1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57
58 unsigned char tod_clock_base[16] __aligned(8) = {
59 /* Force to data section. */
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
62 };
63 EXPORT_SYMBOL_GPL(tod_clock_base);
64
65 u64 clock_comparator_max = -1ULL;
66 EXPORT_SYMBOL_GPL(clock_comparator_max);
67
68 static DEFINE_PER_CPU(struct clock_event_device, comparators);
69
70 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
71 EXPORT_SYMBOL(s390_epoch_delta_notifier);
72
73 unsigned char ptff_function_mask[16];
74
75 static unsigned long long lpar_offset;
76 static unsigned long long initial_leap_seconds;
77 static unsigned long long tod_steering_end;
78 static long long tod_steering_delta;
79
80 /*
81 * Get time offsets with PTFF
82 */
time_early_init(void)83 void __init time_early_init(void)
84 {
85 struct ptff_qto qto;
86 struct ptff_qui qui;
87
88 /* Initialize TOD steering parameters */
89 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
90 vdso_data->arch_data.tod_steering_end = tod_steering_end;
91
92 if (!test_facility(28))
93 return;
94
95 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
96
97 /* get LPAR offset */
98 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
99 lpar_offset = qto.tod_epoch_difference;
100
101 /* get initial leap seconds */
102 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
103 initial_leap_seconds = (unsigned long long)
104 ((long) qui.old_leap * 4096000000L);
105 }
106
107 /*
108 * Scheduler clock - returns current time in nanosec units.
109 */
sched_clock(void)110 unsigned long long notrace sched_clock(void)
111 {
112 return tod_to_ns(get_tod_clock_monotonic());
113 }
114 NOKPROBE_SYMBOL(sched_clock);
115
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)116 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
117 {
118 unsigned long long high, low, rem, sec, nsec;
119
120 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
121 high = (*(unsigned long long *) clk) >> 4;
122 low = (*(unsigned long long *)&clk[7]) << 4;
123 /* Calculate seconds and nano-seconds */
124 sec = high;
125 rem = do_div(sec, 1000000);
126 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
127
128 xt->tv_sec = sec;
129 xt->tv_nsec = nsec;
130 }
131
clock_comparator_work(void)132 void clock_comparator_work(void)
133 {
134 struct clock_event_device *cd;
135
136 S390_lowcore.clock_comparator = clock_comparator_max;
137 cd = this_cpu_ptr(&comparators);
138 cd->event_handler(cd);
139 }
140
s390_next_event(unsigned long delta,struct clock_event_device * evt)141 static int s390_next_event(unsigned long delta,
142 struct clock_event_device *evt)
143 {
144 S390_lowcore.clock_comparator = get_tod_clock() + delta;
145 set_clock_comparator(S390_lowcore.clock_comparator);
146 return 0;
147 }
148
149 /*
150 * Set up lowcore and control register of the current cpu to
151 * enable TOD clock and clock comparator interrupts.
152 */
init_cpu_timer(void)153 void init_cpu_timer(void)
154 {
155 struct clock_event_device *cd;
156 int cpu;
157
158 S390_lowcore.clock_comparator = clock_comparator_max;
159 set_clock_comparator(S390_lowcore.clock_comparator);
160
161 cpu = smp_processor_id();
162 cd = &per_cpu(comparators, cpu);
163 cd->name = "comparator";
164 cd->features = CLOCK_EVT_FEAT_ONESHOT;
165 cd->mult = 16777;
166 cd->shift = 12;
167 cd->min_delta_ns = 1;
168 cd->min_delta_ticks = 1;
169 cd->max_delta_ns = LONG_MAX;
170 cd->max_delta_ticks = ULONG_MAX;
171 cd->rating = 400;
172 cd->cpumask = cpumask_of(cpu);
173 cd->set_next_event = s390_next_event;
174
175 clockevents_register_device(cd);
176
177 /* Enable clock comparator timer interrupt. */
178 __ctl_set_bit(0,11);
179
180 /* Always allow the timing alert external interrupt. */
181 __ctl_set_bit(0, 4);
182 }
183
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)184 static void clock_comparator_interrupt(struct ext_code ext_code,
185 unsigned int param32,
186 unsigned long param64)
187 {
188 inc_irq_stat(IRQEXT_CLK);
189 if (S390_lowcore.clock_comparator == clock_comparator_max)
190 set_clock_comparator(S390_lowcore.clock_comparator);
191 }
192
193 static void stp_timing_alert(struct stp_irq_parm *);
194
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)195 static void timing_alert_interrupt(struct ext_code ext_code,
196 unsigned int param32, unsigned long param64)
197 {
198 inc_irq_stat(IRQEXT_TLA);
199 if (param32 & 0x00038000)
200 stp_timing_alert((struct stp_irq_parm *) ¶m32);
201 }
202
203 static void stp_reset(void);
204
read_persistent_clock64(struct timespec64 * ts)205 void read_persistent_clock64(struct timespec64 *ts)
206 {
207 unsigned char clk[STORE_CLOCK_EXT_SIZE];
208 __u64 delta;
209
210 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
211 get_tod_clock_ext(clk);
212 *(__u64 *) &clk[1] -= delta;
213 if (*(__u64 *) &clk[1] > delta)
214 clk[0]--;
215 ext_to_timespec64(clk, ts);
216 }
217
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)218 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
219 struct timespec64 *boot_offset)
220 {
221 unsigned char clk[STORE_CLOCK_EXT_SIZE];
222 struct timespec64 boot_time;
223 __u64 delta;
224
225 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
226 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
227 *(__u64 *)&clk[1] -= delta;
228 if (*(__u64 *)&clk[1] > delta)
229 clk[0]--;
230 ext_to_timespec64(clk, &boot_time);
231
232 read_persistent_clock64(wall_time);
233 *boot_offset = timespec64_sub(*wall_time, boot_time);
234 }
235
read_tod_clock(struct clocksource * cs)236 static u64 read_tod_clock(struct clocksource *cs)
237 {
238 unsigned long long now, adj;
239
240 preempt_disable(); /* protect from changes to steering parameters */
241 now = get_tod_clock();
242 adj = tod_steering_end - now;
243 if (unlikely((s64) adj > 0))
244 /*
245 * manually steer by 1 cycle every 2^16 cycles. This
246 * corresponds to shifting the tod delta by 15. 1s is
247 * therefore steered in ~9h. The adjust will decrease
248 * over time, until it finally reaches 0.
249 */
250 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
251 preempt_enable();
252 return now;
253 }
254
255 static struct clocksource clocksource_tod = {
256 .name = "tod",
257 .rating = 400,
258 .read = read_tod_clock,
259 .mask = CLOCKSOURCE_MASK(64),
260 .mult = 1000,
261 .shift = 12,
262 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
263 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
264 };
265
clocksource_default_clock(void)266 struct clocksource * __init clocksource_default_clock(void)
267 {
268 return &clocksource_tod;
269 }
270
271 /*
272 * Initialize the TOD clock and the CPU timer of
273 * the boot cpu.
274 */
time_init(void)275 void __init time_init(void)
276 {
277 /* Reset time synchronization interfaces. */
278 stp_reset();
279
280 /* request the clock comparator external interrupt */
281 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
282 panic("Couldn't request external interrupt 0x1004");
283
284 /* request the timing alert external interrupt */
285 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
286 panic("Couldn't request external interrupt 0x1406");
287
288 if (__clocksource_register(&clocksource_tod) != 0)
289 panic("Could not register TOD clock source");
290
291 /* Enable TOD clock interrupts on the boot cpu. */
292 init_cpu_timer();
293
294 /* Enable cpu timer interrupts on the boot cpu. */
295 vtime_init();
296 }
297
298 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
299 static DEFINE_MUTEX(stp_mutex);
300 static unsigned long clock_sync_flags;
301
302 #define CLOCK_SYNC_HAS_STP 0
303 #define CLOCK_SYNC_STP 1
304 #define CLOCK_SYNC_STPINFO_VALID 2
305
306 /*
307 * The get_clock function for the physical clock. It will get the current
308 * TOD clock, subtract the LPAR offset and write the result to *clock.
309 * The function returns 0 if the clock is in sync with the external time
310 * source. If the clock mode is local it will return -EOPNOTSUPP and
311 * -EAGAIN if the clock is not in sync with the external reference.
312 */
get_phys_clock(unsigned long * clock)313 int get_phys_clock(unsigned long *clock)
314 {
315 atomic_t *sw_ptr;
316 unsigned int sw0, sw1;
317
318 sw_ptr = &get_cpu_var(clock_sync_word);
319 sw0 = atomic_read(sw_ptr);
320 *clock = get_tod_clock() - lpar_offset;
321 sw1 = atomic_read(sw_ptr);
322 put_cpu_var(clock_sync_word);
323 if (sw0 == sw1 && (sw0 & 0x80000000U))
324 /* Success: time is in sync. */
325 return 0;
326 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
327 return -EOPNOTSUPP;
328 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
329 return -EACCES;
330 return -EAGAIN;
331 }
332 EXPORT_SYMBOL(get_phys_clock);
333
334 /*
335 * Make get_phys_clock() return -EAGAIN.
336 */
disable_sync_clock(void * dummy)337 static void disable_sync_clock(void *dummy)
338 {
339 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
340 /*
341 * Clear the in-sync bit 2^31. All get_phys_clock calls will
342 * fail until the sync bit is turned back on. In addition
343 * increase the "sequence" counter to avoid the race of an
344 * stp event and the complete recovery against get_phys_clock.
345 */
346 atomic_andnot(0x80000000, sw_ptr);
347 atomic_inc(sw_ptr);
348 }
349
350 /*
351 * Make get_phys_clock() return 0 again.
352 * Needs to be called from a context disabled for preemption.
353 */
enable_sync_clock(void)354 static void enable_sync_clock(void)
355 {
356 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
357 atomic_or(0x80000000, sw_ptr);
358 }
359
360 /*
361 * Function to check if the clock is in sync.
362 */
check_sync_clock(void)363 static inline int check_sync_clock(void)
364 {
365 atomic_t *sw_ptr;
366 int rc;
367
368 sw_ptr = &get_cpu_var(clock_sync_word);
369 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
370 put_cpu_var(clock_sync_word);
371 return rc;
372 }
373
374 /*
375 * Apply clock delta to the global data structures.
376 * This is called once on the CPU that performed the clock sync.
377 */
clock_sync_global(unsigned long long delta)378 static void clock_sync_global(unsigned long long delta)
379 {
380 unsigned long now, adj;
381 struct ptff_qto qto;
382
383 /* Fixup the monotonic sched clock. */
384 *(unsigned long long *) &tod_clock_base[1] += delta;
385 if (*(unsigned long long *) &tod_clock_base[1] < delta)
386 /* Epoch overflow */
387 tod_clock_base[0]++;
388 /* Adjust TOD steering parameters. */
389 now = get_tod_clock();
390 adj = tod_steering_end - now;
391 if (unlikely((s64) adj >= 0))
392 /* Calculate how much of the old adjustment is left. */
393 tod_steering_delta = (tod_steering_delta < 0) ?
394 -(adj >> 15) : (adj >> 15);
395 tod_steering_delta += delta;
396 if ((abs(tod_steering_delta) >> 48) != 0)
397 panic("TOD clock sync offset %lli is too large to drift\n",
398 tod_steering_delta);
399 tod_steering_end = now + (abs(tod_steering_delta) << 15);
400 vdso_data->arch_data.tod_steering_end = tod_steering_end;
401 vdso_data->arch_data.tod_steering_delta = tod_steering_delta;
402
403 /* Update LPAR offset. */
404 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
405 lpar_offset = qto.tod_epoch_difference;
406 /* Call the TOD clock change notifier. */
407 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
408 }
409
410 /*
411 * Apply clock delta to the per-CPU data structures of this CPU.
412 * This is called for each online CPU after the call to clock_sync_global.
413 */
clock_sync_local(unsigned long long delta)414 static void clock_sync_local(unsigned long long delta)
415 {
416 /* Add the delta to the clock comparator. */
417 if (S390_lowcore.clock_comparator != clock_comparator_max) {
418 S390_lowcore.clock_comparator += delta;
419 set_clock_comparator(S390_lowcore.clock_comparator);
420 }
421 /* Adjust the last_update_clock time-stamp. */
422 S390_lowcore.last_update_clock += delta;
423 }
424
425 /* Single threaded workqueue used for stp sync events */
426 static struct workqueue_struct *time_sync_wq;
427
time_init_wq(void)428 static void __init time_init_wq(void)
429 {
430 if (time_sync_wq)
431 return;
432 time_sync_wq = create_singlethread_workqueue("timesync");
433 }
434
435 struct clock_sync_data {
436 atomic_t cpus;
437 int in_sync;
438 unsigned long long clock_delta;
439 };
440
441 /*
442 * Server Time Protocol (STP) code.
443 */
444 static bool stp_online;
445 static struct stp_sstpi stp_info;
446 static void *stp_page;
447
448 static void stp_work_fn(struct work_struct *work);
449 static DECLARE_WORK(stp_work, stp_work_fn);
450 static struct timer_list stp_timer;
451
early_parse_stp(char * p)452 static int __init early_parse_stp(char *p)
453 {
454 return kstrtobool(p, &stp_online);
455 }
456 early_param("stp", early_parse_stp);
457
458 /*
459 * Reset STP attachment.
460 */
stp_reset(void)461 static void __init stp_reset(void)
462 {
463 int rc;
464
465 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
466 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
467 if (rc == 0)
468 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
469 else if (stp_online) {
470 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
471 free_page((unsigned long) stp_page);
472 stp_page = NULL;
473 stp_online = false;
474 }
475 }
476
stp_timeout(struct timer_list * unused)477 static void stp_timeout(struct timer_list *unused)
478 {
479 queue_work(time_sync_wq, &stp_work);
480 }
481
stp_init(void)482 static int __init stp_init(void)
483 {
484 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
485 return 0;
486 timer_setup(&stp_timer, stp_timeout, 0);
487 time_init_wq();
488 if (!stp_online)
489 return 0;
490 queue_work(time_sync_wq, &stp_work);
491 return 0;
492 }
493
494 arch_initcall(stp_init);
495
496 /*
497 * STP timing alert. There are three causes:
498 * 1) timing status change
499 * 2) link availability change
500 * 3) time control parameter change
501 * In all three cases we are only interested in the clock source state.
502 * If a STP clock source is now available use it.
503 */
stp_timing_alert(struct stp_irq_parm * intparm)504 static void stp_timing_alert(struct stp_irq_parm *intparm)
505 {
506 if (intparm->tsc || intparm->lac || intparm->tcpc)
507 queue_work(time_sync_wq, &stp_work);
508 }
509
510 /*
511 * STP sync check machine check. This is called when the timing state
512 * changes from the synchronized state to the unsynchronized state.
513 * After a STP sync check the clock is not in sync. The machine check
514 * is broadcasted to all cpus at the same time.
515 */
stp_sync_check(void)516 int stp_sync_check(void)
517 {
518 disable_sync_clock(NULL);
519 return 1;
520 }
521
522 /*
523 * STP island condition machine check. This is called when an attached
524 * server attempts to communicate over an STP link and the servers
525 * have matching CTN ids and have a valid stratum-1 configuration
526 * but the configurations do not match.
527 */
stp_island_check(void)528 int stp_island_check(void)
529 {
530 disable_sync_clock(NULL);
531 return 1;
532 }
533
stp_queue_work(void)534 void stp_queue_work(void)
535 {
536 queue_work(time_sync_wq, &stp_work);
537 }
538
__store_stpinfo(void)539 static int __store_stpinfo(void)
540 {
541 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
542
543 if (rc)
544 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
545 else
546 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547 return rc;
548 }
549
stpinfo_valid(void)550 static int stpinfo_valid(void)
551 {
552 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
553 }
554
stp_sync_clock(void * data)555 static int stp_sync_clock(void *data)
556 {
557 struct clock_sync_data *sync = data;
558 unsigned long long clock_delta, flags;
559 static int first;
560 int rc;
561
562 enable_sync_clock();
563 if (xchg(&first, 1) == 0) {
564 /* Wait until all other cpus entered the sync function. */
565 while (atomic_read(&sync->cpus) != 0)
566 cpu_relax();
567 rc = 0;
568 if (stp_info.todoff[0] || stp_info.todoff[1] ||
569 stp_info.todoff[2] || stp_info.todoff[3] ||
570 stp_info.tmd != 2) {
571 flags = vdso_update_begin();
572 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
573 &clock_delta);
574 if (rc == 0) {
575 sync->clock_delta = clock_delta;
576 clock_sync_global(clock_delta);
577 rc = __store_stpinfo();
578 if (rc == 0 && stp_info.tmd != 2)
579 rc = -EAGAIN;
580 }
581 vdso_update_end(flags);
582 }
583 sync->in_sync = rc ? -EAGAIN : 1;
584 xchg(&first, 0);
585 } else {
586 /* Slave */
587 atomic_dec(&sync->cpus);
588 /* Wait for in_sync to be set. */
589 while (READ_ONCE(sync->in_sync) == 0)
590 __udelay(1);
591 }
592 if (sync->in_sync != 1)
593 /* Didn't work. Clear per-cpu in sync bit again. */
594 disable_sync_clock(NULL);
595 /* Apply clock delta to per-CPU fields of this CPU. */
596 clock_sync_local(sync->clock_delta);
597
598 return 0;
599 }
600
stp_clear_leap(void)601 static int stp_clear_leap(void)
602 {
603 struct __kernel_timex txc;
604 int ret;
605
606 memset(&txc, 0, sizeof(txc));
607
608 ret = do_adjtimex(&txc);
609 if (ret < 0)
610 return ret;
611
612 txc.modes = ADJ_STATUS;
613 txc.status &= ~(STA_INS|STA_DEL);
614 return do_adjtimex(&txc);
615 }
616
stp_check_leap(void)617 static void stp_check_leap(void)
618 {
619 struct stp_stzi stzi;
620 struct stp_lsoib *lsoib = &stzi.lsoib;
621 struct __kernel_timex txc;
622 int64_t timediff;
623 int leapdiff, ret;
624
625 if (!stp_info.lu || !check_sync_clock()) {
626 /*
627 * Either a scheduled leap second was removed by the operator,
628 * or STP is out of sync. In both cases, clear the leap second
629 * kernel flags.
630 */
631 if (stp_clear_leap() < 0)
632 pr_err("failed to clear leap second flags\n");
633 return;
634 }
635
636 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
637 pr_err("stzi failed\n");
638 return;
639 }
640
641 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
642 leapdiff = lsoib->nlso - lsoib->also;
643
644 if (leapdiff != 1 && leapdiff != -1) {
645 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
646 return;
647 }
648
649 if (timediff < 0) {
650 if (stp_clear_leap() < 0)
651 pr_err("failed to clear leap second flags\n");
652 } else if (timediff < 7200) {
653 memset(&txc, 0, sizeof(txc));
654 ret = do_adjtimex(&txc);
655 if (ret < 0)
656 return;
657
658 txc.modes = ADJ_STATUS;
659 if (leapdiff > 0)
660 txc.status |= STA_INS;
661 else
662 txc.status |= STA_DEL;
663 ret = do_adjtimex(&txc);
664 if (ret < 0)
665 pr_err("failed to set leap second flags\n");
666 /* arm Timer to clear leap second flags */
667 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
668 } else {
669 /* The day the leap second is scheduled for hasn't been reached. Retry
670 * in one hour.
671 */
672 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
673 }
674 }
675
676 /*
677 * STP work. Check for the STP state and take over the clock
678 * synchronization if the STP clock source is usable.
679 */
stp_work_fn(struct work_struct * work)680 static void stp_work_fn(struct work_struct *work)
681 {
682 struct clock_sync_data stp_sync;
683 int rc;
684
685 /* prevent multiple execution. */
686 mutex_lock(&stp_mutex);
687
688 if (!stp_online) {
689 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
690 del_timer_sync(&stp_timer);
691 goto out_unlock;
692 }
693
694 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
695 if (rc)
696 goto out_unlock;
697
698 rc = __store_stpinfo();
699 if (rc || stp_info.c == 0)
700 goto out_unlock;
701
702 /* Skip synchronization if the clock is already in sync. */
703 if (!check_sync_clock()) {
704 memset(&stp_sync, 0, sizeof(stp_sync));
705 cpus_read_lock();
706 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
707 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
708 cpus_read_unlock();
709 }
710
711 if (!check_sync_clock())
712 /*
713 * There is a usable clock but the synchonization failed.
714 * Retry after a second.
715 */
716 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
717 else if (stp_info.lu)
718 stp_check_leap();
719
720 out_unlock:
721 mutex_unlock(&stp_mutex);
722 }
723
724 /*
725 * STP subsys sysfs interface functions
726 */
727 static struct bus_type stp_subsys = {
728 .name = "stp",
729 .dev_name = "stp",
730 };
731
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)732 static ssize_t ctn_id_show(struct device *dev,
733 struct device_attribute *attr,
734 char *buf)
735 {
736 ssize_t ret = -ENODATA;
737
738 mutex_lock(&stp_mutex);
739 if (stpinfo_valid())
740 ret = sprintf(buf, "%016llx\n",
741 *(unsigned long long *) stp_info.ctnid);
742 mutex_unlock(&stp_mutex);
743 return ret;
744 }
745
746 static DEVICE_ATTR_RO(ctn_id);
747
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t ctn_type_show(struct device *dev,
749 struct device_attribute *attr,
750 char *buf)
751 {
752 ssize_t ret = -ENODATA;
753
754 mutex_lock(&stp_mutex);
755 if (stpinfo_valid())
756 ret = sprintf(buf, "%i\n", stp_info.ctn);
757 mutex_unlock(&stp_mutex);
758 return ret;
759 }
760
761 static DEVICE_ATTR_RO(ctn_type);
762
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t dst_offset_show(struct device *dev,
764 struct device_attribute *attr,
765 char *buf)
766 {
767 ssize_t ret = -ENODATA;
768
769 mutex_lock(&stp_mutex);
770 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
771 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
772 mutex_unlock(&stp_mutex);
773 return ret;
774 }
775
776 static DEVICE_ATTR_RO(dst_offset);
777
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t leap_seconds_show(struct device *dev,
779 struct device_attribute *attr,
780 char *buf)
781 {
782 ssize_t ret = -ENODATA;
783
784 mutex_lock(&stp_mutex);
785 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
786 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
787 mutex_unlock(&stp_mutex);
788 return ret;
789 }
790
791 static DEVICE_ATTR_RO(leap_seconds);
792
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)793 static ssize_t leap_seconds_scheduled_show(struct device *dev,
794 struct device_attribute *attr,
795 char *buf)
796 {
797 struct stp_stzi stzi;
798 ssize_t ret;
799
800 mutex_lock(&stp_mutex);
801 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
802 mutex_unlock(&stp_mutex);
803 return -ENODATA;
804 }
805
806 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
807 mutex_unlock(&stp_mutex);
808 if (ret < 0)
809 return ret;
810
811 if (!stzi.lsoib.p)
812 return sprintf(buf, "0,0\n");
813
814 return sprintf(buf, "%llu,%d\n",
815 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
816 stzi.lsoib.nlso - stzi.lsoib.also);
817 }
818
819 static DEVICE_ATTR_RO(leap_seconds_scheduled);
820
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t stratum_show(struct device *dev,
822 struct device_attribute *attr,
823 char *buf)
824 {
825 ssize_t ret = -ENODATA;
826
827 mutex_lock(&stp_mutex);
828 if (stpinfo_valid())
829 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
830 mutex_unlock(&stp_mutex);
831 return ret;
832 }
833
834 static DEVICE_ATTR_RO(stratum);
835
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t time_offset_show(struct device *dev,
837 struct device_attribute *attr,
838 char *buf)
839 {
840 ssize_t ret = -ENODATA;
841
842 mutex_lock(&stp_mutex);
843 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
844 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
845 mutex_unlock(&stp_mutex);
846 return ret;
847 }
848
849 static DEVICE_ATTR_RO(time_offset);
850
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)851 static ssize_t time_zone_offset_show(struct device *dev,
852 struct device_attribute *attr,
853 char *buf)
854 {
855 ssize_t ret = -ENODATA;
856
857 mutex_lock(&stp_mutex);
858 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
859 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
860 mutex_unlock(&stp_mutex);
861 return ret;
862 }
863
864 static DEVICE_ATTR_RO(time_zone_offset);
865
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)866 static ssize_t timing_mode_show(struct device *dev,
867 struct device_attribute *attr,
868 char *buf)
869 {
870 ssize_t ret = -ENODATA;
871
872 mutex_lock(&stp_mutex);
873 if (stpinfo_valid())
874 ret = sprintf(buf, "%i\n", stp_info.tmd);
875 mutex_unlock(&stp_mutex);
876 return ret;
877 }
878
879 static DEVICE_ATTR_RO(timing_mode);
880
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)881 static ssize_t timing_state_show(struct device *dev,
882 struct device_attribute *attr,
883 char *buf)
884 {
885 ssize_t ret = -ENODATA;
886
887 mutex_lock(&stp_mutex);
888 if (stpinfo_valid())
889 ret = sprintf(buf, "%i\n", stp_info.tst);
890 mutex_unlock(&stp_mutex);
891 return ret;
892 }
893
894 static DEVICE_ATTR_RO(timing_state);
895
online_show(struct device * dev,struct device_attribute * attr,char * buf)896 static ssize_t online_show(struct device *dev,
897 struct device_attribute *attr,
898 char *buf)
899 {
900 return sprintf(buf, "%i\n", stp_online);
901 }
902
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)903 static ssize_t online_store(struct device *dev,
904 struct device_attribute *attr,
905 const char *buf, size_t count)
906 {
907 unsigned int value;
908
909 value = simple_strtoul(buf, NULL, 0);
910 if (value != 0 && value != 1)
911 return -EINVAL;
912 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
913 return -EOPNOTSUPP;
914 mutex_lock(&stp_mutex);
915 stp_online = value;
916 if (stp_online)
917 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
918 else
919 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
920 queue_work(time_sync_wq, &stp_work);
921 mutex_unlock(&stp_mutex);
922 return count;
923 }
924
925 /*
926 * Can't use DEVICE_ATTR because the attribute should be named
927 * stp/online but dev_attr_online already exists in this file ..
928 */
929 static DEVICE_ATTR_RW(online);
930
931 static struct device_attribute *stp_attributes[] = {
932 &dev_attr_ctn_id,
933 &dev_attr_ctn_type,
934 &dev_attr_dst_offset,
935 &dev_attr_leap_seconds,
936 &dev_attr_online,
937 &dev_attr_leap_seconds_scheduled,
938 &dev_attr_stratum,
939 &dev_attr_time_offset,
940 &dev_attr_time_zone_offset,
941 &dev_attr_timing_mode,
942 &dev_attr_timing_state,
943 NULL
944 };
945
stp_init_sysfs(void)946 static int __init stp_init_sysfs(void)
947 {
948 struct device_attribute **attr;
949 int rc;
950
951 rc = subsys_system_register(&stp_subsys, NULL);
952 if (rc)
953 goto out;
954 for (attr = stp_attributes; *attr; attr++) {
955 rc = device_create_file(stp_subsys.dev_root, *attr);
956 if (rc)
957 goto out_unreg;
958 }
959 return 0;
960 out_unreg:
961 for (; attr >= stp_attributes; attr--)
962 device_remove_file(stp_subsys.dev_root, *attr);
963 bus_unregister(&stp_subsys);
964 out:
965 return rc;
966 }
967
968 device_initcall(stp_init_sysfs);
969