• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57 
58 unsigned char tod_clock_base[16] __aligned(8) = {
59 	/* Force to data section. */
60 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
62 };
63 EXPORT_SYMBOL_GPL(tod_clock_base);
64 
65 u64 clock_comparator_max = -1ULL;
66 EXPORT_SYMBOL_GPL(clock_comparator_max);
67 
68 static DEFINE_PER_CPU(struct clock_event_device, comparators);
69 
70 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
71 EXPORT_SYMBOL(s390_epoch_delta_notifier);
72 
73 unsigned char ptff_function_mask[16];
74 
75 static unsigned long long lpar_offset;
76 static unsigned long long initial_leap_seconds;
77 static unsigned long long tod_steering_end;
78 static long long tod_steering_delta;
79 
80 /*
81  * Get time offsets with PTFF
82  */
time_early_init(void)83 void __init time_early_init(void)
84 {
85 	struct ptff_qto qto;
86 	struct ptff_qui qui;
87 
88 	/* Initialize TOD steering parameters */
89 	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
90 	vdso_data->arch_data.tod_steering_end = tod_steering_end;
91 
92 	if (!test_facility(28))
93 		return;
94 
95 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
96 
97 	/* get LPAR offset */
98 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
99 		lpar_offset = qto.tod_epoch_difference;
100 
101 	/* get initial leap seconds */
102 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
103 		initial_leap_seconds = (unsigned long long)
104 			((long) qui.old_leap * 4096000000L);
105 }
106 
107 /*
108  * Scheduler clock - returns current time in nanosec units.
109  */
sched_clock(void)110 unsigned long long notrace sched_clock(void)
111 {
112 	return tod_to_ns(get_tod_clock_monotonic());
113 }
114 NOKPROBE_SYMBOL(sched_clock);
115 
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)116 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
117 {
118 	unsigned long long high, low, rem, sec, nsec;
119 
120 	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
121 	high = (*(unsigned long long *) clk) >> 4;
122 	low = (*(unsigned long long *)&clk[7]) << 4;
123 	/* Calculate seconds and nano-seconds */
124 	sec = high;
125 	rem = do_div(sec, 1000000);
126 	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
127 
128 	xt->tv_sec = sec;
129 	xt->tv_nsec = nsec;
130 }
131 
clock_comparator_work(void)132 void clock_comparator_work(void)
133 {
134 	struct clock_event_device *cd;
135 
136 	S390_lowcore.clock_comparator = clock_comparator_max;
137 	cd = this_cpu_ptr(&comparators);
138 	cd->event_handler(cd);
139 }
140 
s390_next_event(unsigned long delta,struct clock_event_device * evt)141 static int s390_next_event(unsigned long delta,
142 			   struct clock_event_device *evt)
143 {
144 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
145 	set_clock_comparator(S390_lowcore.clock_comparator);
146 	return 0;
147 }
148 
149 /*
150  * Set up lowcore and control register of the current cpu to
151  * enable TOD clock and clock comparator interrupts.
152  */
init_cpu_timer(void)153 void init_cpu_timer(void)
154 {
155 	struct clock_event_device *cd;
156 	int cpu;
157 
158 	S390_lowcore.clock_comparator = clock_comparator_max;
159 	set_clock_comparator(S390_lowcore.clock_comparator);
160 
161 	cpu = smp_processor_id();
162 	cd = &per_cpu(comparators, cpu);
163 	cd->name		= "comparator";
164 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
165 	cd->mult		= 16777;
166 	cd->shift		= 12;
167 	cd->min_delta_ns	= 1;
168 	cd->min_delta_ticks	= 1;
169 	cd->max_delta_ns	= LONG_MAX;
170 	cd->max_delta_ticks	= ULONG_MAX;
171 	cd->rating		= 400;
172 	cd->cpumask		= cpumask_of(cpu);
173 	cd->set_next_event	= s390_next_event;
174 
175 	clockevents_register_device(cd);
176 
177 	/* Enable clock comparator timer interrupt. */
178 	__ctl_set_bit(0,11);
179 
180 	/* Always allow the timing alert external interrupt. */
181 	__ctl_set_bit(0, 4);
182 }
183 
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)184 static void clock_comparator_interrupt(struct ext_code ext_code,
185 				       unsigned int param32,
186 				       unsigned long param64)
187 {
188 	inc_irq_stat(IRQEXT_CLK);
189 	if (S390_lowcore.clock_comparator == clock_comparator_max)
190 		set_clock_comparator(S390_lowcore.clock_comparator);
191 }
192 
193 static void stp_timing_alert(struct stp_irq_parm *);
194 
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)195 static void timing_alert_interrupt(struct ext_code ext_code,
196 				   unsigned int param32, unsigned long param64)
197 {
198 	inc_irq_stat(IRQEXT_TLA);
199 	if (param32 & 0x00038000)
200 		stp_timing_alert((struct stp_irq_parm *) &param32);
201 }
202 
203 static void stp_reset(void);
204 
read_persistent_clock64(struct timespec64 * ts)205 void read_persistent_clock64(struct timespec64 *ts)
206 {
207 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
208 	__u64 delta;
209 
210 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
211 	get_tod_clock_ext(clk);
212 	*(__u64 *) &clk[1] -= delta;
213 	if (*(__u64 *) &clk[1] > delta)
214 		clk[0]--;
215 	ext_to_timespec64(clk, ts);
216 }
217 
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)218 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
219 						 struct timespec64 *boot_offset)
220 {
221 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
222 	struct timespec64 boot_time;
223 	__u64 delta;
224 
225 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
226 	memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
227 	*(__u64 *)&clk[1] -= delta;
228 	if (*(__u64 *)&clk[1] > delta)
229 		clk[0]--;
230 	ext_to_timespec64(clk, &boot_time);
231 
232 	read_persistent_clock64(wall_time);
233 	*boot_offset = timespec64_sub(*wall_time, boot_time);
234 }
235 
read_tod_clock(struct clocksource * cs)236 static u64 read_tod_clock(struct clocksource *cs)
237 {
238 	unsigned long long now, adj;
239 
240 	preempt_disable(); /* protect from changes to steering parameters */
241 	now = get_tod_clock();
242 	adj = tod_steering_end - now;
243 	if (unlikely((s64) adj > 0))
244 		/*
245 		 * manually steer by 1 cycle every 2^16 cycles. This
246 		 * corresponds to shifting the tod delta by 15. 1s is
247 		 * therefore steered in ~9h. The adjust will decrease
248 		 * over time, until it finally reaches 0.
249 		 */
250 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
251 	preempt_enable();
252 	return now;
253 }
254 
255 static struct clocksource clocksource_tod = {
256 	.name		= "tod",
257 	.rating		= 400,
258 	.read		= read_tod_clock,
259 	.mask		= CLOCKSOURCE_MASK(64),
260 	.mult		= 1000,
261 	.shift		= 12,
262 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
263 	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
264 };
265 
clocksource_default_clock(void)266 struct clocksource * __init clocksource_default_clock(void)
267 {
268 	return &clocksource_tod;
269 }
270 
271 /*
272  * Initialize the TOD clock and the CPU timer of
273  * the boot cpu.
274  */
time_init(void)275 void __init time_init(void)
276 {
277 	/* Reset time synchronization interfaces. */
278 	stp_reset();
279 
280 	/* request the clock comparator external interrupt */
281 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
282 		panic("Couldn't request external interrupt 0x1004");
283 
284 	/* request the timing alert external interrupt */
285 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
286 		panic("Couldn't request external interrupt 0x1406");
287 
288 	if (__clocksource_register(&clocksource_tod) != 0)
289 		panic("Could not register TOD clock source");
290 
291 	/* Enable TOD clock interrupts on the boot cpu. */
292 	init_cpu_timer();
293 
294 	/* Enable cpu timer interrupts on the boot cpu. */
295 	vtime_init();
296 }
297 
298 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
299 static DEFINE_MUTEX(stp_mutex);
300 static unsigned long clock_sync_flags;
301 
302 #define CLOCK_SYNC_HAS_STP		0
303 #define CLOCK_SYNC_STP			1
304 #define CLOCK_SYNC_STPINFO_VALID	2
305 
306 /*
307  * The get_clock function for the physical clock. It will get the current
308  * TOD clock, subtract the LPAR offset and write the result to *clock.
309  * The function returns 0 if the clock is in sync with the external time
310  * source. If the clock mode is local it will return -EOPNOTSUPP and
311  * -EAGAIN if the clock is not in sync with the external reference.
312  */
get_phys_clock(unsigned long * clock)313 int get_phys_clock(unsigned long *clock)
314 {
315 	atomic_t *sw_ptr;
316 	unsigned int sw0, sw1;
317 
318 	sw_ptr = &get_cpu_var(clock_sync_word);
319 	sw0 = atomic_read(sw_ptr);
320 	*clock = get_tod_clock() - lpar_offset;
321 	sw1 = atomic_read(sw_ptr);
322 	put_cpu_var(clock_sync_word);
323 	if (sw0 == sw1 && (sw0 & 0x80000000U))
324 		/* Success: time is in sync. */
325 		return 0;
326 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
327 		return -EOPNOTSUPP;
328 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
329 		return -EACCES;
330 	return -EAGAIN;
331 }
332 EXPORT_SYMBOL(get_phys_clock);
333 
334 /*
335  * Make get_phys_clock() return -EAGAIN.
336  */
disable_sync_clock(void * dummy)337 static void disable_sync_clock(void *dummy)
338 {
339 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
340 	/*
341 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
342 	 * fail until the sync bit is turned back on. In addition
343 	 * increase the "sequence" counter to avoid the race of an
344 	 * stp event and the complete recovery against get_phys_clock.
345 	 */
346 	atomic_andnot(0x80000000, sw_ptr);
347 	atomic_inc(sw_ptr);
348 }
349 
350 /*
351  * Make get_phys_clock() return 0 again.
352  * Needs to be called from a context disabled for preemption.
353  */
enable_sync_clock(void)354 static void enable_sync_clock(void)
355 {
356 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
357 	atomic_or(0x80000000, sw_ptr);
358 }
359 
360 /*
361  * Function to check if the clock is in sync.
362  */
check_sync_clock(void)363 static inline int check_sync_clock(void)
364 {
365 	atomic_t *sw_ptr;
366 	int rc;
367 
368 	sw_ptr = &get_cpu_var(clock_sync_word);
369 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
370 	put_cpu_var(clock_sync_word);
371 	return rc;
372 }
373 
374 /*
375  * Apply clock delta to the global data structures.
376  * This is called once on the CPU that performed the clock sync.
377  */
clock_sync_global(unsigned long long delta)378 static void clock_sync_global(unsigned long long delta)
379 {
380 	unsigned long now, adj;
381 	struct ptff_qto qto;
382 
383 	/* Fixup the monotonic sched clock. */
384 	*(unsigned long long *) &tod_clock_base[1] += delta;
385 	if (*(unsigned long long *) &tod_clock_base[1] < delta)
386 		/* Epoch overflow */
387 		tod_clock_base[0]++;
388 	/* Adjust TOD steering parameters. */
389 	now = get_tod_clock();
390 	adj = tod_steering_end - now;
391 	if (unlikely((s64) adj >= 0))
392 		/* Calculate how much of the old adjustment is left. */
393 		tod_steering_delta = (tod_steering_delta < 0) ?
394 			-(adj >> 15) : (adj >> 15);
395 	tod_steering_delta += delta;
396 	if ((abs(tod_steering_delta) >> 48) != 0)
397 		panic("TOD clock sync offset %lli is too large to drift\n",
398 		      tod_steering_delta);
399 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
400 	vdso_data->arch_data.tod_steering_end = tod_steering_end;
401 	vdso_data->arch_data.tod_steering_delta = tod_steering_delta;
402 
403 	/* Update LPAR offset. */
404 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
405 		lpar_offset = qto.tod_epoch_difference;
406 	/* Call the TOD clock change notifier. */
407 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
408 }
409 
410 /*
411  * Apply clock delta to the per-CPU data structures of this CPU.
412  * This is called for each online CPU after the call to clock_sync_global.
413  */
clock_sync_local(unsigned long long delta)414 static void clock_sync_local(unsigned long long delta)
415 {
416 	/* Add the delta to the clock comparator. */
417 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
418 		S390_lowcore.clock_comparator += delta;
419 		set_clock_comparator(S390_lowcore.clock_comparator);
420 	}
421 	/* Adjust the last_update_clock time-stamp. */
422 	S390_lowcore.last_update_clock += delta;
423 }
424 
425 /* Single threaded workqueue used for stp sync events */
426 static struct workqueue_struct *time_sync_wq;
427 
time_init_wq(void)428 static void __init time_init_wq(void)
429 {
430 	if (time_sync_wq)
431 		return;
432 	time_sync_wq = create_singlethread_workqueue("timesync");
433 }
434 
435 struct clock_sync_data {
436 	atomic_t cpus;
437 	int in_sync;
438 	unsigned long long clock_delta;
439 };
440 
441 /*
442  * Server Time Protocol (STP) code.
443  */
444 static bool stp_online;
445 static struct stp_sstpi stp_info;
446 static void *stp_page;
447 
448 static void stp_work_fn(struct work_struct *work);
449 static DECLARE_WORK(stp_work, stp_work_fn);
450 static struct timer_list stp_timer;
451 
early_parse_stp(char * p)452 static int __init early_parse_stp(char *p)
453 {
454 	return kstrtobool(p, &stp_online);
455 }
456 early_param("stp", early_parse_stp);
457 
458 /*
459  * Reset STP attachment.
460  */
stp_reset(void)461 static void __init stp_reset(void)
462 {
463 	int rc;
464 
465 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
466 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
467 	if (rc == 0)
468 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
469 	else if (stp_online) {
470 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
471 		free_page((unsigned long) stp_page);
472 		stp_page = NULL;
473 		stp_online = false;
474 	}
475 }
476 
stp_timeout(struct timer_list * unused)477 static void stp_timeout(struct timer_list *unused)
478 {
479 	queue_work(time_sync_wq, &stp_work);
480 }
481 
stp_init(void)482 static int __init stp_init(void)
483 {
484 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
485 		return 0;
486 	timer_setup(&stp_timer, stp_timeout, 0);
487 	time_init_wq();
488 	if (!stp_online)
489 		return 0;
490 	queue_work(time_sync_wq, &stp_work);
491 	return 0;
492 }
493 
494 arch_initcall(stp_init);
495 
496 /*
497  * STP timing alert. There are three causes:
498  * 1) timing status change
499  * 2) link availability change
500  * 3) time control parameter change
501  * In all three cases we are only interested in the clock source state.
502  * If a STP clock source is now available use it.
503  */
stp_timing_alert(struct stp_irq_parm * intparm)504 static void stp_timing_alert(struct stp_irq_parm *intparm)
505 {
506 	if (intparm->tsc || intparm->lac || intparm->tcpc)
507 		queue_work(time_sync_wq, &stp_work);
508 }
509 
510 /*
511  * STP sync check machine check. This is called when the timing state
512  * changes from the synchronized state to the unsynchronized state.
513  * After a STP sync check the clock is not in sync. The machine check
514  * is broadcasted to all cpus at the same time.
515  */
stp_sync_check(void)516 int stp_sync_check(void)
517 {
518 	disable_sync_clock(NULL);
519 	return 1;
520 }
521 
522 /*
523  * STP island condition machine check. This is called when an attached
524  * server  attempts to communicate over an STP link and the servers
525  * have matching CTN ids and have a valid stratum-1 configuration
526  * but the configurations do not match.
527  */
stp_island_check(void)528 int stp_island_check(void)
529 {
530 	disable_sync_clock(NULL);
531 	return 1;
532 }
533 
stp_queue_work(void)534 void stp_queue_work(void)
535 {
536 	queue_work(time_sync_wq, &stp_work);
537 }
538 
__store_stpinfo(void)539 static int __store_stpinfo(void)
540 {
541 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
542 
543 	if (rc)
544 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
545 	else
546 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547 	return rc;
548 }
549 
stpinfo_valid(void)550 static int stpinfo_valid(void)
551 {
552 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
553 }
554 
stp_sync_clock(void * data)555 static int stp_sync_clock(void *data)
556 {
557 	struct clock_sync_data *sync = data;
558 	unsigned long long clock_delta, flags;
559 	static int first;
560 	int rc;
561 
562 	enable_sync_clock();
563 	if (xchg(&first, 1) == 0) {
564 		/* Wait until all other cpus entered the sync function. */
565 		while (atomic_read(&sync->cpus) != 0)
566 			cpu_relax();
567 		rc = 0;
568 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
569 		    stp_info.todoff[2] || stp_info.todoff[3] ||
570 		    stp_info.tmd != 2) {
571 			flags = vdso_update_begin();
572 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
573 					&clock_delta);
574 			if (rc == 0) {
575 				sync->clock_delta = clock_delta;
576 				clock_sync_global(clock_delta);
577 				rc = __store_stpinfo();
578 				if (rc == 0 && stp_info.tmd != 2)
579 					rc = -EAGAIN;
580 			}
581 			vdso_update_end(flags);
582 		}
583 		sync->in_sync = rc ? -EAGAIN : 1;
584 		xchg(&first, 0);
585 	} else {
586 		/* Slave */
587 		atomic_dec(&sync->cpus);
588 		/* Wait for in_sync to be set. */
589 		while (READ_ONCE(sync->in_sync) == 0)
590 			__udelay(1);
591 	}
592 	if (sync->in_sync != 1)
593 		/* Didn't work. Clear per-cpu in sync bit again. */
594 		disable_sync_clock(NULL);
595 	/* Apply clock delta to per-CPU fields of this CPU. */
596 	clock_sync_local(sync->clock_delta);
597 
598 	return 0;
599 }
600 
stp_clear_leap(void)601 static int stp_clear_leap(void)
602 {
603 	struct __kernel_timex txc;
604 	int ret;
605 
606 	memset(&txc, 0, sizeof(txc));
607 
608 	ret = do_adjtimex(&txc);
609 	if (ret < 0)
610 		return ret;
611 
612 	txc.modes = ADJ_STATUS;
613 	txc.status &= ~(STA_INS|STA_DEL);
614 	return do_adjtimex(&txc);
615 }
616 
stp_check_leap(void)617 static void stp_check_leap(void)
618 {
619 	struct stp_stzi stzi;
620 	struct stp_lsoib *lsoib = &stzi.lsoib;
621 	struct __kernel_timex txc;
622 	int64_t timediff;
623 	int leapdiff, ret;
624 
625 	if (!stp_info.lu || !check_sync_clock()) {
626 		/*
627 		 * Either a scheduled leap second was removed by the operator,
628 		 * or STP is out of sync. In both cases, clear the leap second
629 		 * kernel flags.
630 		 */
631 		if (stp_clear_leap() < 0)
632 			pr_err("failed to clear leap second flags\n");
633 		return;
634 	}
635 
636 	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
637 		pr_err("stzi failed\n");
638 		return;
639 	}
640 
641 	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
642 	leapdiff = lsoib->nlso - lsoib->also;
643 
644 	if (leapdiff != 1 && leapdiff != -1) {
645 		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
646 		return;
647 	}
648 
649 	if (timediff < 0) {
650 		if (stp_clear_leap() < 0)
651 			pr_err("failed to clear leap second flags\n");
652 	} else if (timediff < 7200) {
653 		memset(&txc, 0, sizeof(txc));
654 		ret = do_adjtimex(&txc);
655 		if (ret < 0)
656 			return;
657 
658 		txc.modes = ADJ_STATUS;
659 		if (leapdiff > 0)
660 			txc.status |= STA_INS;
661 		else
662 			txc.status |= STA_DEL;
663 		ret = do_adjtimex(&txc);
664 		if (ret < 0)
665 			pr_err("failed to set leap second flags\n");
666 		/* arm Timer to clear leap second flags */
667 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
668 	} else {
669 		/* The day the leap second is scheduled for hasn't been reached. Retry
670 		 * in one hour.
671 		 */
672 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
673 	}
674 }
675 
676 /*
677  * STP work. Check for the STP state and take over the clock
678  * synchronization if the STP clock source is usable.
679  */
stp_work_fn(struct work_struct * work)680 static void stp_work_fn(struct work_struct *work)
681 {
682 	struct clock_sync_data stp_sync;
683 	int rc;
684 
685 	/* prevent multiple execution. */
686 	mutex_lock(&stp_mutex);
687 
688 	if (!stp_online) {
689 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
690 		del_timer_sync(&stp_timer);
691 		goto out_unlock;
692 	}
693 
694 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
695 	if (rc)
696 		goto out_unlock;
697 
698 	rc = __store_stpinfo();
699 	if (rc || stp_info.c == 0)
700 		goto out_unlock;
701 
702 	/* Skip synchronization if the clock is already in sync. */
703 	if (!check_sync_clock()) {
704 		memset(&stp_sync, 0, sizeof(stp_sync));
705 		cpus_read_lock();
706 		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
707 		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
708 		cpus_read_unlock();
709 	}
710 
711 	if (!check_sync_clock())
712 		/*
713 		 * There is a usable clock but the synchonization failed.
714 		 * Retry after a second.
715 		 */
716 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
717 	else if (stp_info.lu)
718 		stp_check_leap();
719 
720 out_unlock:
721 	mutex_unlock(&stp_mutex);
722 }
723 
724 /*
725  * STP subsys sysfs interface functions
726  */
727 static struct bus_type stp_subsys = {
728 	.name		= "stp",
729 	.dev_name	= "stp",
730 };
731 
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)732 static ssize_t ctn_id_show(struct device *dev,
733 				struct device_attribute *attr,
734 				char *buf)
735 {
736 	ssize_t ret = -ENODATA;
737 
738 	mutex_lock(&stp_mutex);
739 	if (stpinfo_valid())
740 		ret = sprintf(buf, "%016llx\n",
741 			      *(unsigned long long *) stp_info.ctnid);
742 	mutex_unlock(&stp_mutex);
743 	return ret;
744 }
745 
746 static DEVICE_ATTR_RO(ctn_id);
747 
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t ctn_type_show(struct device *dev,
749 				struct device_attribute *attr,
750 				char *buf)
751 {
752 	ssize_t ret = -ENODATA;
753 
754 	mutex_lock(&stp_mutex);
755 	if (stpinfo_valid())
756 		ret = sprintf(buf, "%i\n", stp_info.ctn);
757 	mutex_unlock(&stp_mutex);
758 	return ret;
759 }
760 
761 static DEVICE_ATTR_RO(ctn_type);
762 
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t dst_offset_show(struct device *dev,
764 				   struct device_attribute *attr,
765 				   char *buf)
766 {
767 	ssize_t ret = -ENODATA;
768 
769 	mutex_lock(&stp_mutex);
770 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
771 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
772 	mutex_unlock(&stp_mutex);
773 	return ret;
774 }
775 
776 static DEVICE_ATTR_RO(dst_offset);
777 
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t leap_seconds_show(struct device *dev,
779 					struct device_attribute *attr,
780 					char *buf)
781 {
782 	ssize_t ret = -ENODATA;
783 
784 	mutex_lock(&stp_mutex);
785 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
786 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
787 	mutex_unlock(&stp_mutex);
788 	return ret;
789 }
790 
791 static DEVICE_ATTR_RO(leap_seconds);
792 
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)793 static ssize_t leap_seconds_scheduled_show(struct device *dev,
794 						struct device_attribute *attr,
795 						char *buf)
796 {
797 	struct stp_stzi stzi;
798 	ssize_t ret;
799 
800 	mutex_lock(&stp_mutex);
801 	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
802 		mutex_unlock(&stp_mutex);
803 		return -ENODATA;
804 	}
805 
806 	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
807 	mutex_unlock(&stp_mutex);
808 	if (ret < 0)
809 		return ret;
810 
811 	if (!stzi.lsoib.p)
812 		return sprintf(buf, "0,0\n");
813 
814 	return sprintf(buf, "%llu,%d\n",
815 		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
816 		       stzi.lsoib.nlso - stzi.lsoib.also);
817 }
818 
819 static DEVICE_ATTR_RO(leap_seconds_scheduled);
820 
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t stratum_show(struct device *dev,
822 				struct device_attribute *attr,
823 				char *buf)
824 {
825 	ssize_t ret = -ENODATA;
826 
827 	mutex_lock(&stp_mutex);
828 	if (stpinfo_valid())
829 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
830 	mutex_unlock(&stp_mutex);
831 	return ret;
832 }
833 
834 static DEVICE_ATTR_RO(stratum);
835 
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t time_offset_show(struct device *dev,
837 				struct device_attribute *attr,
838 				char *buf)
839 {
840 	ssize_t ret = -ENODATA;
841 
842 	mutex_lock(&stp_mutex);
843 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
844 		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
845 	mutex_unlock(&stp_mutex);
846 	return ret;
847 }
848 
849 static DEVICE_ATTR_RO(time_offset);
850 
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)851 static ssize_t time_zone_offset_show(struct device *dev,
852 				struct device_attribute *attr,
853 				char *buf)
854 {
855 	ssize_t ret = -ENODATA;
856 
857 	mutex_lock(&stp_mutex);
858 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
859 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
860 	mutex_unlock(&stp_mutex);
861 	return ret;
862 }
863 
864 static DEVICE_ATTR_RO(time_zone_offset);
865 
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)866 static ssize_t timing_mode_show(struct device *dev,
867 				struct device_attribute *attr,
868 				char *buf)
869 {
870 	ssize_t ret = -ENODATA;
871 
872 	mutex_lock(&stp_mutex);
873 	if (stpinfo_valid())
874 		ret = sprintf(buf, "%i\n", stp_info.tmd);
875 	mutex_unlock(&stp_mutex);
876 	return ret;
877 }
878 
879 static DEVICE_ATTR_RO(timing_mode);
880 
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)881 static ssize_t timing_state_show(struct device *dev,
882 				struct device_attribute *attr,
883 				char *buf)
884 {
885 	ssize_t ret = -ENODATA;
886 
887 	mutex_lock(&stp_mutex);
888 	if (stpinfo_valid())
889 		ret = sprintf(buf, "%i\n", stp_info.tst);
890 	mutex_unlock(&stp_mutex);
891 	return ret;
892 }
893 
894 static DEVICE_ATTR_RO(timing_state);
895 
online_show(struct device * dev,struct device_attribute * attr,char * buf)896 static ssize_t online_show(struct device *dev,
897 				struct device_attribute *attr,
898 				char *buf)
899 {
900 	return sprintf(buf, "%i\n", stp_online);
901 }
902 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)903 static ssize_t online_store(struct device *dev,
904 				struct device_attribute *attr,
905 				const char *buf, size_t count)
906 {
907 	unsigned int value;
908 
909 	value = simple_strtoul(buf, NULL, 0);
910 	if (value != 0 && value != 1)
911 		return -EINVAL;
912 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
913 		return -EOPNOTSUPP;
914 	mutex_lock(&stp_mutex);
915 	stp_online = value;
916 	if (stp_online)
917 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
918 	else
919 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
920 	queue_work(time_sync_wq, &stp_work);
921 	mutex_unlock(&stp_mutex);
922 	return count;
923 }
924 
925 /*
926  * Can't use DEVICE_ATTR because the attribute should be named
927  * stp/online but dev_attr_online already exists in this file ..
928  */
929 static DEVICE_ATTR_RW(online);
930 
931 static struct device_attribute *stp_attributes[] = {
932 	&dev_attr_ctn_id,
933 	&dev_attr_ctn_type,
934 	&dev_attr_dst_offset,
935 	&dev_attr_leap_seconds,
936 	&dev_attr_online,
937 	&dev_attr_leap_seconds_scheduled,
938 	&dev_attr_stratum,
939 	&dev_attr_time_offset,
940 	&dev_attr_time_zone_offset,
941 	&dev_attr_timing_mode,
942 	&dev_attr_timing_state,
943 	NULL
944 };
945 
stp_init_sysfs(void)946 static int __init stp_init_sysfs(void)
947 {
948 	struct device_attribute **attr;
949 	int rc;
950 
951 	rc = subsys_system_register(&stp_subsys, NULL);
952 	if (rc)
953 		goto out;
954 	for (attr = stp_attributes; *attr; attr++) {
955 		rc = device_create_file(stp_subsys.dev_root, *attr);
956 		if (rc)
957 			goto out_unreg;
958 	}
959 	return 0;
960 out_unreg:
961 	for (; attr >= stp_attributes; attr--)
962 		device_remove_file(stp_subsys.dev_root, *attr);
963 	bus_unregister(&stp_subsys);
964 out:
965 	return rc;
966 }
967 
968 device_initcall(stp_init_sysfs);
969