1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "intel_breadcrumbs.h"
32 #include "intel_context.h"
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44 * valid. Now, docs explain in dwords what is in the context object. The full
45 * size is 70720 bytes, however, the power context and execlist context will
46 * never be saved (power context is stored elsewhere, and execlists don't work
47 * on HSW) - so the final size, including the extra state required for the
48 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49 */
50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
51
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
57
58 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
59
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 unsigned int hw_id;
63 u8 class;
64 u8 instance;
65 /* mmio bases table *must* be sorted in reverse gen order */
66 struct engine_mmio_base {
67 u32 gen : 8;
68 u32 base : 24;
69 } mmio_bases[MAX_MMIO_BASES];
70 };
71
72 static const struct engine_info intel_engines[] = {
73 [RCS0] = {
74 .hw_id = RCS0_HW,
75 .class = RENDER_CLASS,
76 .instance = 0,
77 .mmio_bases = {
78 { .gen = 1, .base = RENDER_RING_BASE }
79 },
80 },
81 [BCS0] = {
82 .hw_id = BCS0_HW,
83 .class = COPY_ENGINE_CLASS,
84 .instance = 0,
85 .mmio_bases = {
86 { .gen = 6, .base = BLT_RING_BASE }
87 },
88 },
89 [VCS0] = {
90 .hw_id = VCS0_HW,
91 .class = VIDEO_DECODE_CLASS,
92 .instance = 0,
93 .mmio_bases = {
94 { .gen = 11, .base = GEN11_BSD_RING_BASE },
95 { .gen = 6, .base = GEN6_BSD_RING_BASE },
96 { .gen = 4, .base = BSD_RING_BASE }
97 },
98 },
99 [VCS1] = {
100 .hw_id = VCS1_HW,
101 .class = VIDEO_DECODE_CLASS,
102 .instance = 1,
103 .mmio_bases = {
104 { .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 { .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 },
107 },
108 [VCS2] = {
109 .hw_id = VCS2_HW,
110 .class = VIDEO_DECODE_CLASS,
111 .instance = 2,
112 .mmio_bases = {
113 { .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 },
115 },
116 [VCS3] = {
117 .hw_id = VCS3_HW,
118 .class = VIDEO_DECODE_CLASS,
119 .instance = 3,
120 .mmio_bases = {
121 { .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 },
123 },
124 [VECS0] = {
125 .hw_id = VECS0_HW,
126 .class = VIDEO_ENHANCEMENT_CLASS,
127 .instance = 0,
128 .mmio_bases = {
129 { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 { .gen = 7, .base = VEBOX_RING_BASE }
131 },
132 },
133 [VECS1] = {
134 .hw_id = VECS1_HW,
135 .class = VIDEO_ENHANCEMENT_CLASS,
136 .instance = 1,
137 .mmio_bases = {
138 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 },
140 },
141 };
142
143 /**
144 * intel_engine_context_size() - return the size of the context for an engine
145 * @gt: the gt
146 * @class: engine class
147 *
148 * Each engine class may require a different amount of space for a context
149 * image.
150 *
151 * Return: size (in bytes) of an engine class specific context image
152 *
153 * Note: this size includes the HWSP, which is part of the context image
154 * in LRC mode, but does not include the "shared data page" used with
155 * GuC submission. The caller should account for this if using the GuC.
156 */
intel_engine_context_size(struct intel_gt * gt,u8 class)157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 struct intel_uncore *uncore = gt->uncore;
160 u32 cxt_size;
161
162 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163
164 switch (class) {
165 case RENDER_CLASS:
166 switch (INTEL_GEN(gt->i915)) {
167 default:
168 MISSING_CASE(INTEL_GEN(gt->i915));
169 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 case 12:
171 case 11:
172 return GEN11_LR_CONTEXT_RENDER_SIZE;
173 case 10:
174 return GEN10_LR_CONTEXT_RENDER_SIZE;
175 case 9:
176 return GEN9_LR_CONTEXT_RENDER_SIZE;
177 case 8:
178 return GEN8_LR_CONTEXT_RENDER_SIZE;
179 case 7:
180 if (IS_HASWELL(gt->i915))
181 return HSW_CXT_TOTAL_SIZE;
182
183 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 PAGE_SIZE);
186 case 6:
187 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 PAGE_SIZE);
190 case 5:
191 case 4:
192 /*
193 * There is a discrepancy here between the size reported
194 * by the register and the size of the context layout
195 * in the docs. Both are described as authorative!
196 *
197 * The discrepancy is on the order of a few cachelines,
198 * but the total is under one page (4k), which is our
199 * minimum allocation anyway so it should all come
200 * out in the wash.
201 */
202 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 drm_dbg(>->i915->drm,
204 "gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 INTEL_GEN(gt->i915), cxt_size * 64,
206 cxt_size - 1);
207 return round_up(cxt_size * 64, PAGE_SIZE);
208 case 3:
209 case 2:
210 /* For the special day when i810 gets merged. */
211 case 1:
212 return 0;
213 }
214 break;
215 default:
216 MISSING_CASE(class);
217 fallthrough;
218 case VIDEO_DECODE_CLASS:
219 case VIDEO_ENHANCEMENT_CLASS:
220 case COPY_ENGINE_CLASS:
221 if (INTEL_GEN(gt->i915) < 8)
222 return 0;
223 return GEN8_LR_CONTEXT_OTHER_SIZE;
224 }
225 }
226
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 const struct engine_mmio_base *bases)
229 {
230 int i;
231
232 for (i = 0; i < MAX_MMIO_BASES; i++)
233 if (INTEL_GEN(i915) >= bases[i].gen)
234 break;
235
236 GEM_BUG_ON(i == MAX_MMIO_BASES);
237 GEM_BUG_ON(!bases[i].base);
238
239 return bases[i].base;
240 }
241
__sprint_engine_name(struct intel_engine_cs * engine)242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 /*
245 * Before we know what the uABI name for this engine will be,
246 * we still would like to keep track of this engine in the debug logs.
247 * We throw in a ' here as a reminder that this isn't its final name.
248 */
249 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 intel_engine_class_repr(engine->class),
251 engine->instance) >= sizeof(engine->name));
252 }
253
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 /*
257 * Though they added more rings on g4x/ilk, they did not add
258 * per-engine HWSTAM until gen6.
259 */
260 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 return;
262
263 if (INTEL_GEN(engine->i915) >= 3)
264 ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 else
266 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 /* Mask off all writes into the unknown HWSP */
272 intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id)275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 const struct engine_info *info = &intel_engines[id];
278 struct drm_i915_private *i915 = gt->i915;
279 struct intel_engine_cs *engine;
280
281 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283
284 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 return -EINVAL;
286
287 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 return -EINVAL;
289
290 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 return -EINVAL;
292
293 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 return -EINVAL;
295
296 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 if (!engine)
298 return -ENOMEM;
299
300 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301
302 engine->id = id;
303 engine->legacy_idx = INVALID_ENGINE;
304 engine->mask = BIT(id);
305 engine->i915 = i915;
306 engine->gt = gt;
307 engine->uncore = gt->uncore;
308 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309 engine->hw_id = info->hw_id;
310 engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
311
312 engine->class = info->class;
313 engine->instance = info->instance;
314 __sprint_engine_name(engine);
315
316 engine->props.heartbeat_interval_ms =
317 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
318 engine->props.max_busywait_duration_ns =
319 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
320 engine->props.preempt_timeout_ms =
321 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
322 engine->props.stop_timeout_ms =
323 CONFIG_DRM_I915_STOP_TIMEOUT;
324 engine->props.timeslice_duration_ms =
325 CONFIG_DRM_I915_TIMESLICE_DURATION;
326
327 /* Override to uninterruptible for OpenCL workloads. */
328 if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
329 engine->props.preempt_timeout_ms = 0;
330
331 engine->defaults = engine->props; /* never to change again */
332
333 engine->context_size = intel_engine_context_size(gt, engine->class);
334 if (WARN_ON(engine->context_size > BIT(20)))
335 engine->context_size = 0;
336 if (engine->context_size)
337 DRIVER_CAPS(i915)->has_logical_contexts = true;
338
339 /* Nothing to do here, execute in order of dependencies */
340 engine->schedule = NULL;
341
342 ewma__engine_latency_init(&engine->latency);
343 seqlock_init(&engine->stats.lock);
344
345 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
346
347 /* Scrub mmio state on takeover */
348 intel_engine_sanitize_mmio(engine);
349
350 gt->engine_class[info->class][info->instance] = engine;
351 gt->engine[id] = engine;
352
353 return 0;
354 }
355
__setup_engine_capabilities(struct intel_engine_cs * engine)356 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
357 {
358 struct drm_i915_private *i915 = engine->i915;
359
360 if (engine->class == VIDEO_DECODE_CLASS) {
361 /*
362 * HEVC support is present on first engine instance
363 * before Gen11 and on all instances afterwards.
364 */
365 if (INTEL_GEN(i915) >= 11 ||
366 (INTEL_GEN(i915) >= 9 && engine->instance == 0))
367 engine->uabi_capabilities |=
368 I915_VIDEO_CLASS_CAPABILITY_HEVC;
369
370 /*
371 * SFC block is present only on even logical engine
372 * instances.
373 */
374 if ((INTEL_GEN(i915) >= 11 &&
375 (engine->gt->info.vdbox_sfc_access &
376 BIT(engine->instance))) ||
377 (INTEL_GEN(i915) >= 9 && engine->instance == 0))
378 engine->uabi_capabilities |=
379 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
380 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
381 if (INTEL_GEN(i915) >= 9)
382 engine->uabi_capabilities |=
383 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
384 }
385 }
386
intel_setup_engine_capabilities(struct intel_gt * gt)387 static void intel_setup_engine_capabilities(struct intel_gt *gt)
388 {
389 struct intel_engine_cs *engine;
390 enum intel_engine_id id;
391
392 for_each_engine(engine, gt, id)
393 __setup_engine_capabilities(engine);
394 }
395
396 /**
397 * intel_engines_release() - free the resources allocated for Command Streamers
398 * @gt: pointer to struct intel_gt
399 */
intel_engines_release(struct intel_gt * gt)400 void intel_engines_release(struct intel_gt *gt)
401 {
402 struct intel_engine_cs *engine;
403 enum intel_engine_id id;
404
405 /*
406 * Before we release the resources held by engine, we must be certain
407 * that the HW is no longer accessing them -- having the GPU scribble
408 * to or read from a page being used for something else causes no end
409 * of fun.
410 *
411 * The GPU should be reset by this point, but assume the worst just
412 * in case we aborted before completely initialising the engines.
413 */
414 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
415 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
416 __intel_gt_reset(gt, ALL_ENGINES);
417
418 /* Decouple the backend; but keep the layout for late GPU resets */
419 for_each_engine(engine, gt, id) {
420 if (!engine->release)
421 continue;
422
423 intel_wakeref_wait_for_idle(&engine->wakeref);
424 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
425
426 engine->release(engine);
427 engine->release = NULL;
428
429 memset(&engine->reset, 0, sizeof(engine->reset));
430 }
431 }
432
intel_engine_free_request_pool(struct intel_engine_cs * engine)433 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
434 {
435 if (!engine->request_pool)
436 return;
437
438 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
439 }
440
intel_engines_free(struct intel_gt * gt)441 void intel_engines_free(struct intel_gt *gt)
442 {
443 struct intel_engine_cs *engine;
444 enum intel_engine_id id;
445
446 /* Free the requests! dma-resv keeps fences around for an eternity */
447 rcu_barrier();
448
449 for_each_engine(engine, gt, id) {
450 intel_engine_free_request_pool(engine);
451 kfree(engine);
452 gt->engine[id] = NULL;
453 }
454 }
455
456 /*
457 * Determine which engines are fused off in our particular hardware.
458 * Note that we have a catch-22 situation where we need to be able to access
459 * the blitter forcewake domain to read the engine fuses, but at the same time
460 * we need to know which engines are available on the system to know which
461 * forcewake domains are present. We solve this by intializing the forcewake
462 * domains based on the full engine mask in the platform capabilities before
463 * calling this function and pruning the domains for fused-off engines
464 * afterwards.
465 */
init_engine_mask(struct intel_gt * gt)466 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
467 {
468 struct drm_i915_private *i915 = gt->i915;
469 struct intel_gt_info *info = >->info;
470 struct intel_uncore *uncore = gt->uncore;
471 unsigned int logical_vdbox = 0;
472 unsigned int i;
473 u32 media_fuse;
474 u16 vdbox_mask;
475 u16 vebox_mask;
476
477 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
478
479 if (INTEL_GEN(i915) < 11)
480 return info->engine_mask;
481
482 media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
483
484 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
485 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
486 GEN11_GT_VEBOX_DISABLE_SHIFT;
487
488 for (i = 0; i < I915_MAX_VCS; i++) {
489 if (!HAS_ENGINE(gt, _VCS(i))) {
490 vdbox_mask &= ~BIT(i);
491 continue;
492 }
493
494 if (!(BIT(i) & vdbox_mask)) {
495 info->engine_mask &= ~BIT(_VCS(i));
496 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
497 continue;
498 }
499
500 /*
501 * In Gen11, only even numbered logical VDBOXes are
502 * hooked up to an SFC (Scaler & Format Converter) unit.
503 * In TGL each VDBOX has access to an SFC.
504 */
505 if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
506 gt->info.vdbox_sfc_access |= BIT(i);
507 }
508 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
509 vdbox_mask, VDBOX_MASK(gt));
510 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
511
512 for (i = 0; i < I915_MAX_VECS; i++) {
513 if (!HAS_ENGINE(gt, _VECS(i))) {
514 vebox_mask &= ~BIT(i);
515 continue;
516 }
517
518 if (!(BIT(i) & vebox_mask)) {
519 info->engine_mask &= ~BIT(_VECS(i));
520 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
521 }
522 }
523 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
524 vebox_mask, VEBOX_MASK(gt));
525 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
526
527 return info->engine_mask;
528 }
529
530 /**
531 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
532 * @gt: pointer to struct intel_gt
533 *
534 * Return: non-zero if the initialization failed.
535 */
intel_engines_init_mmio(struct intel_gt * gt)536 int intel_engines_init_mmio(struct intel_gt *gt)
537 {
538 struct drm_i915_private *i915 = gt->i915;
539 const unsigned int engine_mask = init_engine_mask(gt);
540 unsigned int mask = 0;
541 unsigned int i;
542 int err;
543
544 drm_WARN_ON(&i915->drm, engine_mask == 0);
545 drm_WARN_ON(&i915->drm, engine_mask &
546 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
547
548 if (i915_inject_probe_failure(i915))
549 return -ENODEV;
550
551 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
552 if (!HAS_ENGINE(gt, i))
553 continue;
554
555 err = intel_engine_setup(gt, i);
556 if (err)
557 goto cleanup;
558
559 mask |= BIT(i);
560 }
561
562 /*
563 * Catch failures to update intel_engines table when the new engines
564 * are added to the driver by a warning and disabling the forgotten
565 * engines.
566 */
567 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
568 gt->info.engine_mask = mask;
569
570 gt->info.num_engines = hweight32(mask);
571
572 intel_gt_check_and_clear_faults(gt);
573
574 intel_setup_engine_capabilities(gt);
575
576 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
577
578 return 0;
579
580 cleanup:
581 intel_engines_free(gt);
582 return err;
583 }
584
intel_engine_init_execlists(struct intel_engine_cs * engine)585 void intel_engine_init_execlists(struct intel_engine_cs *engine)
586 {
587 struct intel_engine_execlists * const execlists = &engine->execlists;
588
589 execlists->port_mask = 1;
590 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
591 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
592
593 memset(execlists->pending, 0, sizeof(execlists->pending));
594 execlists->active =
595 memset(execlists->inflight, 0, sizeof(execlists->inflight));
596
597 execlists->queue_priority_hint = INT_MIN;
598 execlists->queue = RB_ROOT_CACHED;
599 }
600
cleanup_status_page(struct intel_engine_cs * engine)601 static void cleanup_status_page(struct intel_engine_cs *engine)
602 {
603 struct i915_vma *vma;
604
605 /* Prevent writes into HWSP after returning the page to the system */
606 intel_engine_set_hwsp_writemask(engine, ~0u);
607
608 vma = fetch_and_zero(&engine->status_page.vma);
609 if (!vma)
610 return;
611
612 if (!HWS_NEEDS_PHYSICAL(engine->i915))
613 i915_vma_unpin(vma);
614
615 i915_gem_object_unpin_map(vma->obj);
616 i915_gem_object_put(vma->obj);
617 }
618
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_vma * vma)619 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
620 struct i915_vma *vma)
621 {
622 unsigned int flags;
623
624 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
625 /*
626 * On g33, we cannot place HWS above 256MiB, so
627 * restrict its pinning to the low mappable arena.
628 * Though this restriction is not documented for
629 * gen4, gen5, or byt, they also behave similarly
630 * and hang if the HWS is placed at the top of the
631 * GTT. To generalise, it appears that all !llc
632 * platforms have issues with us placing the HWS
633 * above the mappable region (even though we never
634 * actually map it).
635 */
636 flags = PIN_MAPPABLE;
637 else
638 flags = PIN_HIGH;
639
640 return i915_ggtt_pin(vma, NULL, 0, flags);
641 }
642
init_status_page(struct intel_engine_cs * engine)643 static int init_status_page(struct intel_engine_cs *engine)
644 {
645 struct drm_i915_gem_object *obj;
646 struct i915_vma *vma;
647 void *vaddr;
648 int ret;
649
650 /*
651 * Though the HWS register does support 36bit addresses, historically
652 * we have had hangs and corruption reported due to wild writes if
653 * the HWS is placed above 4G. We only allow objects to be allocated
654 * in GFP_DMA32 for i965, and no earlier physical address users had
655 * access to more than 4G.
656 */
657 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
658 if (IS_ERR(obj)) {
659 drm_err(&engine->i915->drm,
660 "Failed to allocate status page\n");
661 return PTR_ERR(obj);
662 }
663
664 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
665
666 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
667 if (IS_ERR(vma)) {
668 ret = PTR_ERR(vma);
669 goto err;
670 }
671
672 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
673 if (IS_ERR(vaddr)) {
674 ret = PTR_ERR(vaddr);
675 goto err;
676 }
677
678 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
679 engine->status_page.vma = vma;
680
681 if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
682 ret = pin_ggtt_status_page(engine, vma);
683 if (ret)
684 goto err_unpin;
685 }
686
687 return 0;
688
689 err_unpin:
690 i915_gem_object_unpin_map(obj);
691 err:
692 i915_gem_object_put(obj);
693 return ret;
694 }
695
engine_setup_common(struct intel_engine_cs * engine)696 static int engine_setup_common(struct intel_engine_cs *engine)
697 {
698 int err;
699
700 init_llist_head(&engine->barrier_tasks);
701
702 err = init_status_page(engine);
703 if (err)
704 return err;
705
706 engine->breadcrumbs = intel_breadcrumbs_create(engine);
707 if (!engine->breadcrumbs) {
708 err = -ENOMEM;
709 goto err_status;
710 }
711
712 err = intel_engine_init_cmd_parser(engine);
713 if (err)
714 goto err_cmd_parser;
715
716 intel_engine_init_active(engine, ENGINE_PHYSICAL);
717 intel_engine_init_execlists(engine);
718 intel_engine_init__pm(engine);
719 intel_engine_init_retire(engine);
720
721 /* Use the whole device by default */
722 engine->sseu =
723 intel_sseu_from_device_info(&engine->gt->info.sseu);
724
725 intel_engine_init_workarounds(engine);
726 intel_engine_init_whitelist(engine);
727 intel_engine_init_ctx_wa(engine);
728
729 return 0;
730
731 err_cmd_parser:
732 intel_breadcrumbs_free(engine->breadcrumbs);
733 err_status:
734 cleanup_status_page(engine);
735 return err;
736 }
737
738 struct measure_breadcrumb {
739 struct i915_request rq;
740 struct intel_ring ring;
741 u32 cs[2048];
742 };
743
measure_breadcrumb_dw(struct intel_context * ce)744 static int measure_breadcrumb_dw(struct intel_context *ce)
745 {
746 struct intel_engine_cs *engine = ce->engine;
747 struct measure_breadcrumb *frame;
748 int dw;
749
750 GEM_BUG_ON(!engine->gt->scratch);
751
752 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
753 if (!frame)
754 return -ENOMEM;
755
756 frame->rq.engine = engine;
757 frame->rq.context = ce;
758 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
759
760 frame->ring.vaddr = frame->cs;
761 frame->ring.size = sizeof(frame->cs);
762 frame->ring.wrap =
763 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
764 frame->ring.effective_size = frame->ring.size;
765 intel_ring_update_space(&frame->ring);
766 frame->rq.ring = &frame->ring;
767
768 mutex_lock(&ce->timeline->mutex);
769 spin_lock_irq(&engine->active.lock);
770
771 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
772
773 spin_unlock_irq(&engine->active.lock);
774 mutex_unlock(&ce->timeline->mutex);
775
776 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
777
778 kfree(frame);
779 return dw;
780 }
781
782 void
intel_engine_init_active(struct intel_engine_cs * engine,unsigned int subclass)783 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
784 {
785 INIT_LIST_HEAD(&engine->active.requests);
786 INIT_LIST_HEAD(&engine->active.hold);
787
788 spin_lock_init(&engine->active.lock);
789 lockdep_set_subclass(&engine->active.lock, subclass);
790
791 /*
792 * Due to an interesting quirk in lockdep's internal debug tracking,
793 * after setting a subclass we must ensure the lock is used. Otherwise,
794 * nr_unused_locks is incremented once too often.
795 */
796 #ifdef CONFIG_DEBUG_LOCK_ALLOC
797 local_irq_disable();
798 lock_map_acquire(&engine->active.lock.dep_map);
799 lock_map_release(&engine->active.lock.dep_map);
800 local_irq_enable();
801 #endif
802 }
803
804 static struct intel_context *
create_pinned_context(struct intel_engine_cs * engine,unsigned int hwsp,struct lock_class_key * key,const char * name)805 create_pinned_context(struct intel_engine_cs *engine,
806 unsigned int hwsp,
807 struct lock_class_key *key,
808 const char *name)
809 {
810 struct intel_context *ce;
811 int err;
812
813 ce = intel_context_create(engine);
814 if (IS_ERR(ce))
815 return ce;
816
817 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
818 ce->timeline = page_pack_bits(NULL, hwsp);
819
820 err = intel_context_pin(ce); /* perma-pin so it is always available */
821 if (err) {
822 intel_context_put(ce);
823 return ERR_PTR(err);
824 }
825
826 /*
827 * Give our perma-pinned kernel timelines a separate lockdep class,
828 * so that we can use them from within the normal user timelines
829 * should we need to inject GPU operations during their request
830 * construction.
831 */
832 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
833
834 return ce;
835 }
836
837 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)838 create_kernel_context(struct intel_engine_cs *engine)
839 {
840 static struct lock_class_key kernel;
841
842 return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
843 &kernel, "kernel_context");
844 }
845
846 /**
847 * intel_engines_init_common - initialize cengine state which might require hw access
848 * @engine: Engine to initialize.
849 *
850 * Initializes @engine@ structure members shared between legacy and execlists
851 * submission modes which do require hardware access.
852 *
853 * Typcally done at later stages of submission mode specific engine setup.
854 *
855 * Returns zero on success or an error code on failure.
856 */
engine_init_common(struct intel_engine_cs * engine)857 static int engine_init_common(struct intel_engine_cs *engine)
858 {
859 struct intel_context *ce;
860 int ret;
861
862 engine->set_default_submission(engine);
863
864 /*
865 * We may need to do things with the shrinker which
866 * require us to immediately switch back to the default
867 * context. This can cause a problem as pinning the
868 * default context also requires GTT space which may not
869 * be available. To avoid this we always pin the default
870 * context.
871 */
872 ce = create_kernel_context(engine);
873 if (IS_ERR(ce))
874 return PTR_ERR(ce);
875
876 ret = measure_breadcrumb_dw(ce);
877 if (ret < 0)
878 goto err_context;
879
880 engine->emit_fini_breadcrumb_dw = ret;
881 engine->kernel_context = ce;
882
883 return 0;
884
885 err_context:
886 intel_context_put(ce);
887 return ret;
888 }
889
intel_engines_init(struct intel_gt * gt)890 int intel_engines_init(struct intel_gt *gt)
891 {
892 int (*setup)(struct intel_engine_cs *engine);
893 struct intel_engine_cs *engine;
894 enum intel_engine_id id;
895 int err;
896
897 if (HAS_EXECLISTS(gt->i915))
898 setup = intel_execlists_submission_setup;
899 else
900 setup = intel_ring_submission_setup;
901
902 for_each_engine(engine, gt, id) {
903 err = engine_setup_common(engine);
904 if (err)
905 return err;
906
907 err = setup(engine);
908 if (err)
909 return err;
910
911 err = engine_init_common(engine);
912 if (err)
913 return err;
914
915 intel_engine_add_user(engine);
916 }
917
918 return 0;
919 }
920
921 /**
922 * intel_engines_cleanup_common - cleans up the engine state created by
923 * the common initiailizers.
924 * @engine: Engine to cleanup.
925 *
926 * This cleans up everything created by the common helpers.
927 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)928 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
929 {
930 GEM_BUG_ON(!list_empty(&engine->active.requests));
931 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
932
933 cleanup_status_page(engine);
934 intel_breadcrumbs_free(engine->breadcrumbs);
935
936 intel_engine_fini_retire(engine);
937 intel_engine_cleanup_cmd_parser(engine);
938
939 if (engine->default_state)
940 fput(engine->default_state);
941
942 if (engine->kernel_context) {
943 intel_context_unpin(engine->kernel_context);
944 intel_context_put(engine->kernel_context);
945 }
946 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
947
948 intel_wa_list_free(&engine->ctx_wa_list);
949 intel_wa_list_free(&engine->wa_list);
950 intel_wa_list_free(&engine->whitelist);
951 }
952
953 /**
954 * intel_engine_resume - re-initializes the HW state of the engine
955 * @engine: Engine to resume.
956 *
957 * Returns zero on success or an error code on failure.
958 */
intel_engine_resume(struct intel_engine_cs * engine)959 int intel_engine_resume(struct intel_engine_cs *engine)
960 {
961 intel_engine_apply_workarounds(engine);
962 intel_engine_apply_whitelist(engine);
963
964 return engine->resume(engine);
965 }
966
intel_engine_get_active_head(const struct intel_engine_cs * engine)967 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
968 {
969 struct drm_i915_private *i915 = engine->i915;
970
971 u64 acthd;
972
973 if (INTEL_GEN(i915) >= 8)
974 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
975 else if (INTEL_GEN(i915) >= 4)
976 acthd = ENGINE_READ(engine, RING_ACTHD);
977 else
978 acthd = ENGINE_READ(engine, ACTHD);
979
980 return acthd;
981 }
982
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)983 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
984 {
985 u64 bbaddr;
986
987 if (INTEL_GEN(engine->i915) >= 8)
988 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
989 else
990 bbaddr = ENGINE_READ(engine, RING_BBADDR);
991
992 return bbaddr;
993 }
994
stop_timeout(const struct intel_engine_cs * engine)995 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
996 {
997 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
998 return 0;
999
1000 /*
1001 * If we are doing a normal GPU reset, we can take our time and allow
1002 * the engine to quiesce. We've stopped submission to the engine, and
1003 * if we wait long enough an innocent context should complete and
1004 * leave the engine idle. So they should not be caught unaware by
1005 * the forthcoming GPU reset (which usually follows the stop_cs)!
1006 */
1007 return READ_ONCE(engine->props.stop_timeout_ms);
1008 }
1009
intel_engine_stop_cs(struct intel_engine_cs * engine)1010 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1011 {
1012 struct intel_uncore *uncore = engine->uncore;
1013 const u32 base = engine->mmio_base;
1014 const i915_reg_t mode = RING_MI_MODE(base);
1015 int err;
1016
1017 if (INTEL_GEN(engine->i915) < 3)
1018 return -ENODEV;
1019
1020 ENGINE_TRACE(engine, "\n");
1021
1022 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1023
1024 err = 0;
1025 if (__intel_wait_for_register_fw(uncore,
1026 mode, MODE_IDLE, MODE_IDLE,
1027 1000, stop_timeout(engine),
1028 NULL)) {
1029 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1030 err = -ETIMEDOUT;
1031 }
1032
1033 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1034 intel_uncore_posting_read_fw(uncore, mode);
1035
1036 return err;
1037 }
1038
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1039 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1040 {
1041 ENGINE_TRACE(engine, "\n");
1042
1043 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1044 }
1045
i915_cache_level_str(struct drm_i915_private * i915,int type)1046 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1047 {
1048 switch (type) {
1049 case I915_CACHE_NONE: return " uncached";
1050 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1051 case I915_CACHE_L3_LLC: return " L3+LLC";
1052 case I915_CACHE_WT: return " WT";
1053 default: return "";
1054 }
1055 }
1056
1057 static u32
read_subslice_reg(const struct intel_engine_cs * engine,int slice,int subslice,i915_reg_t reg)1058 read_subslice_reg(const struct intel_engine_cs *engine,
1059 int slice, int subslice, i915_reg_t reg)
1060 {
1061 struct drm_i915_private *i915 = engine->i915;
1062 struct intel_uncore *uncore = engine->uncore;
1063 u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1064 enum forcewake_domains fw_domains;
1065
1066 if (INTEL_GEN(i915) >= 11) {
1067 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1068 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1069 } else {
1070 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1071 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1072 }
1073
1074 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1075 FW_REG_READ);
1076 fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1077 GEN8_MCR_SELECTOR,
1078 FW_REG_READ | FW_REG_WRITE);
1079
1080 spin_lock_irq(&uncore->lock);
1081 intel_uncore_forcewake_get__locked(uncore, fw_domains);
1082
1083 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1084
1085 mcr &= ~mcr_mask;
1086 mcr |= mcr_ss;
1087 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1088
1089 val = intel_uncore_read_fw(uncore, reg);
1090
1091 mcr &= ~mcr_mask;
1092 mcr |= old_mcr & mcr_mask;
1093
1094 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1095
1096 intel_uncore_forcewake_put__locked(uncore, fw_domains);
1097 spin_unlock_irq(&uncore->lock);
1098
1099 return val;
1100 }
1101
1102 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1103 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1104 struct intel_instdone *instdone)
1105 {
1106 struct drm_i915_private *i915 = engine->i915;
1107 const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1108 struct intel_uncore *uncore = engine->uncore;
1109 u32 mmio_base = engine->mmio_base;
1110 int slice;
1111 int subslice;
1112
1113 memset(instdone, 0, sizeof(*instdone));
1114
1115 switch (INTEL_GEN(i915)) {
1116 default:
1117 instdone->instdone =
1118 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1119
1120 if (engine->id != RCS0)
1121 break;
1122
1123 instdone->slice_common =
1124 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1125 if (INTEL_GEN(i915) >= 12) {
1126 instdone->slice_common_extra[0] =
1127 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1128 instdone->slice_common_extra[1] =
1129 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1130 }
1131 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1132 instdone->sampler[slice][subslice] =
1133 read_subslice_reg(engine, slice, subslice,
1134 GEN7_SAMPLER_INSTDONE);
1135 instdone->row[slice][subslice] =
1136 read_subslice_reg(engine, slice, subslice,
1137 GEN7_ROW_INSTDONE);
1138 }
1139 break;
1140 case 7:
1141 instdone->instdone =
1142 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1143
1144 if (engine->id != RCS0)
1145 break;
1146
1147 instdone->slice_common =
1148 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1149 instdone->sampler[0][0] =
1150 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1151 instdone->row[0][0] =
1152 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1153
1154 break;
1155 case 6:
1156 case 5:
1157 case 4:
1158 instdone->instdone =
1159 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1160 if (engine->id == RCS0)
1161 /* HACK: Using the wrong struct member */
1162 instdone->slice_common =
1163 intel_uncore_read(uncore, GEN4_INSTDONE1);
1164 break;
1165 case 3:
1166 case 2:
1167 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1168 break;
1169 }
1170 }
1171
ring_is_idle(struct intel_engine_cs * engine)1172 static bool ring_is_idle(struct intel_engine_cs *engine)
1173 {
1174 bool idle = true;
1175
1176 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1177 return true;
1178
1179 if (!intel_engine_pm_get_if_awake(engine))
1180 return true;
1181
1182 /* First check that no commands are left in the ring */
1183 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1184 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1185 idle = false;
1186
1187 /* No bit for gen2, so assume the CS parser is idle */
1188 if (INTEL_GEN(engine->i915) > 2 &&
1189 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1190 idle = false;
1191
1192 intel_engine_pm_put(engine);
1193
1194 return idle;
1195 }
1196
intel_engine_flush_submission(struct intel_engine_cs * engine)1197 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1198 {
1199 struct tasklet_struct *t = &engine->execlists.tasklet;
1200
1201 if (!t->func)
1202 return;
1203
1204 /* Synchronise and wait for the tasklet on another CPU */
1205 tasklet_kill(t);
1206
1207 /* Having cancelled the tasklet, ensure that is run */
1208 local_bh_disable();
1209 if (tasklet_trylock(t)) {
1210 /* Must wait for any GPU reset in progress. */
1211 if (__tasklet_is_enabled(t))
1212 t->func(t->data);
1213 tasklet_unlock(t);
1214 }
1215 local_bh_enable();
1216 }
1217
1218 /**
1219 * intel_engine_is_idle() - Report if the engine has finished process all work
1220 * @engine: the intel_engine_cs
1221 *
1222 * Return true if there are no requests pending, nothing left to be submitted
1223 * to hardware, and that the engine is idle.
1224 */
intel_engine_is_idle(struct intel_engine_cs * engine)1225 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1226 {
1227 /* More white lies, if wedged, hw state is inconsistent */
1228 if (intel_gt_is_wedged(engine->gt))
1229 return true;
1230
1231 if (!intel_engine_pm_is_awake(engine))
1232 return true;
1233
1234 /* Waiting to drain ELSP? */
1235 if (execlists_active(&engine->execlists)) {
1236 synchronize_hardirq(engine->i915->drm.pdev->irq);
1237
1238 intel_engine_flush_submission(engine);
1239
1240 if (execlists_active(&engine->execlists))
1241 return false;
1242 }
1243
1244 /* ELSP is empty, but there are ready requests? E.g. after reset */
1245 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1246 return false;
1247
1248 /* Ring stopped? */
1249 return ring_is_idle(engine);
1250 }
1251
intel_engines_are_idle(struct intel_gt * gt)1252 bool intel_engines_are_idle(struct intel_gt *gt)
1253 {
1254 struct intel_engine_cs *engine;
1255 enum intel_engine_id id;
1256
1257 /*
1258 * If the driver is wedged, HW state may be very inconsistent and
1259 * report that it is still busy, even though we have stopped using it.
1260 */
1261 if (intel_gt_is_wedged(gt))
1262 return true;
1263
1264 /* Already parked (and passed an idleness test); must still be idle */
1265 if (!READ_ONCE(gt->awake))
1266 return true;
1267
1268 for_each_engine(engine, gt, id) {
1269 if (!intel_engine_is_idle(engine))
1270 return false;
1271 }
1272
1273 return true;
1274 }
1275
intel_engines_reset_default_submission(struct intel_gt * gt)1276 void intel_engines_reset_default_submission(struct intel_gt *gt)
1277 {
1278 struct intel_engine_cs *engine;
1279 enum intel_engine_id id;
1280
1281 for_each_engine(engine, gt, id)
1282 engine->set_default_submission(engine);
1283 }
1284
intel_engine_can_store_dword(struct intel_engine_cs * engine)1285 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1286 {
1287 switch (INTEL_GEN(engine->i915)) {
1288 case 2:
1289 return false; /* uses physical not virtual addresses */
1290 case 3:
1291 /* maybe only uses physical not virtual addresses */
1292 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1293 case 4:
1294 return !IS_I965G(engine->i915); /* who knows! */
1295 case 6:
1296 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1297 default:
1298 return true;
1299 }
1300 }
1301
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)1302 static int print_sched_attr(const struct i915_sched_attr *attr,
1303 char *buf, int x, int len)
1304 {
1305 if (attr->priority == I915_PRIORITY_INVALID)
1306 return x;
1307
1308 x += snprintf(buf + x, len - x,
1309 " prio=%d", attr->priority);
1310
1311 return x;
1312 }
1313
print_request(struct drm_printer * m,struct i915_request * rq,const char * prefix)1314 static void print_request(struct drm_printer *m,
1315 struct i915_request *rq,
1316 const char *prefix)
1317 {
1318 const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1319 char buf[80] = "";
1320 int x = 0;
1321
1322 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1323
1324 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1325 prefix,
1326 rq->fence.context, rq->fence.seqno,
1327 i915_request_completed(rq) ? "!" :
1328 i915_request_started(rq) ? "*" :
1329 "",
1330 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1331 &rq->fence.flags) ? "+" :
1332 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1333 &rq->fence.flags) ? "-" :
1334 "",
1335 buf,
1336 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1337 name);
1338 }
1339
get_timeline(struct i915_request * rq)1340 static struct intel_timeline *get_timeline(struct i915_request *rq)
1341 {
1342 struct intel_timeline *tl;
1343
1344 /*
1345 * Even though we are holding the engine->active.lock here, there
1346 * is no control over the submission queue per-se and we are
1347 * inspecting the active state at a random point in time, with an
1348 * unknown queue. Play safe and make sure the timeline remains valid.
1349 * (Only being used for pretty printing, one extra kref shouldn't
1350 * cause a camel stampede!)
1351 */
1352 rcu_read_lock();
1353 tl = rcu_dereference(rq->timeline);
1354 if (!kref_get_unless_zero(&tl->kref))
1355 tl = NULL;
1356 rcu_read_unlock();
1357
1358 return tl;
1359 }
1360
print_ring(char * buf,int sz,struct i915_request * rq)1361 static int print_ring(char *buf, int sz, struct i915_request *rq)
1362 {
1363 int len = 0;
1364
1365 if (!i915_request_signaled(rq)) {
1366 struct intel_timeline *tl = get_timeline(rq);
1367
1368 len = scnprintf(buf, sz,
1369 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1370 i915_ggtt_offset(rq->ring->vma),
1371 tl ? tl->hwsp_offset : 0,
1372 hwsp_seqno(rq),
1373 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1374 1000 * 1000));
1375
1376 if (tl)
1377 intel_timeline_put(tl);
1378 }
1379
1380 return len;
1381 }
1382
hexdump(struct drm_printer * m,const void * buf,size_t len)1383 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1384 {
1385 const size_t rowsize = 8 * sizeof(u32);
1386 const void *prev = NULL;
1387 bool skip = false;
1388 size_t pos;
1389
1390 for (pos = 0; pos < len; pos += rowsize) {
1391 char line[128];
1392
1393 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1394 if (!skip) {
1395 drm_printf(m, "*\n");
1396 skip = true;
1397 }
1398 continue;
1399 }
1400
1401 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1402 rowsize, sizeof(u32),
1403 line, sizeof(line),
1404 false) >= sizeof(line));
1405 drm_printf(m, "[%04zx] %s\n", pos, line);
1406
1407 prev = buf + pos;
1408 skip = false;
1409 }
1410 }
1411
repr_timer(const struct timer_list * t)1412 static const char *repr_timer(const struct timer_list *t)
1413 {
1414 if (!READ_ONCE(t->expires))
1415 return "inactive";
1416
1417 if (timer_pending(t))
1418 return "active";
1419
1420 return "expired";
1421 }
1422
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1423 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1424 struct drm_printer *m)
1425 {
1426 struct drm_i915_private *dev_priv = engine->i915;
1427 struct intel_engine_execlists * const execlists = &engine->execlists;
1428 u64 addr;
1429
1430 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1431 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1432 if (HAS_EXECLISTS(dev_priv)) {
1433 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1434 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1435 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1436 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1437 }
1438 drm_printf(m, "\tRING_START: 0x%08x\n",
1439 ENGINE_READ(engine, RING_START));
1440 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1441 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1442 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1443 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1444 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1445 ENGINE_READ(engine, RING_CTL),
1446 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1447 if (INTEL_GEN(engine->i915) > 2) {
1448 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1449 ENGINE_READ(engine, RING_MI_MODE),
1450 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1451 }
1452
1453 if (INTEL_GEN(dev_priv) >= 6) {
1454 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1455 ENGINE_READ(engine, RING_IMR));
1456 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1457 ENGINE_READ(engine, RING_ESR));
1458 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1459 ENGINE_READ(engine, RING_EMR));
1460 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1461 ENGINE_READ(engine, RING_EIR));
1462 }
1463
1464 addr = intel_engine_get_active_head(engine);
1465 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1466 upper_32_bits(addr), lower_32_bits(addr));
1467 addr = intel_engine_get_last_batch_head(engine);
1468 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1469 upper_32_bits(addr), lower_32_bits(addr));
1470 if (INTEL_GEN(dev_priv) >= 8)
1471 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1472 else if (INTEL_GEN(dev_priv) >= 4)
1473 addr = ENGINE_READ(engine, RING_DMA_FADD);
1474 else
1475 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1476 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1477 upper_32_bits(addr), lower_32_bits(addr));
1478 if (INTEL_GEN(dev_priv) >= 4) {
1479 drm_printf(m, "\tIPEIR: 0x%08x\n",
1480 ENGINE_READ(engine, RING_IPEIR));
1481 drm_printf(m, "\tIPEHR: 0x%08x\n",
1482 ENGINE_READ(engine, RING_IPEHR));
1483 } else {
1484 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1485 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1486 }
1487
1488 if (HAS_EXECLISTS(dev_priv)) {
1489 struct i915_request * const *port, *rq;
1490 const u32 *hws =
1491 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1492 const u8 num_entries = execlists->csb_size;
1493 unsigned int idx;
1494 u8 read, write;
1495
1496 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1497 yesno(test_bit(TASKLET_STATE_SCHED,
1498 &engine->execlists.tasklet.state)),
1499 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1500 repr_timer(&engine->execlists.preempt),
1501 repr_timer(&engine->execlists.timer));
1502
1503 read = execlists->csb_head;
1504 write = READ_ONCE(*execlists->csb_write);
1505
1506 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1507 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1508 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1509 read, write, num_entries);
1510
1511 if (read >= num_entries)
1512 read = 0;
1513 if (write >= num_entries)
1514 write = 0;
1515 if (read > write)
1516 write += num_entries;
1517 while (read < write) {
1518 idx = ++read % num_entries;
1519 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1520 idx, hws[idx * 2], hws[idx * 2 + 1]);
1521 }
1522
1523 execlists_active_lock_bh(execlists);
1524 rcu_read_lock();
1525 for (port = execlists->active; (rq = *port); port++) {
1526 char hdr[160];
1527 int len;
1528
1529 len = scnprintf(hdr, sizeof(hdr),
1530 "\t\tActive[%d]: ccid:%08x%s%s, ",
1531 (int)(port - execlists->active),
1532 rq->context->lrc.ccid,
1533 intel_context_is_closed(rq->context) ? "!" : "",
1534 intel_context_is_banned(rq->context) ? "*" : "");
1535 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1536 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1537 print_request(m, rq, hdr);
1538 }
1539 for (port = execlists->pending; (rq = *port); port++) {
1540 char hdr[160];
1541 int len;
1542
1543 len = scnprintf(hdr, sizeof(hdr),
1544 "\t\tPending[%d]: ccid:%08x%s%s, ",
1545 (int)(port - execlists->pending),
1546 rq->context->lrc.ccid,
1547 intel_context_is_closed(rq->context) ? "!" : "",
1548 intel_context_is_banned(rq->context) ? "*" : "");
1549 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1550 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1551 print_request(m, rq, hdr);
1552 }
1553 rcu_read_unlock();
1554 execlists_active_unlock_bh(execlists);
1555 } else if (INTEL_GEN(dev_priv) > 6) {
1556 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1557 ENGINE_READ(engine, RING_PP_DIR_BASE));
1558 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1559 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1560 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1561 ENGINE_READ(engine, RING_PP_DIR_DCLV));
1562 }
1563 }
1564
print_request_ring(struct drm_printer * m,struct i915_request * rq)1565 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1566 {
1567 void *ring;
1568 int size;
1569
1570 drm_printf(m,
1571 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1572 rq->head, rq->postfix, rq->tail,
1573 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1574 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1575
1576 size = rq->tail - rq->head;
1577 if (rq->tail < rq->head)
1578 size += rq->ring->size;
1579
1580 ring = kmalloc(size, GFP_ATOMIC);
1581 if (ring) {
1582 const void *vaddr = rq->ring->vaddr;
1583 unsigned int head = rq->head;
1584 unsigned int len = 0;
1585
1586 if (rq->tail < head) {
1587 len = rq->ring->size - head;
1588 memcpy(ring, vaddr + head, len);
1589 head = 0;
1590 }
1591 memcpy(ring + len, vaddr + head, size - len);
1592
1593 hexdump(m, ring, size);
1594 kfree(ring);
1595 }
1596 }
1597
list_count(struct list_head * list)1598 static unsigned long list_count(struct list_head *list)
1599 {
1600 struct list_head *pos;
1601 unsigned long count = 0;
1602
1603 list_for_each(pos, list)
1604 count++;
1605
1606 return count;
1607 }
1608
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)1609 void intel_engine_dump(struct intel_engine_cs *engine,
1610 struct drm_printer *m,
1611 const char *header, ...)
1612 {
1613 struct i915_gpu_error * const error = &engine->i915->gpu_error;
1614 struct i915_request *rq;
1615 intel_wakeref_t wakeref;
1616 unsigned long flags;
1617 ktime_t dummy;
1618
1619 if (header) {
1620 va_list ap;
1621
1622 va_start(ap, header);
1623 drm_vprintf(m, header, &ap);
1624 va_end(ap);
1625 }
1626
1627 if (intel_gt_is_wedged(engine->gt))
1628 drm_printf(m, "*** WEDGED ***\n");
1629
1630 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1631 drm_printf(m, "\tBarriers?: %s\n",
1632 yesno(!llist_empty(&engine->barrier_tasks)));
1633 drm_printf(m, "\tLatency: %luus\n",
1634 ewma__engine_latency_read(&engine->latency));
1635 if (intel_engine_supports_stats(engine))
1636 drm_printf(m, "\tRuntime: %llums\n",
1637 ktime_to_ms(intel_engine_get_busy_time(engine,
1638 &dummy)));
1639 drm_printf(m, "\tForcewake: %x domains, %d active\n",
1640 engine->fw_domain, atomic_read(&engine->fw_active));
1641
1642 rcu_read_lock();
1643 rq = READ_ONCE(engine->heartbeat.systole);
1644 if (rq)
1645 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1646 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1647 rcu_read_unlock();
1648 drm_printf(m, "\tReset count: %d (global %d)\n",
1649 i915_reset_engine_count(error, engine),
1650 i915_reset_count(error));
1651
1652 drm_printf(m, "\tRequests:\n");
1653
1654 spin_lock_irqsave(&engine->active.lock, flags);
1655 rq = intel_engine_find_active_request(engine);
1656 if (rq) {
1657 struct intel_timeline *tl = get_timeline(rq);
1658
1659 print_request(m, rq, "\t\tactive ");
1660
1661 drm_printf(m, "\t\tring->start: 0x%08x\n",
1662 i915_ggtt_offset(rq->ring->vma));
1663 drm_printf(m, "\t\tring->head: 0x%08x\n",
1664 rq->ring->head);
1665 drm_printf(m, "\t\tring->tail: 0x%08x\n",
1666 rq->ring->tail);
1667 drm_printf(m, "\t\tring->emit: 0x%08x\n",
1668 rq->ring->emit);
1669 drm_printf(m, "\t\tring->space: 0x%08x\n",
1670 rq->ring->space);
1671
1672 if (tl) {
1673 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
1674 tl->hwsp_offset);
1675 intel_timeline_put(tl);
1676 }
1677
1678 print_request_ring(m, rq);
1679
1680 if (rq->context->lrc_reg_state) {
1681 drm_printf(m, "Logical Ring Context:\n");
1682 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1683 }
1684 }
1685 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1686 spin_unlock_irqrestore(&engine->active.lock, flags);
1687
1688 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
1689 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1690 if (wakeref) {
1691 intel_engine_print_registers(engine, m);
1692 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1693 } else {
1694 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1695 }
1696
1697 intel_execlists_show_requests(engine, m, print_request, 8);
1698
1699 drm_printf(m, "HWSP:\n");
1700 hexdump(m, engine->status_page.addr, PAGE_SIZE);
1701
1702 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1703
1704 intel_engine_print_breadcrumbs(engine, m);
1705 }
1706
__intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1707 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1708 ktime_t *now)
1709 {
1710 ktime_t total = engine->stats.total;
1711
1712 /*
1713 * If the engine is executing something at the moment
1714 * add it to the total.
1715 */
1716 *now = ktime_get();
1717 if (atomic_read(&engine->stats.active))
1718 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1719
1720 return total;
1721 }
1722
1723 /**
1724 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1725 * @engine: engine to report on
1726 * @now: monotonic timestamp of sampling
1727 *
1728 * Returns accumulated time @engine was busy since engine stats were enabled.
1729 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1730 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1731 {
1732 unsigned int seq;
1733 ktime_t total;
1734
1735 do {
1736 seq = read_seqbegin(&engine->stats.lock);
1737 total = __intel_engine_get_busy_time(engine, now);
1738 } while (read_seqretry(&engine->stats.lock, seq));
1739
1740 return total;
1741 }
1742
match_ring(struct i915_request * rq)1743 static bool match_ring(struct i915_request *rq)
1744 {
1745 u32 ring = ENGINE_READ(rq->engine, RING_START);
1746
1747 return ring == i915_ggtt_offset(rq->ring->vma);
1748 }
1749
1750 struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs * engine)1751 intel_engine_find_active_request(struct intel_engine_cs *engine)
1752 {
1753 struct i915_request *request, *active = NULL;
1754
1755 /*
1756 * We are called by the error capture, reset and to dump engine
1757 * state at random points in time. In particular, note that neither is
1758 * crucially ordered with an interrupt. After a hang, the GPU is dead
1759 * and we assume that no more writes can happen (we waited long enough
1760 * for all writes that were in transaction to be flushed) - adding an
1761 * extra delay for a recent interrupt is pointless. Hence, we do
1762 * not need an engine->irq_seqno_barrier() before the seqno reads.
1763 * At all other times, we must assume the GPU is still running, but
1764 * we only care about the snapshot of this moment.
1765 */
1766 lockdep_assert_held(&engine->active.lock);
1767
1768 rcu_read_lock();
1769 request = execlists_active(&engine->execlists);
1770 if (request) {
1771 struct intel_timeline *tl = request->context->timeline;
1772
1773 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1774 if (i915_request_completed(request))
1775 break;
1776
1777 active = request;
1778 }
1779 }
1780 rcu_read_unlock();
1781 if (active)
1782 return active;
1783
1784 list_for_each_entry(request, &engine->active.requests, sched.link) {
1785 if (i915_request_completed(request))
1786 continue;
1787
1788 if (!i915_request_started(request))
1789 continue;
1790
1791 /* More than one preemptible request may match! */
1792 if (!match_ring(request))
1793 continue;
1794
1795 active = request;
1796 break;
1797 }
1798
1799 return active;
1800 }
1801
1802 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1803 #include "mock_engine.c"
1804 #include "selftest_engine.c"
1805 #include "selftest_engine_cs.c"
1806 #endif
1807