1 /**
2 * @file
3 * This is the IPv4 packet segmentation and reassembly implementation.
4 *
5 */
6
7 /*
8 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 *
33 * This file is part of the lwIP TCP/IP stack.
34 *
35 * Author: Jani Monoses <jani@iv.ro>
36 * Simon Goldschmidt
37 * original reassembly code by Adam Dunkels <adam@sics.se>
38 *
39 */
40
41 #include "lwip/opt.h"
42
43 #if LWIP_IPV4
44
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51
52 #include <string.h>
53
54 #if IP_REASSEMBLY
55 /**
56 * The IP reassembly code currently has the following limitations:
57 * - IP header options are not supported
58 * - fragments must not overlap (e.g. due to different routes),
59 * currently, overlapping or duplicate fragments are thrown away
60 * if IP_REASS_CHECK_OVERLAP=1 (the default)!
61 *
62 * @todo: work with IP header options
63 */
64
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66 * regions. The code gets a little smaller. Only use this if you know that
67 * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75 * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81
82 #define IP_REASS_VALIDATE_TELEGRAM_FINISHED 1
83 #define IP_REASS_VALIDATE_PBUF_QUEUED 0
84 #define IP_REASS_VALIDATE_PBUF_DROPPED -1
85
86 /** This is a helper struct which holds the starting
87 * offset and the ending offset of this fragment to
88 * easily chain the fragments.
89 * It has the same packing requirements as the IP header, since it replaces
90 * the IP header in memory in incoming fragments (after copying it) to keep
91 * track of the various fragments. (-> If the IP header doesn't need packing,
92 * this struct doesn't need packing, too.)
93 */
94 #ifdef PACK_STRUCT_USE_INCLUDES
95 # include "arch/bpstruct.h"
96 #endif
97 PACK_STRUCT_BEGIN
98 struct ip_reass_helper {
99 PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
100 PACK_STRUCT_FIELD(u16_t start);
101 PACK_STRUCT_FIELD(u16_t end);
102 } PACK_STRUCT_STRUCT;
103 PACK_STRUCT_END
104 #ifdef PACK_STRUCT_USE_INCLUDES
105 # include "arch/epstruct.h"
106 #endif
107
108 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB) \
109 (ip4_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
110 ip4_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
111 IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
112
113 /* global variables */
114 static struct ip_reassdata *reassdatagrams;
115 static u16_t ip_reass_pbufcount;
116
117 /* function prototypes */
118 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
119 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
120
121 /**
122 * Reassembly timer base function
123 * for both NO_SYS == 0 and 1 (!).
124 *
125 * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
126 */
127 void
ip_reass_tmr(void)128 ip_reass_tmr(void)
129 {
130 struct ip_reassdata *r, *prev = NULL;
131
132 r = reassdatagrams;
133 while (r != NULL) {
134 /* Decrement the timer. Once it reaches 0,
135 * clean up the incomplete fragment assembly */
136 if (r->timer > 0) {
137 r->timer--;
138 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n", (u16_t)r->timer));
139 prev = r;
140 r = r->next;
141 } else {
142 /* reassembly timed out */
143 struct ip_reassdata *tmp;
144 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
145 tmp = r;
146 /* get the next pointer before freeing */
147 r = r->next;
148 /* free the helper struct and all enqueued pbufs */
149 ip_reass_free_complete_datagram(tmp, prev);
150 }
151 }
152 }
153
154 /**
155 * Free a datagram (struct ip_reassdata) and all its pbufs.
156 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
157 * SNMP counters and sends an ICMP time exceeded packet.
158 *
159 * @param ipr datagram to free
160 * @param prev the previous datagram in the linked list
161 * @return the number of pbufs freed
162 */
163 static int
ip_reass_free_complete_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)164 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
165 {
166 u16_t pbufs_freed = 0;
167 u16_t clen;
168 struct pbuf *p;
169 struct ip_reass_helper *iprh;
170
171 LWIP_ASSERT("prev != ipr", prev != ipr);
172 if (prev != NULL) {
173 LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
174 }
175
176 MIB2_STATS_INC(mib2.ipreasmfails);
177 #if LWIP_ICMP
178 iprh = (struct ip_reass_helper *)ipr->p->payload;
179 if (iprh->start == 0) {
180 /* The first fragment was received, send ICMP time exceeded. */
181 /* First, de-queue the first pbuf from r->p. */
182 p = ipr->p;
183 ipr->p = iprh->next_pbuf;
184 /* Then, copy the original header into it. */
185 SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
186 icmp_time_exceeded(p, ICMP_TE_FRAG);
187 clen = pbuf_clen(p);
188 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
189 pbufs_freed = (u16_t)(pbufs_freed + clen);
190 pbuf_free(p);
191 }
192 #endif /* LWIP_ICMP */
193
194 /* First, free all received pbufs. The individual pbufs need to be released
195 separately as they have not yet been chained */
196 p = ipr->p;
197 while (p != NULL) {
198 struct pbuf *pcur;
199 iprh = (struct ip_reass_helper *)p->payload;
200 pcur = p;
201 /* get the next pointer before freeing */
202 p = iprh->next_pbuf;
203 clen = pbuf_clen(pcur);
204 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
205 pbufs_freed = (u16_t)(pbufs_freed + clen);
206 pbuf_free(pcur);
207 }
208 /* Then, unchain the struct ip_reassdata from the list and free it. */
209 ip_reass_dequeue_datagram(ipr, prev);
210 LWIP_ASSERT("ip_reass_pbufcount >= pbufs_freed", ip_reass_pbufcount >= pbufs_freed);
211 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - pbufs_freed);
212
213 return pbufs_freed;
214 }
215
216 #if IP_REASS_FREE_OLDEST
217 /**
218 * Free the oldest datagram to make room for enqueueing new fragments.
219 * The datagram 'fraghdr' belongs to is not freed!
220 *
221 * @param fraghdr IP header of the current fragment
222 * @param pbufs_needed number of pbufs needed to enqueue
223 * (used for freeing other datagrams if not enough space)
224 * @return the number of pbufs freed
225 */
226 static int
ip_reass_remove_oldest_datagram(struct ip_hdr * fraghdr,int pbufs_needed)227 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
228 {
229 /* @todo Can't we simply remove the last datagram in the
230 * linked list behind reassdatagrams?
231 */
232 struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
233 int pbufs_freed = 0, pbufs_freed_current;
234 int other_datagrams;
235
236 /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
237 * but don't free the datagram that 'fraghdr' belongs to! */
238 do {
239 oldest = NULL;
240 prev = NULL;
241 oldest_prev = NULL;
242 other_datagrams = 0;
243 r = reassdatagrams;
244 while (r != NULL) {
245 if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
246 /* Not the same datagram as fraghdr */
247 other_datagrams++;
248 if (oldest == NULL) {
249 oldest = r;
250 oldest_prev = prev;
251 } else if (r->timer <= oldest->timer) {
252 /* older than the previous oldest */
253 oldest = r;
254 oldest_prev = prev;
255 }
256 }
257 if (r->next != NULL) {
258 prev = r;
259 }
260 r = r->next;
261 }
262 if (oldest != NULL) {
263 pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
264 pbufs_freed += pbufs_freed_current;
265 }
266 } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
267 return pbufs_freed;
268 }
269 #endif /* IP_REASS_FREE_OLDEST */
270
271 /**
272 * Enqueues a new fragment into the fragment queue
273 * @param fraghdr points to the new fragments IP hdr
274 * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
275 * @return A pointer to the queue location into which the fragment was enqueued
276 */
277 static struct ip_reassdata *
ip_reass_enqueue_new_datagram(struct ip_hdr * fraghdr,int clen)278 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
279 {
280 struct ip_reassdata *ipr;
281 #if ! IP_REASS_FREE_OLDEST
282 LWIP_UNUSED_ARG(clen);
283 #endif
284
285 /* No matching previous fragment found, allocate a new reassdata struct */
286 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
287 if (ipr == NULL) {
288 #if IP_REASS_FREE_OLDEST
289 if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
290 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
291 }
292 if (ipr == NULL)
293 #endif /* IP_REASS_FREE_OLDEST */
294 {
295 IPFRAG_STATS_INC(ip_frag.memerr);
296 LWIP_DEBUGF(IP_REASS_DEBUG, ("Failed to alloc reassdata struct\n"));
297 return NULL;
298 }
299 }
300 memset(ipr, 0, sizeof(struct ip_reassdata));
301 ipr->timer = IP_REASS_MAXAGE;
302
303 /* enqueue the new structure to the front of the list */
304 ipr->next = reassdatagrams;
305 reassdatagrams = ipr;
306 /* copy the ip header for later tests and input */
307 /* @todo: no ip options supported? */
308 SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
309 return ipr;
310 }
311
312 /**
313 * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
314 * @param ipr points to the queue entry to dequeue
315 */
316 static void
ip_reass_dequeue_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)317 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
318 {
319 /* dequeue the reass struct */
320 if (reassdatagrams == ipr) {
321 /* it was the first in the list */
322 reassdatagrams = ipr->next;
323 } else {
324 /* it wasn't the first, so it must have a valid 'prev' */
325 LWIP_ASSERT("sanity check linked list", prev != NULL);
326 prev->next = ipr->next;
327 }
328
329 /* now we can free the ip_reassdata struct */
330 memp_free(MEMP_REASSDATA, ipr);
331 }
332
333 /**
334 * Chain a new pbuf into the pbuf list that composes the datagram. The pbuf list
335 * will grow over time as new pbufs are rx.
336 * Also checks that the datagram passes basic continuity checks (if the last
337 * fragment was received at least once).
338 * @param ipr points to the reassembly state
339 * @param new_p points to the pbuf for the current fragment
340 * @param is_last is 1 if this pbuf has MF==0 (ipr->flags not updated yet)
341 * @return see IP_REASS_VALIDATE_* defines
342 */
343 static int
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata * ipr,struct pbuf * new_p,int is_last)344 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p, int is_last)
345 {
346 struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev = NULL;
347 struct pbuf *q;
348 u16_t offset, len;
349 u8_t hlen;
350 struct ip_hdr *fraghdr;
351 int valid = 1;
352
353 /* Extract length and fragment offset from current fragment */
354 fraghdr = (struct ip_hdr *)new_p->payload;
355 len = lwip_ntohs(IPH_LEN(fraghdr));
356 hlen = IPH_HL_BYTES(fraghdr);
357 if (hlen > len) {
358 /* invalid datagram */
359 return IP_REASS_VALIDATE_PBUF_DROPPED;
360 }
361 len = (u16_t)(len - hlen);
362 offset = IPH_OFFSET_BYTES(fraghdr);
363
364 /* overwrite the fragment's ip header from the pbuf with our helper struct,
365 * and setup the embedded helper structure. */
366 /* make sure the struct ip_reass_helper fits into the IP header */
367 LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
368 sizeof(struct ip_reass_helper) <= IP_HLEN);
369 iprh = (struct ip_reass_helper *)new_p->payload;
370 iprh->next_pbuf = NULL;
371 iprh->start = offset;
372 iprh->end = (u16_t)(offset + len);
373 if (iprh->end < offset) {
374 /* u16_t overflow, cannot handle this */
375 return IP_REASS_VALIDATE_PBUF_DROPPED;
376 }
377
378 /* Iterate through until we either get to the end of the list (append),
379 * or we find one with a larger offset (insert). */
380 for (q = ipr->p; q != NULL;) {
381 iprh_tmp = (struct ip_reass_helper *)q->payload;
382 if (iprh->start < iprh_tmp->start) {
383 /* the new pbuf should be inserted before this */
384 iprh->next_pbuf = q;
385 if (iprh_prev != NULL) {
386 /* not the fragment with the lowest offset */
387 #if IP_REASS_CHECK_OVERLAP
388 if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
389 /* fragment overlaps with previous or following, throw away */
390 return IP_REASS_VALIDATE_PBUF_DROPPED;
391 }
392 #endif /* IP_REASS_CHECK_OVERLAP */
393 iprh_prev->next_pbuf = new_p;
394 if (iprh_prev->end != iprh->start) {
395 /* There is a fragment missing between the current
396 * and the previous fragment */
397 valid = 0;
398 }
399 } else {
400 #if IP_REASS_CHECK_OVERLAP
401 if (iprh->end > iprh_tmp->start) {
402 /* fragment overlaps with following, throw away */
403 return IP_REASS_VALIDATE_PBUF_DROPPED;
404 }
405 #endif /* IP_REASS_CHECK_OVERLAP */
406 /* fragment with the lowest offset */
407 ipr->p = new_p;
408 }
409 break;
410 } else if (iprh->start == iprh_tmp->start) {
411 /* received the same datagram twice: no need to keep the datagram */
412 return IP_REASS_VALIDATE_PBUF_DROPPED;
413 #if IP_REASS_CHECK_OVERLAP
414 } else if (iprh->start < iprh_tmp->end) {
415 /* overlap: no need to keep the new datagram */
416 return IP_REASS_VALIDATE_PBUF_DROPPED;
417 #endif /* IP_REASS_CHECK_OVERLAP */
418 } else {
419 /* Check if the fragments received so far have no holes. */
420 if (iprh_prev != NULL) {
421 if (iprh_prev->end != iprh_tmp->start) {
422 /* There is a fragment missing between the current
423 * and the previous fragment */
424 valid = 0;
425 }
426 }
427 }
428 q = iprh_tmp->next_pbuf;
429 iprh_prev = iprh_tmp;
430 }
431
432 /* If q is NULL, then we made it to the end of the list. Determine what to do now */
433 if (q == NULL) {
434 if (iprh_prev != NULL) {
435 /* this is (for now), the fragment with the highest offset:
436 * chain it to the last fragment */
437 #if IP_REASS_CHECK_OVERLAP
438 LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
439 #endif /* IP_REASS_CHECK_OVERLAP */
440 iprh_prev->next_pbuf = new_p;
441 if (iprh_prev->end != iprh->start) {
442 valid = 0;
443 }
444 } else {
445 #if IP_REASS_CHECK_OVERLAP
446 LWIP_ASSERT("no previous fragment, this must be the first fragment!",
447 ipr->p == NULL);
448 #endif /* IP_REASS_CHECK_OVERLAP */
449 /* this is the first fragment we ever received for this ip datagram */
450 ipr->p = new_p;
451 }
452 }
453
454 /* At this point, the validation part begins: */
455 /* If we already received the last fragment */
456 if (is_last || ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0)) {
457 /* and had no holes so far */
458 if (valid) {
459 /* then check if the rest of the fragments is here */
460 /* Check if the queue starts with the first datagram */
461 if ((ipr->p == NULL) || (((struct ip_reass_helper *)ipr->p->payload)->start != 0)) {
462 valid = 0;
463 } else {
464 /* and check that there are no holes after this datagram */
465 iprh_prev = iprh;
466 q = iprh->next_pbuf;
467 while (q != NULL) {
468 iprh = (struct ip_reass_helper *)q->payload;
469 if (iprh_prev->end != iprh->start) {
470 valid = 0;
471 break;
472 }
473 iprh_prev = iprh;
474 q = iprh->next_pbuf;
475 }
476 /* if still valid, all fragments are received
477 * (because to the MF==0 already arrived */
478 if (valid) {
479 LWIP_ASSERT("sanity check", ipr->p != NULL);
480 LWIP_ASSERT("sanity check",
481 ((struct ip_reass_helper *)ipr->p->payload) != iprh);
482 LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
483 iprh->next_pbuf == NULL);
484 }
485 }
486 }
487 /* If valid is 0 here, there are some fragments missing in the middle
488 * (since MF == 0 has already arrived). Such datagrams simply time out if
489 * no more fragments are received... */
490 return valid ? IP_REASS_VALIDATE_TELEGRAM_FINISHED : IP_REASS_VALIDATE_PBUF_QUEUED;
491 }
492 /* If we come here, not all fragments were received, yet! */
493 return IP_REASS_VALIDATE_PBUF_QUEUED; /* not yet valid! */
494 }
495
496 /**
497 * Reassembles incoming IP fragments into an IP datagram.
498 *
499 * @param p points to a pbuf chain of the fragment
500 * @return NULL if reassembly is incomplete, ? otherwise
501 */
502 struct pbuf *
ip4_reass(struct pbuf * p)503 ip4_reass(struct pbuf *p)
504 {
505 struct pbuf *r;
506 struct ip_hdr *fraghdr;
507 struct ip_reassdata *ipr;
508 struct ip_reass_helper *iprh;
509 u16_t offset, len, clen;
510 u8_t hlen;
511 int valid;
512 int is_last;
513
514 IPFRAG_STATS_INC(ip_frag.recv);
515 MIB2_STATS_INC(mib2.ipreasmreqds);
516
517 fraghdr = (struct ip_hdr *)p->payload;
518
519 if (IPH_HL_BYTES(fraghdr) != IP_HLEN) {
520 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: IP options currently not supported!\n"));
521 IPFRAG_STATS_INC(ip_frag.err);
522 goto nullreturn;
523 }
524
525 offset = IPH_OFFSET_BYTES(fraghdr);
526 len = lwip_ntohs(IPH_LEN(fraghdr));
527 hlen = IPH_HL_BYTES(fraghdr);
528 if (hlen > len) {
529 /* invalid datagram */
530 goto nullreturn;
531 }
532 len = (u16_t)(len - hlen);
533
534 /* Check if we are allowed to enqueue more datagrams. */
535 clen = pbuf_clen(p);
536 if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
537 #if IP_REASS_FREE_OLDEST
538 if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
539 ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
540 #endif /* IP_REASS_FREE_OLDEST */
541 {
542 /* No datagram could be freed and still too many pbufs enqueued */
543 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
544 ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
545 IPFRAG_STATS_INC(ip_frag.memerr);
546 /* @todo: send ICMP time exceeded here? */
547 /* drop this pbuf */
548 goto nullreturn;
549 }
550 }
551
552 /* Look for the datagram the fragment belongs to in the current datagram queue,
553 * remembering the previous in the queue for later dequeueing. */
554 for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
555 /* Check if the incoming fragment matches the one currently present
556 in the reassembly buffer. If so, we proceed with copying the
557 fragment into the buffer. */
558 if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
559 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
560 lwip_ntohs(IPH_ID(fraghdr))));
561 IPFRAG_STATS_INC(ip_frag.cachehit);
562 break;
563 }
564 }
565
566 if (ipr == NULL) {
567 /* Enqueue a new datagram into the datagram queue */
568 ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
569 /* Bail if unable to enqueue */
570 if (ipr == NULL) {
571 goto nullreturn;
572 }
573 } else {
574 if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
575 ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
576 /* ipr->iphdr is not the header from the first fragment, but fraghdr is
577 * -> copy fraghdr into ipr->iphdr since we want to have the header
578 * of the first fragment (for ICMP time exceeded and later, for copying
579 * all options, if supported)*/
580 SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
581 }
582 }
583
584 /* At this point, we have either created a new entry or pointing
585 * to an existing one */
586
587 /* check for 'no more fragments', and update queue entry*/
588 is_last = (IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0;
589 if (is_last) {
590 u16_t datagram_len = (u16_t)(offset + len);
591 if ((datagram_len < offset) || (datagram_len > (0xFFFF - IP_HLEN))) {
592 /* u16_t overflow, cannot handle this */
593 goto nullreturn_ipr;
594 }
595 }
596 /* find the right place to insert this pbuf */
597 /* @todo: trim pbufs if fragments are overlapping */
598 valid = ip_reass_chain_frag_into_datagram_and_validate(ipr, p, is_last);
599 if (valid == IP_REASS_VALIDATE_PBUF_DROPPED) {
600 goto nullreturn_ipr;
601 }
602 /* if we come here, the pbuf has been enqueued */
603
604 /* Track the current number of pbufs current 'in-flight', in order to limit
605 the number of fragments that may be enqueued at any one time
606 (overflow checked by testing against IP_REASS_MAX_PBUFS) */
607 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount + clen);
608 if (is_last) {
609 u16_t datagram_len = (u16_t)(offset + len);
610 ipr->datagram_len = datagram_len;
611 ipr->flags |= IP_REASS_FLAG_LASTFRAG;
612 LWIP_DEBUGF(IP_REASS_DEBUG,
613 ("ip4_reass: last fragment seen, total len %"S16_F"\n",
614 ipr->datagram_len));
615 }
616
617 if (valid == IP_REASS_VALIDATE_TELEGRAM_FINISHED) {
618 struct ip_reassdata *ipr_prev;
619 /* the totally last fragment (flag more fragments = 0) was received at least
620 * once AND all fragments are received */
621 u16_t datagram_len = (u16_t)(ipr->datagram_len + IP_HLEN);
622
623 /* save the second pbuf before copying the header over the pointer */
624 r = ((struct ip_reass_helper *)ipr->p->payload)->next_pbuf;
625
626 /* copy the original ip header back to the first pbuf */
627 fraghdr = (struct ip_hdr *)(ipr->p->payload);
628 SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
629 IPH_LEN_SET(fraghdr, lwip_htons(datagram_len));
630 IPH_OFFSET_SET(fraghdr, 0);
631 IPH_CHKSUM_SET(fraghdr, 0);
632 /* @todo: do we need to set/calculate the correct checksum? */
633 #if CHECKSUM_GEN_IP
634 IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
635 IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
636 }
637 #endif /* CHECKSUM_GEN_IP */
638
639 p = ipr->p;
640
641 /* chain together the pbufs contained within the reass_data list. */
642 while (r != NULL) {
643 iprh = (struct ip_reass_helper *)r->payload;
644
645 /* hide the ip header for every succeeding fragment */
646 pbuf_remove_header(r, IP_HLEN);
647 pbuf_cat(p, r);
648 r = iprh->next_pbuf;
649 }
650
651 /* find the previous entry in the linked list */
652 if (ipr == reassdatagrams) {
653 ipr_prev = NULL;
654 } else {
655 for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
656 if (ipr_prev->next == ipr) {
657 break;
658 }
659 }
660 }
661
662 /* release the sources allocate for the fragment queue entry */
663 ip_reass_dequeue_datagram(ipr, ipr_prev);
664
665 /* and adjust the number of pbufs currently queued for reassembly. */
666 clen = pbuf_clen(p);
667 LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= clen);
668 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - clen);
669
670 MIB2_STATS_INC(mib2.ipreasmoks);
671
672 /* Return the pbuf chain */
673 return p;
674 }
675 /* the datagram is not (yet?) reassembled completely */
676 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
677 return NULL;
678
679 nullreturn_ipr:
680 LWIP_ASSERT("ipr != NULL", ipr != NULL);
681 if (ipr->p == NULL) {
682 /* dropped pbuf after creating a new datagram entry: remove the entry, too */
683 LWIP_ASSERT("not firstalthough just enqueued", ipr == reassdatagrams);
684 ip_reass_dequeue_datagram(ipr, NULL);
685 }
686
687 nullreturn:
688 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: nullreturn\n"));
689 IPFRAG_STATS_INC(ip_frag.drop);
690 pbuf_free(p);
691 return NULL;
692 }
693 #endif /* IP_REASSEMBLY */
694
695 #if IP_FRAG
696 #if !LWIP_NETIF_TX_SINGLE_PBUF
697 /** Allocate a new struct pbuf_custom_ref */
698 static struct pbuf_custom_ref *
ip_frag_alloc_pbuf_custom_ref(void)699 ip_frag_alloc_pbuf_custom_ref(void)
700 {
701 return (struct pbuf_custom_ref *)memp_malloc(MEMP_FRAG_PBUF);
702 }
703
704 /** Free a struct pbuf_custom_ref */
705 static void
ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)706 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref *p)
707 {
708 LWIP_ASSERT("p != NULL", p != NULL);
709 memp_free(MEMP_FRAG_PBUF, p);
710 }
711
712 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
713 * pbuf_free. */
714 static void
ipfrag_free_pbuf_custom(struct pbuf * p)715 ipfrag_free_pbuf_custom(struct pbuf *p)
716 {
717 struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref *)p;
718 LWIP_ASSERT("pcr != NULL", pcr != NULL);
719 LWIP_ASSERT("pcr == p", (void *)pcr == (void *)p);
720 if (pcr->original != NULL) {
721 pbuf_free(pcr->original);
722 }
723 ip_frag_free_pbuf_custom_ref(pcr);
724 }
725 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
726
727 /**
728 * Fragment an IP datagram if too large for the netif.
729 *
730 * Chop the datagram in MTU sized chunks and send them in order
731 * by pointing PBUF_REFs into p.
732 *
733 * @param p ip packet to send
734 * @param netif the netif on which to send
735 * @param dest destination ip address to which to send
736 *
737 * @return ERR_OK if sent successfully, err_t otherwise
738 */
739 err_t
ip4_frag(struct pbuf * p,struct netif * netif,const ip4_addr_t * dest)740 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
741 {
742 struct pbuf *rambuf;
743 #if !LWIP_NETIF_TX_SINGLE_PBUF
744 struct pbuf *newpbuf;
745 u16_t newpbuflen = 0;
746 u16_t left_to_copy;
747 #endif
748 struct ip_hdr *original_iphdr;
749 struct ip_hdr *iphdr;
750 const u16_t nfb = (u16_t)((netif->mtu - IP_HLEN) / 8);
751 u16_t left, fragsize;
752 u16_t ofo;
753 int last;
754 u16_t poff = IP_HLEN;
755 u16_t tmp;
756 int mf_set;
757
758 original_iphdr = (struct ip_hdr *)p->payload;
759 iphdr = original_iphdr;
760 if (IPH_HL_BYTES(iphdr) != IP_HLEN) {
761 /* ip4_frag() does not support IP options */
762 return ERR_VAL;
763 }
764 LWIP_ERROR("ip4_frag(): pbuf too short", p->len >= IP_HLEN, return ERR_VAL);
765
766 /* Save original offset */
767 tmp = lwip_ntohs(IPH_OFFSET(iphdr));
768 ofo = tmp & IP_OFFMASK;
769 /* already fragmented? if so, the last fragment we create must have MF, too */
770 mf_set = tmp & IP_MF;
771
772 left = (u16_t)(p->tot_len - IP_HLEN);
773
774 while (left) {
775 /* Fill this fragment */
776 fragsize = LWIP_MIN(left, (u16_t)(nfb * 8));
777
778 #if LWIP_NETIF_TX_SINGLE_PBUF
779 rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
780 if (rambuf == NULL) {
781 goto memerr;
782 }
783 LWIP_ASSERT("this needs a pbuf in one piece!",
784 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
785 poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
786 /* make room for the IP header */
787 if (pbuf_add_header(rambuf, IP_HLEN)) {
788 pbuf_free(rambuf);
789 goto memerr;
790 }
791 /* fill in the IP header */
792 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
793 iphdr = (struct ip_hdr *)rambuf->payload;
794 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
795 /* When not using a static buffer, create a chain of pbufs.
796 * The first will be a PBUF_RAM holding the link and IP header.
797 * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
798 * but limited to the size of an mtu.
799 */
800 rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
801 if (rambuf == NULL) {
802 goto memerr;
803 }
804 LWIP_ASSERT("this needs a pbuf in one piece!",
805 (rambuf->len >= (IP_HLEN)));
806 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
807 iphdr = (struct ip_hdr *)rambuf->payload;
808
809 left_to_copy = fragsize;
810 while (left_to_copy) {
811 struct pbuf_custom_ref *pcr;
812 u16_t plen = (u16_t)(p->len - poff);
813 LWIP_ASSERT("p->len >= poff", p->len >= poff);
814 newpbuflen = LWIP_MIN(left_to_copy, plen);
815 /* Is this pbuf already empty? */
816 if (!newpbuflen) {
817 poff = 0;
818 p = p->next;
819 continue;
820 }
821 pcr = ip_frag_alloc_pbuf_custom_ref();
822 if (pcr == NULL) {
823 pbuf_free(rambuf);
824 goto memerr;
825 }
826 /* Mirror this pbuf, although we might not need all of it. */
827 newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
828 (u8_t *)p->payload + poff, newpbuflen);
829 if (newpbuf == NULL) {
830 ip_frag_free_pbuf_custom_ref(pcr);
831 pbuf_free(rambuf);
832 goto memerr;
833 }
834 pbuf_ref(p);
835 pcr->original = p;
836 pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
837
838 /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
839 * so that it is removed when pbuf_dechain is later called on rambuf.
840 */
841 pbuf_cat(rambuf, newpbuf);
842 left_to_copy = (u16_t)(left_to_copy - newpbuflen);
843 if (left_to_copy) {
844 poff = 0;
845 p = p->next;
846 }
847 }
848 poff = (u16_t)(poff + newpbuflen);
849 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
850
851 /* Correct header */
852 last = (left <= netif->mtu - IP_HLEN);
853
854 /* Set new offset and MF flag */
855 tmp = (IP_OFFMASK & (ofo));
856 if (!last || mf_set) {
857 /* the last fragment has MF set if the input frame had it */
858 tmp = tmp | IP_MF;
859 }
860 IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
861 IPH_LEN_SET(iphdr, lwip_htons((u16_t)(fragsize + IP_HLEN)));
862 IPH_CHKSUM_SET(iphdr, 0);
863 #if CHECKSUM_GEN_IP
864 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
865 IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
866 }
867 #endif /* CHECKSUM_GEN_IP */
868
869 /* No need for separate header pbuf - we allowed room for it in rambuf
870 * when allocated.
871 */
872 netif->output(netif, rambuf, dest);
873 IPFRAG_STATS_INC(ip_frag.xmit);
874
875 /* Unfortunately we can't reuse rambuf - the hardware may still be
876 * using the buffer. Instead we free it (and the ensuing chain) and
877 * recreate it next time round the loop. If we're lucky the hardware
878 * will have already sent the packet, the free will really free, and
879 * there will be zero memory penalty.
880 */
881
882 pbuf_free(rambuf);
883 left = (u16_t)(left - fragsize);
884 ofo = (u16_t)(ofo + nfb);
885 }
886 MIB2_STATS_INC(mib2.ipfragoks);
887 return ERR_OK;
888 memerr:
889 MIB2_STATS_INC(mib2.ipfragfails);
890 return ERR_MEM;
891 }
892 #endif /* IP_FRAG */
893
894 #endif /* LWIP_IPV4 */
895