1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34
35 #define MAX_KEY_LEN 100
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)60 static bool blkcg_policy_enabled(struct request_queue *q,
61 const struct blkcg_policy *pol)
62 {
63 return pol && test_bit(pol->plid, q->blkcg_pols);
64 }
65
66 /**
67 * blkg_free - free a blkg
68 * @blkg: blkg to free
69 *
70 * Free @blkg which may be partially allocated.
71 */
blkg_free(struct blkcg_gq * blkg)72 static void blkg_free(struct blkcg_gq *blkg)
73 {
74 int i;
75
76 if (!blkg)
77 return;
78
79 for (i = 0; i < BLKCG_MAX_POLS; i++)
80 if (blkg->pd[i])
81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82
83 free_percpu(blkg->iostat_cpu);
84 percpu_ref_exit(&blkg->refcnt);
85 kfree(blkg);
86 }
87
__blkg_release(struct rcu_head * rcu)88 static void __blkg_release(struct rcu_head *rcu)
89 {
90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91
92 WARN_ON(!bio_list_empty(&blkg->async_bios));
93
94 /* release the blkcg and parent blkg refs this blkg has been holding */
95 css_put(&blkg->blkcg->css);
96 if (blkg->parent)
97 blkg_put(blkg->parent);
98 blkg_free(blkg);
99 }
100
101 /*
102 * A group is RCU protected, but having an rcu lock does not mean that one
103 * can access all the fields of blkg and assume these are valid. For
104 * example, don't try to follow throtl_data and request queue links.
105 *
106 * Having a reference to blkg under an rcu allows accesses to only values
107 * local to groups like group stats and group rate limits.
108 */
blkg_release(struct percpu_ref * ref)109 static void blkg_release(struct percpu_ref *ref)
110 {
111 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
112
113 call_rcu(&blkg->rcu_head, __blkg_release);
114 }
115
blkg_async_bio_workfn(struct work_struct * work)116 static void blkg_async_bio_workfn(struct work_struct *work)
117 {
118 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119 async_bio_work);
120 struct bio_list bios = BIO_EMPTY_LIST;
121 struct bio *bio;
122 struct blk_plug plug;
123 bool need_plug = false;
124
125 /* as long as there are pending bios, @blkg can't go away */
126 spin_lock_bh(&blkg->async_bio_lock);
127 bio_list_merge(&bios, &blkg->async_bios);
128 bio_list_init(&blkg->async_bios);
129 spin_unlock_bh(&blkg->async_bio_lock);
130
131 /* start plug only when bio_list contains at least 2 bios */
132 if (bios.head && bios.head->bi_next) {
133 need_plug = true;
134 blk_start_plug(&plug);
135 }
136 while ((bio = bio_list_pop(&bios)))
137 submit_bio(bio);
138 if (need_plug)
139 blk_finish_plug(&plug);
140 }
141
142 /**
143 * blkg_alloc - allocate a blkg
144 * @blkcg: block cgroup the new blkg is associated with
145 * @q: request_queue the new blkg is associated with
146 * @gfp_mask: allocation mask to use
147 *
148 * Allocate a new blkg assocating @blkcg and @q.
149 */
blkg_alloc(struct blkcg * blkcg,struct request_queue * q,gfp_t gfp_mask)150 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
151 gfp_t gfp_mask)
152 {
153 struct blkcg_gq *blkg;
154 int i, cpu;
155
156 /* alloc and init base part */
157 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
158 if (!blkg)
159 return NULL;
160
161 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
162 goto err_free;
163
164 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
165 if (!blkg->iostat_cpu)
166 goto err_free;
167
168 blkg->q = q;
169 INIT_LIST_HEAD(&blkg->q_node);
170 spin_lock_init(&blkg->async_bio_lock);
171 bio_list_init(&blkg->async_bios);
172 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
173 blkg->blkcg = blkcg;
174
175 u64_stats_init(&blkg->iostat.sync);
176 for_each_possible_cpu(cpu)
177 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
178
179 for (i = 0; i < BLKCG_MAX_POLS; i++) {
180 struct blkcg_policy *pol = blkcg_policy[i];
181 struct blkg_policy_data *pd;
182
183 if (!blkcg_policy_enabled(q, pol))
184 continue;
185
186 /* alloc per-policy data and attach it to blkg */
187 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
188 if (!pd)
189 goto err_free;
190
191 blkg->pd[i] = pd;
192 pd->blkg = blkg;
193 pd->plid = i;
194 }
195
196 return blkg;
197
198 err_free:
199 blkg_free(blkg);
200 return NULL;
201 }
202
blkg_lookup_slowpath(struct blkcg * blkcg,struct request_queue * q,bool update_hint)203 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
204 struct request_queue *q, bool update_hint)
205 {
206 struct blkcg_gq *blkg;
207
208 /*
209 * Hint didn't match. Look up from the radix tree. Note that the
210 * hint can only be updated under queue_lock as otherwise @blkg
211 * could have already been removed from blkg_tree. The caller is
212 * responsible for grabbing queue_lock if @update_hint.
213 */
214 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
215 if (blkg && blkg->q == q) {
216 if (update_hint) {
217 lockdep_assert_held(&q->queue_lock);
218 rcu_assign_pointer(blkcg->blkg_hint, blkg);
219 }
220 return blkg;
221 }
222
223 return NULL;
224 }
225 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
226
227 /*
228 * If @new_blkg is %NULL, this function tries to allocate a new one as
229 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
230 */
blkg_create(struct blkcg * blkcg,struct request_queue * q,struct blkcg_gq * new_blkg)231 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
232 struct request_queue *q,
233 struct blkcg_gq *new_blkg)
234 {
235 struct blkcg_gq *blkg;
236 int i, ret;
237
238 WARN_ON_ONCE(!rcu_read_lock_held());
239 lockdep_assert_held(&q->queue_lock);
240
241 /* request_queue is dying, do not create/recreate a blkg */
242 if (blk_queue_dying(q)) {
243 ret = -ENODEV;
244 goto err_free_blkg;
245 }
246
247 /* blkg holds a reference to blkcg */
248 if (!css_tryget_online(&blkcg->css)) {
249 ret = -ENODEV;
250 goto err_free_blkg;
251 }
252
253 /* allocate */
254 if (!new_blkg) {
255 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
256 if (unlikely(!new_blkg)) {
257 ret = -ENOMEM;
258 goto err_put_css;
259 }
260 }
261 blkg = new_blkg;
262
263 /* link parent */
264 if (blkcg_parent(blkcg)) {
265 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
266 if (WARN_ON_ONCE(!blkg->parent)) {
267 ret = -ENODEV;
268 goto err_put_css;
269 }
270 blkg_get(blkg->parent);
271 }
272
273 /* invoke per-policy init */
274 for (i = 0; i < BLKCG_MAX_POLS; i++) {
275 struct blkcg_policy *pol = blkcg_policy[i];
276
277 if (blkg->pd[i] && pol->pd_init_fn)
278 pol->pd_init_fn(blkg->pd[i]);
279 }
280
281 /* insert */
282 spin_lock(&blkcg->lock);
283 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
284 if (likely(!ret)) {
285 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
286 list_add(&blkg->q_node, &q->blkg_list);
287
288 for (i = 0; i < BLKCG_MAX_POLS; i++) {
289 struct blkcg_policy *pol = blkcg_policy[i];
290
291 if (blkg->pd[i] && pol->pd_online_fn)
292 pol->pd_online_fn(blkg->pd[i]);
293 }
294 }
295 blkg->online = true;
296 spin_unlock(&blkcg->lock);
297
298 if (!ret)
299 return blkg;
300
301 /* @blkg failed fully initialized, use the usual release path */
302 blkg_put(blkg);
303 return ERR_PTR(ret);
304
305 err_put_css:
306 css_put(&blkcg->css);
307 err_free_blkg:
308 blkg_free(new_blkg);
309 return ERR_PTR(ret);
310 }
311
312 /**
313 * blkg_lookup_create - lookup blkg, try to create one if not there
314 * @blkcg: blkcg of interest
315 * @q: request_queue of interest
316 *
317 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
318 * create one. blkg creation is performed recursively from blkcg_root such
319 * that all non-root blkg's have access to the parent blkg. This function
320 * should be called under RCU read lock and takes @q->queue_lock.
321 *
322 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
323 * down from root.
324 */
blkg_lookup_create(struct blkcg * blkcg,struct request_queue * q)325 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
326 struct request_queue *q)
327 {
328 struct blkcg_gq *blkg;
329 unsigned long flags;
330
331 WARN_ON_ONCE(!rcu_read_lock_held());
332
333 blkg = blkg_lookup(blkcg, q);
334 if (blkg)
335 return blkg;
336
337 spin_lock_irqsave(&q->queue_lock, flags);
338 blkg = __blkg_lookup(blkcg, q, true);
339 if (blkg)
340 goto found;
341
342 /*
343 * Create blkgs walking down from blkcg_root to @blkcg, so that all
344 * non-root blkgs have access to their parents. Returns the closest
345 * blkg to the intended blkg should blkg_create() fail.
346 */
347 while (true) {
348 struct blkcg *pos = blkcg;
349 struct blkcg *parent = blkcg_parent(blkcg);
350 struct blkcg_gq *ret_blkg = q->root_blkg;
351
352 while (parent) {
353 blkg = __blkg_lookup(parent, q, false);
354 if (blkg) {
355 /* remember closest blkg */
356 ret_blkg = blkg;
357 break;
358 }
359 pos = parent;
360 parent = blkcg_parent(parent);
361 }
362
363 blkg = blkg_create(pos, q, NULL);
364 if (IS_ERR(blkg)) {
365 blkg = ret_blkg;
366 break;
367 }
368 if (pos == blkcg)
369 break;
370 }
371
372 found:
373 spin_unlock_irqrestore(&q->queue_lock, flags);
374 return blkg;
375 }
376
blkg_destroy(struct blkcg_gq * blkg)377 static void blkg_destroy(struct blkcg_gq *blkg)
378 {
379 struct blkcg *blkcg = blkg->blkcg;
380 int i;
381
382 lockdep_assert_held(&blkg->q->queue_lock);
383 lockdep_assert_held(&blkcg->lock);
384
385 /* Something wrong if we are trying to remove same group twice */
386 WARN_ON_ONCE(list_empty(&blkg->q_node));
387 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
388
389 for (i = 0; i < BLKCG_MAX_POLS; i++) {
390 struct blkcg_policy *pol = blkcg_policy[i];
391
392 if (blkg->pd[i] && pol->pd_offline_fn)
393 pol->pd_offline_fn(blkg->pd[i]);
394 }
395
396 blkg->online = false;
397
398 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
399 list_del_init(&blkg->q_node);
400 hlist_del_init_rcu(&blkg->blkcg_node);
401
402 /*
403 * Both setting lookup hint to and clearing it from @blkg are done
404 * under queue_lock. If it's not pointing to @blkg now, it never
405 * will. Hint assignment itself can race safely.
406 */
407 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
408 rcu_assign_pointer(blkcg->blkg_hint, NULL);
409
410 /*
411 * Put the reference taken at the time of creation so that when all
412 * queues are gone, group can be destroyed.
413 */
414 percpu_ref_kill(&blkg->refcnt);
415 }
416
417 /**
418 * blkg_destroy_all - destroy all blkgs associated with a request_queue
419 * @q: request_queue of interest
420 *
421 * Destroy all blkgs associated with @q.
422 */
blkg_destroy_all(struct request_queue * q)423 static void blkg_destroy_all(struct request_queue *q)
424 {
425 struct blkcg_gq *blkg, *n;
426
427 spin_lock_irq(&q->queue_lock);
428 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
429 struct blkcg *blkcg = blkg->blkcg;
430
431 spin_lock(&blkcg->lock);
432 blkg_destroy(blkg);
433 spin_unlock(&blkcg->lock);
434 }
435
436 q->root_blkg = NULL;
437 spin_unlock_irq(&q->queue_lock);
438 }
439
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)440 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
441 struct cftype *cftype, u64 val)
442 {
443 struct blkcg *blkcg = css_to_blkcg(css);
444 struct blkcg_gq *blkg;
445 int i, cpu;
446
447 mutex_lock(&blkcg_pol_mutex);
448 spin_lock_irq(&blkcg->lock);
449
450 /*
451 * Note that stat reset is racy - it doesn't synchronize against
452 * stat updates. This is a debug feature which shouldn't exist
453 * anyway. If you get hit by a race, retry.
454 */
455 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
456 for_each_possible_cpu(cpu) {
457 struct blkg_iostat_set *bis =
458 per_cpu_ptr(blkg->iostat_cpu, cpu);
459 memset(bis, 0, sizeof(*bis));
460 }
461 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
462
463 for (i = 0; i < BLKCG_MAX_POLS; i++) {
464 struct blkcg_policy *pol = blkcg_policy[i];
465
466 if (blkg->pd[i] && pol->pd_reset_stats_fn)
467 pol->pd_reset_stats_fn(blkg->pd[i]);
468 }
469 }
470
471 spin_unlock_irq(&blkcg->lock);
472 mutex_unlock(&blkcg_pol_mutex);
473 return 0;
474 }
475
blkg_dev_name(struct blkcg_gq * blkg)476 const char *blkg_dev_name(struct blkcg_gq *blkg)
477 {
478 /* some drivers (floppy) instantiate a queue w/o disk registered */
479 if (blkg->q->backing_dev_info->dev)
480 return bdi_dev_name(blkg->q->backing_dev_info);
481 return NULL;
482 }
483
484 /**
485 * blkcg_print_blkgs - helper for printing per-blkg data
486 * @sf: seq_file to print to
487 * @blkcg: blkcg of interest
488 * @prfill: fill function to print out a blkg
489 * @pol: policy in question
490 * @data: data to be passed to @prfill
491 * @show_total: to print out sum of prfill return values or not
492 *
493 * This function invokes @prfill on each blkg of @blkcg if pd for the
494 * policy specified by @pol exists. @prfill is invoked with @sf, the
495 * policy data and @data and the matching queue lock held. If @show_total
496 * is %true, the sum of the return values from @prfill is printed with
497 * "Total" label at the end.
498 *
499 * This is to be used to construct print functions for
500 * cftype->read_seq_string method.
501 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)502 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
503 u64 (*prfill)(struct seq_file *,
504 struct blkg_policy_data *, int),
505 const struct blkcg_policy *pol, int data,
506 bool show_total)
507 {
508 struct blkcg_gq *blkg;
509 u64 total = 0;
510
511 rcu_read_lock();
512 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
513 spin_lock_irq(&blkg->q->queue_lock);
514 if (blkcg_policy_enabled(blkg->q, pol))
515 total += prfill(sf, blkg->pd[pol->plid], data);
516 spin_unlock_irq(&blkg->q->queue_lock);
517 }
518 rcu_read_unlock();
519
520 if (show_total)
521 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
522 }
523 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
524
525 /**
526 * __blkg_prfill_u64 - prfill helper for a single u64 value
527 * @sf: seq_file to print to
528 * @pd: policy private data of interest
529 * @v: value to print
530 *
531 * Print @v to @sf for the device assocaited with @pd.
532 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)533 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
534 {
535 const char *dname = blkg_dev_name(pd->blkg);
536
537 if (!dname)
538 return 0;
539
540 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
541 return v;
542 }
543 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
544
545 /* Performs queue bypass and policy enabled checks then looks up blkg. */
blkg_lookup_check(struct blkcg * blkcg,const struct blkcg_policy * pol,struct request_queue * q)546 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
547 const struct blkcg_policy *pol,
548 struct request_queue *q)
549 {
550 WARN_ON_ONCE(!rcu_read_lock_held());
551 lockdep_assert_held(&q->queue_lock);
552
553 if (!blkcg_policy_enabled(q, pol))
554 return ERR_PTR(-EOPNOTSUPP);
555 return __blkg_lookup(blkcg, q, true /* update_hint */);
556 }
557
558 /**
559 * blkg_conf_prep - parse and prepare for per-blkg config update
560 * @inputp: input string pointer
561 *
562 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
563 * from @input and get and return the matching gendisk. *@inputp is
564 * updated to point past the device node prefix. Returns an ERR_PTR()
565 * value on error.
566 *
567 * Use this function iff blkg_conf_prep() can't be used for some reason.
568 */
blkcg_conf_get_disk(char ** inputp)569 struct gendisk *blkcg_conf_get_disk(char **inputp)
570 {
571 char *input = *inputp;
572 unsigned int major, minor;
573 struct gendisk *disk;
574 int key_len, part;
575
576 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
577 return ERR_PTR(-EINVAL);
578
579 input += key_len;
580 if (!isspace(*input))
581 return ERR_PTR(-EINVAL);
582 input = skip_spaces(input);
583
584 disk = get_gendisk(MKDEV(major, minor), &part);
585 if (!disk)
586 return ERR_PTR(-ENODEV);
587 if (part) {
588 put_disk_and_module(disk);
589 return ERR_PTR(-ENODEV);
590 }
591
592 *inputp = input;
593 return disk;
594 }
595
596 /**
597 * blkg_conf_prep - parse and prepare for per-blkg config update
598 * @blkcg: target block cgroup
599 * @pol: target policy
600 * @input: input string
601 * @ctx: blkg_conf_ctx to be filled
602 *
603 * Parse per-blkg config update from @input and initialize @ctx with the
604 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
605 * part of @input following MAJ:MIN. This function returns with RCU read
606 * lock and queue lock held and must be paired with blkg_conf_finish().
607 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,char * input,struct blkg_conf_ctx * ctx)608 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
609 char *input, struct blkg_conf_ctx *ctx)
610 __acquires(rcu) __acquires(&disk->queue->queue_lock)
611 {
612 struct gendisk *disk;
613 struct request_queue *q;
614 struct blkcg_gq *blkg;
615 int ret;
616
617 disk = blkcg_conf_get_disk(&input);
618 if (IS_ERR(disk))
619 return PTR_ERR(disk);
620
621 q = disk->queue;
622
623 /*
624 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
625 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
626 */
627 ret = blk_queue_enter(q, 0);
628 if (ret)
629 goto fail;
630
631 rcu_read_lock();
632 spin_lock_irq(&q->queue_lock);
633
634 blkg = blkg_lookup_check(blkcg, pol, q);
635 if (IS_ERR(blkg)) {
636 ret = PTR_ERR(blkg);
637 goto fail_unlock;
638 }
639
640 if (blkg)
641 goto success;
642
643 /*
644 * Create blkgs walking down from blkcg_root to @blkcg, so that all
645 * non-root blkgs have access to their parents.
646 */
647 while (true) {
648 struct blkcg *pos = blkcg;
649 struct blkcg *parent;
650 struct blkcg_gq *new_blkg;
651
652 parent = blkcg_parent(blkcg);
653 while (parent && !__blkg_lookup(parent, q, false)) {
654 pos = parent;
655 parent = blkcg_parent(parent);
656 }
657
658 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
659 spin_unlock_irq(&q->queue_lock);
660 rcu_read_unlock();
661
662 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
663 if (unlikely(!new_blkg)) {
664 ret = -ENOMEM;
665 goto fail_exit_queue;
666 }
667
668 if (radix_tree_preload(GFP_KERNEL)) {
669 blkg_free(new_blkg);
670 ret = -ENOMEM;
671 goto fail_exit_queue;
672 }
673
674 rcu_read_lock();
675 spin_lock_irq(&q->queue_lock);
676
677 blkg = blkg_lookup_check(pos, pol, q);
678 if (IS_ERR(blkg)) {
679 ret = PTR_ERR(blkg);
680 blkg_free(new_blkg);
681 goto fail_preloaded;
682 }
683
684 if (blkg) {
685 blkg_free(new_blkg);
686 } else {
687 blkg = blkg_create(pos, q, new_blkg);
688 if (IS_ERR(blkg)) {
689 ret = PTR_ERR(blkg);
690 goto fail_preloaded;
691 }
692 }
693
694 radix_tree_preload_end();
695
696 if (pos == blkcg)
697 goto success;
698 }
699 success:
700 blk_queue_exit(q);
701 ctx->disk = disk;
702 ctx->blkg = blkg;
703 ctx->body = input;
704 return 0;
705
706 fail_preloaded:
707 radix_tree_preload_end();
708 fail_unlock:
709 spin_unlock_irq(&q->queue_lock);
710 rcu_read_unlock();
711 fail_exit_queue:
712 blk_queue_exit(q);
713 fail:
714 put_disk_and_module(disk);
715 /*
716 * If queue was bypassing, we should retry. Do so after a
717 * short msleep(). It isn't strictly necessary but queue
718 * can be bypassing for some time and it's always nice to
719 * avoid busy looping.
720 */
721 if (ret == -EBUSY) {
722 msleep(10);
723 ret = restart_syscall();
724 }
725 return ret;
726 }
727 EXPORT_SYMBOL_GPL(blkg_conf_prep);
728
729 /**
730 * blkg_conf_finish - finish up per-blkg config update
731 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
732 *
733 * Finish up after per-blkg config update. This function must be paired
734 * with blkg_conf_prep().
735 */
blkg_conf_finish(struct blkg_conf_ctx * ctx)736 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
737 __releases(&ctx->disk->queue->queue_lock) __releases(rcu)
738 {
739 spin_unlock_irq(&ctx->disk->queue->queue_lock);
740 rcu_read_unlock();
741 put_disk_and_module(ctx->disk);
742 }
743 EXPORT_SYMBOL_GPL(blkg_conf_finish);
744
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)745 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
746 {
747 int i;
748
749 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
750 dst->bytes[i] = src->bytes[i];
751 dst->ios[i] = src->ios[i];
752 }
753 }
754
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)755 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
756 {
757 int i;
758
759 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
760 dst->bytes[i] += src->bytes[i];
761 dst->ios[i] += src->ios[i];
762 }
763 }
764
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)765 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
766 {
767 int i;
768
769 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
770 dst->bytes[i] -= src->bytes[i];
771 dst->ios[i] -= src->ios[i];
772 }
773 }
774
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)775 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
776 {
777 struct blkcg *blkcg = css_to_blkcg(css);
778 struct blkcg_gq *blkg;
779
780 rcu_read_lock();
781
782 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
783 struct blkcg_gq *parent = blkg->parent;
784 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
785 struct blkg_iostat cur, delta;
786 unsigned int seq;
787
788 /* fetch the current per-cpu values */
789 do {
790 seq = u64_stats_fetch_begin(&bisc->sync);
791 blkg_iostat_set(&cur, &bisc->cur);
792 } while (u64_stats_fetch_retry(&bisc->sync, seq));
793
794 /* propagate percpu delta to global */
795 u64_stats_update_begin(&blkg->iostat.sync);
796 blkg_iostat_set(&delta, &cur);
797 blkg_iostat_sub(&delta, &bisc->last);
798 blkg_iostat_add(&blkg->iostat.cur, &delta);
799 blkg_iostat_add(&bisc->last, &delta);
800 u64_stats_update_end(&blkg->iostat.sync);
801
802 /* propagate global delta to parent */
803 if (parent) {
804 u64_stats_update_begin(&parent->iostat.sync);
805 blkg_iostat_set(&delta, &blkg->iostat.cur);
806 blkg_iostat_sub(&delta, &blkg->iostat.last);
807 blkg_iostat_add(&parent->iostat.cur, &delta);
808 blkg_iostat_add(&blkg->iostat.last, &delta);
809 u64_stats_update_end(&parent->iostat.sync);
810 }
811 }
812
813 rcu_read_unlock();
814 }
815
816 /*
817 * The rstat algorithms intentionally don't handle the root cgroup to avoid
818 * incurring overhead when no cgroups are defined. For that reason,
819 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
820 * iostat in the root cgroup's blkcg_gq.
821 *
822 * However, we would like to re-use the printing code between the root and
823 * non-root cgroups to the extent possible. For that reason, we simulate
824 * flushing the root cgroup's stats by explicitly filling in the iostat
825 * with disk level statistics.
826 */
blkcg_fill_root_iostats(void)827 static void blkcg_fill_root_iostats(void)
828 {
829 struct class_dev_iter iter;
830 struct device *dev;
831
832 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
833 while ((dev = class_dev_iter_next(&iter))) {
834 struct gendisk *disk = dev_to_disk(dev);
835 struct hd_struct *part = disk_get_part(disk, 0);
836 struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue);
837 struct blkg_iostat tmp;
838 int cpu;
839
840 memset(&tmp, 0, sizeof(tmp));
841 for_each_possible_cpu(cpu) {
842 struct disk_stats *cpu_dkstats;
843
844 cpu_dkstats = per_cpu_ptr(part->dkstats, cpu);
845 tmp.ios[BLKG_IOSTAT_READ] +=
846 cpu_dkstats->ios[STAT_READ];
847 tmp.ios[BLKG_IOSTAT_WRITE] +=
848 cpu_dkstats->ios[STAT_WRITE];
849 tmp.ios[BLKG_IOSTAT_DISCARD] +=
850 cpu_dkstats->ios[STAT_DISCARD];
851 // convert sectors to bytes
852 tmp.bytes[BLKG_IOSTAT_READ] +=
853 cpu_dkstats->sectors[STAT_READ] << 9;
854 tmp.bytes[BLKG_IOSTAT_WRITE] +=
855 cpu_dkstats->sectors[STAT_WRITE] << 9;
856 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
857 cpu_dkstats->sectors[STAT_DISCARD] << 9;
858
859 u64_stats_update_begin(&blkg->iostat.sync);
860 blkg_iostat_set(&blkg->iostat.cur, &tmp);
861 u64_stats_update_end(&blkg->iostat.sync);
862 }
863 disk_put_part(part);
864 }
865 }
866
blkcg_print_stat(struct seq_file * sf,void * v)867 static int blkcg_print_stat(struct seq_file *sf, void *v)
868 {
869 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
870 struct blkcg_gq *blkg;
871
872 if (!seq_css(sf)->parent)
873 blkcg_fill_root_iostats();
874 else
875 cgroup_rstat_flush(blkcg->css.cgroup);
876
877 rcu_read_lock();
878
879 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
880 struct blkg_iostat_set *bis = &blkg->iostat;
881 const char *dname;
882 char *buf;
883 u64 rbytes, wbytes, rios, wios, dbytes, dios;
884 size_t size = seq_get_buf(sf, &buf), off = 0;
885 int i;
886 bool has_stats = false;
887 unsigned seq;
888
889 spin_lock_irq(&blkg->q->queue_lock);
890
891 if (!blkg->online)
892 goto skip;
893
894 dname = blkg_dev_name(blkg);
895 if (!dname)
896 goto skip;
897
898 /*
899 * Hooray string manipulation, count is the size written NOT
900 * INCLUDING THE \0, so size is now count+1 less than what we
901 * had before, but we want to start writing the next bit from
902 * the \0 so we only add count to buf.
903 */
904 off += scnprintf(buf+off, size-off, "%s ", dname);
905
906 do {
907 seq = u64_stats_fetch_begin(&bis->sync);
908
909 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
910 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
911 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
912 rios = bis->cur.ios[BLKG_IOSTAT_READ];
913 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
914 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
915 } while (u64_stats_fetch_retry(&bis->sync, seq));
916
917 if (rbytes || wbytes || rios || wios) {
918 has_stats = true;
919 off += scnprintf(buf+off, size-off,
920 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
921 rbytes, wbytes, rios, wios,
922 dbytes, dios);
923 }
924
925 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
926 has_stats = true;
927 off += scnprintf(buf+off, size-off,
928 " use_delay=%d delay_nsec=%llu",
929 atomic_read(&blkg->use_delay),
930 (unsigned long long)atomic64_read(&blkg->delay_nsec));
931 }
932
933 for (i = 0; i < BLKCG_MAX_POLS; i++) {
934 struct blkcg_policy *pol = blkcg_policy[i];
935 size_t written;
936
937 if (!blkg->pd[i] || !pol->pd_stat_fn)
938 continue;
939
940 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
941 if (written)
942 has_stats = true;
943 off += written;
944 }
945
946 if (has_stats) {
947 if (off < size - 1) {
948 off += scnprintf(buf+off, size-off, "\n");
949 seq_commit(sf, off);
950 } else {
951 seq_commit(sf, -1);
952 }
953 }
954 skip:
955 spin_unlock_irq(&blkg->q->queue_lock);
956 }
957
958 rcu_read_unlock();
959 return 0;
960 }
961
962 static struct cftype blkcg_files[] = {
963 {
964 .name = "stat",
965 .seq_show = blkcg_print_stat,
966 },
967 { } /* terminate */
968 };
969
970 static struct cftype blkcg_legacy_files[] = {
971 {
972 .name = "reset_stats",
973 .write_u64 = blkcg_reset_stats,
974 },
975 { } /* terminate */
976 };
977
978 /*
979 * blkcg destruction is a three-stage process.
980 *
981 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
982 * which offlines writeback. Here we tie the next stage of blkg destruction
983 * to the completion of writeback associated with the blkcg. This lets us
984 * avoid punting potentially large amounts of outstanding writeback to root
985 * while maintaining any ongoing policies. The next stage is triggered when
986 * the nr_cgwbs count goes to zero.
987 *
988 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
989 * and handles the destruction of blkgs. Here the css reference held by
990 * the blkg is put back eventually allowing blkcg_css_free() to be called.
991 * This work may occur in cgwb_release_workfn() on the cgwb_release
992 * workqueue. Any submitted ios that fail to get the blkg ref will be
993 * punted to the root_blkg.
994 *
995 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
996 * This finally frees the blkcg.
997 */
998
999 /**
1000 * blkcg_css_offline - cgroup css_offline callback
1001 * @css: css of interest
1002 *
1003 * This function is called when @css is about to go away. Here the cgwbs are
1004 * offlined first and only once writeback associated with the blkcg has
1005 * finished do we start step 2 (see above).
1006 */
blkcg_css_offline(struct cgroup_subsys_state * css)1007 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1008 {
1009 struct blkcg *blkcg = css_to_blkcg(css);
1010
1011 /* this prevents anyone from attaching or migrating to this blkcg */
1012 wb_blkcg_offline(blkcg);
1013
1014 /* put the base online pin allowing step 2 to be triggered */
1015 blkcg_unpin_online(blkcg);
1016 }
1017
1018 /**
1019 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1020 * @blkcg: blkcg of interest
1021 *
1022 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1023 * is nested inside q lock, this function performs reverse double lock dancing.
1024 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1025 * blkcg_css_free to eventually be called.
1026 *
1027 * This is the blkcg counterpart of ioc_release_fn().
1028 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1029 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1030 {
1031 might_sleep();
1032
1033 spin_lock_irq(&blkcg->lock);
1034
1035 while (!hlist_empty(&blkcg->blkg_list)) {
1036 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1037 struct blkcg_gq, blkcg_node);
1038 struct request_queue *q = blkg->q;
1039
1040 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1041 /*
1042 * Given that the system can accumulate a huge number
1043 * of blkgs in pathological cases, check to see if we
1044 * need to rescheduling to avoid softlockup.
1045 */
1046 spin_unlock_irq(&blkcg->lock);
1047 cond_resched();
1048 spin_lock_irq(&blkcg->lock);
1049 continue;
1050 }
1051
1052 blkg_destroy(blkg);
1053 spin_unlock(&q->queue_lock);
1054 }
1055
1056 spin_unlock_irq(&blkcg->lock);
1057 }
1058
blkcg_css_free(struct cgroup_subsys_state * css)1059 static void blkcg_css_free(struct cgroup_subsys_state *css)
1060 {
1061 struct blkcg *blkcg = css_to_blkcg(css);
1062 int i;
1063
1064 mutex_lock(&blkcg_pol_mutex);
1065
1066 list_del(&blkcg->all_blkcgs_node);
1067
1068 for (i = 0; i < BLKCG_MAX_POLS; i++)
1069 if (blkcg->cpd[i])
1070 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1071
1072 mutex_unlock(&blkcg_pol_mutex);
1073
1074 kfree(blkcg);
1075 }
1076
1077 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1078 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1079 {
1080 struct blkcg *blkcg;
1081 struct cgroup_subsys_state *ret;
1082 int i;
1083
1084 mutex_lock(&blkcg_pol_mutex);
1085
1086 if (!parent_css) {
1087 blkcg = &blkcg_root;
1088 } else {
1089 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1090 if (!blkcg) {
1091 ret = ERR_PTR(-ENOMEM);
1092 goto unlock;
1093 }
1094 }
1095
1096 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1097 struct blkcg_policy *pol = blkcg_policy[i];
1098 struct blkcg_policy_data *cpd;
1099
1100 /*
1101 * If the policy hasn't been attached yet, wait for it
1102 * to be attached before doing anything else. Otherwise,
1103 * check if the policy requires any specific per-cgroup
1104 * data: if it does, allocate and initialize it.
1105 */
1106 if (!pol || !pol->cpd_alloc_fn)
1107 continue;
1108
1109 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1110 if (!cpd) {
1111 ret = ERR_PTR(-ENOMEM);
1112 goto free_pd_blkcg;
1113 }
1114 blkcg->cpd[i] = cpd;
1115 cpd->blkcg = blkcg;
1116 cpd->plid = i;
1117 if (pol->cpd_init_fn)
1118 pol->cpd_init_fn(cpd);
1119 }
1120
1121 spin_lock_init(&blkcg->lock);
1122 refcount_set(&blkcg->online_pin, 1);
1123 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1124 INIT_HLIST_HEAD(&blkcg->blkg_list);
1125 #ifdef CONFIG_CGROUP_WRITEBACK
1126 INIT_LIST_HEAD(&blkcg->cgwb_list);
1127 #endif
1128 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1129
1130 mutex_unlock(&blkcg_pol_mutex);
1131 return &blkcg->css;
1132
1133 free_pd_blkcg:
1134 for (i--; i >= 0; i--)
1135 if (blkcg->cpd[i])
1136 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1137
1138 if (blkcg != &blkcg_root)
1139 kfree(blkcg);
1140 unlock:
1141 mutex_unlock(&blkcg_pol_mutex);
1142 return ret;
1143 }
1144
blkcg_css_online(struct cgroup_subsys_state * css)1145 static int blkcg_css_online(struct cgroup_subsys_state *css)
1146 {
1147 struct blkcg *blkcg = css_to_blkcg(css);
1148 struct blkcg *parent = blkcg_parent(blkcg);
1149
1150 /*
1151 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1152 * don't go offline while cgwbs are still active on them. Pin the
1153 * parent so that offline always happens towards the root.
1154 */
1155 if (parent)
1156 blkcg_pin_online(parent);
1157 return 0;
1158 }
1159
1160 /**
1161 * blkcg_init_queue - initialize blkcg part of request queue
1162 * @q: request_queue to initialize
1163 *
1164 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1165 * part of new request_queue @q.
1166 *
1167 * RETURNS:
1168 * 0 on success, -errno on failure.
1169 */
blkcg_init_queue(struct request_queue * q)1170 int blkcg_init_queue(struct request_queue *q)
1171 {
1172 struct blkcg_gq *new_blkg, *blkg;
1173 bool preloaded;
1174 int ret;
1175
1176 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1177 if (!new_blkg)
1178 return -ENOMEM;
1179
1180 preloaded = !radix_tree_preload(GFP_KERNEL);
1181
1182 /* Make sure the root blkg exists. */
1183 rcu_read_lock();
1184 spin_lock_irq(&q->queue_lock);
1185 blkg = blkg_create(&blkcg_root, q, new_blkg);
1186 if (IS_ERR(blkg))
1187 goto err_unlock;
1188 q->root_blkg = blkg;
1189 spin_unlock_irq(&q->queue_lock);
1190 rcu_read_unlock();
1191
1192 if (preloaded)
1193 radix_tree_preload_end();
1194
1195 ret = blk_throtl_init(q);
1196 if (ret)
1197 goto err_destroy_all;
1198
1199 ret = blk_iolatency_init(q);
1200 if (ret) {
1201 blk_throtl_exit(q);
1202 goto err_destroy_all;
1203 }
1204 return 0;
1205
1206 err_destroy_all:
1207 blkg_destroy_all(q);
1208 return ret;
1209 err_unlock:
1210 spin_unlock_irq(&q->queue_lock);
1211 rcu_read_unlock();
1212 if (preloaded)
1213 radix_tree_preload_end();
1214 return PTR_ERR(blkg);
1215 }
1216
1217 /**
1218 * blkcg_exit_queue - exit and release blkcg part of request_queue
1219 * @q: request_queue being released
1220 *
1221 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1222 */
blkcg_exit_queue(struct request_queue * q)1223 void blkcg_exit_queue(struct request_queue *q)
1224 {
1225 blkg_destroy_all(q);
1226 blk_throtl_exit(q);
1227 }
1228
1229 /*
1230 * We cannot support shared io contexts, as we have no mean to support
1231 * two tasks with the same ioc in two different groups without major rework
1232 * of the main cic data structures. For now we allow a task to change
1233 * its cgroup only if it's the only owner of its ioc.
1234 */
blkcg_can_attach(struct cgroup_taskset * tset)1235 static int blkcg_can_attach(struct cgroup_taskset *tset)
1236 {
1237 struct task_struct *task;
1238 struct cgroup_subsys_state *dst_css;
1239 struct io_context *ioc;
1240 int ret = 0;
1241
1242 /* task_lock() is needed to avoid races with exit_io_context() */
1243 cgroup_taskset_for_each(task, dst_css, tset) {
1244 task_lock(task);
1245 ioc = task->io_context;
1246 if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1247 ret = -EINVAL;
1248 task_unlock(task);
1249 if (ret)
1250 break;
1251 }
1252 return ret;
1253 }
1254
blkcg_bind(struct cgroup_subsys_state * root_css)1255 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1256 {
1257 int i;
1258
1259 mutex_lock(&blkcg_pol_mutex);
1260
1261 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1262 struct blkcg_policy *pol = blkcg_policy[i];
1263 struct blkcg *blkcg;
1264
1265 if (!pol || !pol->cpd_bind_fn)
1266 continue;
1267
1268 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1269 if (blkcg->cpd[pol->plid])
1270 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1271 }
1272 mutex_unlock(&blkcg_pol_mutex);
1273 }
1274
blkcg_exit(struct task_struct * tsk)1275 static void blkcg_exit(struct task_struct *tsk)
1276 {
1277 if (tsk->throttle_queue)
1278 blk_put_queue(tsk->throttle_queue);
1279 tsk->throttle_queue = NULL;
1280 }
1281
1282 struct cgroup_subsys io_cgrp_subsys = {
1283 .css_alloc = blkcg_css_alloc,
1284 .css_online = blkcg_css_online,
1285 .css_offline = blkcg_css_offline,
1286 .css_free = blkcg_css_free,
1287 .can_attach = blkcg_can_attach,
1288 .css_rstat_flush = blkcg_rstat_flush,
1289 .bind = blkcg_bind,
1290 .dfl_cftypes = blkcg_files,
1291 .legacy_cftypes = blkcg_legacy_files,
1292 .legacy_name = "blkio",
1293 .exit = blkcg_exit,
1294 #ifdef CONFIG_MEMCG
1295 /*
1296 * This ensures that, if available, memcg is automatically enabled
1297 * together on the default hierarchy so that the owner cgroup can
1298 * be retrieved from writeback pages.
1299 */
1300 .depends_on = 1 << memory_cgrp_id,
1301 #endif
1302 };
1303 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1304
1305 /**
1306 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1307 * @q: request_queue of interest
1308 * @pol: blkcg policy to activate
1309 *
1310 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1311 * bypass mode to populate its blkgs with policy_data for @pol.
1312 *
1313 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1314 * from IO path. Update of each blkg is protected by both queue and blkcg
1315 * locks so that holding either lock and testing blkcg_policy_enabled() is
1316 * always enough for dereferencing policy data.
1317 *
1318 * The caller is responsible for synchronizing [de]activations and policy
1319 * [un]registerations. Returns 0 on success, -errno on failure.
1320 */
blkcg_activate_policy(struct request_queue * q,const struct blkcg_policy * pol)1321 int blkcg_activate_policy(struct request_queue *q,
1322 const struct blkcg_policy *pol)
1323 {
1324 struct blkg_policy_data *pd_prealloc = NULL;
1325 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1326 int ret;
1327
1328 if (blkcg_policy_enabled(q, pol))
1329 return 0;
1330
1331 if (queue_is_mq(q))
1332 blk_mq_freeze_queue(q);
1333 retry:
1334 spin_lock_irq(&q->queue_lock);
1335
1336 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1337 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1338 struct blkg_policy_data *pd;
1339
1340 if (blkg->pd[pol->plid])
1341 continue;
1342
1343 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1344 if (blkg == pinned_blkg) {
1345 pd = pd_prealloc;
1346 pd_prealloc = NULL;
1347 } else {
1348 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1349 blkg->blkcg);
1350 }
1351
1352 if (!pd) {
1353 /*
1354 * GFP_NOWAIT failed. Free the existing one and
1355 * prealloc for @blkg w/ GFP_KERNEL.
1356 */
1357 if (pinned_blkg)
1358 blkg_put(pinned_blkg);
1359 blkg_get(blkg);
1360 pinned_blkg = blkg;
1361
1362 spin_unlock_irq(&q->queue_lock);
1363
1364 if (pd_prealloc)
1365 pol->pd_free_fn(pd_prealloc);
1366 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1367 blkg->blkcg);
1368 if (pd_prealloc)
1369 goto retry;
1370 else
1371 goto enomem;
1372 }
1373
1374 blkg->pd[pol->plid] = pd;
1375 pd->blkg = blkg;
1376 pd->plid = pol->plid;
1377 }
1378
1379 /* all allocated, init in the same order */
1380 if (pol->pd_init_fn)
1381 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1382 pol->pd_init_fn(blkg->pd[pol->plid]);
1383
1384 __set_bit(pol->plid, q->blkcg_pols);
1385 ret = 0;
1386
1387 spin_unlock_irq(&q->queue_lock);
1388 out:
1389 if (queue_is_mq(q))
1390 blk_mq_unfreeze_queue(q);
1391 if (pinned_blkg)
1392 blkg_put(pinned_blkg);
1393 if (pd_prealloc)
1394 pol->pd_free_fn(pd_prealloc);
1395 return ret;
1396
1397 enomem:
1398 /* alloc failed, nothing's initialized yet, free everything */
1399 spin_lock_irq(&q->queue_lock);
1400 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1401 struct blkcg *blkcg = blkg->blkcg;
1402
1403 spin_lock(&blkcg->lock);
1404 if (blkg->pd[pol->plid]) {
1405 pol->pd_free_fn(blkg->pd[pol->plid]);
1406 blkg->pd[pol->plid] = NULL;
1407 }
1408 spin_unlock(&blkcg->lock);
1409 }
1410 spin_unlock_irq(&q->queue_lock);
1411 ret = -ENOMEM;
1412 goto out;
1413 }
1414 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1415
1416 /**
1417 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1418 * @q: request_queue of interest
1419 * @pol: blkcg policy to deactivate
1420 *
1421 * Deactivate @pol on @q. Follows the same synchronization rules as
1422 * blkcg_activate_policy().
1423 */
blkcg_deactivate_policy(struct request_queue * q,const struct blkcg_policy * pol)1424 void blkcg_deactivate_policy(struct request_queue *q,
1425 const struct blkcg_policy *pol)
1426 {
1427 struct blkcg_gq *blkg;
1428
1429 if (!blkcg_policy_enabled(q, pol))
1430 return;
1431
1432 if (queue_is_mq(q))
1433 blk_mq_freeze_queue(q);
1434
1435 spin_lock_irq(&q->queue_lock);
1436
1437 __clear_bit(pol->plid, q->blkcg_pols);
1438
1439 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1440 struct blkcg *blkcg = blkg->blkcg;
1441
1442 spin_lock(&blkcg->lock);
1443 if (blkg->pd[pol->plid]) {
1444 if (pol->pd_offline_fn)
1445 pol->pd_offline_fn(blkg->pd[pol->plid]);
1446 pol->pd_free_fn(blkg->pd[pol->plid]);
1447 blkg->pd[pol->plid] = NULL;
1448 }
1449 spin_unlock(&blkcg->lock);
1450 }
1451
1452 spin_unlock_irq(&q->queue_lock);
1453
1454 if (queue_is_mq(q))
1455 blk_mq_unfreeze_queue(q);
1456 }
1457 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1458
1459 /**
1460 * blkcg_policy_register - register a blkcg policy
1461 * @pol: blkcg policy to register
1462 *
1463 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1464 * successful registration. Returns 0 on success and -errno on failure.
1465 */
blkcg_policy_register(struct blkcg_policy * pol)1466 int blkcg_policy_register(struct blkcg_policy *pol)
1467 {
1468 struct blkcg *blkcg;
1469 int i, ret;
1470
1471 mutex_lock(&blkcg_pol_register_mutex);
1472 mutex_lock(&blkcg_pol_mutex);
1473
1474 /* find an empty slot */
1475 ret = -ENOSPC;
1476 for (i = 0; i < BLKCG_MAX_POLS; i++)
1477 if (!blkcg_policy[i])
1478 break;
1479 if (i >= BLKCG_MAX_POLS) {
1480 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1481 goto err_unlock;
1482 }
1483
1484 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1485 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1486 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1487 goto err_unlock;
1488
1489 /* register @pol */
1490 pol->plid = i;
1491 blkcg_policy[pol->plid] = pol;
1492
1493 /* allocate and install cpd's */
1494 if (pol->cpd_alloc_fn) {
1495 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1496 struct blkcg_policy_data *cpd;
1497
1498 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1499 if (!cpd)
1500 goto err_free_cpds;
1501
1502 blkcg->cpd[pol->plid] = cpd;
1503 cpd->blkcg = blkcg;
1504 cpd->plid = pol->plid;
1505 if (pol->cpd_init_fn)
1506 pol->cpd_init_fn(cpd);
1507 }
1508 }
1509
1510 mutex_unlock(&blkcg_pol_mutex);
1511
1512 /* everything is in place, add intf files for the new policy */
1513 if (pol->dfl_cftypes)
1514 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1515 pol->dfl_cftypes));
1516 if (pol->legacy_cftypes)
1517 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1518 pol->legacy_cftypes));
1519 mutex_unlock(&blkcg_pol_register_mutex);
1520 return 0;
1521
1522 err_free_cpds:
1523 if (pol->cpd_free_fn) {
1524 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1525 if (blkcg->cpd[pol->plid]) {
1526 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1527 blkcg->cpd[pol->plid] = NULL;
1528 }
1529 }
1530 }
1531 blkcg_policy[pol->plid] = NULL;
1532 err_unlock:
1533 mutex_unlock(&blkcg_pol_mutex);
1534 mutex_unlock(&blkcg_pol_register_mutex);
1535 return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1538
1539 /**
1540 * blkcg_policy_unregister - unregister a blkcg policy
1541 * @pol: blkcg policy to unregister
1542 *
1543 * Undo blkcg_policy_register(@pol). Might sleep.
1544 */
blkcg_policy_unregister(struct blkcg_policy * pol)1545 void blkcg_policy_unregister(struct blkcg_policy *pol)
1546 {
1547 struct blkcg *blkcg;
1548
1549 mutex_lock(&blkcg_pol_register_mutex);
1550
1551 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1552 goto out_unlock;
1553
1554 /* kill the intf files first */
1555 if (pol->dfl_cftypes)
1556 cgroup_rm_cftypes(pol->dfl_cftypes);
1557 if (pol->legacy_cftypes)
1558 cgroup_rm_cftypes(pol->legacy_cftypes);
1559
1560 /* remove cpds and unregister */
1561 mutex_lock(&blkcg_pol_mutex);
1562
1563 if (pol->cpd_free_fn) {
1564 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1565 if (blkcg->cpd[pol->plid]) {
1566 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1567 blkcg->cpd[pol->plid] = NULL;
1568 }
1569 }
1570 }
1571 blkcg_policy[pol->plid] = NULL;
1572
1573 mutex_unlock(&blkcg_pol_mutex);
1574 out_unlock:
1575 mutex_unlock(&blkcg_pol_register_mutex);
1576 }
1577 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1578
__blkcg_punt_bio_submit(struct bio * bio)1579 bool __blkcg_punt_bio_submit(struct bio *bio)
1580 {
1581 struct blkcg_gq *blkg = bio->bi_blkg;
1582
1583 /* consume the flag first */
1584 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1585
1586 /* never bounce for the root cgroup */
1587 if (!blkg->parent)
1588 return false;
1589
1590 spin_lock_bh(&blkg->async_bio_lock);
1591 bio_list_add(&blkg->async_bios, bio);
1592 spin_unlock_bh(&blkg->async_bio_lock);
1593
1594 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1595 return true;
1596 }
1597
1598 /*
1599 * Scale the accumulated delay based on how long it has been since we updated
1600 * the delay. We only call this when we are adding delay, in case it's been a
1601 * while since we added delay, and when we are checking to see if we need to
1602 * delay a task, to account for any delays that may have occurred.
1603 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1604 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1605 {
1606 u64 old = atomic64_read(&blkg->delay_start);
1607
1608 /* negative use_delay means no scaling, see blkcg_set_delay() */
1609 if (atomic_read(&blkg->use_delay) < 0)
1610 return;
1611
1612 /*
1613 * We only want to scale down every second. The idea here is that we
1614 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1615 * time window. We only want to throttle tasks for recent delay that
1616 * has occurred, in 1 second time windows since that's the maximum
1617 * things can be throttled. We save the current delay window in
1618 * blkg->last_delay so we know what amount is still left to be charged
1619 * to the blkg from this point onward. blkg->last_use keeps track of
1620 * the use_delay counter. The idea is if we're unthrottling the blkg we
1621 * are ok with whatever is happening now, and we can take away more of
1622 * the accumulated delay as we've already throttled enough that
1623 * everybody is happy with their IO latencies.
1624 */
1625 if (time_before64(old + NSEC_PER_SEC, now) &&
1626 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1627 u64 cur = atomic64_read(&blkg->delay_nsec);
1628 u64 sub = min_t(u64, blkg->last_delay, now - old);
1629 int cur_use = atomic_read(&blkg->use_delay);
1630
1631 /*
1632 * We've been unthrottled, subtract a larger chunk of our
1633 * accumulated delay.
1634 */
1635 if (cur_use < blkg->last_use)
1636 sub = max_t(u64, sub, blkg->last_delay >> 1);
1637
1638 /*
1639 * This shouldn't happen, but handle it anyway. Our delay_nsec
1640 * should only ever be growing except here where we subtract out
1641 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1642 * rather not end up with negative numbers.
1643 */
1644 if (unlikely(cur < sub)) {
1645 atomic64_set(&blkg->delay_nsec, 0);
1646 blkg->last_delay = 0;
1647 } else {
1648 atomic64_sub(sub, &blkg->delay_nsec);
1649 blkg->last_delay = cur - sub;
1650 }
1651 blkg->last_use = cur_use;
1652 }
1653 }
1654
1655 /*
1656 * This is called when we want to actually walk up the hierarchy and check to
1657 * see if we need to throttle, and then actually throttle if there is some
1658 * accumulated delay. This should only be called upon return to user space so
1659 * we're not holding some lock that would induce a priority inversion.
1660 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1661 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1662 {
1663 unsigned long pflags;
1664 bool clamp;
1665 u64 now = ktime_to_ns(ktime_get());
1666 u64 exp;
1667 u64 delay_nsec = 0;
1668 int tok;
1669
1670 while (blkg->parent) {
1671 int use_delay = atomic_read(&blkg->use_delay);
1672
1673 if (use_delay) {
1674 u64 this_delay;
1675
1676 blkcg_scale_delay(blkg, now);
1677 this_delay = atomic64_read(&blkg->delay_nsec);
1678 if (this_delay > delay_nsec) {
1679 delay_nsec = this_delay;
1680 clamp = use_delay > 0;
1681 }
1682 }
1683 blkg = blkg->parent;
1684 }
1685
1686 if (!delay_nsec)
1687 return;
1688
1689 /*
1690 * Let's not sleep for all eternity if we've amassed a huge delay.
1691 * Swapping or metadata IO can accumulate 10's of seconds worth of
1692 * delay, and we want userspace to be able to do _something_ so cap the
1693 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1694 * tasks will be delayed for 0.25 second for every syscall. If
1695 * blkcg_set_delay() was used as indicated by negative use_delay, the
1696 * caller is responsible for regulating the range.
1697 */
1698 if (clamp)
1699 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1700
1701 if (use_memdelay)
1702 psi_memstall_enter(&pflags);
1703
1704 exp = ktime_add_ns(now, delay_nsec);
1705 tok = io_schedule_prepare();
1706 do {
1707 __set_current_state(TASK_KILLABLE);
1708 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1709 break;
1710 } while (!fatal_signal_pending(current));
1711 io_schedule_finish(tok);
1712
1713 if (use_memdelay)
1714 psi_memstall_leave(&pflags);
1715 }
1716
1717 /**
1718 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1719 *
1720 * This is only called if we've been marked with set_notify_resume(). Obviously
1721 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1722 * check to see if current->throttle_queue is set and if not this doesn't do
1723 * anything. This should only ever be called by the resume code, it's not meant
1724 * to be called by people willy-nilly as it will actually do the work to
1725 * throttle the task if it is setup for throttling.
1726 */
blkcg_maybe_throttle_current(void)1727 void blkcg_maybe_throttle_current(void)
1728 {
1729 struct request_queue *q = current->throttle_queue;
1730 struct cgroup_subsys_state *css;
1731 struct blkcg *blkcg;
1732 struct blkcg_gq *blkg;
1733 bool use_memdelay = current->use_memdelay;
1734
1735 if (!q)
1736 return;
1737
1738 current->throttle_queue = NULL;
1739 current->use_memdelay = false;
1740
1741 rcu_read_lock();
1742 css = kthread_blkcg();
1743 if (css)
1744 blkcg = css_to_blkcg(css);
1745 else
1746 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1747
1748 if (!blkcg)
1749 goto out;
1750 blkg = blkg_lookup(blkcg, q);
1751 if (!blkg)
1752 goto out;
1753 if (!blkg_tryget(blkg))
1754 goto out;
1755 rcu_read_unlock();
1756
1757 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1758 blkg_put(blkg);
1759 blk_put_queue(q);
1760 return;
1761 out:
1762 rcu_read_unlock();
1763 blk_put_queue(q);
1764 }
1765
1766 /**
1767 * blkcg_schedule_throttle - this task needs to check for throttling
1768 * @q: the request queue IO was submitted on
1769 * @use_memdelay: do we charge this to memory delay for PSI
1770 *
1771 * This is called by the IO controller when we know there's delay accumulated
1772 * for the blkg for this task. We do not pass the blkg because there are places
1773 * we call this that may not have that information, the swapping code for
1774 * instance will only have a request_queue at that point. This set's the
1775 * notify_resume for the task to check and see if it requires throttling before
1776 * returning to user space.
1777 *
1778 * We will only schedule once per syscall. You can call this over and over
1779 * again and it will only do the check once upon return to user space, and only
1780 * throttle once. If the task needs to be throttled again it'll need to be
1781 * re-set at the next time we see the task.
1782 */
blkcg_schedule_throttle(struct request_queue * q,bool use_memdelay)1783 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1784 {
1785 if (unlikely(current->flags & PF_KTHREAD))
1786 return;
1787
1788 if (!blk_get_queue(q))
1789 return;
1790
1791 if (current->throttle_queue)
1792 blk_put_queue(current->throttle_queue);
1793 current->throttle_queue = q;
1794 if (use_memdelay)
1795 current->use_memdelay = use_memdelay;
1796 set_notify_resume(current);
1797 }
1798
1799 /**
1800 * blkcg_add_delay - add delay to this blkg
1801 * @blkg: blkg of interest
1802 * @now: the current time in nanoseconds
1803 * @delta: how many nanoseconds of delay to add
1804 *
1805 * Charge @delta to the blkg's current delay accumulation. This is used to
1806 * throttle tasks if an IO controller thinks we need more throttling.
1807 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)1808 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1809 {
1810 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1811 return;
1812 blkcg_scale_delay(blkg, now);
1813 atomic64_add(delta, &blkg->delay_nsec);
1814 }
1815
1816 /**
1817 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1818 * @bio: target bio
1819 * @css: target css
1820 *
1821 * As the failure mode here is to walk up the blkg tree, this ensure that the
1822 * blkg->parent pointers are always valid. This returns the blkg that it ended
1823 * up taking a reference on or %NULL if no reference was taken.
1824 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)1825 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1826 struct cgroup_subsys_state *css)
1827 {
1828 struct blkcg_gq *blkg, *ret_blkg = NULL;
1829
1830 rcu_read_lock();
1831 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
1832 while (blkg) {
1833 if (blkg_tryget(blkg)) {
1834 ret_blkg = blkg;
1835 break;
1836 }
1837 blkg = blkg->parent;
1838 }
1839 rcu_read_unlock();
1840
1841 return ret_blkg;
1842 }
1843
1844 /**
1845 * bio_associate_blkg_from_css - associate a bio with a specified css
1846 * @bio: target bio
1847 * @css: target css
1848 *
1849 * Associate @bio with the blkg found by combining the css's blkg and the
1850 * request_queue of the @bio. An association failure is handled by walking up
1851 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1852 * and q->root_blkg. This situation only happens when a cgroup is dying and
1853 * then the remaining bios will spill to the closest alive blkg.
1854 *
1855 * A reference will be taken on the blkg and will be released when @bio is
1856 * freed.
1857 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)1858 void bio_associate_blkg_from_css(struct bio *bio,
1859 struct cgroup_subsys_state *css)
1860 {
1861 if (bio->bi_blkg)
1862 blkg_put(bio->bi_blkg);
1863
1864 if (css && css->parent) {
1865 bio->bi_blkg = blkg_tryget_closest(bio, css);
1866 } else {
1867 blkg_get(bio->bi_disk->queue->root_blkg);
1868 bio->bi_blkg = bio->bi_disk->queue->root_blkg;
1869 }
1870 }
1871 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1872
1873 /**
1874 * bio_associate_blkg - associate a bio with a blkg
1875 * @bio: target bio
1876 *
1877 * Associate @bio with the blkg found from the bio's css and request_queue.
1878 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1879 * already associated, the css is reused and association redone as the
1880 * request_queue may have changed.
1881 */
bio_associate_blkg(struct bio * bio)1882 void bio_associate_blkg(struct bio *bio)
1883 {
1884 struct cgroup_subsys_state *css;
1885
1886 rcu_read_lock();
1887
1888 if (bio->bi_blkg)
1889 css = &bio_blkcg(bio)->css;
1890 else
1891 css = blkcg_css();
1892
1893 bio_associate_blkg_from_css(bio, css);
1894
1895 rcu_read_unlock();
1896 }
1897 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1898
1899 /**
1900 * bio_clone_blkg_association - clone blkg association from src to dst bio
1901 * @dst: destination bio
1902 * @src: source bio
1903 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)1904 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1905 {
1906 if (src->bi_blkg) {
1907 if (dst->bi_blkg)
1908 blkg_put(dst->bi_blkg);
1909 blkg_get(src->bi_blkg);
1910 dst->bi_blkg = src->bi_blkg;
1911 }
1912 }
1913 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1914
blk_cgroup_io_type(struct bio * bio)1915 static int blk_cgroup_io_type(struct bio *bio)
1916 {
1917 if (op_is_discard(bio->bi_opf))
1918 return BLKG_IOSTAT_DISCARD;
1919 if (op_is_write(bio->bi_opf))
1920 return BLKG_IOSTAT_WRITE;
1921 return BLKG_IOSTAT_READ;
1922 }
1923
blk_cgroup_bio_start(struct bio * bio)1924 void blk_cgroup_bio_start(struct bio *bio)
1925 {
1926 int rwd = blk_cgroup_io_type(bio), cpu;
1927 struct blkg_iostat_set *bis;
1928
1929 cpu = get_cpu();
1930 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1931 u64_stats_update_begin(&bis->sync);
1932
1933 /*
1934 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1935 * bio and we would have already accounted for the size of the bio.
1936 */
1937 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1938 bio_set_flag(bio, BIO_CGROUP_ACCT);
1939 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1940 }
1941 bis->cur.ios[rwd]++;
1942
1943 u64_stats_update_end(&bis->sync);
1944 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1945 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1946 put_cpu();
1947 }
1948
blkcg_init(void)1949 static int __init blkcg_init(void)
1950 {
1951 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1952 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1953 WQ_UNBOUND | WQ_SYSFS, 0);
1954 if (!blkcg_punt_bio_wq)
1955 return -ENOMEM;
1956 return 0;
1957 }
1958 subsys_initcall(blkcg_init);
1959
1960 module_param(blkcg_debug_stats, bool, 0644);
1961 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1962