1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 #if IS_ENABLED(CONFIG_NEWIP)
26 #include <net/nip.h>
27 #endif
28
29 #if IS_ENABLED(CONFIG_IPV6)
30 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
31 * if IPv6 only, and any IPv4 addresses
32 * if not IPv6 only
33 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
34 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
35 * and 0.0.0.0 equals to 0.0.0.0 only
36 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)37 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
38 const struct in6_addr *sk2_rcv_saddr6,
39 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
40 bool sk1_ipv6only, bool sk2_ipv6only,
41 bool match_sk1_wildcard,
42 bool match_sk2_wildcard)
43 {
44 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
45 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
46
47 /* if both are mapped, treat as IPv4 */
48 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
49 if (!sk2_ipv6only) {
50 if (sk1_rcv_saddr == sk2_rcv_saddr)
51 return true;
52 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
53 (match_sk2_wildcard && !sk2_rcv_saddr);
54 }
55 return false;
56 }
57
58 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
59 return true;
60
61 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
62 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
63 return true;
64
65 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
66 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
67 return true;
68
69 if (sk2_rcv_saddr6 &&
70 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
71 return true;
72
73 return false;
74 }
75 #endif
76
77 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
78 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
79 * 0.0.0.0 only equals to 0.0.0.0
80 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)81 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
82 bool sk2_ipv6only, bool match_sk1_wildcard,
83 bool match_sk2_wildcard)
84 {
85 if (!sk2_ipv6only) {
86 if (sk1_rcv_saddr == sk2_rcv_saddr)
87 return true;
88 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
89 (match_sk2_wildcard && !sk2_rcv_saddr);
90 }
91 return false;
92 }
93
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)94 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
95 bool match_wildcard)
96 {
97 #if IS_ENABLED(CONFIG_IPV6)
98 if (sk->sk_family == AF_INET6)
99 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
100 inet6_rcv_saddr(sk2),
101 sk->sk_rcv_saddr,
102 sk2->sk_rcv_saddr,
103 ipv6_only_sock(sk),
104 ipv6_only_sock(sk2),
105 match_wildcard,
106 match_wildcard);
107 #endif
108
109 #if IS_ENABLED(CONFIG_NEWIP)
110 if (sk->sk_family == AF_NINET)
111 return nip_rcv_saddr_equal(&sk->sk_nip_rcv_saddr,
112 &sk2->sk_nip_rcv_saddr,
113 sk2->sk_family == AF_NINET,
114 match_wildcard,
115 match_wildcard);
116 #endif
117
118 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
119 ipv6_only_sock(sk2), match_wildcard,
120 match_wildcard);
121 }
122 EXPORT_SYMBOL(inet_rcv_saddr_equal);
123
inet_rcv_saddr_any(const struct sock * sk)124 bool inet_rcv_saddr_any(const struct sock *sk)
125 {
126 #if IS_ENABLED(CONFIG_IPV6)
127 if (sk->sk_family == AF_INET6)
128 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
129 #endif
130 return !sk->sk_rcv_saddr;
131 }
132
inet_get_local_port_range(struct net * net,int * low,int * high)133 void inet_get_local_port_range(struct net *net, int *low, int *high)
134 {
135 unsigned int seq;
136
137 do {
138 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
139
140 *low = net->ipv4.ip_local_ports.range[0];
141 *high = net->ipv4.ip_local_ports.range[1];
142 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
143 }
144 EXPORT_SYMBOL(inet_get_local_port_range);
145
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)146 static int inet_csk_bind_conflict(const struct sock *sk,
147 const struct inet_bind_bucket *tb,
148 bool relax, bool reuseport_ok)
149 {
150 struct sock *sk2;
151 bool reuse = sk->sk_reuse;
152 bool reuseport = !!sk->sk_reuseport;
153 kuid_t uid = sock_i_uid((struct sock *)sk);
154
155 /*
156 * Unlike other sk lookup places we do not check
157 * for sk_net here, since _all_ the socks listed
158 * in tb->owners list belong to the same net - the
159 * one this bucket belongs to.
160 */
161
162 sk_for_each_bound(sk2, &tb->owners) {
163 if (sk != sk2 &&
164 (!sk->sk_bound_dev_if ||
165 !sk2->sk_bound_dev_if ||
166 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
167 if (reuse && sk2->sk_reuse &&
168 sk2->sk_state != TCP_LISTEN) {
169 if ((!relax ||
170 (!reuseport_ok &&
171 reuseport && sk2->sk_reuseport &&
172 !rcu_access_pointer(sk->sk_reuseport_cb) &&
173 (sk2->sk_state == TCP_TIME_WAIT ||
174 uid_eq(uid, sock_i_uid(sk2))))) &&
175 inet_rcv_saddr_equal(sk, sk2, true))
176 break;
177 } else if (!reuseport_ok ||
178 !reuseport || !sk2->sk_reuseport ||
179 rcu_access_pointer(sk->sk_reuseport_cb) ||
180 (sk2->sk_state != TCP_TIME_WAIT &&
181 !uid_eq(uid, sock_i_uid(sk2)))) {
182 if (inet_rcv_saddr_equal(sk, sk2, true))
183 break;
184 }
185 }
186 }
187 return sk2 != NULL;
188 }
189
190 /*
191 * Find an open port number for the socket. Returns with the
192 * inet_bind_hashbucket lock held.
193 */
194 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)195 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
196 {
197 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
198 int port = 0;
199 struct inet_bind_hashbucket *head;
200 struct net *net = sock_net(sk);
201 bool relax = false;
202 int i, low, high, attempt_half;
203 struct inet_bind_bucket *tb;
204 u32 remaining, offset;
205 int l3mdev;
206
207 l3mdev = inet_sk_bound_l3mdev(sk);
208 ports_exhausted:
209 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
210 other_half_scan:
211 inet_get_local_port_range(net, &low, &high);
212 high++; /* [32768, 60999] -> [32768, 61000[ */
213 if (high - low < 4)
214 attempt_half = 0;
215 if (attempt_half) {
216 int half = low + (((high - low) >> 2) << 1);
217
218 if (attempt_half == 1)
219 high = half;
220 else
221 low = half;
222 }
223 remaining = high - low;
224 if (likely(remaining > 1))
225 remaining &= ~1U;
226
227 offset = prandom_u32() % remaining;
228 /* __inet_hash_connect() favors ports having @low parity
229 * We do the opposite to not pollute connect() users.
230 */
231 offset |= 1U;
232
233 other_parity_scan:
234 port = low + offset;
235 for (i = 0; i < remaining; i += 2, port += 2) {
236 if (unlikely(port >= high))
237 port -= remaining;
238 if (inet_is_local_reserved_port(net, port))
239 continue;
240 head = &hinfo->bhash[inet_bhashfn(net, port,
241 hinfo->bhash_size)];
242 spin_lock_bh(&head->lock);
243 inet_bind_bucket_for_each(tb, &head->chain)
244 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
245 tb->port == port) {
246 if (!inet_csk_bind_conflict(sk, tb, relax, false))
247 goto success;
248 goto next_port;
249 }
250 tb = NULL;
251 goto success;
252 next_port:
253 spin_unlock_bh(&head->lock);
254 cond_resched();
255 }
256
257 offset--;
258 if (!(offset & 1))
259 goto other_parity_scan;
260
261 if (attempt_half == 1) {
262 /* OK we now try the upper half of the range */
263 attempt_half = 2;
264 goto other_half_scan;
265 }
266
267 if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
268 /* We still have a chance to connect to different destinations */
269 relax = true;
270 goto ports_exhausted;
271 }
272 return NULL;
273 success:
274 *port_ret = port;
275 *tb_ret = tb;
276 return head;
277 }
278
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)279 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
280 struct sock *sk)
281 {
282 kuid_t uid = sock_i_uid(sk);
283
284 if (tb->fastreuseport <= 0)
285 return 0;
286 if (!sk->sk_reuseport)
287 return 0;
288 if (rcu_access_pointer(sk->sk_reuseport_cb))
289 return 0;
290 if (!uid_eq(tb->fastuid, uid))
291 return 0;
292 /* We only need to check the rcv_saddr if this tb was once marked
293 * without fastreuseport and then was reset, as we can only know that
294 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
295 * owners list.
296 */
297 if (tb->fastreuseport == FASTREUSEPORT_ANY)
298 return 1;
299 #if IS_ENABLED(CONFIG_IPV6)
300 if (tb->fast_sk_family == AF_INET6)
301 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
302 inet6_rcv_saddr(sk),
303 tb->fast_rcv_saddr,
304 sk->sk_rcv_saddr,
305 tb->fast_ipv6_only,
306 ipv6_only_sock(sk), true, false);
307 #endif
308 #if IS_ENABLED(CONFIG_NEWIP)
309 if (tb->fast_sk_family == AF_NINET)
310 return nip_rcv_saddr_equal(&tb->fast_nip_rcv_saddr,
311 &sk->sk_nip_rcv_saddr,
312 sk->sk_family == AF_NINET,
313 true, false);
314 #endif
315 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
316 ipv6_only_sock(sk), true, false);
317 }
318
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)319 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
320 struct sock *sk)
321 {
322 kuid_t uid = sock_i_uid(sk);
323 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
324
325 if (hlist_empty(&tb->owners)) {
326 tb->fastreuse = reuse;
327 if (sk->sk_reuseport) {
328 tb->fastreuseport = FASTREUSEPORT_ANY;
329 tb->fastuid = uid;
330 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
331 tb->fast_ipv6_only = ipv6_only_sock(sk);
332 tb->fast_sk_family = sk->sk_family;
333 #if IS_ENABLED(CONFIG_IPV6)
334 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
335 #endif
336 #if IS_ENABLED(CONFIG_NEWIP)
337 tb->fast_nip_rcv_saddr = sk->sk_nip_rcv_saddr;
338 #endif
339 } else {
340 tb->fastreuseport = 0;
341 }
342 } else {
343 if (!reuse)
344 tb->fastreuse = 0;
345 if (sk->sk_reuseport) {
346 /* We didn't match or we don't have fastreuseport set on
347 * the tb, but we have sk_reuseport set on this socket
348 * and we know that there are no bind conflicts with
349 * this socket in this tb, so reset our tb's reuseport
350 * settings so that any subsequent sockets that match
351 * our current socket will be put on the fast path.
352 *
353 * If we reset we need to set FASTREUSEPORT_STRICT so we
354 * do extra checking for all subsequent sk_reuseport
355 * socks.
356 */
357 if (!sk_reuseport_match(tb, sk)) {
358 tb->fastreuseport = FASTREUSEPORT_STRICT;
359 tb->fastuid = uid;
360 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
361 tb->fast_ipv6_only = ipv6_only_sock(sk);
362 tb->fast_sk_family = sk->sk_family;
363 #if IS_ENABLED(CONFIG_IPV6)
364 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
365 #endif
366 #if IS_ENABLED(CONFIG_NEWIP)
367 tb->fast_nip_rcv_saddr = sk->sk_nip_rcv_saddr;
368 #endif
369 }
370 } else {
371 tb->fastreuseport = 0;
372 }
373 }
374 }
375
376 /* Obtain a reference to a local port for the given sock,
377 * if snum is zero it means select any available local port.
378 * We try to allocate an odd port (and leave even ports for connect())
379 */
inet_csk_get_port(struct sock * sk,unsigned short snum)380 int inet_csk_get_port(struct sock *sk, unsigned short snum)
381 {
382 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
383 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
384 int ret = 1, port = snum;
385 struct inet_bind_hashbucket *head;
386 struct net *net = sock_net(sk);
387 struct inet_bind_bucket *tb = NULL;
388 int l3mdev;
389
390 l3mdev = inet_sk_bound_l3mdev(sk);
391
392 if (!port) {
393 head = inet_csk_find_open_port(sk, &tb, &port);
394 if (!head)
395 return ret;
396 if (!tb)
397 goto tb_not_found;
398 goto success;
399 }
400 head = &hinfo->bhash[inet_bhashfn(net, port,
401 hinfo->bhash_size)];
402 spin_lock_bh(&head->lock);
403 inet_bind_bucket_for_each(tb, &head->chain)
404 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
405 tb->port == port)
406 goto tb_found;
407 tb_not_found:
408 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
409 net, head, port, l3mdev);
410 if (!tb)
411 goto fail_unlock;
412 tb_found:
413 if (!hlist_empty(&tb->owners)) {
414 if (sk->sk_reuse == SK_FORCE_REUSE)
415 goto success;
416
417 if ((tb->fastreuse > 0 && reuse) ||
418 sk_reuseport_match(tb, sk))
419 goto success;
420 if (inet_csk_bind_conflict(sk, tb, true, true))
421 goto fail_unlock;
422 }
423 success:
424 inet_csk_update_fastreuse(tb, sk);
425
426 if (!inet_csk(sk)->icsk_bind_hash)
427 inet_bind_hash(sk, tb, port);
428 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
429 ret = 0;
430
431 fail_unlock:
432 spin_unlock_bh(&head->lock);
433 return ret;
434 }
435 EXPORT_SYMBOL_GPL(inet_csk_get_port);
436
437 /*
438 * Wait for an incoming connection, avoid race conditions. This must be called
439 * with the socket locked.
440 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)441 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
442 {
443 struct inet_connection_sock *icsk = inet_csk(sk);
444 DEFINE_WAIT(wait);
445 int err;
446
447 /*
448 * True wake-one mechanism for incoming connections: only
449 * one process gets woken up, not the 'whole herd'.
450 * Since we do not 'race & poll' for established sockets
451 * anymore, the common case will execute the loop only once.
452 *
453 * Subtle issue: "add_wait_queue_exclusive()" will be added
454 * after any current non-exclusive waiters, and we know that
455 * it will always _stay_ after any new non-exclusive waiters
456 * because all non-exclusive waiters are added at the
457 * beginning of the wait-queue. As such, it's ok to "drop"
458 * our exclusiveness temporarily when we get woken up without
459 * having to remove and re-insert us on the wait queue.
460 */
461 for (;;) {
462 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
463 TASK_INTERRUPTIBLE);
464 release_sock(sk);
465 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
466 timeo = schedule_timeout(timeo);
467 sched_annotate_sleep();
468 lock_sock(sk);
469 err = 0;
470 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
471 break;
472 err = -EINVAL;
473 if (sk->sk_state != TCP_LISTEN)
474 break;
475 err = sock_intr_errno(timeo);
476 if (signal_pending(current))
477 break;
478 err = -EAGAIN;
479 if (!timeo)
480 break;
481 }
482 finish_wait(sk_sleep(sk), &wait);
483 return err;
484 }
485
486 /*
487 * This will accept the next outstanding connection.
488 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)489 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
490 {
491 struct inet_connection_sock *icsk = inet_csk(sk);
492 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
493 struct request_sock *req;
494 struct sock *newsk;
495 int error;
496
497 lock_sock(sk);
498
499 /* We need to make sure that this socket is listening,
500 * and that it has something pending.
501 */
502 error = -EINVAL;
503 if (sk->sk_state != TCP_LISTEN)
504 goto out_err;
505
506 /* Find already established connection */
507 if (reqsk_queue_empty(queue)) {
508 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
509
510 /* If this is a non blocking socket don't sleep */
511 error = -EAGAIN;
512 if (!timeo)
513 goto out_err;
514
515 error = inet_csk_wait_for_connect(sk, timeo);
516 if (error)
517 goto out_err;
518 }
519 req = reqsk_queue_remove(queue, sk);
520 newsk = req->sk;
521
522 if (sk->sk_protocol == IPPROTO_TCP &&
523 tcp_rsk(req)->tfo_listener) {
524 spin_lock_bh(&queue->fastopenq.lock);
525 if (tcp_rsk(req)->tfo_listener) {
526 /* We are still waiting for the final ACK from 3WHS
527 * so can't free req now. Instead, we set req->sk to
528 * NULL to signify that the child socket is taken
529 * so reqsk_fastopen_remove() will free the req
530 * when 3WHS finishes (or is aborted).
531 */
532 req->sk = NULL;
533 req = NULL;
534 }
535 spin_unlock_bh(&queue->fastopenq.lock);
536 }
537
538 out:
539 release_sock(sk);
540 if (newsk && mem_cgroup_sockets_enabled) {
541 int amt;
542
543 /* atomically get the memory usage, set and charge the
544 * newsk->sk_memcg.
545 */
546 lock_sock(newsk);
547
548 /* The socket has not been accepted yet, no need to look at
549 * newsk->sk_wmem_queued.
550 */
551 amt = sk_mem_pages(newsk->sk_forward_alloc +
552 atomic_read(&newsk->sk_rmem_alloc));
553 mem_cgroup_sk_alloc(newsk);
554 if (newsk->sk_memcg && amt)
555 mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
556
557 release_sock(newsk);
558 }
559 if (req)
560 reqsk_put(req);
561 return newsk;
562 out_err:
563 newsk = NULL;
564 req = NULL;
565 *err = error;
566 goto out;
567 }
568 EXPORT_SYMBOL(inet_csk_accept);
569
570 /*
571 * Using different timers for retransmit, delayed acks and probes
572 * We may wish use just one timer maintaining a list of expire jiffies
573 * to optimize.
574 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))575 void inet_csk_init_xmit_timers(struct sock *sk,
576 void (*retransmit_handler)(struct timer_list *t),
577 void (*delack_handler)(struct timer_list *t),
578 void (*keepalive_handler)(struct timer_list *t))
579 {
580 struct inet_connection_sock *icsk = inet_csk(sk);
581
582 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
583 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
584 timer_setup(&sk->sk_timer, keepalive_handler, 0);
585 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
586 }
587 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
588
inet_csk_clear_xmit_timers(struct sock * sk)589 void inet_csk_clear_xmit_timers(struct sock *sk)
590 {
591 struct inet_connection_sock *icsk = inet_csk(sk);
592
593 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
594
595 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
596 sk_stop_timer(sk, &icsk->icsk_delack_timer);
597 sk_stop_timer(sk, &sk->sk_timer);
598 }
599 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
600
inet_csk_delete_keepalive_timer(struct sock * sk)601 void inet_csk_delete_keepalive_timer(struct sock *sk)
602 {
603 sk_stop_timer(sk, &sk->sk_timer);
604 }
605 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
606
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)607 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
608 {
609 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
610 }
611 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
612
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)613 struct dst_entry *inet_csk_route_req(const struct sock *sk,
614 struct flowi4 *fl4,
615 const struct request_sock *req)
616 {
617 const struct inet_request_sock *ireq = inet_rsk(req);
618 struct net *net = read_pnet(&ireq->ireq_net);
619 struct ip_options_rcu *opt;
620 struct rtable *rt;
621
622 rcu_read_lock();
623 opt = rcu_dereference(ireq->ireq_opt);
624
625 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
626 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
627 sk->sk_protocol, inet_sk_flowi_flags(sk),
628 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
629 ireq->ir_loc_addr, ireq->ir_rmt_port,
630 htons(ireq->ir_num), sk->sk_uid);
631 security_req_classify_flow(req, flowi4_to_flowi(fl4));
632 rt = ip_route_output_flow(net, fl4, sk);
633 if (IS_ERR(rt))
634 goto no_route;
635 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
636 goto route_err;
637 rcu_read_unlock();
638 return &rt->dst;
639
640 route_err:
641 ip_rt_put(rt);
642 no_route:
643 rcu_read_unlock();
644 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
645 return NULL;
646 }
647 EXPORT_SYMBOL_GPL(inet_csk_route_req);
648
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)649 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
650 struct sock *newsk,
651 const struct request_sock *req)
652 {
653 const struct inet_request_sock *ireq = inet_rsk(req);
654 struct net *net = read_pnet(&ireq->ireq_net);
655 struct inet_sock *newinet = inet_sk(newsk);
656 struct ip_options_rcu *opt;
657 struct flowi4 *fl4;
658 struct rtable *rt;
659
660 opt = rcu_dereference(ireq->ireq_opt);
661 fl4 = &newinet->cork.fl.u.ip4;
662
663 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
664 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
665 sk->sk_protocol, inet_sk_flowi_flags(sk),
666 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
667 ireq->ir_loc_addr, ireq->ir_rmt_port,
668 htons(ireq->ir_num), sk->sk_uid);
669 security_req_classify_flow(req, flowi4_to_flowi(fl4));
670 rt = ip_route_output_flow(net, fl4, sk);
671 if (IS_ERR(rt))
672 goto no_route;
673 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
674 goto route_err;
675 return &rt->dst;
676
677 route_err:
678 ip_rt_put(rt);
679 no_route:
680 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
681 return NULL;
682 }
683 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
684
685 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)686 static void syn_ack_recalc(struct request_sock *req,
687 const int max_syn_ack_retries,
688 const u8 rskq_defer_accept,
689 int *expire, int *resend)
690 {
691 if (!rskq_defer_accept) {
692 *expire = req->num_timeout >= max_syn_ack_retries;
693 *resend = 1;
694 return;
695 }
696 *expire = req->num_timeout >= max_syn_ack_retries &&
697 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
698 /* Do not resend while waiting for data after ACK,
699 * start to resend on end of deferring period to give
700 * last chance for data or ACK to create established socket.
701 */
702 *resend = !inet_rsk(req)->acked ||
703 req->num_timeout >= rskq_defer_accept - 1;
704 }
705
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)706 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
707 {
708 int err = req->rsk_ops->rtx_syn_ack(parent, req);
709
710 if (!err)
711 req->num_retrans++;
712 return err;
713 }
714 EXPORT_SYMBOL(inet_rtx_syn_ack);
715
716 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)717 static bool reqsk_queue_unlink(struct request_sock *req)
718 {
719 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
720 bool found = false;
721
722 if (sk_hashed(req_to_sk(req))) {
723 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
724
725 spin_lock(lock);
726 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
727 spin_unlock(lock);
728 }
729 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
730 reqsk_put(req);
731 return found;
732 }
733
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)734 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
735 {
736 bool unlinked = reqsk_queue_unlink(req);
737
738 if (unlinked) {
739 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
740 reqsk_put(req);
741 }
742 return unlinked;
743 }
744 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
745
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)746 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
747 {
748 inet_csk_reqsk_queue_drop(sk, req);
749 reqsk_put(req);
750 }
751 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
752
reqsk_timer_handler(struct timer_list * t)753 static void reqsk_timer_handler(struct timer_list *t)
754 {
755 struct request_sock *req = from_timer(req, t, rsk_timer);
756 struct sock *sk_listener = req->rsk_listener;
757 struct net *net = sock_net(sk_listener);
758 struct inet_connection_sock *icsk = inet_csk(sk_listener);
759 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
760 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
761
762 if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
763 goto drop;
764
765 max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
766 /* Normally all the openreqs are young and become mature
767 * (i.e. converted to established socket) for first timeout.
768 * If synack was not acknowledged for 1 second, it means
769 * one of the following things: synack was lost, ack was lost,
770 * rtt is high or nobody planned to ack (i.e. synflood).
771 * When server is a bit loaded, queue is populated with old
772 * open requests, reducing effective size of queue.
773 * When server is well loaded, queue size reduces to zero
774 * after several minutes of work. It is not synflood,
775 * it is normal operation. The solution is pruning
776 * too old entries overriding normal timeout, when
777 * situation becomes dangerous.
778 *
779 * Essentially, we reserve half of room for young
780 * embrions; and abort old ones without pity, if old
781 * ones are about to clog our table.
782 */
783 qlen = reqsk_queue_len(queue);
784 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
785 int young = reqsk_queue_len_young(queue) << 1;
786
787 while (max_syn_ack_retries > 2) {
788 if (qlen < young)
789 break;
790 max_syn_ack_retries--;
791 young <<= 1;
792 }
793 }
794 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
795 &expire, &resend);
796 req->rsk_ops->syn_ack_timeout(req);
797 if (!expire &&
798 (!resend ||
799 !inet_rtx_syn_ack(sk_listener, req) ||
800 inet_rsk(req)->acked)) {
801 unsigned long timeo;
802
803 if (req->num_timeout++ == 0)
804 atomic_dec(&queue->young);
805 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
806 mod_timer(&req->rsk_timer, jiffies + timeo);
807 return;
808 }
809 drop:
810 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
811 }
812
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)813 static void reqsk_queue_hash_req(struct request_sock *req,
814 unsigned long timeout)
815 {
816 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
817 mod_timer(&req->rsk_timer, jiffies + timeout);
818
819 inet_ehash_insert(req_to_sk(req), NULL, NULL);
820 /* before letting lookups find us, make sure all req fields
821 * are committed to memory and refcnt initialized.
822 */
823 smp_wmb();
824 refcount_set(&req->rsk_refcnt, 2 + 1);
825 }
826
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)827 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
828 unsigned long timeout)
829 {
830 reqsk_queue_hash_req(req, timeout);
831 inet_csk_reqsk_queue_added(sk);
832 }
833 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
834
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)835 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
836 const gfp_t priority)
837 {
838 struct inet_connection_sock *icsk = inet_csk(newsk);
839
840 if (!icsk->icsk_ulp_ops)
841 return;
842
843 icsk->icsk_ulp_ops->clone(req, newsk, priority);
844 }
845
846 /**
847 * inet_csk_clone_lock - clone an inet socket, and lock its clone
848 * @sk: the socket to clone
849 * @req: request_sock
850 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
851 *
852 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
853 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)854 struct sock *inet_csk_clone_lock(const struct sock *sk,
855 const struct request_sock *req,
856 const gfp_t priority)
857 {
858 struct sock *newsk = sk_clone_lock(sk, priority);
859
860 if (newsk) {
861 struct inet_connection_sock *newicsk = inet_csk(newsk);
862
863 inet_sk_set_state(newsk, TCP_SYN_RECV);
864 newicsk->icsk_bind_hash = NULL;
865
866 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
867 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
868 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
869
870 /* listeners have SOCK_RCU_FREE, not the children */
871 sock_reset_flag(newsk, SOCK_RCU_FREE);
872
873 inet_sk(newsk)->mc_list = NULL;
874
875 newsk->sk_mark = inet_rsk(req)->ir_mark;
876 atomic64_set(&newsk->sk_cookie,
877 atomic64_read(&inet_rsk(req)->ir_cookie));
878
879 newicsk->icsk_retransmits = 0;
880 newicsk->icsk_backoff = 0;
881 newicsk->icsk_probes_out = 0;
882 newicsk->icsk_probes_tstamp = 0;
883
884 /* Deinitialize accept_queue to trap illegal accesses. */
885 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
886
887 inet_clone_ulp(req, newsk, priority);
888
889 security_inet_csk_clone(newsk, req);
890 }
891 return newsk;
892 }
893 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
894
895 /*
896 * At this point, there should be no process reference to this
897 * socket, and thus no user references at all. Therefore we
898 * can assume the socket waitqueue is inactive and nobody will
899 * try to jump onto it.
900 */
inet_csk_destroy_sock(struct sock * sk)901 void inet_csk_destroy_sock(struct sock *sk)
902 {
903 WARN_ON(sk->sk_state != TCP_CLOSE);
904 WARN_ON(!sock_flag(sk, SOCK_DEAD));
905
906 /* It cannot be in hash table! */
907 WARN_ON(!sk_unhashed(sk));
908
909 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
910 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
911
912 sk->sk_prot->destroy(sk);
913
914 sk_stream_kill_queues(sk);
915
916 xfrm_sk_free_policy(sk);
917
918 sk_refcnt_debug_release(sk);
919
920 this_cpu_dec(*sk->sk_prot->orphan_count);
921
922 sock_put(sk);
923 }
924 EXPORT_SYMBOL(inet_csk_destroy_sock);
925
926 /* This function allows to force a closure of a socket after the call to
927 * tcp/dccp_create_openreq_child().
928 */
inet_csk_prepare_forced_close(struct sock * sk)929 void inet_csk_prepare_forced_close(struct sock *sk)
930 __releases(&sk->sk_lock.slock)
931 {
932 /* sk_clone_lock locked the socket and set refcnt to 2 */
933 bh_unlock_sock(sk);
934 sock_put(sk);
935 inet_csk_prepare_for_destroy_sock(sk);
936 inet_sk(sk)->inet_num = 0;
937 }
938 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
939
inet_ulp_can_listen(const struct sock * sk)940 static int inet_ulp_can_listen(const struct sock *sk)
941 {
942 const struct inet_connection_sock *icsk = inet_csk(sk);
943
944 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
945 return -EINVAL;
946
947 return 0;
948 }
949
inet_csk_listen_start(struct sock * sk,int backlog)950 int inet_csk_listen_start(struct sock *sk, int backlog)
951 {
952 struct inet_connection_sock *icsk = inet_csk(sk);
953 struct inet_sock *inet = inet_sk(sk);
954 int err;
955
956 err = inet_ulp_can_listen(sk);
957 if (unlikely(err))
958 return err;
959
960 reqsk_queue_alloc(&icsk->icsk_accept_queue);
961
962 sk->sk_ack_backlog = 0;
963 inet_csk_delack_init(sk);
964
965 /* There is race window here: we announce ourselves listening,
966 * but this transition is still not validated by get_port().
967 * It is OK, because this socket enters to hash table only
968 * after validation is complete.
969 */
970 err = -EADDRINUSE;
971 inet_sk_state_store(sk, TCP_LISTEN);
972 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
973 inet->inet_sport = htons(inet->inet_num);
974
975 sk_dst_reset(sk);
976 err = sk->sk_prot->hash(sk);
977
978 if (likely(!err))
979 return 0;
980 }
981
982 inet_sk_set_state(sk, TCP_CLOSE);
983 return err;
984 }
985 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
986
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)987 static void inet_child_forget(struct sock *sk, struct request_sock *req,
988 struct sock *child)
989 {
990 sk->sk_prot->disconnect(child, O_NONBLOCK);
991
992 sock_orphan(child);
993
994 this_cpu_inc(*sk->sk_prot->orphan_count);
995
996 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
997 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
998 BUG_ON(sk != req->rsk_listener);
999
1000 /* Paranoid, to prevent race condition if
1001 * an inbound pkt destined for child is
1002 * blocked by sock lock in tcp_v4_rcv().
1003 * Also to satisfy an assertion in
1004 * tcp_v4_destroy_sock().
1005 */
1006 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1007 }
1008 inet_csk_destroy_sock(child);
1009 }
1010
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1011 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1012 struct request_sock *req,
1013 struct sock *child)
1014 {
1015 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1016
1017 spin_lock(&queue->rskq_lock);
1018 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1019 inet_child_forget(sk, req, child);
1020 child = NULL;
1021 } else {
1022 req->sk = child;
1023 req->dl_next = NULL;
1024 if (queue->rskq_accept_head == NULL)
1025 WRITE_ONCE(queue->rskq_accept_head, req);
1026 else
1027 queue->rskq_accept_tail->dl_next = req;
1028 queue->rskq_accept_tail = req;
1029 sk_acceptq_added(sk);
1030 }
1031 spin_unlock(&queue->rskq_lock);
1032 return child;
1033 }
1034 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1035
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1036 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1037 struct request_sock *req, bool own_req)
1038 {
1039 if (own_req) {
1040 inet_csk_reqsk_queue_drop(sk, req);
1041 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1042 if (inet_csk_reqsk_queue_add(sk, req, child))
1043 return child;
1044 }
1045 /* Too bad, another child took ownership of the request, undo. */
1046 bh_unlock_sock(child);
1047 sock_put(child);
1048 return NULL;
1049 }
1050 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1051
1052 /*
1053 * This routine closes sockets which have been at least partially
1054 * opened, but not yet accepted.
1055 */
inet_csk_listen_stop(struct sock * sk)1056 void inet_csk_listen_stop(struct sock *sk)
1057 {
1058 struct inet_connection_sock *icsk = inet_csk(sk);
1059 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1060 struct request_sock *next, *req;
1061
1062 /* Following specs, it would be better either to send FIN
1063 * (and enter FIN-WAIT-1, it is normal close)
1064 * or to send active reset (abort).
1065 * Certainly, it is pretty dangerous while synflood, but it is
1066 * bad justification for our negligence 8)
1067 * To be honest, we are not able to make either
1068 * of the variants now. --ANK
1069 */
1070 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1071 struct sock *child = req->sk;
1072
1073 local_bh_disable();
1074 bh_lock_sock(child);
1075 WARN_ON(sock_owned_by_user(child));
1076 sock_hold(child);
1077
1078 inet_child_forget(sk, req, child);
1079 reqsk_put(req);
1080 bh_unlock_sock(child);
1081 local_bh_enable();
1082 sock_put(child);
1083
1084 cond_resched();
1085 }
1086 if (queue->fastopenq.rskq_rst_head) {
1087 /* Free all the reqs queued in rskq_rst_head. */
1088 spin_lock_bh(&queue->fastopenq.lock);
1089 req = queue->fastopenq.rskq_rst_head;
1090 queue->fastopenq.rskq_rst_head = NULL;
1091 spin_unlock_bh(&queue->fastopenq.lock);
1092 while (req != NULL) {
1093 next = req->dl_next;
1094 reqsk_put(req);
1095 req = next;
1096 }
1097 }
1098 WARN_ON_ONCE(sk->sk_ack_backlog);
1099 }
1100 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1101
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1102 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1103 {
1104 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1105 const struct inet_sock *inet = inet_sk(sk);
1106
1107 sin->sin_family = AF_INET;
1108 sin->sin_addr.s_addr = inet->inet_daddr;
1109 sin->sin_port = inet->inet_dport;
1110 }
1111 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1112
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1113 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1114 {
1115 const struct inet_sock *inet = inet_sk(sk);
1116 const struct ip_options_rcu *inet_opt;
1117 __be32 daddr = inet->inet_daddr;
1118 struct flowi4 *fl4;
1119 struct rtable *rt;
1120
1121 rcu_read_lock();
1122 inet_opt = rcu_dereference(inet->inet_opt);
1123 if (inet_opt && inet_opt->opt.srr)
1124 daddr = inet_opt->opt.faddr;
1125 fl4 = &fl->u.ip4;
1126 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1127 inet->inet_saddr, inet->inet_dport,
1128 inet->inet_sport, sk->sk_protocol,
1129 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1130 if (IS_ERR(rt))
1131 rt = NULL;
1132 if (rt)
1133 sk_setup_caps(sk, &rt->dst);
1134 rcu_read_unlock();
1135
1136 return &rt->dst;
1137 }
1138
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1139 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1140 {
1141 struct dst_entry *dst = __sk_dst_check(sk, 0);
1142 struct inet_sock *inet = inet_sk(sk);
1143
1144 if (!dst) {
1145 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1146 if (!dst)
1147 goto out;
1148 }
1149 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1150
1151 dst = __sk_dst_check(sk, 0);
1152 if (!dst)
1153 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1154 out:
1155 return dst;
1156 }
1157 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1158