• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15 
16 #define PIPE_PARANOIA /* for now */
17 
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
19 	size_t left;					\
20 	size_t wanted = n;				\
21 	__p = i->iov;					\
22 	__v.iov_len = min(n, __p->iov_len - skip);	\
23 	if (likely(__v.iov_len)) {			\
24 		__v.iov_base = __p->iov_base + skip;	\
25 		left = (STEP);				\
26 		__v.iov_len -= left;			\
27 		skip += __v.iov_len;			\
28 		n -= __v.iov_len;			\
29 	} else {					\
30 		left = 0;				\
31 	}						\
32 	while (unlikely(!left && n)) {			\
33 		__p++;					\
34 		__v.iov_len = min(n, __p->iov_len);	\
35 		if (unlikely(!__v.iov_len))		\
36 			continue;			\
37 		__v.iov_base = __p->iov_base;		\
38 		left = (STEP);				\
39 		__v.iov_len -= left;			\
40 		skip = __v.iov_len;			\
41 		n -= __v.iov_len;			\
42 	}						\
43 	n = wanted - n;					\
44 }
45 
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
47 	size_t wanted = n;				\
48 	__p = i->kvec;					\
49 	__v.iov_len = min(n, __p->iov_len - skip);	\
50 	if (likely(__v.iov_len)) {			\
51 		__v.iov_base = __p->iov_base + skip;	\
52 		(void)(STEP);				\
53 		skip += __v.iov_len;			\
54 		n -= __v.iov_len;			\
55 	}						\
56 	while (unlikely(n)) {				\
57 		__p++;					\
58 		__v.iov_len = min(n, __p->iov_len);	\
59 		if (unlikely(!__v.iov_len))		\
60 			continue;			\
61 		__v.iov_base = __p->iov_base;		\
62 		(void)(STEP);				\
63 		skip = __v.iov_len;			\
64 		n -= __v.iov_len;			\
65 	}						\
66 	n = wanted;					\
67 }
68 
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
70 	struct bvec_iter __start;			\
71 	__start.bi_size = n;				\
72 	__start.bi_bvec_done = skip;			\
73 	__start.bi_idx = 0;				\
74 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
75 		if (!__v.bv_len)			\
76 			continue;			\
77 		(void)(STEP);				\
78 	}						\
79 }
80 
81 #define iterate_all_kinds(i, n, v, I, B, K) {			\
82 	if (likely(n)) {					\
83 		size_t skip = i->iov_offset;			\
84 		if (unlikely(i->type & ITER_BVEC)) {		\
85 			struct bio_vec v;			\
86 			struct bvec_iter __bi;			\
87 			iterate_bvec(i, n, v, __bi, skip, (B))	\
88 		} else if (unlikely(i->type & ITER_KVEC)) {	\
89 			const struct kvec *kvec;		\
90 			struct kvec v;				\
91 			iterate_kvec(i, n, v, kvec, skip, (K))	\
92 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
93 		} else {					\
94 			const struct iovec *iov;		\
95 			struct iovec v;				\
96 			iterate_iovec(i, n, v, iov, skip, (I))	\
97 		}						\
98 	}							\
99 }
100 
101 #define iterate_and_advance(i, n, v, I, B, K) {			\
102 	if (unlikely(i->count < n))				\
103 		n = i->count;					\
104 	if (i->count) {						\
105 		size_t skip = i->iov_offset;			\
106 		if (unlikely(i->type & ITER_BVEC)) {		\
107 			const struct bio_vec *bvec = i->bvec;	\
108 			struct bio_vec v;			\
109 			struct bvec_iter __bi;			\
110 			iterate_bvec(i, n, v, __bi, skip, (B))	\
111 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
112 			i->nr_segs -= i->bvec - bvec;		\
113 			skip = __bi.bi_bvec_done;		\
114 		} else if (unlikely(i->type & ITER_KVEC)) {	\
115 			const struct kvec *kvec;		\
116 			struct kvec v;				\
117 			iterate_kvec(i, n, v, kvec, skip, (K))	\
118 			if (skip == kvec->iov_len) {		\
119 				kvec++;				\
120 				skip = 0;			\
121 			}					\
122 			i->nr_segs -= kvec - i->kvec;		\
123 			i->kvec = kvec;				\
124 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
125 			skip += n;				\
126 		} else {					\
127 			const struct iovec *iov;		\
128 			struct iovec v;				\
129 			iterate_iovec(i, n, v, iov, skip, (I))	\
130 			if (skip == iov->iov_len) {		\
131 				iov++;				\
132 				skip = 0;			\
133 			}					\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		}						\
137 		i->count -= n;					\
138 		i->iov_offset = skip;				\
139 	}							\
140 }
141 
copyout(void __user * to,const void * from,size_t n)142 static int copyout(void __user *to, const void *from, size_t n)
143 {
144 	if (should_fail_usercopy())
145 		return n;
146 	if (access_ok(to, n)) {
147 		instrument_copy_to_user(to, from, n);
148 		n = raw_copy_to_user(to, from, n);
149 	}
150 	return n;
151 }
152 
copyin(void * to,const void __user * from,size_t n)153 static int copyin(void *to, const void __user *from, size_t n)
154 {
155 	if (should_fail_usercopy())
156 		return n;
157 	if (access_ok(from, n)) {
158 		instrument_copy_from_user(to, from, n);
159 		n = raw_copy_from_user(to, from, n);
160 	}
161 	return n;
162 }
163 
copy_page_to_iter_iovec(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)164 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
165 			 struct iov_iter *i)
166 {
167 	size_t skip, copy, left, wanted;
168 	const struct iovec *iov;
169 	char __user *buf;
170 	void *kaddr, *from;
171 
172 	if (unlikely(bytes > i->count))
173 		bytes = i->count;
174 
175 	if (unlikely(!bytes))
176 		return 0;
177 
178 	might_fault();
179 	wanted = bytes;
180 	iov = i->iov;
181 	skip = i->iov_offset;
182 	buf = iov->iov_base + skip;
183 	copy = min(bytes, iov->iov_len - skip);
184 
185 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
186 		kaddr = kmap_atomic(page);
187 		from = kaddr + offset;
188 
189 		/* first chunk, usually the only one */
190 		left = copyout(buf, from, copy);
191 		copy -= left;
192 		skip += copy;
193 		from += copy;
194 		bytes -= copy;
195 
196 		while (unlikely(!left && bytes)) {
197 			iov++;
198 			buf = iov->iov_base;
199 			copy = min(bytes, iov->iov_len);
200 			left = copyout(buf, from, copy);
201 			copy -= left;
202 			skip = copy;
203 			from += copy;
204 			bytes -= copy;
205 		}
206 		if (likely(!bytes)) {
207 			kunmap_atomic(kaddr);
208 			goto done;
209 		}
210 		offset = from - kaddr;
211 		buf += copy;
212 		kunmap_atomic(kaddr);
213 		copy = min(bytes, iov->iov_len - skip);
214 	}
215 	/* Too bad - revert to non-atomic kmap */
216 
217 	kaddr = kmap(page);
218 	from = kaddr + offset;
219 	left = copyout(buf, from, copy);
220 	copy -= left;
221 	skip += copy;
222 	from += copy;
223 	bytes -= copy;
224 	while (unlikely(!left && bytes)) {
225 		iov++;
226 		buf = iov->iov_base;
227 		copy = min(bytes, iov->iov_len);
228 		left = copyout(buf, from, copy);
229 		copy -= left;
230 		skip = copy;
231 		from += copy;
232 		bytes -= copy;
233 	}
234 	kunmap(page);
235 
236 done:
237 	if (skip == iov->iov_len) {
238 		iov++;
239 		skip = 0;
240 	}
241 	i->count -= wanted - bytes;
242 	i->nr_segs -= iov - i->iov;
243 	i->iov = iov;
244 	i->iov_offset = skip;
245 	return wanted - bytes;
246 }
247 
copy_page_from_iter_iovec(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)248 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
249 			 struct iov_iter *i)
250 {
251 	size_t skip, copy, left, wanted;
252 	const struct iovec *iov;
253 	char __user *buf;
254 	void *kaddr, *to;
255 
256 	if (unlikely(bytes > i->count))
257 		bytes = i->count;
258 
259 	if (unlikely(!bytes))
260 		return 0;
261 
262 	might_fault();
263 	wanted = bytes;
264 	iov = i->iov;
265 	skip = i->iov_offset;
266 	buf = iov->iov_base + skip;
267 	copy = min(bytes, iov->iov_len - skip);
268 
269 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
270 		kaddr = kmap_atomic(page);
271 		to = kaddr + offset;
272 
273 		/* first chunk, usually the only one */
274 		left = copyin(to, buf, copy);
275 		copy -= left;
276 		skip += copy;
277 		to += copy;
278 		bytes -= copy;
279 
280 		while (unlikely(!left && bytes)) {
281 			iov++;
282 			buf = iov->iov_base;
283 			copy = min(bytes, iov->iov_len);
284 			left = copyin(to, buf, copy);
285 			copy -= left;
286 			skip = copy;
287 			to += copy;
288 			bytes -= copy;
289 		}
290 		if (likely(!bytes)) {
291 			kunmap_atomic(kaddr);
292 			goto done;
293 		}
294 		offset = to - kaddr;
295 		buf += copy;
296 		kunmap_atomic(kaddr);
297 		copy = min(bytes, iov->iov_len - skip);
298 	}
299 	/* Too bad - revert to non-atomic kmap */
300 
301 	kaddr = kmap(page);
302 	to = kaddr + offset;
303 	left = copyin(to, buf, copy);
304 	copy -= left;
305 	skip += copy;
306 	to += copy;
307 	bytes -= copy;
308 	while (unlikely(!left && bytes)) {
309 		iov++;
310 		buf = iov->iov_base;
311 		copy = min(bytes, iov->iov_len);
312 		left = copyin(to, buf, copy);
313 		copy -= left;
314 		skip = copy;
315 		to += copy;
316 		bytes -= copy;
317 	}
318 	kunmap(page);
319 
320 done:
321 	if (skip == iov->iov_len) {
322 		iov++;
323 		skip = 0;
324 	}
325 	i->count -= wanted - bytes;
326 	i->nr_segs -= iov - i->iov;
327 	i->iov = iov;
328 	i->iov_offset = skip;
329 	return wanted - bytes;
330 }
331 
332 #ifdef PIPE_PARANOIA
sanity(const struct iov_iter * i)333 static bool sanity(const struct iov_iter *i)
334 {
335 	struct pipe_inode_info *pipe = i->pipe;
336 	unsigned int p_head = pipe->head;
337 	unsigned int p_tail = pipe->tail;
338 	unsigned int p_mask = pipe->ring_size - 1;
339 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
340 	unsigned int i_head = i->head;
341 	unsigned int idx;
342 
343 	if (i->iov_offset) {
344 		struct pipe_buffer *p;
345 		if (unlikely(p_occupancy == 0))
346 			goto Bad;	// pipe must be non-empty
347 		if (unlikely(i_head != p_head - 1))
348 			goto Bad;	// must be at the last buffer...
349 
350 		p = &pipe->bufs[i_head & p_mask];
351 		if (unlikely(p->offset + p->len != i->iov_offset))
352 			goto Bad;	// ... at the end of segment
353 	} else {
354 		if (i_head != p_head)
355 			goto Bad;	// must be right after the last buffer
356 	}
357 	return true;
358 Bad:
359 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
360 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
361 			p_head, p_tail, pipe->ring_size);
362 	for (idx = 0; idx < pipe->ring_size; idx++)
363 		printk(KERN_ERR "[%p %p %d %d]\n",
364 			pipe->bufs[idx].ops,
365 			pipe->bufs[idx].page,
366 			pipe->bufs[idx].offset,
367 			pipe->bufs[idx].len);
368 	WARN_ON(1);
369 	return false;
370 }
371 #else
372 #define sanity(i) true
373 #endif
374 
copy_page_to_iter_pipe(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)375 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
376 			 struct iov_iter *i)
377 {
378 	struct pipe_inode_info *pipe = i->pipe;
379 	struct pipe_buffer *buf;
380 	unsigned int p_tail = pipe->tail;
381 	unsigned int p_mask = pipe->ring_size - 1;
382 	unsigned int i_head = i->head;
383 	size_t off;
384 
385 	if (unlikely(bytes > i->count))
386 		bytes = i->count;
387 
388 	if (unlikely(!bytes))
389 		return 0;
390 
391 	if (!sanity(i))
392 		return 0;
393 
394 	off = i->iov_offset;
395 	buf = &pipe->bufs[i_head & p_mask];
396 	if (off) {
397 		if (offset == off && buf->page == page) {
398 			/* merge with the last one */
399 			buf->len += bytes;
400 			i->iov_offset += bytes;
401 			goto out;
402 		}
403 		i_head++;
404 		buf = &pipe->bufs[i_head & p_mask];
405 	}
406 	if (pipe_full(i_head, p_tail, pipe->max_usage))
407 		return 0;
408 
409 	buf->ops = &page_cache_pipe_buf_ops;
410 	buf->flags = 0;
411 	get_page(page);
412 	buf->page = page;
413 	buf->offset = offset;
414 	buf->len = bytes;
415 
416 	pipe->head = i_head + 1;
417 	i->iov_offset = offset + bytes;
418 	i->head = i_head;
419 out:
420 	i->count -= bytes;
421 	return bytes;
422 }
423 
424 /*
425  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
426  * bytes.  For each iovec, fault in each page that constitutes the iovec.
427  *
428  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
429  * because it is an invalid address).
430  */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)431 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
432 {
433 	size_t skip = i->iov_offset;
434 	const struct iovec *iov;
435 	int err;
436 	struct iovec v;
437 
438 	if (iter_is_iovec(i)) {
439 		iterate_iovec(i, bytes, v, iov, skip, ({
440 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
441 			if (unlikely(err))
442 			return err;
443 		0;}))
444 	}
445 	return 0;
446 }
447 EXPORT_SYMBOL(iov_iter_fault_in_readable);
448 
iov_iter_init(struct iov_iter * i,unsigned int direction,const struct iovec * iov,unsigned long nr_segs,size_t count)449 void iov_iter_init(struct iov_iter *i, unsigned int direction,
450 			const struct iovec *iov, unsigned long nr_segs,
451 			size_t count)
452 {
453 	WARN_ON(direction & ~(READ | WRITE));
454 	direction &= READ | WRITE;
455 
456 	/* It will get better.  Eventually... */
457 	if (uaccess_kernel()) {
458 		i->type = ITER_KVEC | direction;
459 		i->kvec = (struct kvec *)iov;
460 	} else {
461 		i->type = ITER_IOVEC | direction;
462 		i->iov = iov;
463 	}
464 	i->nr_segs = nr_segs;
465 	i->iov_offset = 0;
466 	i->count = count;
467 }
468 EXPORT_SYMBOL(iov_iter_init);
469 
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)470 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
471 {
472 	char *from = kmap_atomic(page);
473 	memcpy(to, from + offset, len);
474 	kunmap_atomic(from);
475 }
476 
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)477 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
478 {
479 	char *to = kmap_atomic(page);
480 	memcpy(to + offset, from, len);
481 	kunmap_atomic(to);
482 }
483 
memzero_page(struct page * page,size_t offset,size_t len)484 static void memzero_page(struct page *page, size_t offset, size_t len)
485 {
486 	char *addr = kmap_atomic(page);
487 	memset(addr + offset, 0, len);
488 	kunmap_atomic(addr);
489 }
490 
allocated(struct pipe_buffer * buf)491 static inline bool allocated(struct pipe_buffer *buf)
492 {
493 	return buf->ops == &default_pipe_buf_ops;
494 }
495 
data_start(const struct iov_iter * i,unsigned int * iter_headp,size_t * offp)496 static inline void data_start(const struct iov_iter *i,
497 			      unsigned int *iter_headp, size_t *offp)
498 {
499 	unsigned int p_mask = i->pipe->ring_size - 1;
500 	unsigned int iter_head = i->head;
501 	size_t off = i->iov_offset;
502 
503 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
504 		    off == PAGE_SIZE)) {
505 		iter_head++;
506 		off = 0;
507 	}
508 	*iter_headp = iter_head;
509 	*offp = off;
510 }
511 
push_pipe(struct iov_iter * i,size_t size,int * iter_headp,size_t * offp)512 static size_t push_pipe(struct iov_iter *i, size_t size,
513 			int *iter_headp, size_t *offp)
514 {
515 	struct pipe_inode_info *pipe = i->pipe;
516 	unsigned int p_tail = pipe->tail;
517 	unsigned int p_mask = pipe->ring_size - 1;
518 	unsigned int iter_head;
519 	size_t off;
520 	ssize_t left;
521 
522 	if (unlikely(size > i->count))
523 		size = i->count;
524 	if (unlikely(!size))
525 		return 0;
526 
527 	left = size;
528 	data_start(i, &iter_head, &off);
529 	*iter_headp = iter_head;
530 	*offp = off;
531 	if (off) {
532 		left -= PAGE_SIZE - off;
533 		if (left <= 0) {
534 			pipe->bufs[iter_head & p_mask].len += size;
535 			return size;
536 		}
537 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
538 		iter_head++;
539 	}
540 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
541 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
542 		struct page *page = alloc_page(GFP_USER);
543 		if (!page)
544 			break;
545 
546 		buf->ops = &default_pipe_buf_ops;
547 		buf->flags = 0;
548 		buf->page = page;
549 		buf->offset = 0;
550 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
551 		left -= buf->len;
552 		iter_head++;
553 		pipe->head = iter_head;
554 
555 		if (left == 0)
556 			return size;
557 	}
558 	return size - left;
559 }
560 
copy_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)561 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
562 				struct iov_iter *i)
563 {
564 	struct pipe_inode_info *pipe = i->pipe;
565 	unsigned int p_mask = pipe->ring_size - 1;
566 	unsigned int i_head;
567 	size_t n, off;
568 
569 	if (!sanity(i))
570 		return 0;
571 
572 	bytes = n = push_pipe(i, bytes, &i_head, &off);
573 	if (unlikely(!n))
574 		return 0;
575 	do {
576 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
577 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
578 		i->head = i_head;
579 		i->iov_offset = off + chunk;
580 		n -= chunk;
581 		addr += chunk;
582 		off = 0;
583 		i_head++;
584 	} while (n);
585 	i->count -= bytes;
586 	return bytes;
587 }
588 
csum_and_memcpy(void * to,const void * from,size_t len,__wsum sum,size_t off)589 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
590 			      __wsum sum, size_t off)
591 {
592 	__wsum next = csum_partial_copy_nocheck(from, to, len);
593 	return csum_block_add(sum, next, off);
594 }
595 
csum_and_copy_to_pipe_iter(const void * addr,size_t bytes,struct csum_state * csstate,struct iov_iter * i)596 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
597 					 struct csum_state *csstate,
598 					 struct iov_iter *i)
599 {
600 	struct pipe_inode_info *pipe = i->pipe;
601 	unsigned int p_mask = pipe->ring_size - 1;
602 	__wsum sum = csstate->csum;
603 	size_t off = csstate->off;
604 	unsigned int i_head;
605 	size_t n, r;
606 
607 	if (!sanity(i))
608 		return 0;
609 
610 	bytes = n = push_pipe(i, bytes, &i_head, &r);
611 	if (unlikely(!n))
612 		return 0;
613 	do {
614 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
615 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
616 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
617 		kunmap_atomic(p);
618 		i->head = i_head;
619 		i->iov_offset = r + chunk;
620 		n -= chunk;
621 		off += chunk;
622 		addr += chunk;
623 		r = 0;
624 		i_head++;
625 	} while (n);
626 	i->count -= bytes;
627 	csstate->csum = sum;
628 	csstate->off = off;
629 	return bytes;
630 }
631 
_copy_to_iter(const void * addr,size_t bytes,struct iov_iter * i)632 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
633 {
634 	const char *from = addr;
635 	if (unlikely(iov_iter_is_pipe(i)))
636 		return copy_pipe_to_iter(addr, bytes, i);
637 	if (iter_is_iovec(i))
638 		might_fault();
639 	iterate_and_advance(i, bytes, v,
640 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
641 		memcpy_to_page(v.bv_page, v.bv_offset,
642 			       (from += v.bv_len) - v.bv_len, v.bv_len),
643 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
644 	)
645 
646 	return bytes;
647 }
648 EXPORT_SYMBOL(_copy_to_iter);
649 
650 #ifdef CONFIG_ARCH_HAS_COPY_MC
copyout_mc(void __user * to,const void * from,size_t n)651 static int copyout_mc(void __user *to, const void *from, size_t n)
652 {
653 	if (access_ok(to, n)) {
654 		instrument_copy_to_user(to, from, n);
655 		n = copy_mc_to_user((__force void *) to, from, n);
656 	}
657 	return n;
658 }
659 
copy_mc_to_page(struct page * page,size_t offset,const char * from,size_t len)660 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
661 		const char *from, size_t len)
662 {
663 	unsigned long ret;
664 	char *to;
665 
666 	to = kmap_atomic(page);
667 	ret = copy_mc_to_kernel(to + offset, from, len);
668 	kunmap_atomic(to);
669 
670 	return ret;
671 }
672 
copy_mc_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)673 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
674 				struct iov_iter *i)
675 {
676 	struct pipe_inode_info *pipe = i->pipe;
677 	unsigned int p_mask = pipe->ring_size - 1;
678 	unsigned int i_head;
679 	size_t n, off, xfer = 0;
680 
681 	if (!sanity(i))
682 		return 0;
683 
684 	bytes = n = push_pipe(i, bytes, &i_head, &off);
685 	if (unlikely(!n))
686 		return 0;
687 	do {
688 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
689 		unsigned long rem;
690 
691 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
692 					    off, addr, chunk);
693 		i->head = i_head;
694 		i->iov_offset = off + chunk - rem;
695 		xfer += chunk - rem;
696 		if (rem)
697 			break;
698 		n -= chunk;
699 		addr += chunk;
700 		off = 0;
701 		i_head++;
702 	} while (n);
703 	i->count -= xfer;
704 	return xfer;
705 }
706 
707 /**
708  * _copy_mc_to_iter - copy to iter with source memory error exception handling
709  * @addr: source kernel address
710  * @bytes: total transfer length
711  * @iter: destination iterator
712  *
713  * The pmem driver deploys this for the dax operation
714  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
715  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
716  * successfully copied.
717  *
718  * The main differences between this and typical _copy_to_iter().
719  *
720  * * Typical tail/residue handling after a fault retries the copy
721  *   byte-by-byte until the fault happens again. Re-triggering machine
722  *   checks is potentially fatal so the implementation uses source
723  *   alignment and poison alignment assumptions to avoid re-triggering
724  *   hardware exceptions.
725  *
726  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
727  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
728  *   a short copy.
729  */
_copy_mc_to_iter(const void * addr,size_t bytes,struct iov_iter * i)730 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
731 {
732 	const char *from = addr;
733 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
734 
735 	if (unlikely(iov_iter_is_pipe(i)))
736 		return copy_mc_pipe_to_iter(addr, bytes, i);
737 	if (iter_is_iovec(i))
738 		might_fault();
739 	iterate_and_advance(i, bytes, v,
740 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
741 			   v.iov_len),
742 		({
743 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
744 				      (from += v.bv_len) - v.bv_len, v.bv_len);
745 		if (rem) {
746 			curr_addr = (unsigned long) from;
747 			bytes = curr_addr - s_addr - rem;
748 			return bytes;
749 		}
750 		}),
751 		({
752 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
753 					- v.iov_len, v.iov_len);
754 		if (rem) {
755 			curr_addr = (unsigned long) from;
756 			bytes = curr_addr - s_addr - rem;
757 			return bytes;
758 		}
759 		})
760 	)
761 
762 	return bytes;
763 }
764 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
765 #endif /* CONFIG_ARCH_HAS_COPY_MC */
766 
_copy_from_iter(void * addr,size_t bytes,struct iov_iter * i)767 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
768 {
769 	char *to = addr;
770 	if (unlikely(iov_iter_is_pipe(i))) {
771 		WARN_ON(1);
772 		return 0;
773 	}
774 	if (iter_is_iovec(i))
775 		might_fault();
776 	iterate_and_advance(i, bytes, v,
777 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
778 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
779 				 v.bv_offset, v.bv_len),
780 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
781 	)
782 
783 	return bytes;
784 }
785 EXPORT_SYMBOL(_copy_from_iter);
786 
_copy_from_iter_full(void * addr,size_t bytes,struct iov_iter * i)787 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
788 {
789 	char *to = addr;
790 	if (unlikely(iov_iter_is_pipe(i))) {
791 		WARN_ON(1);
792 		return false;
793 	}
794 	if (unlikely(i->count < bytes))
795 		return false;
796 
797 	if (iter_is_iovec(i))
798 		might_fault();
799 	iterate_all_kinds(i, bytes, v, ({
800 		if (copyin((to += v.iov_len) - v.iov_len,
801 				      v.iov_base, v.iov_len))
802 			return false;
803 		0;}),
804 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
805 				 v.bv_offset, v.bv_len),
806 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
807 	)
808 
809 	iov_iter_advance(i, bytes);
810 	return true;
811 }
812 EXPORT_SYMBOL(_copy_from_iter_full);
813 
_copy_from_iter_nocache(void * addr,size_t bytes,struct iov_iter * i)814 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
815 {
816 	char *to = addr;
817 	if (unlikely(iov_iter_is_pipe(i))) {
818 		WARN_ON(1);
819 		return 0;
820 	}
821 	iterate_and_advance(i, bytes, v,
822 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
823 					 v.iov_base, v.iov_len),
824 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
825 				 v.bv_offset, v.bv_len),
826 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
827 	)
828 
829 	return bytes;
830 }
831 EXPORT_SYMBOL(_copy_from_iter_nocache);
832 
833 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
834 /**
835  * _copy_from_iter_flushcache - write destination through cpu cache
836  * @addr: destination kernel address
837  * @bytes: total transfer length
838  * @iter: source iterator
839  *
840  * The pmem driver arranges for filesystem-dax to use this facility via
841  * dax_copy_from_iter() for ensuring that writes to persistent memory
842  * are flushed through the CPU cache. It is differentiated from
843  * _copy_from_iter_nocache() in that guarantees all data is flushed for
844  * all iterator types. The _copy_from_iter_nocache() only attempts to
845  * bypass the cache for the ITER_IOVEC case, and on some archs may use
846  * instructions that strand dirty-data in the cache.
847  */
_copy_from_iter_flushcache(void * addr,size_t bytes,struct iov_iter * i)848 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
849 {
850 	char *to = addr;
851 	if (unlikely(iov_iter_is_pipe(i))) {
852 		WARN_ON(1);
853 		return 0;
854 	}
855 	iterate_and_advance(i, bytes, v,
856 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
857 					 v.iov_base, v.iov_len),
858 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
859 				 v.bv_offset, v.bv_len),
860 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
861 			v.iov_len)
862 	)
863 
864 	return bytes;
865 }
866 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
867 #endif
868 
_copy_from_iter_full_nocache(void * addr,size_t bytes,struct iov_iter * i)869 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
870 {
871 	char *to = addr;
872 	if (unlikely(iov_iter_is_pipe(i))) {
873 		WARN_ON(1);
874 		return false;
875 	}
876 	if (unlikely(i->count < bytes))
877 		return false;
878 	iterate_all_kinds(i, bytes, v, ({
879 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
880 					     v.iov_base, v.iov_len))
881 			return false;
882 		0;}),
883 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
884 				 v.bv_offset, v.bv_len),
885 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
886 	)
887 
888 	iov_iter_advance(i, bytes);
889 	return true;
890 }
891 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
892 
page_copy_sane(struct page * page,size_t offset,size_t n)893 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
894 {
895 	struct page *head;
896 	size_t v = n + offset;
897 
898 	/*
899 	 * The general case needs to access the page order in order
900 	 * to compute the page size.
901 	 * However, we mostly deal with order-0 pages and thus can
902 	 * avoid a possible cache line miss for requests that fit all
903 	 * page orders.
904 	 */
905 	if (n <= v && v <= PAGE_SIZE)
906 		return true;
907 
908 	head = compound_head(page);
909 	v += (page - head) << PAGE_SHIFT;
910 
911 	if (likely(n <= v && v <= (page_size(head))))
912 		return true;
913 	WARN_ON(1);
914 	return false;
915 }
916 
copy_page_to_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)917 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
918 			 struct iov_iter *i)
919 {
920 	if (unlikely(!page_copy_sane(page, offset, bytes)))
921 		return 0;
922 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
923 		void *kaddr = kmap_atomic(page);
924 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
925 		kunmap_atomic(kaddr);
926 		return wanted;
927 	} else if (unlikely(iov_iter_is_discard(i))) {
928 		if (unlikely(i->count < bytes))
929 			bytes = i->count;
930 		i->count -= bytes;
931 		return bytes;
932 	} else if (likely(!iov_iter_is_pipe(i)))
933 		return copy_page_to_iter_iovec(page, offset, bytes, i);
934 	else
935 		return copy_page_to_iter_pipe(page, offset, bytes, i);
936 }
937 EXPORT_SYMBOL(copy_page_to_iter);
938 
copy_page_from_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)939 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
940 			 struct iov_iter *i)
941 {
942 	if (unlikely(!page_copy_sane(page, offset, bytes)))
943 		return 0;
944 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
945 		WARN_ON(1);
946 		return 0;
947 	}
948 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
949 		void *kaddr = kmap_atomic(page);
950 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
951 		kunmap_atomic(kaddr);
952 		return wanted;
953 	} else
954 		return copy_page_from_iter_iovec(page, offset, bytes, i);
955 }
956 EXPORT_SYMBOL(copy_page_from_iter);
957 
pipe_zero(size_t bytes,struct iov_iter * i)958 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
959 {
960 	struct pipe_inode_info *pipe = i->pipe;
961 	unsigned int p_mask = pipe->ring_size - 1;
962 	unsigned int i_head;
963 	size_t n, off;
964 
965 	if (!sanity(i))
966 		return 0;
967 
968 	bytes = n = push_pipe(i, bytes, &i_head, &off);
969 	if (unlikely(!n))
970 		return 0;
971 
972 	do {
973 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
974 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
975 		i->head = i_head;
976 		i->iov_offset = off + chunk;
977 		n -= chunk;
978 		off = 0;
979 		i_head++;
980 	} while (n);
981 	i->count -= bytes;
982 	return bytes;
983 }
984 
iov_iter_zero(size_t bytes,struct iov_iter * i)985 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
986 {
987 	if (unlikely(iov_iter_is_pipe(i)))
988 		return pipe_zero(bytes, i);
989 	iterate_and_advance(i, bytes, v,
990 		clear_user(v.iov_base, v.iov_len),
991 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
992 		memset(v.iov_base, 0, v.iov_len)
993 	)
994 
995 	return bytes;
996 }
997 EXPORT_SYMBOL(iov_iter_zero);
998 
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)999 size_t iov_iter_copy_from_user_atomic(struct page *page,
1000 		struct iov_iter *i, unsigned long offset, size_t bytes)
1001 {
1002 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
1003 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
1004 		kunmap_atomic(kaddr);
1005 		return 0;
1006 	}
1007 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1008 		kunmap_atomic(kaddr);
1009 		WARN_ON(1);
1010 		return 0;
1011 	}
1012 	iterate_all_kinds(i, bytes, v,
1013 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1014 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1015 				 v.bv_offset, v.bv_len),
1016 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1017 	)
1018 	kunmap_atomic(kaddr);
1019 	return bytes;
1020 }
1021 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1022 
pipe_truncate(struct iov_iter * i)1023 static inline void pipe_truncate(struct iov_iter *i)
1024 {
1025 	struct pipe_inode_info *pipe = i->pipe;
1026 	unsigned int p_tail = pipe->tail;
1027 	unsigned int p_head = pipe->head;
1028 	unsigned int p_mask = pipe->ring_size - 1;
1029 
1030 	if (!pipe_empty(p_head, p_tail)) {
1031 		struct pipe_buffer *buf;
1032 		unsigned int i_head = i->head;
1033 		size_t off = i->iov_offset;
1034 
1035 		if (off) {
1036 			buf = &pipe->bufs[i_head & p_mask];
1037 			buf->len = off - buf->offset;
1038 			i_head++;
1039 		}
1040 		while (p_head != i_head) {
1041 			p_head--;
1042 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1043 		}
1044 
1045 		pipe->head = p_head;
1046 	}
1047 }
1048 
pipe_advance(struct iov_iter * i,size_t size)1049 static void pipe_advance(struct iov_iter *i, size_t size)
1050 {
1051 	struct pipe_inode_info *pipe = i->pipe;
1052 	if (unlikely(i->count < size))
1053 		size = i->count;
1054 	if (size) {
1055 		struct pipe_buffer *buf;
1056 		unsigned int p_mask = pipe->ring_size - 1;
1057 		unsigned int i_head = i->head;
1058 		size_t off = i->iov_offset, left = size;
1059 
1060 		if (off) /* make it relative to the beginning of buffer */
1061 			left += off - pipe->bufs[i_head & p_mask].offset;
1062 		while (1) {
1063 			buf = &pipe->bufs[i_head & p_mask];
1064 			if (left <= buf->len)
1065 				break;
1066 			left -= buf->len;
1067 			i_head++;
1068 		}
1069 		i->head = i_head;
1070 		i->iov_offset = buf->offset + left;
1071 	}
1072 	i->count -= size;
1073 	/* ... and discard everything past that point */
1074 	pipe_truncate(i);
1075 }
1076 
iov_iter_advance(struct iov_iter * i,size_t size)1077 void iov_iter_advance(struct iov_iter *i, size_t size)
1078 {
1079 	if (unlikely(iov_iter_is_pipe(i))) {
1080 		pipe_advance(i, size);
1081 		return;
1082 	}
1083 	if (unlikely(iov_iter_is_discard(i))) {
1084 		i->count -= size;
1085 		return;
1086 	}
1087 	iterate_and_advance(i, size, v, 0, 0, 0)
1088 }
1089 EXPORT_SYMBOL(iov_iter_advance);
1090 
iov_iter_revert(struct iov_iter * i,size_t unroll)1091 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1092 {
1093 	if (!unroll)
1094 		return;
1095 	if (WARN_ON(unroll > MAX_RW_COUNT))
1096 		return;
1097 	i->count += unroll;
1098 	if (unlikely(iov_iter_is_pipe(i))) {
1099 		struct pipe_inode_info *pipe = i->pipe;
1100 		unsigned int p_mask = pipe->ring_size - 1;
1101 		unsigned int i_head = i->head;
1102 		size_t off = i->iov_offset;
1103 		while (1) {
1104 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1105 			size_t n = off - b->offset;
1106 			if (unroll < n) {
1107 				off -= unroll;
1108 				break;
1109 			}
1110 			unroll -= n;
1111 			if (!unroll && i_head == i->start_head) {
1112 				off = 0;
1113 				break;
1114 			}
1115 			i_head--;
1116 			b = &pipe->bufs[i_head & p_mask];
1117 			off = b->offset + b->len;
1118 		}
1119 		i->iov_offset = off;
1120 		i->head = i_head;
1121 		pipe_truncate(i);
1122 		return;
1123 	}
1124 	if (unlikely(iov_iter_is_discard(i)))
1125 		return;
1126 	if (unroll <= i->iov_offset) {
1127 		i->iov_offset -= unroll;
1128 		return;
1129 	}
1130 	unroll -= i->iov_offset;
1131 	if (iov_iter_is_bvec(i)) {
1132 		const struct bio_vec *bvec = i->bvec;
1133 		while (1) {
1134 			size_t n = (--bvec)->bv_len;
1135 			i->nr_segs++;
1136 			if (unroll <= n) {
1137 				i->bvec = bvec;
1138 				i->iov_offset = n - unroll;
1139 				return;
1140 			}
1141 			unroll -= n;
1142 		}
1143 	} else { /* same logics for iovec and kvec */
1144 		const struct iovec *iov = i->iov;
1145 		while (1) {
1146 			size_t n = (--iov)->iov_len;
1147 			i->nr_segs++;
1148 			if (unroll <= n) {
1149 				i->iov = iov;
1150 				i->iov_offset = n - unroll;
1151 				return;
1152 			}
1153 			unroll -= n;
1154 		}
1155 	}
1156 }
1157 EXPORT_SYMBOL(iov_iter_revert);
1158 
1159 /*
1160  * Return the count of just the current iov_iter segment.
1161  */
iov_iter_single_seg_count(const struct iov_iter * i)1162 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1163 {
1164 	if (unlikely(iov_iter_is_pipe(i)))
1165 		return i->count;	// it is a silly place, anyway
1166 	if (i->nr_segs == 1)
1167 		return i->count;
1168 	if (unlikely(iov_iter_is_discard(i)))
1169 		return i->count;
1170 	else if (iov_iter_is_bvec(i))
1171 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1172 	else
1173 		return min(i->count, i->iov->iov_len - i->iov_offset);
1174 }
1175 EXPORT_SYMBOL(iov_iter_single_seg_count);
1176 
iov_iter_kvec(struct iov_iter * i,unsigned int direction,const struct kvec * kvec,unsigned long nr_segs,size_t count)1177 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1178 			const struct kvec *kvec, unsigned long nr_segs,
1179 			size_t count)
1180 {
1181 	WARN_ON(direction & ~(READ | WRITE));
1182 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1183 	i->kvec = kvec;
1184 	i->nr_segs = nr_segs;
1185 	i->iov_offset = 0;
1186 	i->count = count;
1187 }
1188 EXPORT_SYMBOL(iov_iter_kvec);
1189 
iov_iter_bvec(struct iov_iter * i,unsigned int direction,const struct bio_vec * bvec,unsigned long nr_segs,size_t count)1190 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1191 			const struct bio_vec *bvec, unsigned long nr_segs,
1192 			size_t count)
1193 {
1194 	WARN_ON(direction & ~(READ | WRITE));
1195 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1196 	i->bvec = bvec;
1197 	i->nr_segs = nr_segs;
1198 	i->iov_offset = 0;
1199 	i->count = count;
1200 }
1201 EXPORT_SYMBOL(iov_iter_bvec);
1202 
iov_iter_pipe(struct iov_iter * i,unsigned int direction,struct pipe_inode_info * pipe,size_t count)1203 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1204 			struct pipe_inode_info *pipe,
1205 			size_t count)
1206 {
1207 	BUG_ON(direction != READ);
1208 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1209 	i->type = ITER_PIPE | READ;
1210 	i->pipe = pipe;
1211 	i->head = pipe->head;
1212 	i->iov_offset = 0;
1213 	i->count = count;
1214 	i->start_head = i->head;
1215 }
1216 EXPORT_SYMBOL(iov_iter_pipe);
1217 
1218 /**
1219  * iov_iter_discard - Initialise an I/O iterator that discards data
1220  * @i: The iterator to initialise.
1221  * @direction: The direction of the transfer.
1222  * @count: The size of the I/O buffer in bytes.
1223  *
1224  * Set up an I/O iterator that just discards everything that's written to it.
1225  * It's only available as a READ iterator.
1226  */
iov_iter_discard(struct iov_iter * i,unsigned int direction,size_t count)1227 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1228 {
1229 	BUG_ON(direction != READ);
1230 	i->type = ITER_DISCARD | READ;
1231 	i->count = count;
1232 	i->iov_offset = 0;
1233 }
1234 EXPORT_SYMBOL(iov_iter_discard);
1235 
iov_iter_alignment(const struct iov_iter * i)1236 unsigned long iov_iter_alignment(const struct iov_iter *i)
1237 {
1238 	unsigned long res = 0;
1239 	size_t size = i->count;
1240 
1241 	if (unlikely(iov_iter_is_pipe(i))) {
1242 		unsigned int p_mask = i->pipe->ring_size - 1;
1243 
1244 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1245 			return size | i->iov_offset;
1246 		return size;
1247 	}
1248 	iterate_all_kinds(i, size, v,
1249 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1250 		res |= v.bv_offset | v.bv_len,
1251 		res |= (unsigned long)v.iov_base | v.iov_len
1252 	)
1253 	return res;
1254 }
1255 EXPORT_SYMBOL(iov_iter_alignment);
1256 
iov_iter_gap_alignment(const struct iov_iter * i)1257 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1258 {
1259 	unsigned long res = 0;
1260 	size_t size = i->count;
1261 
1262 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1263 		WARN_ON(1);
1264 		return ~0U;
1265 	}
1266 
1267 	iterate_all_kinds(i, size, v,
1268 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1269 			(size != v.iov_len ? size : 0), 0),
1270 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1271 			(size != v.bv_len ? size : 0)),
1272 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1273 			(size != v.iov_len ? size : 0))
1274 		);
1275 	return res;
1276 }
1277 EXPORT_SYMBOL(iov_iter_gap_alignment);
1278 
__pipe_get_pages(struct iov_iter * i,size_t maxsize,struct page ** pages,int iter_head,size_t * start)1279 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1280 				size_t maxsize,
1281 				struct page **pages,
1282 				int iter_head,
1283 				size_t *start)
1284 {
1285 	struct pipe_inode_info *pipe = i->pipe;
1286 	unsigned int p_mask = pipe->ring_size - 1;
1287 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1288 	if (!n)
1289 		return -EFAULT;
1290 
1291 	maxsize = n;
1292 	n += *start;
1293 	while (n > 0) {
1294 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1295 		iter_head++;
1296 		n -= PAGE_SIZE;
1297 	}
1298 
1299 	return maxsize;
1300 }
1301 
pipe_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1302 static ssize_t pipe_get_pages(struct iov_iter *i,
1303 		   struct page **pages, size_t maxsize, unsigned maxpages,
1304 		   size_t *start)
1305 {
1306 	unsigned int iter_head, npages;
1307 	size_t capacity;
1308 
1309 	if (!maxsize)
1310 		return 0;
1311 
1312 	if (!sanity(i))
1313 		return -EFAULT;
1314 
1315 	data_start(i, &iter_head, start);
1316 	/* Amount of free space: some of this one + all after this one */
1317 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1318 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1319 
1320 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1321 }
1322 
iov_iter_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1323 ssize_t iov_iter_get_pages(struct iov_iter *i,
1324 		   struct page **pages, size_t maxsize, unsigned maxpages,
1325 		   size_t *start)
1326 {
1327 	if (maxsize > i->count)
1328 		maxsize = i->count;
1329 
1330 	if (unlikely(iov_iter_is_pipe(i)))
1331 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1332 	if (unlikely(iov_iter_is_discard(i)))
1333 		return -EFAULT;
1334 
1335 	iterate_all_kinds(i, maxsize, v, ({
1336 		unsigned long addr = (unsigned long)v.iov_base;
1337 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1338 		int n;
1339 		int res;
1340 
1341 		if (len > maxpages * PAGE_SIZE)
1342 			len = maxpages * PAGE_SIZE;
1343 		addr &= ~(PAGE_SIZE - 1);
1344 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1345 		res = get_user_pages_fast(addr, n,
1346 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1347 				pages);
1348 		if (unlikely(res <= 0))
1349 			return res;
1350 		return (res == n ? len : res * PAGE_SIZE) - *start;
1351 	0;}),({
1352 		/* can't be more than PAGE_SIZE */
1353 		*start = v.bv_offset;
1354 		get_page(*pages = v.bv_page);
1355 		return v.bv_len;
1356 	}),({
1357 		return -EFAULT;
1358 	})
1359 	)
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL(iov_iter_get_pages);
1363 
get_pages_array(size_t n)1364 static struct page **get_pages_array(size_t n)
1365 {
1366 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1367 }
1368 
pipe_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1369 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1370 		   struct page ***pages, size_t maxsize,
1371 		   size_t *start)
1372 {
1373 	struct page **p;
1374 	unsigned int iter_head, npages;
1375 	ssize_t n;
1376 
1377 	if (!maxsize)
1378 		return 0;
1379 
1380 	if (!sanity(i))
1381 		return -EFAULT;
1382 
1383 	data_start(i, &iter_head, start);
1384 	/* Amount of free space: some of this one + all after this one */
1385 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1386 	n = npages * PAGE_SIZE - *start;
1387 	if (maxsize > n)
1388 		maxsize = n;
1389 	else
1390 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1391 	p = get_pages_array(npages);
1392 	if (!p)
1393 		return -ENOMEM;
1394 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1395 	if (n > 0)
1396 		*pages = p;
1397 	else
1398 		kvfree(p);
1399 	return n;
1400 }
1401 
iov_iter_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1402 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1403 		   struct page ***pages, size_t maxsize,
1404 		   size_t *start)
1405 {
1406 	struct page **p;
1407 
1408 	if (maxsize > i->count)
1409 		maxsize = i->count;
1410 
1411 	if (unlikely(iov_iter_is_pipe(i)))
1412 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1413 	if (unlikely(iov_iter_is_discard(i)))
1414 		return -EFAULT;
1415 
1416 	iterate_all_kinds(i, maxsize, v, ({
1417 		unsigned long addr = (unsigned long)v.iov_base;
1418 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1419 		int n;
1420 		int res;
1421 
1422 		addr &= ~(PAGE_SIZE - 1);
1423 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1424 		p = get_pages_array(n);
1425 		if (!p)
1426 			return -ENOMEM;
1427 		res = get_user_pages_fast(addr, n,
1428 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1429 		if (unlikely(res <= 0)) {
1430 			kvfree(p);
1431 			*pages = NULL;
1432 			return res;
1433 		}
1434 		*pages = p;
1435 		return (res == n ? len : res * PAGE_SIZE) - *start;
1436 	0;}),({
1437 		/* can't be more than PAGE_SIZE */
1438 		*start = v.bv_offset;
1439 		*pages = p = get_pages_array(1);
1440 		if (!p)
1441 			return -ENOMEM;
1442 		get_page(*p = v.bv_page);
1443 		return v.bv_len;
1444 	}),({
1445 		return -EFAULT;
1446 	})
1447 	)
1448 	return 0;
1449 }
1450 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1451 
csum_and_copy_from_iter(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1452 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1453 			       struct iov_iter *i)
1454 {
1455 	char *to = addr;
1456 	__wsum sum, next;
1457 	size_t off = 0;
1458 	sum = *csum;
1459 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1460 		WARN_ON(1);
1461 		return 0;
1462 	}
1463 	iterate_and_advance(i, bytes, v, ({
1464 		next = csum_and_copy_from_user(v.iov_base,
1465 					       (to += v.iov_len) - v.iov_len,
1466 					       v.iov_len);
1467 		if (next) {
1468 			sum = csum_block_add(sum, next, off);
1469 			off += v.iov_len;
1470 		}
1471 		next ? 0 : v.iov_len;
1472 	}), ({
1473 		char *p = kmap_atomic(v.bv_page);
1474 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1475 				      p + v.bv_offset, v.bv_len,
1476 				      sum, off);
1477 		kunmap_atomic(p);
1478 		off += v.bv_len;
1479 	}),({
1480 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1481 				      v.iov_base, v.iov_len,
1482 				      sum, off);
1483 		off += v.iov_len;
1484 	})
1485 	)
1486 	*csum = sum;
1487 	return bytes;
1488 }
1489 EXPORT_SYMBOL(csum_and_copy_from_iter);
1490 
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1491 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1492 			       struct iov_iter *i)
1493 {
1494 	char *to = addr;
1495 	__wsum sum, next;
1496 	size_t off = 0;
1497 	sum = *csum;
1498 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1499 		WARN_ON(1);
1500 		return false;
1501 	}
1502 	if (unlikely(i->count < bytes))
1503 		return false;
1504 	iterate_all_kinds(i, bytes, v, ({
1505 		next = csum_and_copy_from_user(v.iov_base,
1506 					       (to += v.iov_len) - v.iov_len,
1507 					       v.iov_len);
1508 		if (!next)
1509 			return false;
1510 		sum = csum_block_add(sum, next, off);
1511 		off += v.iov_len;
1512 		0;
1513 	}), ({
1514 		char *p = kmap_atomic(v.bv_page);
1515 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1516 				      p + v.bv_offset, v.bv_len,
1517 				      sum, off);
1518 		kunmap_atomic(p);
1519 		off += v.bv_len;
1520 	}),({
1521 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1522 				      v.iov_base, v.iov_len,
1523 				      sum, off);
1524 		off += v.iov_len;
1525 	})
1526 	)
1527 	*csum = sum;
1528 	iov_iter_advance(i, bytes);
1529 	return true;
1530 }
1531 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1532 
csum_and_copy_to_iter(const void * addr,size_t bytes,void * _csstate,struct iov_iter * i)1533 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1534 			     struct iov_iter *i)
1535 {
1536 	struct csum_state *csstate = _csstate;
1537 	const char *from = addr;
1538 	__wsum sum, next;
1539 	size_t off;
1540 
1541 	if (unlikely(iov_iter_is_pipe(i)))
1542 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1543 
1544 	sum = csstate->csum;
1545 	off = csstate->off;
1546 	if (unlikely(iov_iter_is_discard(i))) {
1547 		WARN_ON(1);	/* for now */
1548 		return 0;
1549 	}
1550 	iterate_and_advance(i, bytes, v, ({
1551 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1552 					     v.iov_base,
1553 					     v.iov_len);
1554 		if (next) {
1555 			sum = csum_block_add(sum, next, off);
1556 			off += v.iov_len;
1557 		}
1558 		next ? 0 : v.iov_len;
1559 	}), ({
1560 		char *p = kmap_atomic(v.bv_page);
1561 		sum = csum_and_memcpy(p + v.bv_offset,
1562 				      (from += v.bv_len) - v.bv_len,
1563 				      v.bv_len, sum, off);
1564 		kunmap_atomic(p);
1565 		off += v.bv_len;
1566 	}),({
1567 		sum = csum_and_memcpy(v.iov_base,
1568 				     (from += v.iov_len) - v.iov_len,
1569 				     v.iov_len, sum, off);
1570 		off += v.iov_len;
1571 	})
1572 	)
1573 	csstate->csum = sum;
1574 	csstate->off = off;
1575 	return bytes;
1576 }
1577 EXPORT_SYMBOL(csum_and_copy_to_iter);
1578 
hash_and_copy_to_iter(const void * addr,size_t bytes,void * hashp,struct iov_iter * i)1579 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1580 		struct iov_iter *i)
1581 {
1582 #ifdef CONFIG_CRYPTO_HASH
1583 	struct ahash_request *hash = hashp;
1584 	struct scatterlist sg;
1585 	size_t copied;
1586 
1587 	copied = copy_to_iter(addr, bytes, i);
1588 	sg_init_one(&sg, addr, copied);
1589 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1590 	crypto_ahash_update(hash);
1591 	return copied;
1592 #else
1593 	return 0;
1594 #endif
1595 }
1596 EXPORT_SYMBOL(hash_and_copy_to_iter);
1597 
iov_iter_npages(const struct iov_iter * i,int maxpages)1598 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1599 {
1600 	size_t size = i->count;
1601 	int npages = 0;
1602 
1603 	if (!size)
1604 		return 0;
1605 	if (unlikely(iov_iter_is_discard(i)))
1606 		return 0;
1607 
1608 	if (unlikely(iov_iter_is_pipe(i))) {
1609 		struct pipe_inode_info *pipe = i->pipe;
1610 		unsigned int iter_head;
1611 		size_t off;
1612 
1613 		if (!sanity(i))
1614 			return 0;
1615 
1616 		data_start(i, &iter_head, &off);
1617 		/* some of this one + all after this one */
1618 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1619 		if (npages >= maxpages)
1620 			return maxpages;
1621 	} else iterate_all_kinds(i, size, v, ({
1622 		unsigned long p = (unsigned long)v.iov_base;
1623 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1624 			- p / PAGE_SIZE;
1625 		if (npages >= maxpages)
1626 			return maxpages;
1627 	0;}),({
1628 		npages++;
1629 		if (npages >= maxpages)
1630 			return maxpages;
1631 	}),({
1632 		unsigned long p = (unsigned long)v.iov_base;
1633 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1634 			- p / PAGE_SIZE;
1635 		if (npages >= maxpages)
1636 			return maxpages;
1637 	})
1638 	)
1639 	return npages;
1640 }
1641 EXPORT_SYMBOL(iov_iter_npages);
1642 
dup_iter(struct iov_iter * new,struct iov_iter * old,gfp_t flags)1643 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1644 {
1645 	*new = *old;
1646 	if (unlikely(iov_iter_is_pipe(new))) {
1647 		WARN_ON(1);
1648 		return NULL;
1649 	}
1650 	if (unlikely(iov_iter_is_discard(new)))
1651 		return NULL;
1652 	if (iov_iter_is_bvec(new))
1653 		return new->bvec = kmemdup(new->bvec,
1654 				    new->nr_segs * sizeof(struct bio_vec),
1655 				    flags);
1656 	else
1657 		/* iovec and kvec have identical layout */
1658 		return new->iov = kmemdup(new->iov,
1659 				   new->nr_segs * sizeof(struct iovec),
1660 				   flags);
1661 }
1662 EXPORT_SYMBOL(dup_iter);
1663 
copy_compat_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,unsigned long nr_segs)1664 static int copy_compat_iovec_from_user(struct iovec *iov,
1665 		const struct iovec __user *uvec, unsigned long nr_segs)
1666 {
1667 	const struct compat_iovec __user *uiov =
1668 		(const struct compat_iovec __user *)uvec;
1669 	int ret = -EFAULT, i;
1670 
1671 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1672 		return -EFAULT;
1673 
1674 	for (i = 0; i < nr_segs; i++) {
1675 		compat_uptr_t buf;
1676 		compat_ssize_t len;
1677 
1678 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1679 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1680 
1681 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1682 		if (len < 0) {
1683 			ret = -EINVAL;
1684 			goto uaccess_end;
1685 		}
1686 		iov[i].iov_base = compat_ptr(buf);
1687 		iov[i].iov_len = len;
1688 	}
1689 
1690 	ret = 0;
1691 uaccess_end:
1692 	user_access_end();
1693 	return ret;
1694 }
1695 
copy_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,unsigned long nr_segs)1696 static int copy_iovec_from_user(struct iovec *iov,
1697 		const struct iovec __user *uvec, unsigned long nr_segs)
1698 {
1699 	unsigned long seg;
1700 
1701 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1702 		return -EFAULT;
1703 	for (seg = 0; seg < nr_segs; seg++) {
1704 		if ((ssize_t)iov[seg].iov_len < 0)
1705 			return -EINVAL;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
iovec_from_user(const struct iovec __user * uvec,unsigned long nr_segs,unsigned long fast_segs,struct iovec * fast_iov,bool compat)1711 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1712 		unsigned long nr_segs, unsigned long fast_segs,
1713 		struct iovec *fast_iov, bool compat)
1714 {
1715 	struct iovec *iov = fast_iov;
1716 	int ret;
1717 
1718 	/*
1719 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1720 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1721 	 * traditionally returned zero for zero segments, so...
1722 	 */
1723 	if (nr_segs == 0)
1724 		return iov;
1725 	if (nr_segs > UIO_MAXIOV)
1726 		return ERR_PTR(-EINVAL);
1727 	if (nr_segs > fast_segs) {
1728 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1729 		if (!iov)
1730 			return ERR_PTR(-ENOMEM);
1731 	}
1732 
1733 	if (compat)
1734 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1735 	else
1736 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1737 	if (ret) {
1738 		if (iov != fast_iov)
1739 			kfree(iov);
1740 		return ERR_PTR(ret);
1741 	}
1742 
1743 	return iov;
1744 }
1745 
__import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i,bool compat)1746 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1747 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1748 		 struct iov_iter *i, bool compat)
1749 {
1750 	ssize_t total_len = 0;
1751 	unsigned long seg;
1752 	struct iovec *iov;
1753 
1754 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1755 	if (IS_ERR(iov)) {
1756 		*iovp = NULL;
1757 		return PTR_ERR(iov);
1758 	}
1759 
1760 	/*
1761 	 * According to the Single Unix Specification we should return EINVAL if
1762 	 * an element length is < 0 when cast to ssize_t or if the total length
1763 	 * would overflow the ssize_t return value of the system call.
1764 	 *
1765 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1766 	 * overflow case.
1767 	 */
1768 	for (seg = 0; seg < nr_segs; seg++) {
1769 		ssize_t len = (ssize_t)iov[seg].iov_len;
1770 
1771 		if (!access_ok(iov[seg].iov_base, len)) {
1772 			if (iov != *iovp)
1773 				kfree(iov);
1774 			*iovp = NULL;
1775 			return -EFAULT;
1776 		}
1777 
1778 		if (len > MAX_RW_COUNT - total_len) {
1779 			len = MAX_RW_COUNT - total_len;
1780 			iov[seg].iov_len = len;
1781 		}
1782 		total_len += len;
1783 	}
1784 
1785 	iov_iter_init(i, type, iov, nr_segs, total_len);
1786 	if (iov == *iovp)
1787 		*iovp = NULL;
1788 	else
1789 		*iovp = iov;
1790 	return total_len;
1791 }
1792 
1793 /**
1794  * import_iovec() - Copy an array of &struct iovec from userspace
1795  *     into the kernel, check that it is valid, and initialize a new
1796  *     &struct iov_iter iterator to access it.
1797  *
1798  * @type: One of %READ or %WRITE.
1799  * @uvec: Pointer to the userspace array.
1800  * @nr_segs: Number of elements in userspace array.
1801  * @fast_segs: Number of elements in @iov.
1802  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1803  *     on-stack) kernel array.
1804  * @i: Pointer to iterator that will be initialized on success.
1805  *
1806  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1807  * then this function places %NULL in *@iov on return. Otherwise, a new
1808  * array will be allocated and the result placed in *@iov. This means that
1809  * the caller may call kfree() on *@iov regardless of whether the small
1810  * on-stack array was used or not (and regardless of whether this function
1811  * returns an error or not).
1812  *
1813  * Return: Negative error code on error, bytes imported on success
1814  */
import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i)1815 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1816 		 unsigned nr_segs, unsigned fast_segs,
1817 		 struct iovec **iovp, struct iov_iter *i)
1818 {
1819 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1820 			      in_compat_syscall());
1821 }
1822 EXPORT_SYMBOL(import_iovec);
1823 
import_single_range(int rw,void __user * buf,size_t len,struct iovec * iov,struct iov_iter * i)1824 int import_single_range(int rw, void __user *buf, size_t len,
1825 		 struct iovec *iov, struct iov_iter *i)
1826 {
1827 	if (len > MAX_RW_COUNT)
1828 		len = MAX_RW_COUNT;
1829 	if (unlikely(!access_ok(buf, len)))
1830 		return -EFAULT;
1831 
1832 	iov->iov_base = buf;
1833 	iov->iov_len = len;
1834 	iov_iter_init(i, rw, iov, 1, len);
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL(import_single_range);
1838 
iov_iter_for_each_range(struct iov_iter * i,size_t bytes,int (* f)(struct kvec * vec,void * context),void * context)1839 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1840 			    int (*f)(struct kvec *vec, void *context),
1841 			    void *context)
1842 {
1843 	struct kvec w;
1844 	int err = -EINVAL;
1845 	if (!bytes)
1846 		return 0;
1847 
1848 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1849 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1850 		w.iov_len = v.bv_len;
1851 		err = f(&w, context);
1852 		kunmap(v.bv_page);
1853 		err;}), ({
1854 		w = v;
1855 		err = f(&w, context);})
1856 	)
1857 	return err;
1858 }
1859 EXPORT_SYMBOL(iov_iter_for_each_range);
1860