• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19 
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
35 
36 #include <asm/io.h>
37 
38 #include "intelfb.h"
39 #include "intelfbhw.h"
40 
41 struct pll_min_max {
42 	int min_m, max_m, min_m1, max_m1;
43 	int min_m2, max_m2, min_n, max_n;
44 	int min_p, max_p, min_p1, max_p1;
45 	int min_vco, max_vco, p_transition_clk, ref_clk;
46 	int p_inc_lo, p_inc_hi;
47 };
48 
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
52 
53 static struct pll_min_max plls[PLLS_MAX] = {
54 	{ 108, 140, 18, 26,
55 	  6, 16, 3, 16,
56 	  4, 128, 0, 31,
57 	  930000, 1400000, 165000, 48000,
58 	  4, 2 },		/* I8xx */
59 
60 	{ 75, 120, 10, 20,
61 	  5, 9, 4, 7,
62 	  5, 80, 1, 8,
63 	  1400000, 2800000, 200000, 96000,
64 	  10, 5 }		/* I9xx */
65 };
66 
intelfbhw_get_chipset(struct pci_dev * pdev,struct intelfb_info * dinfo)67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68 {
69 	u32 tmp;
70 	if (!pdev || !dinfo)
71 		return 1;
72 
73 	switch (pdev->device) {
74 	case PCI_DEVICE_ID_INTEL_830M:
75 		dinfo->name = "Intel(R) 830M";
76 		dinfo->chipset = INTEL_830M;
77 		dinfo->mobile = 1;
78 		dinfo->pll_index = PLLS_I8xx;
79 		return 0;
80 	case PCI_DEVICE_ID_INTEL_845G:
81 		dinfo->name = "Intel(R) 845G";
82 		dinfo->chipset = INTEL_845G;
83 		dinfo->mobile = 0;
84 		dinfo->pll_index = PLLS_I8xx;
85 		return 0;
86 	case PCI_DEVICE_ID_INTEL_854:
87 		dinfo->mobile = 1;
88 		dinfo->name = "Intel(R) 854";
89 		dinfo->chipset = INTEL_854;
90 		return 0;
91 	case PCI_DEVICE_ID_INTEL_85XGM:
92 		tmp = 0;
93 		dinfo->mobile = 1;
94 		dinfo->pll_index = PLLS_I8xx;
95 		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96 		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97 			INTEL_85X_VARIANT_MASK) {
98 		case INTEL_VAR_855GME:
99 			dinfo->name = "Intel(R) 855GME";
100 			dinfo->chipset = INTEL_855GME;
101 			return 0;
102 		case INTEL_VAR_855GM:
103 			dinfo->name = "Intel(R) 855GM";
104 			dinfo->chipset = INTEL_855GM;
105 			return 0;
106 		case INTEL_VAR_852GME:
107 			dinfo->name = "Intel(R) 852GME";
108 			dinfo->chipset = INTEL_852GME;
109 			return 0;
110 		case INTEL_VAR_852GM:
111 			dinfo->name = "Intel(R) 852GM";
112 			dinfo->chipset = INTEL_852GM;
113 			return 0;
114 		default:
115 			dinfo->name = "Intel(R) 852GM/855GM";
116 			dinfo->chipset = INTEL_85XGM;
117 			return 0;
118 		}
119 		break;
120 	case PCI_DEVICE_ID_INTEL_865G:
121 		dinfo->name = "Intel(R) 865G";
122 		dinfo->chipset = INTEL_865G;
123 		dinfo->mobile = 0;
124 		dinfo->pll_index = PLLS_I8xx;
125 		return 0;
126 	case PCI_DEVICE_ID_INTEL_915G:
127 		dinfo->name = "Intel(R) 915G";
128 		dinfo->chipset = INTEL_915G;
129 		dinfo->mobile = 0;
130 		dinfo->pll_index = PLLS_I9xx;
131 		return 0;
132 	case PCI_DEVICE_ID_INTEL_915GM:
133 		dinfo->name = "Intel(R) 915GM";
134 		dinfo->chipset = INTEL_915GM;
135 		dinfo->mobile = 1;
136 		dinfo->pll_index = PLLS_I9xx;
137 		return 0;
138 	case PCI_DEVICE_ID_INTEL_945G:
139 		dinfo->name = "Intel(R) 945G";
140 		dinfo->chipset = INTEL_945G;
141 		dinfo->mobile = 0;
142 		dinfo->pll_index = PLLS_I9xx;
143 		return 0;
144 	case PCI_DEVICE_ID_INTEL_945GM:
145 		dinfo->name = "Intel(R) 945GM";
146 		dinfo->chipset = INTEL_945GM;
147 		dinfo->mobile = 1;
148 		dinfo->pll_index = PLLS_I9xx;
149 		return 0;
150 	case PCI_DEVICE_ID_INTEL_945GME:
151 		dinfo->name = "Intel(R) 945GME";
152 		dinfo->chipset = INTEL_945GME;
153 		dinfo->mobile = 1;
154 		dinfo->pll_index = PLLS_I9xx;
155 		return 0;
156 	case PCI_DEVICE_ID_INTEL_965G:
157 		dinfo->name = "Intel(R) 965G";
158 		dinfo->chipset = INTEL_965G;
159 		dinfo->mobile = 0;
160 		dinfo->pll_index = PLLS_I9xx;
161 		return 0;
162 	case PCI_DEVICE_ID_INTEL_965GM:
163 		dinfo->name = "Intel(R) 965GM";
164 		dinfo->chipset = INTEL_965GM;
165 		dinfo->mobile = 1;
166 		dinfo->pll_index = PLLS_I9xx;
167 		return 0;
168 	default:
169 		return 1;
170 	}
171 }
172 
intelfbhw_get_memory(struct pci_dev * pdev,int * aperture_size,int * stolen_size)173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174 			 int *stolen_size)
175 {
176 	struct pci_dev *bridge_dev;
177 	u16 tmp;
178 	int stolen_overhead;
179 
180 	if (!pdev || !aperture_size || !stolen_size)
181 		return 1;
182 
183 	/* Find the bridge device.  It is always 0:0.0 */
184 	bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
185 						 PCI_DEVFN(0, 0));
186 	if (!bridge_dev) {
187 		ERR_MSG("cannot find bridge device\n");
188 		return 1;
189 	}
190 
191 	/* Get the fb aperture size and "stolen" memory amount. */
192 	tmp = 0;
193 	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
194 	pci_dev_put(bridge_dev);
195 
196 	switch (pdev->device) {
197 	case PCI_DEVICE_ID_INTEL_915G:
198 	case PCI_DEVICE_ID_INTEL_915GM:
199 	case PCI_DEVICE_ID_INTEL_945G:
200 	case PCI_DEVICE_ID_INTEL_945GM:
201 	case PCI_DEVICE_ID_INTEL_945GME:
202 	case PCI_DEVICE_ID_INTEL_965G:
203 	case PCI_DEVICE_ID_INTEL_965GM:
204 		/* 915, 945 and 965 chipsets support a 256MB aperture.
205 		   Aperture size is determined by inspected the
206 		   base address of the aperture. */
207 		if (pci_resource_start(pdev, 2) & 0x08000000)
208 			*aperture_size = MB(128);
209 		else
210 			*aperture_size = MB(256);
211 		break;
212 	default:
213 		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
214 			*aperture_size = MB(64);
215 		else
216 			*aperture_size = MB(128);
217 		break;
218 	}
219 
220 	/* Stolen memory size is reduced by the GTT and the popup.
221 	   GTT is 1K per MB of aperture size, and popup is 4K. */
222 	stolen_overhead = (*aperture_size / MB(1)) + 4;
223 	switch(pdev->device) {
224 	case PCI_DEVICE_ID_INTEL_830M:
225 	case PCI_DEVICE_ID_INTEL_845G:
226 		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
227 		case INTEL_830_GMCH_GMS_STOLEN_512:
228 			*stolen_size = KB(512) - KB(stolen_overhead);
229 			return 0;
230 		case INTEL_830_GMCH_GMS_STOLEN_1024:
231 			*stolen_size = MB(1) - KB(stolen_overhead);
232 			return 0;
233 		case INTEL_830_GMCH_GMS_STOLEN_8192:
234 			*stolen_size = MB(8) - KB(stolen_overhead);
235 			return 0;
236 		case INTEL_830_GMCH_GMS_LOCAL:
237 			ERR_MSG("only local memory found\n");
238 			return 1;
239 		case INTEL_830_GMCH_GMS_DISABLED:
240 			ERR_MSG("video memory is disabled\n");
241 			return 1;
242 		default:
243 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
244 				tmp & INTEL_830_GMCH_GMS_MASK);
245 			return 1;
246 		}
247 		break;
248 	default:
249 		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
250 		case INTEL_855_GMCH_GMS_STOLEN_1M:
251 			*stolen_size = MB(1) - KB(stolen_overhead);
252 			return 0;
253 		case INTEL_855_GMCH_GMS_STOLEN_4M:
254 			*stolen_size = MB(4) - KB(stolen_overhead);
255 			return 0;
256 		case INTEL_855_GMCH_GMS_STOLEN_8M:
257 			*stolen_size = MB(8) - KB(stolen_overhead);
258 			return 0;
259 		case INTEL_855_GMCH_GMS_STOLEN_16M:
260 			*stolen_size = MB(16) - KB(stolen_overhead);
261 			return 0;
262 		case INTEL_855_GMCH_GMS_STOLEN_32M:
263 			*stolen_size = MB(32) - KB(stolen_overhead);
264 			return 0;
265 		case INTEL_915G_GMCH_GMS_STOLEN_48M:
266 			*stolen_size = MB(48) - KB(stolen_overhead);
267 			return 0;
268 		case INTEL_915G_GMCH_GMS_STOLEN_64M:
269 			*stolen_size = MB(64) - KB(stolen_overhead);
270 			return 0;
271 		case INTEL_855_GMCH_GMS_DISABLED:
272 			ERR_MSG("video memory is disabled\n");
273 			return 0;
274 		default:
275 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
276 				tmp & INTEL_855_GMCH_GMS_MASK);
277 			return 1;
278 		}
279 	}
280 }
281 
intelfbhw_check_non_crt(struct intelfb_info * dinfo)282 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
283 {
284 	int dvo = 0;
285 
286 	if (INREG(LVDS) & PORT_ENABLE)
287 		dvo |= LVDS_PORT;
288 	if (INREG(DVOA) & PORT_ENABLE)
289 		dvo |= DVOA_PORT;
290 	if (INREG(DVOB) & PORT_ENABLE)
291 		dvo |= DVOB_PORT;
292 	if (INREG(DVOC) & PORT_ENABLE)
293 		dvo |= DVOC_PORT;
294 
295 	return dvo;
296 }
297 
intelfbhw_dvo_to_string(int dvo)298 const char * intelfbhw_dvo_to_string(int dvo)
299 {
300 	if (dvo & DVOA_PORT)
301 		return "DVO port A";
302 	else if (dvo & DVOB_PORT)
303 		return "DVO port B";
304 	else if (dvo & DVOC_PORT)
305 		return "DVO port C";
306 	else if (dvo & LVDS_PORT)
307 		return "LVDS port";
308 	else
309 		return NULL;
310 }
311 
312 
intelfbhw_validate_mode(struct intelfb_info * dinfo,struct fb_var_screeninfo * var)313 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
314 			    struct fb_var_screeninfo *var)
315 {
316 	int bytes_per_pixel;
317 	int tmp;
318 
319 #if VERBOSE > 0
320 	DBG_MSG("intelfbhw_validate_mode\n");
321 #endif
322 
323 	bytes_per_pixel = var->bits_per_pixel / 8;
324 	if (bytes_per_pixel == 3)
325 		bytes_per_pixel = 4;
326 
327 	/* Check if enough video memory. */
328 	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
329 	if (tmp > dinfo->fb.size) {
330 		WRN_MSG("Not enough video ram for mode "
331 			"(%d KByte vs %d KByte).\n",
332 			BtoKB(tmp), BtoKB(dinfo->fb.size));
333 		return 1;
334 	}
335 
336 	/* Check if x/y limits are OK. */
337 	if (var->xres - 1 > HACTIVE_MASK) {
338 		WRN_MSG("X resolution too large (%d vs %d).\n",
339 			var->xres, HACTIVE_MASK + 1);
340 		return 1;
341 	}
342 	if (var->yres - 1 > VACTIVE_MASK) {
343 		WRN_MSG("Y resolution too large (%d vs %d).\n",
344 			var->yres, VACTIVE_MASK + 1);
345 		return 1;
346 	}
347 	if (var->xres < 4) {
348 		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
349 		return 1;
350 	}
351 	if (var->yres < 4) {
352 		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
353 		return 1;
354 	}
355 
356 	/* Check for doublescan modes. */
357 	if (var->vmode & FB_VMODE_DOUBLE) {
358 		WRN_MSG("Mode is double-scan.\n");
359 		return 1;
360 	}
361 
362 	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
363 		WRN_MSG("Odd number of lines in interlaced mode\n");
364 		return 1;
365 	}
366 
367 	/* Check if clock is OK. */
368 	tmp = 1000000000 / var->pixclock;
369 	if (tmp < MIN_CLOCK) {
370 		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
371 			(tmp + 500) / 1000, MIN_CLOCK / 1000);
372 		return 1;
373 	}
374 	if (tmp > MAX_CLOCK) {
375 		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
376 			(tmp + 500) / 1000, MAX_CLOCK / 1000);
377 		return 1;
378 	}
379 
380 	return 0;
381 }
382 
intelfbhw_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)383 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
384 {
385 	struct intelfb_info *dinfo = GET_DINFO(info);
386 	u32 offset, xoffset, yoffset;
387 
388 #if VERBOSE > 0
389 	DBG_MSG("intelfbhw_pan_display\n");
390 #endif
391 
392 	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
393 	yoffset = var->yoffset;
394 
395 	if ((xoffset + info->var.xres > info->var.xres_virtual) ||
396 	    (yoffset + info->var.yres > info->var.yres_virtual))
397 		return -EINVAL;
398 
399 	offset = (yoffset * dinfo->pitch) +
400 		 (xoffset * info->var.bits_per_pixel) / 8;
401 
402 	offset += dinfo->fb.offset << 12;
403 
404 	dinfo->vsync.pan_offset = offset;
405 	if ((var->activate & FB_ACTIVATE_VBL) &&
406 	    !intelfbhw_enable_irq(dinfo))
407 		dinfo->vsync.pan_display = 1;
408 	else {
409 		dinfo->vsync.pan_display = 0;
410 		OUTREG(DSPABASE, offset);
411 	}
412 
413 	return 0;
414 }
415 
416 /* Blank the screen. */
intelfbhw_do_blank(int blank,struct fb_info * info)417 void intelfbhw_do_blank(int blank, struct fb_info *info)
418 {
419 	struct intelfb_info *dinfo = GET_DINFO(info);
420 	u32 tmp;
421 
422 #if VERBOSE > 0
423 	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
424 #endif
425 
426 	/* Turn plane A on or off */
427 	tmp = INREG(DSPACNTR);
428 	if (blank)
429 		tmp &= ~DISPPLANE_PLANE_ENABLE;
430 	else
431 		tmp |= DISPPLANE_PLANE_ENABLE;
432 	OUTREG(DSPACNTR, tmp);
433 	/* Flush */
434 	tmp = INREG(DSPABASE);
435 	OUTREG(DSPABASE, tmp);
436 
437 	/* Turn off/on the HW cursor */
438 #if VERBOSE > 0
439 	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
440 #endif
441 	if (dinfo->cursor_on) {
442 		if (blank)
443 			intelfbhw_cursor_hide(dinfo);
444 		else
445 			intelfbhw_cursor_show(dinfo);
446 		dinfo->cursor_on = 1;
447 	}
448 	dinfo->cursor_blanked = blank;
449 
450 	/* Set DPMS level */
451 	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
452 	switch (blank) {
453 	case FB_BLANK_UNBLANK:
454 	case FB_BLANK_NORMAL:
455 		tmp |= ADPA_DPMS_D0;
456 		break;
457 	case FB_BLANK_VSYNC_SUSPEND:
458 		tmp |= ADPA_DPMS_D1;
459 		break;
460 	case FB_BLANK_HSYNC_SUSPEND:
461 		tmp |= ADPA_DPMS_D2;
462 		break;
463 	case FB_BLANK_POWERDOWN:
464 		tmp |= ADPA_DPMS_D3;
465 		break;
466 	}
467 	OUTREG(ADPA, tmp);
468 
469 	return;
470 }
471 
472 
473 /* Check which pipe is connected to an active display plane. */
intelfbhw_active_pipe(const struct intelfb_hwstate * hw)474 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
475 {
476 	int pipe = -1;
477 
478 	/* keep old default behaviour - prefer PIPE_A */
479 	if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
480 		pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
481 		pipe &= PIPE_MASK;
482 		if (unlikely(pipe == PIPE_A))
483 			return PIPE_A;
484 	}
485 	if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
486 		pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
487 		pipe &= PIPE_MASK;
488 		if (likely(pipe == PIPE_A))
489 			return PIPE_A;
490 	}
491 	/* Impossible that no pipe is selected - return PIPE_A */
492 	WARN_ON(pipe == -1);
493 	if (unlikely(pipe == -1))
494 		pipe = PIPE_A;
495 
496 	return pipe;
497 }
498 
intelfbhw_setcolreg(struct intelfb_info * dinfo,unsigned regno,unsigned red,unsigned green,unsigned blue,unsigned transp)499 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
500 			 unsigned red, unsigned green, unsigned blue,
501 			 unsigned transp)
502 {
503 	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
504 			  PALETTE_A : PALETTE_B;
505 
506 #if VERBOSE > 0
507 	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
508 		regno, red, green, blue);
509 #endif
510 
511 	OUTREG(palette_reg + (regno << 2),
512 	       (red << PALETTE_8_RED_SHIFT) |
513 	       (green << PALETTE_8_GREEN_SHIFT) |
514 	       (blue << PALETTE_8_BLUE_SHIFT));
515 }
516 
517 
intelfbhw_read_hw_state(struct intelfb_info * dinfo,struct intelfb_hwstate * hw,int flag)518 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
519 			    struct intelfb_hwstate *hw, int flag)
520 {
521 	int i;
522 
523 #if VERBOSE > 0
524 	DBG_MSG("intelfbhw_read_hw_state\n");
525 #endif
526 
527 	if (!hw || !dinfo)
528 		return -1;
529 
530 	/* Read in as much of the HW state as possible. */
531 	hw->vga0_divisor = INREG(VGA0_DIVISOR);
532 	hw->vga1_divisor = INREG(VGA1_DIVISOR);
533 	hw->vga_pd = INREG(VGAPD);
534 	hw->dpll_a = INREG(DPLL_A);
535 	hw->dpll_b = INREG(DPLL_B);
536 	hw->fpa0 = INREG(FPA0);
537 	hw->fpa1 = INREG(FPA1);
538 	hw->fpb0 = INREG(FPB0);
539 	hw->fpb1 = INREG(FPB1);
540 
541 	if (flag == 1)
542 		return flag;
543 
544 #if 0
545 	/* This seems to be a problem with the 852GM/855GM */
546 	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
547 		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
548 		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
549 	}
550 #endif
551 
552 	if (flag == 2)
553 		return flag;
554 
555 	hw->htotal_a = INREG(HTOTAL_A);
556 	hw->hblank_a = INREG(HBLANK_A);
557 	hw->hsync_a = INREG(HSYNC_A);
558 	hw->vtotal_a = INREG(VTOTAL_A);
559 	hw->vblank_a = INREG(VBLANK_A);
560 	hw->vsync_a = INREG(VSYNC_A);
561 	hw->src_size_a = INREG(SRC_SIZE_A);
562 	hw->bclrpat_a = INREG(BCLRPAT_A);
563 	hw->htotal_b = INREG(HTOTAL_B);
564 	hw->hblank_b = INREG(HBLANK_B);
565 	hw->hsync_b = INREG(HSYNC_B);
566 	hw->vtotal_b = INREG(VTOTAL_B);
567 	hw->vblank_b = INREG(VBLANK_B);
568 	hw->vsync_b = INREG(VSYNC_B);
569 	hw->src_size_b = INREG(SRC_SIZE_B);
570 	hw->bclrpat_b = INREG(BCLRPAT_B);
571 
572 	if (flag == 3)
573 		return flag;
574 
575 	hw->adpa = INREG(ADPA);
576 	hw->dvoa = INREG(DVOA);
577 	hw->dvob = INREG(DVOB);
578 	hw->dvoc = INREG(DVOC);
579 	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
580 	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
581 	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
582 	hw->lvds = INREG(LVDS);
583 
584 	if (flag == 4)
585 		return flag;
586 
587 	hw->pipe_a_conf = INREG(PIPEACONF);
588 	hw->pipe_b_conf = INREG(PIPEBCONF);
589 	hw->disp_arb = INREG(DISPARB);
590 
591 	if (flag == 5)
592 		return flag;
593 
594 	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
595 	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
596 	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
597 	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
598 
599 	if (flag == 6)
600 		return flag;
601 
602 	for (i = 0; i < 4; i++) {
603 		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
604 		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
605 	}
606 
607 	if (flag == 7)
608 		return flag;
609 
610 	hw->cursor_size = INREG(CURSOR_SIZE);
611 
612 	if (flag == 8)
613 		return flag;
614 
615 	hw->disp_a_ctrl = INREG(DSPACNTR);
616 	hw->disp_b_ctrl = INREG(DSPBCNTR);
617 	hw->disp_a_base = INREG(DSPABASE);
618 	hw->disp_b_base = INREG(DSPBBASE);
619 	hw->disp_a_stride = INREG(DSPASTRIDE);
620 	hw->disp_b_stride = INREG(DSPBSTRIDE);
621 
622 	if (flag == 9)
623 		return flag;
624 
625 	hw->vgacntrl = INREG(VGACNTRL);
626 
627 	if (flag == 10)
628 		return flag;
629 
630 	hw->add_id = INREG(ADD_ID);
631 
632 	if (flag == 11)
633 		return flag;
634 
635 	for (i = 0; i < 7; i++) {
636 		hw->swf0x[i] = INREG(SWF00 + (i << 2));
637 		hw->swf1x[i] = INREG(SWF10 + (i << 2));
638 		if (i < 3)
639 			hw->swf3x[i] = INREG(SWF30 + (i << 2));
640 	}
641 
642 	for (i = 0; i < 8; i++)
643 		hw->fence[i] = INREG(FENCE + (i << 2));
644 
645 	hw->instpm = INREG(INSTPM);
646 	hw->mem_mode = INREG(MEM_MODE);
647 	hw->fw_blc_0 = INREG(FW_BLC_0);
648 	hw->fw_blc_1 = INREG(FW_BLC_1);
649 
650 	hw->hwstam = INREG16(HWSTAM);
651 	hw->ier = INREG16(IER);
652 	hw->iir = INREG16(IIR);
653 	hw->imr = INREG16(IMR);
654 
655 	return 0;
656 }
657 
658 
calc_vclock3(int index,int m,int n,int p)659 static int calc_vclock3(int index, int m, int n, int p)
660 {
661 	if (p == 0 || n == 0)
662 		return 0;
663 	return plls[index].ref_clk * m / n / p;
664 }
665 
calc_vclock(int index,int m1,int m2,int n,int p1,int p2,int lvds)666 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
667 		       int lvds)
668 {
669 	struct pll_min_max *pll = &plls[index];
670 	u32 m, vco, p;
671 
672 	m = (5 * (m1 + 2)) + (m2 + 2);
673 	n += 2;
674 	vco = pll->ref_clk * m / n;
675 
676 	if (index == PLLS_I8xx)
677 		p = ((p1 + 2) * (1 << (p2 + 1)));
678 	else
679 		p = ((p1) * (p2 ? 5 : 10));
680 	return vco / p;
681 }
682 
683 #if REGDUMP
intelfbhw_get_p1p2(struct intelfb_info * dinfo,int dpll,int * o_p1,int * o_p2)684 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
685 			       int *o_p1, int *o_p2)
686 {
687 	int p1, p2;
688 
689 	if (IS_I9XX(dinfo)) {
690 		if (dpll & DPLL_P1_FORCE_DIV2)
691 			p1 = 1;
692 		else
693 			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
694 
695 		p1 = ffs(p1);
696 
697 		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
698 	} else {
699 		if (dpll & DPLL_P1_FORCE_DIV2)
700 			p1 = 0;
701 		else
702 			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
703 		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
704 	}
705 
706 	*o_p1 = p1;
707 	*o_p2 = p2;
708 }
709 #endif
710 
711 
intelfbhw_print_hw_state(struct intelfb_info * dinfo,struct intelfb_hwstate * hw)712 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
713 			      struct intelfb_hwstate *hw)
714 {
715 #if REGDUMP
716 	int i, m1, m2, n, p1, p2;
717 	int index = dinfo->pll_index;
718 	DBG_MSG("intelfbhw_print_hw_state\n");
719 
720 	if (!hw)
721 		return;
722 	/* Read in as much of the HW state as possible. */
723 	printk("hw state dump start\n");
724 	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
725 	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
726 	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
727 	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728 	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729 	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730 
731 	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
732 
733 	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
734 	       m1, m2, n, p1, p2);
735 	printk("	VGA0: clock is %d\n",
736 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
737 
738 	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739 	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
740 	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
741 
742 	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
743 	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
744 	       m1, m2, n, p1, p2);
745 	printk("	VGA1: clock is %d\n",
746 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
747 
748 	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
749 	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
750 	printk("	FPA0:			0x%08x\n", hw->fpa0);
751 	printk("	FPA1:			0x%08x\n", hw->fpa1);
752 	printk("	FPB0:			0x%08x\n", hw->fpb0);
753 	printk("	FPB1:			0x%08x\n", hw->fpb1);
754 
755 	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756 	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
757 	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
758 
759 	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
760 
761 	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
762 	       m1, m2, n, p1, p2);
763 	printk("	PLLA0: clock is %d\n",
764 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
765 
766 	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767 	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
768 	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
769 
770 	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
771 
772 	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
773 	       m1, m2, n, p1, p2);
774 	printk("	PLLA1: clock is %d\n",
775 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
776 
777 #if 0
778 	printk("	PALETTE_A:\n");
779 	for (i = 0; i < PALETTE_8_ENTRIES)
780 		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
781 	printk("	PALETTE_B:\n");
782 	for (i = 0; i < PALETTE_8_ENTRIES)
783 		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
784 #endif
785 
786 	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
787 	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
788 	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
789 	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
790 	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
791 	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
792 	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
793 	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
794 	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
795 	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
796 	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
797 	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
798 	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
799 	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
800 	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
801 	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
802 
803 	printk("	ADPA:			0x%08x\n", hw->adpa);
804 	printk("	DVOA:			0x%08x\n", hw->dvoa);
805 	printk("	DVOB:			0x%08x\n", hw->dvob);
806 	printk("	DVOC:			0x%08x\n", hw->dvoc);
807 	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
808 	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
809 	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
810 	printk("	LVDS:			0x%08x\n", hw->lvds);
811 
812 	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
813 	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
814 	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
815 
816 	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
817 	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
818 	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
819 	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
820 
821 	printk("	CURSOR_A_PALETTE:	");
822 	for (i = 0; i < 4; i++) {
823 		printk("0x%08x", hw->cursor_a_palette[i]);
824 		if (i < 3)
825 			printk(", ");
826 	}
827 	printk("\n");
828 	printk("	CURSOR_B_PALETTE:	");
829 	for (i = 0; i < 4; i++) {
830 		printk("0x%08x", hw->cursor_b_palette[i]);
831 		if (i < 3)
832 			printk(", ");
833 	}
834 	printk("\n");
835 
836 	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
837 
838 	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
839 	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
840 	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
841 	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
842 	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
843 	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
844 
845 	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
846 	printk("	ADD_ID:			0x%08x\n", hw->add_id);
847 
848 	for (i = 0; i < 7; i++) {
849 		printk("	SWF0%d			0x%08x\n", i,
850 			hw->swf0x[i]);
851 	}
852 	for (i = 0; i < 7; i++) {
853 		printk("	SWF1%d			0x%08x\n", i,
854 			hw->swf1x[i]);
855 	}
856 	for (i = 0; i < 3; i++) {
857 		printk("	SWF3%d			0x%08x\n", i,
858 		       hw->swf3x[i]);
859 	}
860 	for (i = 0; i < 8; i++)
861 		printk("	FENCE%d			0x%08x\n", i,
862 		       hw->fence[i]);
863 
864 	printk("	INSTPM			0x%08x\n", hw->instpm);
865 	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
866 	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
867 	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
868 
869 	printk("	HWSTAM			0x%04x\n", hw->hwstam);
870 	printk("	IER			0x%04x\n", hw->ier);
871 	printk("	IIR			0x%04x\n", hw->iir);
872 	printk("	IMR			0x%04x\n", hw->imr);
873 	printk("hw state dump end\n");
874 #endif
875 }
876 
877 
878 
879 /* Split the M parameter into M1 and M2. */
splitm(int index,unsigned int m,unsigned int * retm1,unsigned int * retm2)880 static int splitm(int index, unsigned int m, unsigned int *retm1,
881 		  unsigned int *retm2)
882 {
883 	int m1, m2;
884 	int testm;
885 	struct pll_min_max *pll = &plls[index];
886 
887 	/* no point optimising too much - brute force m */
888 	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
889 		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
890 			testm = (5 * (m1 + 2)) + (m2 + 2);
891 			if (testm == m) {
892 				*retm1 = (unsigned int)m1;
893 				*retm2 = (unsigned int)m2;
894 				return 0;
895 			}
896 		}
897 	}
898 	return 1;
899 }
900 
901 /* Split the P parameter into P1 and P2. */
splitp(int index,unsigned int p,unsigned int * retp1,unsigned int * retp2)902 static int splitp(int index, unsigned int p, unsigned int *retp1,
903 		  unsigned int *retp2)
904 {
905 	int p1, p2;
906 	struct pll_min_max *pll = &plls[index];
907 
908 	if (index == PLLS_I9xx) {
909 		p2 = (p % 10) ? 1 : 0;
910 
911 		p1 = p / (p2 ? 5 : 10);
912 
913 		*retp1 = (unsigned int)p1;
914 		*retp2 = (unsigned int)p2;
915 		return 0;
916 	}
917 
918 	if (p % 4 == 0)
919 		p2 = 1;
920 	else
921 		p2 = 0;
922 	p1 = (p / (1 << (p2 + 1))) - 2;
923 	if (p % 4 == 0 && p1 < pll->min_p1) {
924 		p2 = 0;
925 		p1 = (p / (1 << (p2 + 1))) - 2;
926 	}
927 	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
928 	    (p1 + 2) * (1 << (p2 + 1)) != p) {
929 		return 1;
930 	} else {
931 		*retp1 = (unsigned int)p1;
932 		*retp2 = (unsigned int)p2;
933 		return 0;
934 	}
935 }
936 
calc_pll_params(int index,int clock,u32 * retm1,u32 * retm2,u32 * retn,u32 * retp1,u32 * retp2,u32 * retclock)937 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
938 			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
939 {
940 	u32 m1, m2, n, p1, p2, n1, testm;
941 	u32 f_vco, p, p_best = 0, m, f_out = 0;
942 	u32 err_best = 10000000;
943 	u32 n_best = 0, m_best = 0, f_err;
944 	u32 p_min, p_max, p_inc, div_max;
945 	struct pll_min_max *pll = &plls[index];
946 
947 	DBG_MSG("Clock is %d\n", clock);
948 
949 	div_max = pll->max_vco / clock;
950 
951 	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
952 	p_min = p_inc;
953 	p_max = ROUND_DOWN_TO(div_max, p_inc);
954 	if (p_min < pll->min_p)
955 		p_min = pll->min_p;
956 	if (p_max > pll->max_p)
957 		p_max = pll->max_p;
958 
959 	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
960 
961 	p = p_min;
962 	do {
963 		if (splitp(index, p, &p1, &p2)) {
964 			WRN_MSG("cannot split p = %d\n", p);
965 			p += p_inc;
966 			continue;
967 		}
968 		n = pll->min_n;
969 		f_vco = clock * p;
970 
971 		do {
972 			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
973 			if (m < pll->min_m)
974 				m = pll->min_m + 1;
975 			if (m > pll->max_m)
976 				m = pll->max_m - 1;
977 			for (testm = m - 1; testm <= m; testm++) {
978 				f_out = calc_vclock3(index, testm, n, p);
979 				if (splitm(index, testm, &m1, &m2)) {
980 					WRN_MSG("cannot split m = %d\n",
981 						testm);
982 					continue;
983 				}
984 				if (clock > f_out)
985 					f_err = clock - f_out;
986 				else/* slightly bias the error for bigger clocks */
987 					f_err = f_out - clock + 1;
988 
989 				if (f_err < err_best) {
990 					m_best = testm;
991 					n_best = n;
992 					p_best = p;
993 					err_best = f_err;
994 				}
995 			}
996 			n++;
997 		} while ((n <= pll->max_n) && (f_out >= clock));
998 		p += p_inc;
999 	} while ((p <= p_max));
1000 
1001 	if (!m_best) {
1002 		WRN_MSG("cannot find parameters for clock %d\n", clock);
1003 		return 1;
1004 	}
1005 	m = m_best;
1006 	n = n_best;
1007 	p = p_best;
1008 	splitm(index, m, &m1, &m2);
1009 	splitp(index, p, &p1, &p2);
1010 	n1 = n - 2;
1011 
1012 	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1013 		"f: %d (%d), VCO: %d\n",
1014 		m, m1, m2, n, n1, p, p1, p2,
1015 		calc_vclock3(index, m, n, p),
1016 		calc_vclock(index, m1, m2, n1, p1, p2, 0),
1017 		calc_vclock3(index, m, n, p) * p);
1018 	*retm1 = m1;
1019 	*retm2 = m2;
1020 	*retn = n1;
1021 	*retp1 = p1;
1022 	*retp2 = p2;
1023 	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1024 
1025 	return 0;
1026 }
1027 
check_overflow(u32 value,u32 limit,const char * description)1028 static __inline__ int check_overflow(u32 value, u32 limit,
1029 				     const char *description)
1030 {
1031 	if (value > limit) {
1032 		WRN_MSG("%s value %d exceeds limit %d\n",
1033 			description, value, limit);
1034 		return 1;
1035 	}
1036 	return 0;
1037 }
1038 
1039 /* It is assumed that hw is filled in with the initial state information. */
intelfbhw_mode_to_hw(struct intelfb_info * dinfo,struct intelfb_hwstate * hw,struct fb_var_screeninfo * var)1040 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1041 			 struct intelfb_hwstate *hw,
1042 			 struct fb_var_screeninfo *var)
1043 {
1044 	int pipe = intelfbhw_active_pipe(hw);
1045 	u32 *dpll, *fp0, *fp1;
1046 	u32 m1, m2, n, p1, p2, clock_target, clock;
1047 	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1048 	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1049 	u32 vsync_pol, hsync_pol;
1050 	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1051 	u32 stride_alignment;
1052 
1053 	DBG_MSG("intelfbhw_mode_to_hw\n");
1054 
1055 	/* Disable VGA */
1056 	hw->vgacntrl |= VGA_DISABLE;
1057 
1058 	/* Set which pipe's registers will be set. */
1059 	if (pipe == PIPE_B) {
1060 		dpll = &hw->dpll_b;
1061 		fp0 = &hw->fpb0;
1062 		fp1 = &hw->fpb1;
1063 		hs = &hw->hsync_b;
1064 		hb = &hw->hblank_b;
1065 		ht = &hw->htotal_b;
1066 		vs = &hw->vsync_b;
1067 		vb = &hw->vblank_b;
1068 		vt = &hw->vtotal_b;
1069 		ss = &hw->src_size_b;
1070 		pipe_conf = &hw->pipe_b_conf;
1071 	} else {
1072 		dpll = &hw->dpll_a;
1073 		fp0 = &hw->fpa0;
1074 		fp1 = &hw->fpa1;
1075 		hs = &hw->hsync_a;
1076 		hb = &hw->hblank_a;
1077 		ht = &hw->htotal_a;
1078 		vs = &hw->vsync_a;
1079 		vb = &hw->vblank_a;
1080 		vt = &hw->vtotal_a;
1081 		ss = &hw->src_size_a;
1082 		pipe_conf = &hw->pipe_a_conf;
1083 	}
1084 
1085 	/* Use ADPA register for sync control. */
1086 	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1087 
1088 	/* sync polarity */
1089 	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1090 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1091 	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1092 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1093 	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1094 		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1095 	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1096 		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1097 
1098 	/* Connect correct pipe to the analog port DAC */
1099 	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1100 	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1101 
1102 	/* Set DPMS state to D0 (on) */
1103 	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1104 	hw->adpa |= ADPA_DPMS_D0;
1105 
1106 	hw->adpa |= ADPA_DAC_ENABLE;
1107 
1108 	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1109 	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1110 	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1111 
1112 	/* Desired clock in kHz */
1113 	clock_target = 1000000000 / var->pixclock;
1114 
1115 	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1116 			    &n, &p1, &p2, &clock)) {
1117 		WRN_MSG("calc_pll_params failed\n");
1118 		return 1;
1119 	}
1120 
1121 	/* Check for overflow. */
1122 	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1123 		return 1;
1124 	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1125 		return 1;
1126 	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1127 		return 1;
1128 	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1129 		return 1;
1130 	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1131 		return 1;
1132 
1133 	*dpll &= ~DPLL_P1_FORCE_DIV2;
1134 	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1135 		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1136 
1137 	if (IS_I9XX(dinfo)) {
1138 		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1139 		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1140 	} else
1141 		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1142 
1143 	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1144 	       (m1 << FP_M1_DIVISOR_SHIFT) |
1145 	       (m2 << FP_M2_DIVISOR_SHIFT);
1146 	*fp1 = *fp0;
1147 
1148 	hw->dvob &= ~PORT_ENABLE;
1149 	hw->dvoc &= ~PORT_ENABLE;
1150 
1151 	/* Use display plane A. */
1152 	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1153 	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1154 	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1155 	switch (intelfb_var_to_depth(var)) {
1156 	case 8:
1157 		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1158 		break;
1159 	case 15:
1160 		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1161 		break;
1162 	case 16:
1163 		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1164 		break;
1165 	case 24:
1166 		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1167 		break;
1168 	}
1169 	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1170 	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1171 
1172 	/* Set CRTC registers. */
1173 	hactive = var->xres;
1174 	hsync_start = hactive + var->right_margin;
1175 	hsync_end = hsync_start + var->hsync_len;
1176 	htotal = hsync_end + var->left_margin;
1177 	hblank_start = hactive;
1178 	hblank_end = htotal;
1179 
1180 	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1181 		hactive, hsync_start, hsync_end, htotal, hblank_start,
1182 		hblank_end);
1183 
1184 	vactive = var->yres;
1185 	if (var->vmode & FB_VMODE_INTERLACED)
1186 		vactive--; /* the chip adds 2 halflines automatically */
1187 	vsync_start = vactive + var->lower_margin;
1188 	vsync_end = vsync_start + var->vsync_len;
1189 	vtotal = vsync_end + var->upper_margin;
1190 	vblank_start = vactive;
1191 	vblank_end = vsync_end + 1;
1192 
1193 	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1194 		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1195 		vblank_end);
1196 
1197 	/* Adjust for register values, and check for overflow. */
1198 	hactive--;
1199 	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1200 		return 1;
1201 	hsync_start--;
1202 	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1203 		return 1;
1204 	hsync_end--;
1205 	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1206 		return 1;
1207 	htotal--;
1208 	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1209 		return 1;
1210 	hblank_start--;
1211 	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1212 		return 1;
1213 	hblank_end--;
1214 	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1215 		return 1;
1216 
1217 	vactive--;
1218 	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1219 		return 1;
1220 	vsync_start--;
1221 	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1222 		return 1;
1223 	vsync_end--;
1224 	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1225 		return 1;
1226 	vtotal--;
1227 	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1228 		return 1;
1229 	vblank_start--;
1230 	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1231 		return 1;
1232 	vblank_end--;
1233 	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1234 		return 1;
1235 
1236 	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1237 	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1238 	      (hblank_end << HSYNCEND_SHIFT);
1239 	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1240 
1241 	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1242 	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1243 	      (vblank_end << VSYNCEND_SHIFT);
1244 	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1245 	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1246 	      (vactive << SRC_SIZE_VERT_SHIFT);
1247 
1248 	hw->disp_a_stride = dinfo->pitch;
1249 	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1250 
1251 	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1252 			  var->xoffset * var->bits_per_pixel / 8;
1253 
1254 	hw->disp_a_base += dinfo->fb.offset << 12;
1255 
1256 	/* Check stride alignment. */
1257 	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1258 					    STRIDE_ALIGNMENT;
1259 	if (hw->disp_a_stride % stride_alignment != 0) {
1260 		WRN_MSG("display stride %d has bad alignment %d\n",
1261 			hw->disp_a_stride, stride_alignment);
1262 		return 1;
1263 	}
1264 
1265 	/* Set the palette to 8-bit mode. */
1266 	*pipe_conf &= ~PIPECONF_GAMMA;
1267 
1268 	if (var->vmode & FB_VMODE_INTERLACED)
1269 		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1270 	else
1271 		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1272 
1273 	return 0;
1274 }
1275 
1276 /* Program a (non-VGA) video mode. */
intelfbhw_program_mode(struct intelfb_info * dinfo,const struct intelfb_hwstate * hw,int blank)1277 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1278 			   const struct intelfb_hwstate *hw, int blank)
1279 {
1280 	u32 tmp;
1281 	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1282 	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1283 	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1284 	u32 hsync_reg, htotal_reg, hblank_reg;
1285 	u32 vsync_reg, vtotal_reg, vblank_reg;
1286 	u32 src_size_reg;
1287 	u32 count, tmp_val[3];
1288 
1289 	/* Assume single pipe */
1290 
1291 #if VERBOSE > 0
1292 	DBG_MSG("intelfbhw_program_mode\n");
1293 #endif
1294 
1295 	/* Disable VGA */
1296 	tmp = INREG(VGACNTRL);
1297 	tmp |= VGA_DISABLE;
1298 	OUTREG(VGACNTRL, tmp);
1299 
1300 	dinfo->pipe = intelfbhw_active_pipe(hw);
1301 
1302 	if (dinfo->pipe == PIPE_B) {
1303 		dpll = &hw->dpll_b;
1304 		fp0 = &hw->fpb0;
1305 		fp1 = &hw->fpb1;
1306 		pipe_conf = &hw->pipe_b_conf;
1307 		hs = &hw->hsync_b;
1308 		hb = &hw->hblank_b;
1309 		ht = &hw->htotal_b;
1310 		vs = &hw->vsync_b;
1311 		vb = &hw->vblank_b;
1312 		vt = &hw->vtotal_b;
1313 		ss = &hw->src_size_b;
1314 		dpll_reg = DPLL_B;
1315 		fp0_reg = FPB0;
1316 		fp1_reg = FPB1;
1317 		pipe_conf_reg = PIPEBCONF;
1318 		pipe_stat_reg = PIPEBSTAT;
1319 		hsync_reg = HSYNC_B;
1320 		htotal_reg = HTOTAL_B;
1321 		hblank_reg = HBLANK_B;
1322 		vsync_reg = VSYNC_B;
1323 		vtotal_reg = VTOTAL_B;
1324 		vblank_reg = VBLANK_B;
1325 		src_size_reg = SRC_SIZE_B;
1326 	} else {
1327 		dpll = &hw->dpll_a;
1328 		fp0 = &hw->fpa0;
1329 		fp1 = &hw->fpa1;
1330 		pipe_conf = &hw->pipe_a_conf;
1331 		hs = &hw->hsync_a;
1332 		hb = &hw->hblank_a;
1333 		ht = &hw->htotal_a;
1334 		vs = &hw->vsync_a;
1335 		vb = &hw->vblank_a;
1336 		vt = &hw->vtotal_a;
1337 		ss = &hw->src_size_a;
1338 		dpll_reg = DPLL_A;
1339 		fp0_reg = FPA0;
1340 		fp1_reg = FPA1;
1341 		pipe_conf_reg = PIPEACONF;
1342 		pipe_stat_reg = PIPEASTAT;
1343 		hsync_reg = HSYNC_A;
1344 		htotal_reg = HTOTAL_A;
1345 		hblank_reg = HBLANK_A;
1346 		vsync_reg = VSYNC_A;
1347 		vtotal_reg = VTOTAL_A;
1348 		vblank_reg = VBLANK_A;
1349 		src_size_reg = SRC_SIZE_A;
1350 	}
1351 
1352 	/* turn off pipe */
1353 	tmp = INREG(pipe_conf_reg);
1354 	tmp &= ~PIPECONF_ENABLE;
1355 	OUTREG(pipe_conf_reg, tmp);
1356 
1357 	count = 0;
1358 	do {
1359 		tmp_val[count % 3] = INREG(PIPEA_DSL);
1360 		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1361 			break;
1362 		count++;
1363 		udelay(1);
1364 		if (count % 200 == 0) {
1365 			tmp = INREG(pipe_conf_reg);
1366 			tmp &= ~PIPECONF_ENABLE;
1367 			OUTREG(pipe_conf_reg, tmp);
1368 		}
1369 	} while (count < 2000);
1370 
1371 	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1372 
1373 	/* Disable planes A and B. */
1374 	tmp = INREG(DSPACNTR);
1375 	tmp &= ~DISPPLANE_PLANE_ENABLE;
1376 	OUTREG(DSPACNTR, tmp);
1377 	tmp = INREG(DSPBCNTR);
1378 	tmp &= ~DISPPLANE_PLANE_ENABLE;
1379 	OUTREG(DSPBCNTR, tmp);
1380 
1381 	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1382 	mdelay(20);
1383 
1384 	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1385 	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1386 	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1387 
1388 	/* Disable Sync */
1389 	tmp = INREG(ADPA);
1390 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1391 	tmp |= ADPA_DPMS_D3;
1392 	OUTREG(ADPA, tmp);
1393 
1394 	/* do some funky magic - xyzzy */
1395 	OUTREG(0x61204, 0xabcd0000);
1396 
1397 	/* turn off PLL */
1398 	tmp = INREG(dpll_reg);
1399 	tmp &= ~DPLL_VCO_ENABLE;
1400 	OUTREG(dpll_reg, tmp);
1401 
1402 	/* Set PLL parameters */
1403 	OUTREG(fp0_reg, *fp0);
1404 	OUTREG(fp1_reg, *fp1);
1405 
1406 	/* Enable PLL */
1407 	OUTREG(dpll_reg, *dpll);
1408 
1409 	/* Set DVOs B/C */
1410 	OUTREG(DVOB, hw->dvob);
1411 	OUTREG(DVOC, hw->dvoc);
1412 
1413 	/* undo funky magic */
1414 	OUTREG(0x61204, 0x00000000);
1415 
1416 	/* Set ADPA */
1417 	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1418 	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1419 
1420 	/* Set pipe parameters */
1421 	OUTREG(hsync_reg, *hs);
1422 	OUTREG(hblank_reg, *hb);
1423 	OUTREG(htotal_reg, *ht);
1424 	OUTREG(vsync_reg, *vs);
1425 	OUTREG(vblank_reg, *vb);
1426 	OUTREG(vtotal_reg, *vt);
1427 	OUTREG(src_size_reg, *ss);
1428 
1429 	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1430 					  FB_VMODE_ODD_FLD_FIRST)) {
1431 	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1432 		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1433 		break;
1434 	case FB_VMODE_INTERLACED: /* even lines first */
1435 		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1436 		break;
1437 	default:		/* non-interlaced */
1438 		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1439 	}
1440 	/* Enable pipe */
1441 	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1442 
1443 	/* Enable sync */
1444 	tmp = INREG(ADPA);
1445 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1446 	tmp |= ADPA_DPMS_D0;
1447 	OUTREG(ADPA, tmp);
1448 
1449 	/* setup display plane */
1450 	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1451 		/*
1452 		 *      i830M errata: the display plane must be enabled
1453 		 *      to allow writes to the other bits in the plane
1454 		 *      control register.
1455 		 */
1456 		tmp = INREG(DSPACNTR);
1457 		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1458 			tmp |= DISPPLANE_PLANE_ENABLE;
1459 			OUTREG(DSPACNTR, tmp);
1460 			OUTREG(DSPACNTR,
1461 			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1462 			mdelay(1);
1463 		}
1464 	}
1465 
1466 	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1467 	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1468 	OUTREG(DSPABASE, hw->disp_a_base);
1469 
1470 	/* Enable plane */
1471 	if (!blank) {
1472 		tmp = INREG(DSPACNTR);
1473 		tmp |= DISPPLANE_PLANE_ENABLE;
1474 		OUTREG(DSPACNTR, tmp);
1475 		OUTREG(DSPABASE, hw->disp_a_base);
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /* forward declarations */
1482 static void refresh_ring(struct intelfb_info *dinfo);
1483 static void reset_state(struct intelfb_info *dinfo);
1484 static void do_flush(struct intelfb_info *dinfo);
1485 
get_ring_space(struct intelfb_info * dinfo)1486 static  u32 get_ring_space(struct intelfb_info *dinfo)
1487 {
1488 	u32 ring_space;
1489 
1490 	if (dinfo->ring_tail >= dinfo->ring_head)
1491 		ring_space = dinfo->ring.size -
1492 			(dinfo->ring_tail - dinfo->ring_head);
1493 	else
1494 		ring_space = dinfo->ring_head - dinfo->ring_tail;
1495 
1496 	if (ring_space > RING_MIN_FREE)
1497 		ring_space -= RING_MIN_FREE;
1498 	else
1499 		ring_space = 0;
1500 
1501 	return ring_space;
1502 }
1503 
wait_ring(struct intelfb_info * dinfo,int n)1504 static int wait_ring(struct intelfb_info *dinfo, int n)
1505 {
1506 	int i = 0;
1507 	unsigned long end;
1508 	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1509 
1510 #if VERBOSE > 0
1511 	DBG_MSG("wait_ring: %d\n", n);
1512 #endif
1513 
1514 	end = jiffies + (HZ * 3);
1515 	while (dinfo->ring_space < n) {
1516 		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1517 		dinfo->ring_space = get_ring_space(dinfo);
1518 
1519 		if (dinfo->ring_head != last_head) {
1520 			end = jiffies + (HZ * 3);
1521 			last_head = dinfo->ring_head;
1522 		}
1523 		i++;
1524 		if (time_before(end, jiffies)) {
1525 			if (!i) {
1526 				/* Try again */
1527 				reset_state(dinfo);
1528 				refresh_ring(dinfo);
1529 				do_flush(dinfo);
1530 				end = jiffies + (HZ * 3);
1531 				i = 1;
1532 			} else {
1533 				WRN_MSG("ring buffer : space: %d wanted %d\n",
1534 					dinfo->ring_space, n);
1535 				WRN_MSG("lockup - turning off hardware "
1536 					"acceleration\n");
1537 				dinfo->ring_lockup = 1;
1538 				break;
1539 			}
1540 		}
1541 		udelay(1);
1542 	}
1543 	return i;
1544 }
1545 
do_flush(struct intelfb_info * dinfo)1546 static void do_flush(struct intelfb_info *dinfo)
1547 {
1548 	START_RING(2);
1549 	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1550 	OUT_RING(MI_NOOP);
1551 	ADVANCE_RING();
1552 }
1553 
intelfbhw_do_sync(struct intelfb_info * dinfo)1554 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1555 {
1556 #if VERBOSE > 0
1557 	DBG_MSG("intelfbhw_do_sync\n");
1558 #endif
1559 
1560 	if (!dinfo->accel)
1561 		return;
1562 
1563 	/*
1564 	 * Send a flush, then wait until the ring is empty.  This is what
1565 	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1566 	 * than the recommended method (both have problems).
1567 	 */
1568 	do_flush(dinfo);
1569 	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1570 	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1571 }
1572 
refresh_ring(struct intelfb_info * dinfo)1573 static void refresh_ring(struct intelfb_info *dinfo)
1574 {
1575 #if VERBOSE > 0
1576 	DBG_MSG("refresh_ring\n");
1577 #endif
1578 
1579 	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1580 	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1581 	dinfo->ring_space = get_ring_space(dinfo);
1582 }
1583 
reset_state(struct intelfb_info * dinfo)1584 static void reset_state(struct intelfb_info *dinfo)
1585 {
1586 	int i;
1587 	u32 tmp;
1588 
1589 #if VERBOSE > 0
1590 	DBG_MSG("reset_state\n");
1591 #endif
1592 
1593 	for (i = 0; i < FENCE_NUM; i++)
1594 		OUTREG(FENCE + (i << 2), 0);
1595 
1596 	/* Flush the ring buffer if it's enabled. */
1597 	tmp = INREG(PRI_RING_LENGTH);
1598 	if (tmp & RING_ENABLE) {
1599 #if VERBOSE > 0
1600 		DBG_MSG("reset_state: ring was enabled\n");
1601 #endif
1602 		refresh_ring(dinfo);
1603 		intelfbhw_do_sync(dinfo);
1604 		DO_RING_IDLE();
1605 	}
1606 
1607 	OUTREG(PRI_RING_LENGTH, 0);
1608 	OUTREG(PRI_RING_HEAD, 0);
1609 	OUTREG(PRI_RING_TAIL, 0);
1610 	OUTREG(PRI_RING_START, 0);
1611 }
1612 
1613 /* Stop the 2D engine, and turn off the ring buffer. */
intelfbhw_2d_stop(struct intelfb_info * dinfo)1614 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1615 {
1616 #if VERBOSE > 0
1617 	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1618 		dinfo->accel, dinfo->ring_active);
1619 #endif
1620 
1621 	if (!dinfo->accel)
1622 		return;
1623 
1624 	dinfo->ring_active = 0;
1625 	reset_state(dinfo);
1626 }
1627 
1628 /*
1629  * Enable the ring buffer, and initialise the 2D engine.
1630  * It is assumed that the graphics engine has been stopped by previously
1631  * calling intelfb_2d_stop().
1632  */
intelfbhw_2d_start(struct intelfb_info * dinfo)1633 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1634 {
1635 #if VERBOSE > 0
1636 	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1637 		dinfo->accel, dinfo->ring_active);
1638 #endif
1639 
1640 	if (!dinfo->accel)
1641 		return;
1642 
1643 	/* Initialise the primary ring buffer. */
1644 	OUTREG(PRI_RING_LENGTH, 0);
1645 	OUTREG(PRI_RING_TAIL, 0);
1646 	OUTREG(PRI_RING_HEAD, 0);
1647 
1648 	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1649 	OUTREG(PRI_RING_LENGTH,
1650 		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1651 		RING_NO_REPORT | RING_ENABLE);
1652 	refresh_ring(dinfo);
1653 	dinfo->ring_active = 1;
1654 }
1655 
1656 /* 2D fillrect (solid fill or invert) */
intelfbhw_do_fillrect(struct intelfb_info * dinfo,u32 x,u32 y,u32 w,u32 h,u32 color,u32 pitch,u32 bpp,u32 rop)1657 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1658 			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1659 {
1660 	u32 br00, br09, br13, br14, br16;
1661 
1662 #if VERBOSE > 0
1663 	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1664 		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1665 #endif
1666 
1667 	br00 = COLOR_BLT_CMD;
1668 	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1669 	br13 = (rop << ROP_SHIFT) | pitch;
1670 	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1671 	br16 = color;
1672 
1673 	switch (bpp) {
1674 	case 8:
1675 		br13 |= COLOR_DEPTH_8;
1676 		break;
1677 	case 16:
1678 		br13 |= COLOR_DEPTH_16;
1679 		break;
1680 	case 32:
1681 		br13 |= COLOR_DEPTH_32;
1682 		br00 |= WRITE_ALPHA | WRITE_RGB;
1683 		break;
1684 	}
1685 
1686 	START_RING(6);
1687 	OUT_RING(br00);
1688 	OUT_RING(br13);
1689 	OUT_RING(br14);
1690 	OUT_RING(br09);
1691 	OUT_RING(br16);
1692 	OUT_RING(MI_NOOP);
1693 	ADVANCE_RING();
1694 
1695 #if VERBOSE > 0
1696 	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1697 		dinfo->ring_tail, dinfo->ring_space);
1698 #endif
1699 }
1700 
1701 void
intelfbhw_do_bitblt(struct intelfb_info * dinfo,u32 curx,u32 cury,u32 dstx,u32 dsty,u32 w,u32 h,u32 pitch,u32 bpp)1702 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1703 		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1704 {
1705 	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1706 
1707 #if VERBOSE > 0
1708 	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1709 		curx, cury, dstx, dsty, w, h, pitch, bpp);
1710 #endif
1711 
1712 	br00 = XY_SRC_COPY_BLT_CMD;
1713 	br09 = dinfo->fb_start;
1714 	br11 = (pitch << PITCH_SHIFT);
1715 	br12 = dinfo->fb_start;
1716 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1717 	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1718 	br23 = ((dstx + w) << WIDTH_SHIFT) |
1719 	       ((dsty + h) << HEIGHT_SHIFT);
1720 	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1721 
1722 	switch (bpp) {
1723 	case 8:
1724 		br13 |= COLOR_DEPTH_8;
1725 		break;
1726 	case 16:
1727 		br13 |= COLOR_DEPTH_16;
1728 		break;
1729 	case 32:
1730 		br13 |= COLOR_DEPTH_32;
1731 		br00 |= WRITE_ALPHA | WRITE_RGB;
1732 		break;
1733 	}
1734 
1735 	START_RING(8);
1736 	OUT_RING(br00);
1737 	OUT_RING(br13);
1738 	OUT_RING(br22);
1739 	OUT_RING(br23);
1740 	OUT_RING(br09);
1741 	OUT_RING(br26);
1742 	OUT_RING(br11);
1743 	OUT_RING(br12);
1744 	ADVANCE_RING();
1745 }
1746 
intelfbhw_do_drawglyph(struct intelfb_info * dinfo,u32 fg,u32 bg,u32 w,u32 h,const u8 * cdat,u32 x,u32 y,u32 pitch,u32 bpp)1747 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1748 			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1749 			   u32 bpp)
1750 {
1751 	int nbytes, ndwords, pad, tmp;
1752 	u32 br00, br09, br13, br18, br19, br22, br23;
1753 	int dat, ix, iy, iw;
1754 	int i, j;
1755 
1756 #if VERBOSE > 0
1757 	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1758 #endif
1759 
1760 	/* size in bytes of a padded scanline */
1761 	nbytes = ROUND_UP_TO(w, 16) / 8;
1762 
1763 	/* Total bytes of padded scanline data to write out. */
1764 	nbytes = nbytes * h;
1765 
1766 	/*
1767 	 * Check if the glyph data exceeds the immediate mode limit.
1768 	 * It would take a large font (1K pixels) to hit this limit.
1769 	 */
1770 	if (nbytes > MAX_MONO_IMM_SIZE)
1771 		return 0;
1772 
1773 	/* Src data is packaged a dword (32-bit) at a time. */
1774 	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1775 
1776 	/*
1777 	 * Ring has to be padded to a quad word. But because the command starts
1778 	   with 7 bytes, pad only if there is an even number of ndwords
1779 	 */
1780 	pad = !(ndwords % 2);
1781 
1782 	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1783 	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1784 	br09 = dinfo->fb_start;
1785 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1786 	br18 = bg;
1787 	br19 = fg;
1788 	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1789 	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1790 
1791 	switch (bpp) {
1792 	case 8:
1793 		br13 |= COLOR_DEPTH_8;
1794 		break;
1795 	case 16:
1796 		br13 |= COLOR_DEPTH_16;
1797 		break;
1798 	case 32:
1799 		br13 |= COLOR_DEPTH_32;
1800 		br00 |= WRITE_ALPHA | WRITE_RGB;
1801 		break;
1802 	}
1803 
1804 	START_RING(8 + ndwords);
1805 	OUT_RING(br00);
1806 	OUT_RING(br13);
1807 	OUT_RING(br22);
1808 	OUT_RING(br23);
1809 	OUT_RING(br09);
1810 	OUT_RING(br18);
1811 	OUT_RING(br19);
1812 	ix = iy = 0;
1813 	iw = ROUND_UP_TO(w, 8) / 8;
1814 	while (ndwords--) {
1815 		dat = 0;
1816 		for (j = 0; j < 2; ++j) {
1817 			for (i = 0; i < 2; ++i) {
1818 				if (ix != iw || i == 0)
1819 					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1820 			}
1821 			if (ix == iw && iy != (h-1)) {
1822 				ix = 0;
1823 				++iy;
1824 			}
1825 		}
1826 		OUT_RING(dat);
1827 	}
1828 	if (pad)
1829 		OUT_RING(MI_NOOP);
1830 	ADVANCE_RING();
1831 
1832 	return 1;
1833 }
1834 
1835 /* HW cursor functions. */
intelfbhw_cursor_init(struct intelfb_info * dinfo)1836 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1837 {
1838 	u32 tmp;
1839 
1840 #if VERBOSE > 0
1841 	DBG_MSG("intelfbhw_cursor_init\n");
1842 #endif
1843 
1844 	if (dinfo->mobile || IS_I9XX(dinfo)) {
1845 		if (!dinfo->cursor.physical)
1846 			return;
1847 		tmp = INREG(CURSOR_A_CONTROL);
1848 		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1849 			 CURSOR_MEM_TYPE_LOCAL |
1850 			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1851 		tmp |= CURSOR_MODE_DISABLE;
1852 		OUTREG(CURSOR_A_CONTROL, tmp);
1853 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1854 	} else {
1855 		tmp = INREG(CURSOR_CONTROL);
1856 		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1857 			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1858 		tmp |= CURSOR_FORMAT_3C;
1859 		OUTREG(CURSOR_CONTROL, tmp);
1860 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1861 		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1862 		      (64 << CURSOR_SIZE_V_SHIFT);
1863 		OUTREG(CURSOR_SIZE, tmp);
1864 	}
1865 }
1866 
intelfbhw_cursor_hide(struct intelfb_info * dinfo)1867 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1868 {
1869 	u32 tmp;
1870 
1871 #if VERBOSE > 0
1872 	DBG_MSG("intelfbhw_cursor_hide\n");
1873 #endif
1874 
1875 	dinfo->cursor_on = 0;
1876 	if (dinfo->mobile || IS_I9XX(dinfo)) {
1877 		if (!dinfo->cursor.physical)
1878 			return;
1879 		tmp = INREG(CURSOR_A_CONTROL);
1880 		tmp &= ~CURSOR_MODE_MASK;
1881 		tmp |= CURSOR_MODE_DISABLE;
1882 		OUTREG(CURSOR_A_CONTROL, tmp);
1883 		/* Flush changes */
1884 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1885 	} else {
1886 		tmp = INREG(CURSOR_CONTROL);
1887 		tmp &= ~CURSOR_ENABLE;
1888 		OUTREG(CURSOR_CONTROL, tmp);
1889 	}
1890 }
1891 
intelfbhw_cursor_show(struct intelfb_info * dinfo)1892 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1893 {
1894 	u32 tmp;
1895 
1896 #if VERBOSE > 0
1897 	DBG_MSG("intelfbhw_cursor_show\n");
1898 #endif
1899 
1900 	dinfo->cursor_on = 1;
1901 
1902 	if (dinfo->cursor_blanked)
1903 		return;
1904 
1905 	if (dinfo->mobile || IS_I9XX(dinfo)) {
1906 		if (!dinfo->cursor.physical)
1907 			return;
1908 		tmp = INREG(CURSOR_A_CONTROL);
1909 		tmp &= ~CURSOR_MODE_MASK;
1910 		tmp |= CURSOR_MODE_64_4C_AX;
1911 		OUTREG(CURSOR_A_CONTROL, tmp);
1912 		/* Flush changes */
1913 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1914 	} else {
1915 		tmp = INREG(CURSOR_CONTROL);
1916 		tmp |= CURSOR_ENABLE;
1917 		OUTREG(CURSOR_CONTROL, tmp);
1918 	}
1919 }
1920 
intelfbhw_cursor_setpos(struct intelfb_info * dinfo,int x,int y)1921 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1922 {
1923 	u32 tmp;
1924 
1925 #if VERBOSE > 0
1926 	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1927 #endif
1928 
1929 	/*
1930 	 * Sets the position. The coordinates are assumed to already
1931 	 * have any offset adjusted. Assume that the cursor is never
1932 	 * completely off-screen, and that x, y are always >= 0.
1933 	 */
1934 
1935 	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1936 	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1937 	OUTREG(CURSOR_A_POSITION, tmp);
1938 
1939 	if (IS_I9XX(dinfo))
1940 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1941 }
1942 
intelfbhw_cursor_setcolor(struct intelfb_info * dinfo,u32 bg,u32 fg)1943 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1944 {
1945 #if VERBOSE > 0
1946 	DBG_MSG("intelfbhw_cursor_setcolor\n");
1947 #endif
1948 
1949 	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1950 	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1951 	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1952 	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1953 }
1954 
intelfbhw_cursor_load(struct intelfb_info * dinfo,int width,int height,u8 * data)1955 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1956 			   u8 *data)
1957 {
1958 	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1959 	int i, j, w = width / 8;
1960 	int mod = width % 8, t_mask, d_mask;
1961 
1962 #if VERBOSE > 0
1963 	DBG_MSG("intelfbhw_cursor_load\n");
1964 #endif
1965 
1966 	if (!dinfo->cursor.virtual)
1967 		return;
1968 
1969 	t_mask = 0xff >> mod;
1970 	d_mask = ~(0xff >> mod);
1971 	for (i = height; i--; ) {
1972 		for (j = 0; j < w; j++) {
1973 			writeb(0x00, addr + j);
1974 			writeb(*(data++), addr + j+8);
1975 		}
1976 		if (mod) {
1977 			writeb(t_mask, addr + j);
1978 			writeb(*(data++) & d_mask, addr + j+8);
1979 		}
1980 		addr += 16;
1981 	}
1982 }
1983 
intelfbhw_cursor_reset(struct intelfb_info * dinfo)1984 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1985 {
1986 	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1987 	int i, j;
1988 
1989 #if VERBOSE > 0
1990 	DBG_MSG("intelfbhw_cursor_reset\n");
1991 #endif
1992 
1993 	if (!dinfo->cursor.virtual)
1994 		return;
1995 
1996 	for (i = 64; i--; ) {
1997 		for (j = 0; j < 8; j++) {
1998 			writeb(0xff, addr + j+0);
1999 			writeb(0x00, addr + j+8);
2000 		}
2001 		addr += 16;
2002 	}
2003 }
2004 
intelfbhw_irq(int irq,void * dev_id)2005 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2006 {
2007 	u16 tmp;
2008 	struct intelfb_info *dinfo = dev_id;
2009 
2010 	spin_lock(&dinfo->int_lock);
2011 
2012 	tmp = INREG16(IIR);
2013 	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2014 		tmp &= PIPE_A_EVENT_INTERRUPT;
2015 	else
2016 		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2017 
2018 	if (tmp == 0) {
2019 		spin_unlock(&dinfo->int_lock);
2020 		return IRQ_RETVAL(0); /* not us */
2021 	}
2022 
2023 	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2024 	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2025 
2026 	OUTREG16(IIR, tmp);
2027 	if (dinfo->vsync.pan_display) {
2028 		dinfo->vsync.pan_display = 0;
2029 		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2030 	}
2031 
2032 	dinfo->vsync.count++;
2033 	wake_up_interruptible(&dinfo->vsync.wait);
2034 
2035 	spin_unlock(&dinfo->int_lock);
2036 
2037 	return IRQ_RETVAL(1);
2038 }
2039 
intelfbhw_enable_irq(struct intelfb_info * dinfo)2040 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2041 {
2042 	u16 tmp;
2043 	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2044 		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2045 				"intelfb", dinfo)) {
2046 			clear_bit(0, &dinfo->irq_flags);
2047 			return -EINVAL;
2048 		}
2049 
2050 		spin_lock_irq(&dinfo->int_lock);
2051 		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2052 		OUTREG16(IMR, 0);
2053 	} else
2054 		spin_lock_irq(&dinfo->int_lock);
2055 
2056 	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2057 		tmp = PIPE_A_EVENT_INTERRUPT;
2058 	else
2059 		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2060 	if (tmp != INREG16(IER)) {
2061 		DBG_MSG("changing IER to 0x%X\n", tmp);
2062 		OUTREG16(IER, tmp);
2063 	}
2064 
2065 	spin_unlock_irq(&dinfo->int_lock);
2066 	return 0;
2067 }
2068 
intelfbhw_disable_irq(struct intelfb_info * dinfo)2069 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2070 {
2071 	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2072 		if (dinfo->vsync.pan_display) {
2073 			dinfo->vsync.pan_display = 0;
2074 			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2075 		}
2076 		spin_lock_irq(&dinfo->int_lock);
2077 		OUTREG16(HWSTAM, 0xffff);
2078 		OUTREG16(IMR, 0xffff);
2079 		OUTREG16(IER, 0x0);
2080 
2081 		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2082 		spin_unlock_irq(&dinfo->int_lock);
2083 
2084 		free_irq(dinfo->pdev->irq, dinfo);
2085 	}
2086 }
2087 
intelfbhw_wait_for_vsync(struct intelfb_info * dinfo,u32 pipe)2088 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2089 {
2090 	struct intelfb_vsync *vsync;
2091 	unsigned int count;
2092 	int ret;
2093 
2094 	switch (pipe) {
2095 		case 0:
2096 			vsync = &dinfo->vsync;
2097 			break;
2098 		default:
2099 			return -ENODEV;
2100 	}
2101 
2102 	ret = intelfbhw_enable_irq(dinfo);
2103 	if (ret)
2104 		return ret;
2105 
2106 	count = vsync->count;
2107 	ret = wait_event_interruptible_timeout(vsync->wait,
2108 					       count != vsync->count, HZ / 10);
2109 	if (ret < 0)
2110 		return ret;
2111 	if (ret == 0) {
2112 		DBG_MSG("wait_for_vsync timed out!\n");
2113 		return -ETIMEDOUT;
2114 	}
2115 
2116 	return 0;
2117 }
2118