset_256b < range->start + range->length) {
4739
4740 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4741 push_reg.offset = load_offset - 32 * range->start;
4742 break;
4743 }
4744 }
4745
4746 if (push_reg.file != BAD_FILE) {
4747 for (unsigned i = 0; i < instr->num_components; i++) {
4748 bld.MOV(offset(dest, bld, i),
4749 byte_offset(push_reg, i * type_size));
4750 }
4751 break;
4752 }
4753 }
4754
4755 prog_data->has_ubo_pull = true;
4756
4757 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4758 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4759 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4760
4761 for (unsigned c = 0; c < instr->num_components;) {
4762 const unsigned base = load_offset + c * type_size;
4763 /* Number of usable components in the next block-aligned load. */
4764 const unsigned count = MIN2(instr->num_components - c,
4765 (block_sz - base % block_sz) / type_size);
4766
4767 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4768 packed_consts, surf_index,
4769 brw_imm_ud(base & ~(block_sz - 1)));
4770
4771 const fs_reg consts =
4772 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4773 dest.type);
4774
4775 for (unsigned d = 0; d < count; d++)
4776 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4777
4778 c += count;
4779 }
4780 }
4781 break;
4782 }
4783
4784 case nir_intrinsic_load_global:
4785 case nir_intrinsic_load_global_constant: {
4786 assert(devinfo->ver >= 8);
4787
4788 assert(nir_dest_bit_size(instr->dest) <= 32);
4789 assert(nir_intrinsic_align(instr) > 0);
4790 if (nir_dest_bit_size(instr->dest) == 32 &&
4791 nir_intrinsic_align(instr) >= 4) {
4792 assert(nir_dest_num_components(instr->dest) <= 4);
4793 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4794 dest,
4795 get_nir_src(instr->src[0]), /* Address */
4796 fs_reg(), /* No source data */
4797 brw_imm_ud(instr->num_components));
4798 inst->size_written = instr->num_components *
4799 inst->dst.component_size(inst->exec_size);
4800 } else {
4801 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4802 assert(nir_dest_num_components(instr->dest) == 1);
4803 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4804 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4805 tmp,
4806 get_nir_src(instr->src[0]), /* Address */
4807 fs_reg(), /* No source data */
4808 brw_imm_ud(bit_size));
4809 bld.MOV(dest, subscript(tmp, dest.type, 0));
4810 }
4811 break;
4812 }
4813
4814 case nir_intrinsic_store_global:
4815 assert(devinfo->ver >= 8);
4816
4817 assert(nir_src_bit_size(instr->src[0]) <= 32);
4818 assert(nir_intrinsic_write_mask(instr) ==
4819 (1u << instr->num_components) - 1);
4820 assert(nir_intrinsic_align(instr) > 0);
4821 if (nir_src_bit_size(instr->src[0]) == 32 &&
4822 nir_intrinsic_align(instr) >= 4) {
4823 assert(nir_src_num_components(instr->src[0]) <= 4);
4824 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4825 fs_reg(),
4826 get_nir_src(instr->src[1]), /* Address */
4827 get_nir_src(instr->src[0]), /* Data */
4828 brw_imm_ud(instr->num_components));
4829 } else {
4830 assert(nir_src_num_components(instr->src[0]) == 1);
4831 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4832 brw_reg_type data_type =
4833 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4834 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4835 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4836 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4837 fs_reg(),
4838 get_nir_src(instr->src[1]), /* Address */
4839 tmp, /* Data */
4840 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4841 }
4842 break;
4843
4844 case nir_intrinsic_global_atomic_add:
4845 case nir_intrinsic_global_atomic_imin:
4846 case nir_intrinsic_global_atomic_umin:
4847 case nir_intrinsic_global_atomic_imax:
4848 case nir_intrinsic_global_atomic_umax:
4849 case nir_intrinsic_global_atomic_and:
4850 case nir_intrinsic_global_atomic_or:
4851 case nir_intrinsic_global_atomic_xor:
4852 case nir_intrinsic_global_atomic_exchange:
4853 case nir_intrinsic_global_atomic_comp_swap:
4854 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4855 break;
4856 case nir_intrinsic_global_atomic_fadd:
4857 case nir_intrinsic_global_atomic_fmin:
4858 case nir_intrinsic_global_atomic_fmax:
4859 case nir_intrinsic_global_atomic_fcomp_swap:
4860 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4861 break;
4862
4863 case nir_intrinsic_load_global_const_block_intel: {
4864 assert(nir_dest_bit_size(instr->dest) == 32);
4865 assert(instr->num_components == 8 || instr->num_components == 16);
4866
4867 const fs_builder ubld = bld.exec_all().group(instr->num_components, 0);
4868 fs_reg load_val;
4869
4870 bool is_pred_const = nir_src_is_const(instr->src[1]);
4871 if (is_pred_const && nir_src_as_uint(instr->src[1]) == 0) {
4872 /* In this case, we don't want the UBO load at all. We really
4873 * shouldn't get here but it's possible.
4874 */
4875 load_val = brw_imm_ud(0);
4876 } else {
4877 /* The uniform process may stomp the flag so do this first */
4878 fs_reg addr = bld.emit_uniformize(get_nir_src(instr->src[0]));
4879
4880 load_val = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4881
4882 /* If the predicate is constant and we got here, then it's non-zero
4883 * and we don't need the predicate at all.
4884 */
4885 if (!is_pred_const) {
4886 /* Load the predicate */
4887 fs_reg pred = bld.emit_uniformize(get_nir_src(instr->src[1]));
4888 fs_inst *mov = ubld.MOV(bld.null_reg_d(), pred);
4889 mov->conditional_mod = BRW_CONDITIONAL_NZ;
4890
4891 /* Stomp the destination with 0 if we're OOB */
4892 mov = ubld.MOV(load_val, brw_imm_ud(0));
4893 mov->predicate = BRW_PREDICATE_NORMAL;
4894 mov->predicate_inverse = true;
4895 }
4896
4897 fs_inst *load = ubld.emit(SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL,
4898 load_val, addr,
4899 fs_reg(), /* No source data */
4900 brw_imm_ud(instr->num_components));
4901
4902 if (!is_pred_const)
4903 load->predicate = BRW_PREDICATE_NORMAL;
4904 }
4905
4906 /* From the HW perspective, we just did a single SIMD16 instruction
4907 * which loaded a dword in each SIMD channel. From NIR's perspective,
4908 * this instruction returns a vec16. Any users of this data in the
4909 * back-end will expect a vec16 per SIMD channel so we have to emit a
4910 * pile of MOVs to resolve this discrepancy. Fortunately, copy-prop
4911 * will generally clean them up for us.
4912 */
4913 for (unsigned i = 0; i < instr->num_components; i++) {
4914 bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
4915 component(load_val, i));
4916 }
4917 break;
4918 }
4919
4920 case nir_intrinsic_load_ssbo: {
4921 assert(devinfo->ver >= 7);
4922
4923 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4924 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4925 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4926 get_nir_ssbo_intrinsic_index(bld, instr);
4927 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4928 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4929 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4930
4931 /* Make dest unsigned because that's what the temporary will be */
4932 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4933
4934 /* Read the vector */
4935 assert(nir_dest_bit_size(instr->dest) <= 32);
4936 assert(nir_intrinsic_align(instr) > 0);
4937 if (nir_dest_bit_size(instr->dest) == 32 &&
4938 nir_intrinsic_align(instr) >= 4) {
4939 assert(nir_dest_num_components(instr->dest) <= 4);
4940 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4941 fs_inst *inst =
4942 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4943 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4944 inst->size_written = instr->num_components * dispatch_width * 4;
4945 } else {
4946 assert(nir_dest_num_components(instr->dest) == 1);
4947 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4948
4949 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4950 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4951 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4952 bld.MOV(dest, subscript(read_result, dest.type, 0));
4953 }
4954 break;
4955 }
4956
4957 case nir_intrinsic_store_ssbo: {
4958 assert(devinfo->ver >= 7);
4959
4960 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4961 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4962 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4963 get_nir_ssbo_intrinsic_index(bld, instr);
4964 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4965 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4966 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4967
4968 fs_reg data = get_nir_src(instr->src[0]);
4969 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4970
4971 assert(nir_src_bit_size(instr->src[0]) <= 32);
4972 assert(nir_intrinsic_write_mask(instr) ==
4973 (1u << instr->num_components) - 1);
4974 assert(nir_intrinsic_align(instr) > 0);
4975 if (nir_src_bit_size(instr->src[0]) == 32 &&
4976 nir_intrinsic_align(instr) >= 4) {
4977 assert(nir_src_num_components(instr->src[0]) <= 4);
4978 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4979 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4980 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4981 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4982 } else {
4983 assert(nir_src_num_components(instr->src[0]) == 1);
4984 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4985
4986 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4987 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4988
4989 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4990 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4991 }
4992 break;
4993 }
4994
4995 case nir_intrinsic_store_output: {
4996 assert(nir_src_bit_size(instr->src[0]) == 32);
4997 fs_reg src = get_nir_src(instr->src[0]);
4998
4999 unsigned store_offset = nir_src_as_uint(instr->src[1]);
5000 unsigned num_components = instr->num_components;
5001 unsigned first_component = nir_intrinsic_component(instr);
5002
5003 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
5004 4 * store_offset), src.type);
5005 for (unsigned j = 0; j < num_components; j++) {
5006 bld.MOV(offset(new_dest, bld, j + first_component),
5007 offset(src, bld, j));
5008 }
5009 break;
5010 }
5011
5012 case nir_intrinsic_ssbo_atomic_add:
5013 case nir_intrinsic_ssbo_atomic_imin:
5014 case nir_intrinsic_ssbo_atomic_umin:
5015 case nir_intrinsic_ssbo_atomic_imax:
5016 case nir_intrinsic_ssbo_atomic_umax:
5017 case nir_intrinsic_ssbo_atomic_and:
5018 case nir_intrinsic_ssbo_atomic_or:
5019 case nir_intrinsic_ssbo_atomic_xor:
5020 case nir_intrinsic_ssbo_atomic_exchange:
5021 case nir_intrinsic_ssbo_atomic_comp_swap:
5022 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
5023 break;
5024 case nir_intrinsic_ssbo_atomic_fadd:
5025 case nir_intrinsic_ssbo_atomic_fmin:
5026 case nir_intrinsic_ssbo_atomic_fmax:
5027 case nir_intrinsic_ssbo_atomic_fcomp_swap:
5028 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
5029 break;
5030
5031 case nir_intrinsic_get_ssbo_size: {
5032 assert(nir_src_num_components(instr->src[0]) == 1);
5033 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
5034 nir_src_as_uint(instr->src[0]) : 0;
5035
5036 /* A resinfo's sampler message is used to get the buffer size. The
5037 * SIMD8's writeback message consists of four registers and SIMD16's
5038 * writeback message consists of 8 destination registers (two per each
5039 * component). Because we are only interested on the first channel of
5040 * the first returned component, where resinfo returns the buffer size
5041 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
5042 * the dispatch width.
5043 */
5044 const fs_builder ubld = bld.exec_all().group(8, 0);
5045 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5046 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
5047
5048 /* Set LOD = 0 */
5049 ubld.MOV(src_payload, brw_imm_d(0));
5050
5051 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
5052 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
5053 src_payload, brw_imm_ud(index));
5054 inst->header_size = 0;
5055 inst->mlen = 1;
5056 inst->size_written = 4 * REG_SIZE;
5057
5058 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
5059 *
5060 * "Out-of-bounds checking is always performed at a DWord granularity. If
5061 * any part of the DWord is out-of-bounds then the whole DWord is
5062 * considered out-of-bounds."
5063 *
5064 * This implies that types with size smaller than 4-bytes need to be
5065 * padded if they don't complete the last dword of the buffer. But as we
5066 * need to maintain the original size we need to reverse the padding
5067 * calculation to return the correct size to know the number of elements
5068 * of an unsized array. As we stored in the last two bits of the surface
5069 * size the needed padding for the buffer, we calculate here the
5070 * original buffer_size reversing the surface_size calculation:
5071 *
5072 * surface_size = isl_align(buffer_size, 4) +
5073 * (isl_align(buffer_size) - buffer_size)
5074 *
5075 * buffer_size = surface_size & ~3 - surface_size & 3
5076 */
5077
5078 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5079 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5080 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5081
5082 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
5083 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
5084 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
5085
5086 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
5087 break;
5088 }
5089
5090 case nir_intrinsic_load_scratch: {
5091 assert(devinfo->ver >= 7);
5092
5093 assert(nir_dest_num_components(instr->dest) == 1);
5094 const unsigned bit_size = nir_dest_bit_size(instr->dest);
5095 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5096
5097 if (devinfo->verx10 >= 125) {
5098 const fs_builder ubld = bld.exec_all().group(1, 0);
5099 fs_reg handle = component(ubld.vgrf(BRW_REGISTER_TYPE_UD), 0);
5100 ubld.AND(handle, retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5101 brw_imm_ud(~0x3ffu));
5102 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] = handle;
5103 } else if (devinfo->ver >= 8) {
5104 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
5105 brw_imm_ud(GFX8_BTI_STATELESS_NON_COHERENT);
5106 } else {
5107 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
5108 }
5109
5110 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5111 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
5112 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
5113 const fs_reg nir_addr = get_nir_src(instr->src[0]);
5114
5115 /* Make dest unsigned because that's what the temporary will be */
5116 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
5117
5118 /* Read the vector */
5119 assert(nir_dest_num_components(instr->dest) == 1);
5120 assert(nir_dest_bit_size(instr->dest) <= 32);
5121 assert(nir_intrinsic_align(instr) > 0);
5122 if (devinfo->verx10 >= 125) {
5123 assert(nir_dest_bit_size(instr->dest) == 32 &&
5124 nir_intrinsic_align(instr) >= 4);
5125
5126 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5127 swizzle_nir_scratch_addr(bld, nir_addr, false);
5128 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1);
5129
5130 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
5131 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5132 } else if (nir_dest_bit_size(instr->dest) >= 4 &&
5133 nir_intrinsic_align(instr) >= 4) {
5134 /* The offset for a DWORD scattered message is in dwords. */
5135 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5136 swizzle_nir_scratch_addr(bld, nir_addr, true);
5137
5138 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
5139 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5140 } else {
5141 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5142 swizzle_nir_scratch_addr(bld, nir_addr, false);
5143
5144 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
5145 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
5146 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
5147 bld.MOV(dest, read_result);
5148 }
5149 break;
5150 }
5151
5152 case nir_intrinsic_store_scratch: {
5153 assert(devinfo->ver >= 7);
5154
5155 assert(nir_src_num_components(instr->src[0]) == 1);
5156 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
5157 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5158
5159 if (devinfo->verx10 >= 125) {
5160 const fs_builder ubld = bld.exec_all().group(1, 0);
5161 fs_reg handle = component(ubld.vgrf(BRW_REGISTER_TYPE_UD), 0);
5162 ubld.AND(handle, retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5163 brw_imm_ud(~0x3ffu));
5164 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] = handle;
5165 } else if (devinfo->ver >= 8) {
5166 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
5167 brw_imm_ud(GFX8_BTI_STATELESS_NON_COHERENT);
5168 } else {
5169 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
5170 }
5171
5172 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5173 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
5174 /**
5175 * While this instruction has side-effects, it should not be predicated
5176 * on sample mask, because otherwise fs helper invocations would
5177 * load undefined values from scratch memory. And scratch memory
5178 * load-stores are produced from operations without side-effects, thus
5179 * they should not have different behaviour in the helper invocations.
5180 */
5181 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
5182 const fs_reg nir_addr = get_nir_src(instr->src[1]);
5183
5184 fs_reg data = get_nir_src(instr->src[0]);
5185 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
5186
5187 assert(nir_src_num_components(instr->src[0]) == 1);
5188 assert(nir_src_bit_size(instr->src[0]) <= 32);
5189 assert(nir_intrinsic_write_mask(instr) == 1);
5190 assert(nir_intrinsic_align(instr) > 0);
5191 if (devinfo->verx10 >= 125) {
5192 assert(nir_src_bit_size(instr->src[0]) == 32 &&
5193 nir_intrinsic_align(instr) >= 4);
5194 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5195
5196 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5197 swizzle_nir_scratch_addr(bld, nir_addr, false);
5198 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1);
5199
5200 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
5201 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5202 } else if (nir_src_bit_size(instr->src[0]) == 32 &&
5203 nir_intrinsic_align(instr) >= 4) {
5204 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5205
5206 /* The offset for a DWORD scattered message is in dwords. */
5207 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5208 swizzle_nir_scratch_addr(bld, nir_addr, true);
5209
5210 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
5211 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5212 } else {
5213 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
5214 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
5215
5216 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5217 swizzle_nir_scratch_addr(bld, nir_addr, false);
5218
5219 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
5220 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5221 }
5222 break;
5223 }
5224
5225 case nir_intrinsic_load_subgroup_size:
5226 /* This should only happen for fragment shaders because every other case
5227 * is lowered in NIR so we can optimize on it.
5228 */
5229 assert(stage == MESA_SHADER_FRAGMENT);
5230 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
5231 break;
5232
5233 case nir_intrinsic_load_subgroup_invocation:
5234 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
5235 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
5236 break;
5237
5238 case nir_intrinsic_load_subgroup_eq_mask:
5239 case nir_intrinsic_load_subgroup_ge_mask:
5240 case nir_intrinsic_load_subgroup_gt_mask:
5241 case nir_intrinsic_load_subgroup_le_mask:
5242 case nir_intrinsic_load_subgroup_lt_mask:
5243 unreachable("not reached");
5244
5245 case nir_intrinsic_vote_any: {
5246 const fs_builder ubld = bld.exec_all().group(1, 0);
5247
5248 /* The any/all predicates do not consider channel enables. To prevent
5249 * dead channels from affecting the result, we initialize the flag with
5250 * with the identity value for the logical operation.
5251 */
5252 if (dispatch_width == 32) {
5253 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5254 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5255 brw_imm_ud(0));
5256 } else {
5257 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
5258 }
5259 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
5260
5261 /* For some reason, the any/all predicates don't work properly with
5262 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
5263 * doesn't read the correct subset of the flag register and you end up
5264 * getting garbage in the second half. Work around this by using a pair
5265 * of 1-wide MOVs and scattering the result.
5266 */
5267 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5268 ubld.MOV(res1, brw_imm_d(0));
5269 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
5270 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
5271 BRW_PREDICATE_ALIGN1_ANY32H,
5272 ubld.MOV(res1, brw_imm_d(-1)));
5273
5274 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5275 break;
5276 }
5277 case nir_intrinsic_vote_all: {
5278 const fs_builder ubld = bld.exec_all().group(1, 0);
5279
5280 /* The any/all predicates do not consider channel enables. To prevent
5281 * dead channels from affecting the result, we initialize the flag with
5282 * with the identity value for the logical operation.
5283 */
5284 if (dispatch_width == 32) {
5285 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5286 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5287 brw_imm_ud(0xffffffff));
5288 } else {
5289 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5290 }
5291 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
5292
5293 /* For some reason, the any/all predicates don't work properly with
5294 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
5295 * doesn't read the correct subset of the flag register and you end up
5296 * getting garbage in the second half. Work around this by using a pair
5297 * of 1-wide MOVs and scattering the result.
5298 */
5299 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5300 ubld.MOV(res1, brw_imm_d(0));
5301 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
5302 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5303 BRW_PREDICATE_ALIGN1_ALL32H,
5304 ubld.MOV(res1, brw_imm_d(-1)));
5305
5306 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5307 break;
5308 }
5309 case nir_intrinsic_vote_feq:
5310 case nir_intrinsic_vote_ieq: {
5311 fs_reg value = get_nir_src(instr->src[0]);
5312 if (instr->intrinsic == nir_intrinsic_vote_feq) {
5313 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
5314 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
5315 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
5316 }
5317
5318 fs_reg uniformized = bld.emit_uniformize(value);
5319 const fs_builder ubld = bld.exec_all().group(1, 0);
5320
5321 /* The any/all predicates do not consider channel enables. To prevent
5322 * dead channels from affecting the result, we initialize the flag with
5323 * with the identity value for the logical operation.
5324 */
5325 if (dispatch_width == 32) {
5326 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5327 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5328 brw_imm_ud(0xffffffff));
5329 } else {
5330 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5331 }
5332 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
5333
5334 /* For some reason, the any/all predicates don't work properly with
5335 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
5336 * doesn't read the correct subset of the flag register and you end up
5337 * getting garbage in the second half. Work around this by using a pair
5338 * of 1-wide MOVs and scattering the result.
5339 */
5340 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5341 ubld.MOV(res1, brw_imm_d(0));
5342 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
5343 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5344 BRW_PREDICATE_ALIGN1_ALL32H,
5345 ubld.MOV(res1, brw_imm_d(-1)));
5346
5347 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5348 break;
5349 }
5350
5351 case nir_intrinsic_ballot: {
5352 const fs_reg value = retype(get_nir_src(instr->src[0]),
5353 BRW_REGISTER_TYPE_UD);
5354 struct brw_reg flag = brw_flag_reg(0, 0);
5355 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
5356 * as f0.0. This is a problem for fragment programs as we currently use
5357 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
5358 * programs yet so this isn't a problem. When we do, something will
5359 * have to change.
5360 */
5361 if (dispatch_width == 32)
5362 flag.type = BRW_REGISTER_TYPE_UD;
5363
5364 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
5365 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
5366
5367 if (instr->dest.ssa.bit_size > 32) {
5368 dest.type = BRW_REGISTER_TYPE_UQ;
5369 } else {
5370 dest.type = BRW_REGISTER_TYPE_UD;
5371 }
5372 bld.MOV(dest, flag);
5373 break;
5374 }
5375
5376 case nir_intrinsic_read_invocation: {
5377 const fs_reg value = get_nir_src(instr->src[0]);
5378 const fs_reg invocation = get_nir_src(instr->src[1]);
5379 fs_reg tmp = bld.vgrf(value.type);
5380
5381 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5382 bld.emit_uniformize(invocation));
5383
5384 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5385 break;
5386 }
5387
5388 case nir_intrinsic_read_first_invocation: {
5389 const fs_reg value = get_nir_src(instr->src[0]);
5390 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5391 break;
5392 }
5393
5394 case nir_intrinsic_shuffle: {
5395 const fs_reg value = get_nir_src(instr->src[0]);
5396 const fs_reg index = get_nir_src(instr->src[1]);
5397
5398 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5399 break;
5400 }
5401
5402 case nir_intrinsic_first_invocation: {
5403 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5404 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5405 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5406 fs_reg(component(tmp, 0)));
5407 break;
5408 }
5409
5410 case nir_intrinsic_quad_broadcast: {
5411 const fs_reg value = get_nir_src(instr->src[0]);
5412 const unsigned index = nir_src_as_uint(instr->src[1]);
5413
5414 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5415 value, brw_imm_ud(index), brw_imm_ud(4));
5416 break;
5417 }
5418
5419 case nir_intrinsic_quad_swap_horizontal: {
5420 const fs_reg value = get_nir_src(instr->src[0]);
5421 const fs_reg tmp = bld.vgrf(value.type);
5422 if (devinfo->ver <= 7) {
5423 /* The hardware doesn't seem to support these crazy regions with
5424 * compressed instructions on gfx7 and earlier so we fall back to
5425 * using quad swizzles. Fortunately, we don't support 64-bit
5426 * anything in Vulkan on gfx7.
5427 */
5428 assert(nir_src_bit_size(instr->src[0]) == 32);
5429 const fs_builder ubld = bld.exec_all();
5430 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5431 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
5432 bld.MOV(retype(dest, value.type), tmp);
5433 } else {
5434 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5435
5436 const fs_reg src_left = horiz_stride(value, 2);
5437 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5438 const fs_reg tmp_left = horiz_stride(tmp, 2);
5439 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5440
5441 ubld.MOV(tmp_left, src_right);
5442 ubld.MOV(tmp_right, src_left);
5443
5444 }
5445 bld.MOV(retype(dest, value.type), tmp);
5446 break;
5447 }
5448
5449 case nir_intrinsic_quad_swap_vertical: {
5450 const fs_reg value = get_nir_src(instr->src[0]);
5451 if (nir_src_bit_size(instr->src[0]) == 32) {
5452 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5453 const fs_reg tmp = bld.vgrf(value.type);
5454 const fs_builder ubld = bld.exec_all();
5455 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5456 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5457 bld.MOV(retype(dest, value.type), tmp);
5458 } else {
5459 /* For larger data types, we have to either emit dispatch_width many
5460 * MOVs or else fall back to doing indirects.
5461 */
5462 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5463 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5464 brw_imm_w(0x2));
5465 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5466 }
5467 break;
5468 }
5469
5470 case nir_intrinsic_quad_swap_diagonal: {
5471 const fs_reg value = get_nir_src(instr->src[0]);
5472 if (nir_src_bit_size(instr->src[0]) == 32) {
5473 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5474 const fs_reg tmp = bld.vgrf(value.type);
5475 const fs_builder ubld = bld.exec_all();
5476 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5477 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5478 bld.MOV(retype(dest, value.type), tmp);
5479 } else {
5480 /* For larger data types, we have to either emit dispatch_width many
5481 * MOVs or else fall back to doing indirects.
5482 */
5483 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5484 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5485 brw_imm_w(0x3));
5486 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5487 }
5488 break;
5489 }
5490
5491 case nir_intrinsic_reduce: {
5492 fs_reg src = get_nir_src(instr->src[0]);
5493 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5494 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5495 if (cluster_size == 0 || cluster_size > dispatch_width)
5496 cluster_size = dispatch_width;
5497
5498 /* Figure out the source type */
5499 src.type = brw_type_for_nir_type(devinfo,
5500 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5501 nir_src_bit_size(instr->src[0])));
5502
5503 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5504 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5505 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5506
5507 /* Set up a register for all of our scratching around and initialize it
5508 * to reduction operation's identity value.
5509 */
5510 fs_reg scan = bld.vgrf(src.type);
5511 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5512
5513 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5514
5515 dest.type = src.type;
5516 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5517 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5518 * the distance between clusters is at least 2 GRFs. In this case,
5519 * we don't need the weird striding of the CLUSTER_BROADCAST
5520 * instruction and can just do regular MOVs.
5521 */
5522 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5523 const unsigned groups =
5524 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5525 const unsigned group_size = dispatch_width / groups;
5526 for (unsigned i = 0; i < groups; i++) {
5527 const unsigned cluster = (i * group_size) / cluster_size;
5528 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5529 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5530 component(scan, comp));
5531 }
5532 } else {
5533 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5534 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5535 }
5536 break;
5537 }
5538
5539 case nir_intrinsic_inclusive_scan:
5540 case nir_intrinsic_exclusive_scan: {
5541 fs_reg src = get_nir_src(instr->src[0]);
5542 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5543
5544 /* Figure out the source type */
5545 src.type = brw_type_for_nir_type(devinfo,
5546 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5547 nir_src_bit_size(instr->src[0])));
5548
5549 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5550 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5551 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5552
5553 /* Set up a register for all of our scratching around and initialize it
5554 * to reduction operation's identity value.
5555 */
5556 fs_reg scan = bld.vgrf(src.type);
5557 const fs_builder allbld = bld.exec_all();
5558 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5559
5560 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5561 /* Exclusive scan is a bit harder because we have to do an annoying
5562 * shift of the contents before we can begin. To make things worse,
5563 * we can't do this with a normal stride; we have to use indirects.
5564 */
5565 fs_reg shifted = bld.vgrf(src.type);
5566 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5567 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5568 brw_imm_w(-1));
5569 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5570 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5571 scan = shifted;
5572 }
5573
5574 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5575
5576 bld.MOV(retype(dest, src.type), scan);
5577 break;
5578 }
5579
5580 case nir_intrinsic_load_global_block_intel: {
5581 assert(nir_dest_bit_size(instr->dest) == 32);
5582
5583 fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[0]));
5584
5585 const fs_builder ubld1 = bld.exec_all().group(1, 0);
5586 const fs_builder ubld8 = bld.exec_all().group(8, 0);
5587 const fs_builder ubld16 = bld.exec_all().group(16, 0);
5588
5589 const unsigned total = instr->num_components * dispatch_width;
5590 unsigned loaded = 0;
5591
5592 while (loaded < total) {
5593 const unsigned block =
5594 choose_oword_block_size_dwords(total - loaded);
5595 const unsigned block_bytes = block * 4;
5596
5597 const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5598 ubld.emit(SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
5599 retype(byte_offset(dest, loaded * 4), BRW_REGISTER_TYPE_UD),
5600 address,
5601 fs_reg(), /* No source data */
5602 brw_imm_ud(block))->size_written = block_bytes;
5603
5604 increment_a64_address(ubld1, address, block_bytes);
5605 loaded += block;
5606 }
5607
5608 assert(loaded == total);
5609 break;
5610 }
5611
5612 case nir_intrinsic_store_global_block_intel: {
5613 assert(nir_src_bit_size(instr->src[0]) == 32);
5614
5615 fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[1]));
5616 fs_reg src = get_nir_src(instr->src[0]);
5617
5618 const fs_builder ubld1 = bld.exec_all().group(1, 0);
5619 const fs_builder ubld8 = bld.exec_all().group(8, 0);
5620 const fs_builder ubld16 = bld.exec_all().group(16, 0);
5621
5622 const unsigned total = instr->num_components * dispatch_width;
5623 unsigned written = 0;
5624
5625 while (written < total) {
5626 const unsigned block =
5627 choose_oword_block_size_dwords(total - written);
5628
5629 const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5630 ubld.emit(SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL,
5631 fs_reg(),
5632 address,
5633 retype(byte_offset(src, written * 4), BRW_REGISTER_TYPE_UD),
5634 brw_imm_ud(block));
5635
5636 const unsigned block_bytes = block * 4;
5637 increment_a64_address(ubld1, address, block_bytes);
5638 written += block;
5639 }
5640
5641 assert(written == total);
5642 break;
5643 }
5644
5645 case nir_intrinsic_load_shared_block_intel:
5646 case nir_intrinsic_load_ssbo_block_intel: {
5647 assert(nir_dest_bit_size(instr->dest) == 32);
5648
5649 const bool is_ssbo =
5650 instr->intrinsic == nir_intrinsic_load_ssbo_block_intel;
5651 fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[is_ssbo ? 1 : 0]));
5652
5653 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5654 srcs[SURFACE_LOGICAL_SRC_SURFACE] = is_ssbo ?
5655 get_nir_ssbo_intrinsic_index(bld, instr) : fs_reg(brw_imm_ud(GFX7_BTI_SLM));
5656 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = address;
5657
5658 const fs_builder ubld1 = bld.exec_all().group(1, 0);
5659 const fs_builder ubld8 = bld.exec_all().group(8, 0);
5660 const fs_builder ubld16 = bld.exec_all().group(16, 0);
5661
5662 const unsigned total = instr->num_components * dispatch_width;
5663 unsigned loaded = 0;
5664
5665 while (loaded < total) {
5666 const unsigned block =
5667 choose_oword_block_size_dwords(total - loaded);
5668 const unsigned block_bytes = block * 4;
5669
5670 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(block);
5671
5672 const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5673 ubld.emit(SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
5674 retype(byte_offset(dest, loaded * 4), BRW_REGISTER_TYPE_UD),
5675 srcs, SURFACE_LOGICAL_NUM_SRCS)->size_written = block_bytes;
5676
5677 ubld1.ADD(address, address, brw_imm_ud(block_bytes));
5678 loaded += block;
5679 }
5680
5681 assert(loaded == total);
5682 break;
5683 }
5684
5685 case nir_intrinsic_store_shared_block_intel:
5686 case nir_intrinsic_store_ssbo_block_intel: {
5687 assert(nir_src_bit_size(instr->src[0]) == 32);
5688
5689 const bool is_ssbo =
5690 instr->intrinsic == nir_intrinsic_store_ssbo_block_intel;
5691
5692 fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[is_ssbo ? 2 : 1]));
5693 fs_reg src = get_nir_src(instr->src[0]);
5694
5695 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5696 srcs[SURFACE_LOGICAL_SRC_SURFACE] = is_ssbo ?
5697 get_nir_ssbo_intrinsic_index(bld, instr) : fs_reg(brw_imm_ud(GFX7_BTI_SLM));
5698 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = address;
5699
5700 const fs_builder ubld1 = bld.exec_all().group(1, 0);
5701 const fs_builder ubld8 = bld.exec_all().group(8, 0);
5702 const fs_builder ubld16 = bld.exec_all().group(16, 0);
5703
5704 const unsigned total = instr->num_components * dispatch_width;
5705 unsigned written = 0;
5706
5707 while (written < total) {
5708 const unsigned block =
5709 choose_oword_block_size_dwords(total - written);
5710
5711 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(block);
5712 srcs[SURFACE_LOGICAL_SRC_DATA] =
5713 retype(byte_offset(src, written * 4), BRW_REGISTER_TYPE_UD);
5714
5715 const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5716 ubld.emit(SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL,
5717 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5718
5719 const unsigned block_bytes = block * 4;
5720 ubld1.ADD(address, address, brw_imm_ud(block_bytes));
5721 written += block;
5722 }
5723
5724 assert(written == total);
5725 break;
5726 }
5727
5728 case nir_intrinsic_load_btd_dss_id_intel:
5729 bld.emit(SHADER_OPCODE_GET_DSS_ID,
5730 retype(dest, BRW_REGISTER_TYPE_UD));
5731 break;
5732
5733 case nir_intrinsic_load_btd_stack_id_intel:
5734 if (stage == MESA_SHADER_COMPUTE) {
5735 assert(brw_cs_prog_data(prog_data)->uses_btd_stack_ids);
5736 } else {
5737 assert(brw_shader_stage_is_bindless(stage));
5738 }
5739 /* Stack IDs are always in R1 regardless of whether we're coming from a
5740 * bindless shader or a regular compute shader.
5741 */
5742 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5743 retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UW));
5744 break;
5745
5746 case nir_intrinsic_btd_spawn_intel:
5747 if (stage == MESA_SHADER_COMPUTE) {
5748 assert(brw_cs_prog_data(prog_data)->uses_btd_stack_ids);
5749 } else {
5750 assert(brw_shader_stage_is_bindless(stage));
5751 }
5752 bld.emit(SHADER_OPCODE_BTD_SPAWN_LOGICAL, bld.null_reg_ud(),
5753 bld.emit_uniformize(get_nir_src(instr->src[0])),
5754 get_nir_src(instr->src[1]));
5755 break;
5756
5757 case nir_intrinsic_btd_retire_intel:
5758 if (stage == MESA_SHADER_COMPUTE) {
5759 assert(brw_cs_prog_data(prog_data)->uses_btd_stack_ids);
5760 } else {
5761 assert(brw_shader_stage_is_bindless(stage));
5762 }
5763 bld.emit(SHADER_OPCODE_BTD_RETIRE_LOGICAL);
5764 break;
5765
5766 default:
5767 unreachable("unknown intrinsic");
5768 }
5769 }
5770
5771 void
nir_emit_ssbo_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5772 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5773 int op, nir_intrinsic_instr *instr)
5774 {
5775 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5776 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5777 * appear to exist. However, if you look at Vol 2a, there are no message
5778 * descriptors provided for Qword atomic ops except for A64 messages.
5779 */
5780 assert(nir_dest_bit_size(instr->dest) == 32 ||
5781 (nir_dest_bit_size(instr->dest) == 64 && devinfo->has_lsc));
5782
5783 fs_reg dest;
5784 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5785 dest = get_nir_dest(instr->dest);
5786
5787 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5788 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5789 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5790 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5791 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5792 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5793
5794 fs_reg data;
5795 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5796 data = get_nir_src(instr->src[2]);
5797
5798 if (op == BRW_AOP_CMPWR) {
5799 fs_reg tmp = bld.vgrf(data.type, 2);
5800 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5801 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5802 data = tmp;
5803 }
5804 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5805
5806 /* Emit the actual atomic operation */
5807
5808 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5809 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5810 }
5811
5812 void
nir_emit_ssbo_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5813 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5814 int op, nir_intrinsic_instr *instr)
5815 {
5816 fs_reg dest;
5817 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5818 dest = get_nir_dest(instr->dest);
5819
5820 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5821 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5822 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5823 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5824 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5825 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5826
5827 fs_reg data = get_nir_src(instr->src[2]);
5828 if (op == BRW_AOP_FCMPWR) {
5829 fs_reg tmp = bld.vgrf(data.type, 2);
5830 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5831 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5832 data = tmp;
5833 }
5834 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5835
5836 /* Emit the actual atomic operation */
5837
5838 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5839 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5840 }
5841
5842 void
nir_emit_shared_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5843 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5844 int op, nir_intrinsic_instr *instr)
5845 {
5846 fs_reg dest;
5847 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5848 dest = get_nir_dest(instr->dest);
5849
5850 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5851 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
5852 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5853 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5854 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5855
5856 fs_reg data;
5857 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5858 data = get_nir_src(instr->src[1]);
5859 if (op == BRW_AOP_CMPWR) {
5860 fs_reg tmp = bld.vgrf(data.type, 2);
5861 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5862 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5863 data = tmp;
5864 }
5865 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5866
5867 /* Get the offset */
5868 if (nir_src_is_const(instr->src[0])) {
5869 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5870 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5871 } else {
5872 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5873 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5874 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5875 brw_imm_ud(instr->const_index[0]));
5876 }
5877
5878 /* Emit the actual atomic operation operation */
5879
5880 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5881 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5882 }
5883
5884 void
nir_emit_shared_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5885 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5886 int op, nir_intrinsic_instr *instr)
5887 {
5888 fs_reg dest;
5889 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5890 dest = get_nir_dest(instr->dest);
5891
5892 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5893 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GFX7_BTI_SLM);
5894 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5895 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5896 srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5897
5898 fs_reg data = get_nir_src(instr->src[1]);
5899 if (op == BRW_AOP_FCMPWR) {
5900 fs_reg tmp = bld.vgrf(data.type, 2);
5901 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5902 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5903 data = tmp;
5904 }
5905 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5906
5907 /* Get the offset */
5908 if (nir_src_is_const(instr->src[0])) {
5909 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5910 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5911 } else {
5912 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5913 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5914 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5915 brw_imm_ud(instr->const_index[0]));
5916 }
5917
5918 /* Emit the actual atomic operation operation */
5919
5920 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5921 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5922 }
5923
5924 static fs_reg
expand_to_32bit(const fs_builder & bld,const fs_reg & src)5925 expand_to_32bit(const fs_builder &bld, const fs_reg &src)
5926 {
5927 if (type_sz(src.type) == 2) {
5928 fs_reg src32 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5929 bld.MOV(src32, retype(src, BRW_REGISTER_TYPE_UW));
5930 return src32;
5931 } else {
5932 return src;
5933 }
5934 }
5935
5936 void
nir_emit_global_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5937 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5938 int op, nir_intrinsic_instr *instr)
5939 {
5940 fs_reg dest;
5941 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5942 dest = get_nir_dest(instr->dest);
5943
5944 fs_reg addr = get_nir_src(instr->src[0]);
5945
5946 fs_reg data;
5947 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5948 data = expand_to_32bit(bld, get_nir_src(instr->src[1]));
5949
5950 if (op == BRW_AOP_CMPWR) {
5951 fs_reg tmp = bld.vgrf(data.type, 2);
5952 fs_reg sources[2] = {
5953 data,
5954 expand_to_32bit(bld, get_nir_src(instr->src[2]))
5955 };
5956 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5957 data = tmp;
5958 }
5959
5960 switch (nir_dest_bit_size(instr->dest)) {
5961 case 16: {
5962 fs_reg dest32 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5963 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL,
5964 dest32, addr, data, brw_imm_ud(op));
5965 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UW), dest32);
5966 break;
5967 }
5968 case 32:
5969 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5970 dest, addr, data, brw_imm_ud(op));
5971 break;
5972 case 64:
5973 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5974 dest, addr, data, brw_imm_ud(op));
5975 break;
5976 default:
5977 unreachable("Unsupported bit size");
5978 }
5979 }
5980
5981 void
nir_emit_global_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5982 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5983 int op, nir_intrinsic_instr *instr)
5984 {
5985 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5986 fs_reg dest = get_nir_dest(instr->dest);
5987
5988 fs_reg addr = get_nir_src(instr->src[0]);
5989
5990 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5991 fs_reg data = expand_to_32bit(bld, get_nir_src(instr->src[1]));
5992
5993 if (op == BRW_AOP_FCMPWR) {
5994 fs_reg tmp = bld.vgrf(data.type, 2);
5995 fs_reg sources[2] = {
5996 data,
5997 expand_to_32bit(bld, get_nir_src(instr->src[2]))
5998 };
5999 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
6000 data = tmp;
6001 }
6002
6003 switch (nir_dest_bit_size(instr->dest)) {
6004 case 16: {
6005 fs_reg dest32 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6006 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL,
6007 dest32, addr, data, brw_imm_ud(op));
6008 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UW), dest32);
6009 break;
6010 }
6011 case 32:
6012 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL,
6013 dest, addr, data, brw_imm_ud(op));
6014 break;
6015 case 64:
6016 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL,
6017 dest, addr, data, brw_imm_ud(op));
6018 break;
6019 default:
6020 unreachable("Unsupported bit size");
6021 }
6022 }
6023
6024 void
nir_emit_texture(const fs_builder & bld,nir_tex_instr * instr)6025 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
6026 {
6027 unsigned texture = instr->texture_index;
6028 unsigned sampler = instr->sampler_index;
6029
6030 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
6031
6032 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
6033 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
6034
6035 int lod_components = 0;
6036
6037 /* The hardware requires a LOD for buffer textures */
6038 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6039 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
6040
6041 uint32_t header_bits = 0;
6042 for (unsigned i = 0; i < instr->num_srcs; i++) {
6043 fs_reg src = get_nir_src(instr->src[i].src);
6044 switch (instr->src[i].src_type) {
6045 case nir_tex_src_bias:
6046 srcs[TEX_LOGICAL_SRC_LOD] =
6047 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
6048 break;
6049 case nir_tex_src_comparator:
6050 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
6051 break;
6052 case nir_tex_src_coord:
6053 switch (instr->op) {
6054 case nir_texop_txf:
6055 case nir_texop_txf_ms:
6056 case nir_texop_txf_ms_mcs_intel:
6057 case nir_texop_samples_identical:
6058 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
6059 break;
6060 default:
6061 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
6062 break;
6063 }
6064
6065 /* Wa_14013363432:
6066 *
6067 * Compiler should send U,V,R parameters even if V,R are 0.
6068 */
6069 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && devinfo->verx10 == 125)
6070 assert(instr->coord_components == 3u + instr->is_array);
6071 break;
6072 case nir_tex_src_ddx:
6073 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
6074 lod_components = nir_tex_instr_src_size(instr, i);
6075 break;
6076 case nir_tex_src_ddy:
6077 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
6078 break;
6079 case nir_tex_src_lod:
6080 switch (instr->op) {
6081 case nir_texop_txs:
6082 srcs[TEX_LOGICAL_SRC_LOD] =
6083 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
6084 break;
6085 case nir_texop_txf:
6086 srcs[TEX_LOGICAL_SRC_LOD] =
6087 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
6088 break;
6089 default:
6090 srcs[TEX_LOGICAL_SRC_LOD] =
6091 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
6092 break;
6093 }
6094 break;
6095 case nir_tex_src_min_lod:
6096 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
6097 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
6098 break;
6099 case nir_tex_src_ms_index:
6100 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
6101 break;
6102
6103 case nir_tex_src_offset: {
6104 uint32_t offset_bits = 0;
6105 if (brw_texture_offset(instr, i, &offset_bits)) {
6106 header_bits |= offset_bits;
6107 } else {
6108 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
6109 retype(src, BRW_REGISTER_TYPE_D);
6110 }
6111 break;
6112 }
6113
6114 case nir_tex_src_projector:
6115 unreachable("should be lowered");
6116
6117 case nir_tex_src_texture_offset: {
6118 /* Emit code to evaluate the actual indexing expression */
6119 fs_reg tmp = vgrf(glsl_type::uint_type);
6120 bld.ADD(tmp, src, brw_imm_ud(texture));
6121 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
6122 break;
6123 }
6124
6125 case nir_tex_src_sampler_offset: {
6126 /* Emit code to evaluate the actual indexing expression */
6127 fs_reg tmp = vgrf(glsl_type::uint_type);
6128 bld.ADD(tmp, src, brw_imm_ud(sampler));
6129 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
6130 break;
6131 }
6132
6133 case nir_tex_src_texture_handle:
6134 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
6135 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
6136 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
6137 break;
6138
6139 case nir_tex_src_sampler_handle:
6140 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
6141 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
6142 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
6143 break;
6144
6145 case nir_tex_src_ms_mcs_intel:
6146 assert(instr->op == nir_texop_txf_ms);
6147 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
6148 break;
6149
6150 case nir_tex_src_plane: {
6151 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
6152 const uint32_t texture_index =
6153 instr->texture_index +
6154 stage_prog_data->binding_table.plane_start[plane] -
6155 stage_prog_data->binding_table.texture_start;
6156
6157 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
6158 break;
6159 }
6160
6161 default:
6162 unreachable("unknown texture source");
6163 }
6164 }
6165
6166 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
6167 (instr->op == nir_texop_txf_ms ||
6168 instr->op == nir_texop_samples_identical)) {
6169 if (devinfo->ver >= 7 &&
6170 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
6171 srcs[TEX_LOGICAL_SRC_MCS] =
6172 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
6173 instr->coord_components,
6174 srcs[TEX_LOGICAL_SRC_SURFACE],
6175 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
6176 } else {
6177 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
6178 }
6179 }
6180
6181 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
6182 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
6183
6184 enum opcode opcode;
6185 switch (instr->op) {
6186 case nir_texop_tex:
6187 opcode = SHADER_OPCODE_TEX_LOGICAL;
6188 break;
6189 case nir_texop_txb:
6190 opcode = FS_OPCODE_TXB_LOGICAL;
6191 break;
6192 case nir_texop_txl:
6193 opcode = SHADER_OPCODE_TXL_LOGICAL;
6194 break;
6195 case nir_texop_txd:
6196 opcode = SHADER_OPCODE_TXD_LOGICAL;
6197 break;
6198 case nir_texop_txf:
6199 opcode = SHADER_OPCODE_TXF_LOGICAL;
6200 break;
6201 case nir_texop_txf_ms:
6202 if ((key_tex->msaa_16 & (1 << sampler)))
6203 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
6204 else
6205 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
6206 break;
6207 case nir_texop_txf_ms_mcs_intel:
6208 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
6209 break;
6210 case nir_texop_query_levels:
6211 case nir_texop_txs:
6212 opcode = SHADER_OPCODE_TXS_LOGICAL;
6213 break;
6214 case nir_texop_lod:
6215 opcode = SHADER_OPCODE_LOD_LOGICAL;
6216 break;
6217 case nir_texop_tg4:
6218 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
6219 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
6220 else
6221 opcode = SHADER_OPCODE_TG4_LOGICAL;
6222 break;
6223 case nir_texop_texture_samples:
6224 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
6225 break;
6226 case nir_texop_samples_identical: {
6227 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
6228
6229 /* If mcs is an immediate value, it means there is no MCS. In that case
6230 * just return false.
6231 */
6232 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
6233 bld.MOV(dst, brw_imm_ud(0u));
6234 } else if ((key_tex->msaa_16 & (1 << sampler))) {
6235 fs_reg tmp = vgrf(glsl_type::uint_type);
6236 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
6237 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
6238 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
6239 } else {
6240 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
6241 BRW_CONDITIONAL_EQ);
6242 }
6243 return;
6244 }
6245 default:
6246 unreachable("unknown texture opcode");
6247 }
6248
6249 if (instr->op == nir_texop_tg4) {
6250 if (instr->component == 1 &&
6251 key_tex->gather_channel_quirk_mask & (1 << texture)) {
6252 /* gather4 sampler is broken for green channel on RG32F --
6253 * we must ask for blue instead.
6254 */
6255 header_bits |= 2 << 16;
6256 } else {
6257 header_bits |= instr->component << 16;
6258 }
6259 }
6260
6261 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
6262 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
6263 inst->offset = header_bits;
6264
6265 const unsigned dest_size = nir_tex_instr_dest_size(instr);
6266 if (devinfo->ver >= 9 &&
6267 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
6268 unsigned write_mask = instr->dest.is_ssa ?
6269 nir_ssa_def_components_read(&instr->dest.ssa):
6270 (1 << dest_size) - 1;
6271 assert(write_mask != 0); /* dead code should have been eliminated */
6272 inst->size_written = util_last_bit(write_mask) *
6273 inst->dst.component_size(inst->exec_size);
6274 } else {
6275 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
6276 }
6277
6278 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
6279 inst->shadow_compare = true;
6280
6281 if (instr->op == nir_texop_tg4 && devinfo->ver == 6)
6282 emit_gfx6_gather_wa(key_tex->gfx6_gather_wa[texture], dst);
6283
6284 fs_reg nir_dest[5];
6285 for (unsigned i = 0; i < dest_size; i++)
6286 nir_dest[i] = offset(dst, bld, i);
6287
6288 if (instr->op == nir_texop_query_levels) {
6289 /* # levels is in .w */
6290 if (devinfo->ver <= 9) {
6291 /**
6292 * Wa_1940217:
6293 *
6294 * When a surface of type SURFTYPE_NULL is accessed by resinfo, the
6295 * MIPCount returned is undefined instead of 0.
6296 */
6297 fs_inst *mov = bld.MOV(bld.null_reg_d(), dst);
6298 mov->conditional_mod = BRW_CONDITIONAL_NZ;
6299 nir_dest[0] = bld.vgrf(BRW_REGISTER_TYPE_D);
6300 fs_inst *sel = bld.SEL(nir_dest[0], offset(dst, bld, 3), brw_imm_d(0));
6301 sel->predicate = BRW_PREDICATE_NORMAL;
6302 } else {
6303 nir_dest[0] = offset(dst, bld, 3);
6304 }
6305 } else if (instr->op == nir_texop_txs &&
6306 dest_size >= 3 && devinfo->ver < 7) {
6307 /* Gfx4-6 return 0 instead of 1 for single layer surfaces. */
6308 fs_reg depth = offset(dst, bld, 2);
6309 nir_dest[2] = vgrf(glsl_type::int_type);
6310 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
6311 }
6312
6313 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
6314 }
6315
6316 void
nir_emit_jump(const fs_builder & bld,nir_jump_instr * instr)6317 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
6318 {
6319 switch (instr->type) {
6320 case nir_jump_break:
6321 bld.emit(BRW_OPCODE_BREAK);
6322 break;
6323 case nir_jump_continue:
6324 bld.emit(BRW_OPCODE_CONTINUE);
6325 break;
6326 case nir_jump_halt:
6327 bld.emit(BRW_OPCODE_HALT);
6328 break;
6329 case nir_jump_return:
6330 default:
6331 unreachable("unknown jump");
6332 }
6333 }
6334
6335 /*
6336 * This helper takes a source register and un/shuffles it into the destination
6337 * register.
6338 *
6339 * If source type size is smaller than destination type size the operation
6340 * needed is a component shuffle. The opposite case would be an unshuffle. If
6341 * source/destination type size is equal a shuffle is done that would be
6342 * equivalent to a simple MOV.
6343 *
6344 * For example, if source is a 16-bit type and destination is 32-bit. A 3
6345 * components .xyz 16-bit vector on SIMD8 would be.
6346 *
6347 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
6348 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
6349 *
6350 * This helper will return the following 2 32-bit components with the 16-bit
6351 * values shuffled:
6352 *
6353 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
6354 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
6355 *
6356 * For unshuffle, the example would be the opposite, a 64-bit type source
6357 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
6358 * would be:
6359 *
6360 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
6361 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
6362 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
6363 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
6364 *
6365 * The returned result would be the following 4 32-bit components unshuffled:
6366 *
6367 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
6368 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
6369 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
6370 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
6371 *
6372 * - Source and destination register must not be overlapped.
6373 * - components units are measured in terms of the smaller type between
6374 * source and destination because we are un/shuffling the smaller
6375 * components from/into the bigger ones.
6376 * - first_component parameter allows skipping source components.
6377 */
6378 void
shuffle_src_to_dst(const fs_builder & bld,const fs_reg & dst,const fs_reg & src,uint32_t first_component,uint32_t components)6379 shuffle_src_to_dst(const fs_builder &bld,
6380 const fs_reg &dst,
6381 const fs_reg &src,
6382 uint32_t first_component,
6383 uint32_t components)
6384 {
6385 if (type_sz(src.type) == type_sz(dst.type)) {
6386 assert(!regions_overlap(dst,
6387 type_sz(dst.type) * bld.dispatch_width() * components,
6388 offset(src, bld, first_component),
6389 type_sz(src.type) * bld.dispatch_width() * components));
6390 for (unsigned i = 0; i < components; i++) {
6391 bld.MOV(retype(offset(dst, bld, i), src.type),
6392 offset(src, bld, i + first_component));
6393 }
6394 } else if (type_sz(src.type) < type_sz(dst.type)) {
6395 /* Source is shuffled into destination */
6396 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
6397 assert(!regions_overlap(dst,
6398 type_sz(dst.type) * bld.dispatch_width() *
6399 DIV_ROUND_UP(components, size_ratio),
6400 offset(src, bld, first_component),
6401 type_sz(src.type) * bld.dispatch_width() * components));
6402
6403 brw_reg_type shuffle_type =
6404 brw_reg_type_from_bit_size(8 * type_sz(src.type),
6405 BRW_REGISTER_TYPE_D);
6406 for (unsigned i = 0; i < components; i++) {
6407 fs_reg shuffle_component_i =
6408 subscript(offset(dst, bld, i / size_ratio),
6409 shuffle_type, i % size_ratio);
6410 bld.MOV(shuffle_component_i,
6411 retype(offset(src, bld, i + first_component), shuffle_type));
6412 }
6413 } else {
6414 /* Source is unshuffled into destination */
6415 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
6416 assert(!regions_overlap(dst,
6417 type_sz(dst.type) * bld.dispatch_width() * components,
6418 offset(src, bld, first_component / size_ratio),
6419 type_sz(src.type) * bld.dispatch_width() *
6420 DIV_ROUND_UP(components + (first_component % size_ratio),
6421 size_ratio)));
6422
6423 brw_reg_type shuffle_type =
6424 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
6425 BRW_REGISTER_TYPE_D);
6426 for (unsigned i = 0; i < components; i++) {
6427 fs_reg shuffle_component_i =
6428 subscript(offset(src, bld, (first_component + i) / size_ratio),
6429 shuffle_type, (first_component + i) % size_ratio);
6430 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
6431 shuffle_component_i);
6432 }
6433 }
6434 }
6435
6436 void
shuffle_from_32bit_read(const fs_builder & bld,const fs_reg & dst,const fs_reg & src,uint32_t first_component,uint32_t components)6437 shuffle_from_32bit_read(const fs_builder &bld,
6438 const fs_reg &dst,
6439 const fs_reg &src,
6440 uint32_t first_component,
6441 uint32_t components)
6442 {
6443 assert(type_sz(src.type) == 4);
6444
6445 /* This function takes components in units of the destination type while
6446 * shuffle_src_to_dst takes components in units of the smallest type
6447 */
6448 if (type_sz(dst.type) > 4) {
6449 assert(type_sz(dst.type) == 8);
6450 first_component *= 2;
6451 components *= 2;
6452 }
6453
6454 shuffle_src_to_dst(bld, dst, src, first_component, components);
6455 }
6456
6457 fs_reg
setup_imm_df(const fs_builder & bld,double v)6458 setup_imm_df(const fs_builder &bld, double v)
6459 {
6460 const struct intel_device_info *devinfo = bld.shader->devinfo;
6461 assert(devinfo->ver >= 7);
6462
6463 if (devinfo->ver >= 8)
6464 return brw_imm_df(v);
6465
6466 /* gfx7.5 does not support DF immediates straighforward but the DIM
6467 * instruction allows to set the 64-bit immediate value.
6468 */
6469 if (devinfo->is_haswell) {
6470 const fs_builder ubld = bld.exec_all().group(1, 0);
6471 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
6472 ubld.DIM(dst, brw_imm_df(v));
6473 return component(dst, 0);
6474 }
6475
6476 /* gfx7 does not support DF immediates, so we generate a 64-bit constant by
6477 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
6478 * the high 32-bit to suboffset 4 and then applying a stride of 0.
6479 *
6480 * Alternatively, we could also produce a normal VGRF (without stride 0)
6481 * by writing to all the channels in the VGRF, however, that would hit the
6482 * gfx7 bug where we have to split writes that span more than 1 register
6483 * into instructions with a width of 4 (otherwise the write to the second
6484 * register written runs into an execmask hardware bug) which isn't very
6485 * nice.
6486 */
6487 union {
6488 double d;
6489 struct {
6490 uint32_t i1;
6491 uint32_t i2;
6492 };
6493 } di;
6494
6495 di.d = v;
6496
6497 const fs_builder ubld = bld.exec_all().group(1, 0);
6498 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
6499 ubld.MOV(tmp, brw_imm_ud(di.i1));
6500 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
6501
6502 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
6503 }
6504
6505 fs_reg
setup_imm_b(const fs_builder & bld,int8_t v)6506 setup_imm_b(const fs_builder &bld, int8_t v)
6507 {
6508 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
6509 bld.MOV(tmp, brw_imm_w(v));
6510 return tmp;
6511 }
6512
6513 fs_reg
setup_imm_ub(const fs_builder & bld,uint8_t v)6514 setup_imm_ub(const fs_builder &bld, uint8_t v)
6515 {
6516 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
6517 bld.MOV(tmp, brw_imm_uw(v));
6518 return tmp;
6519 }
6520