• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 
49 static bool initialized;
50 static bool drvregistered;
51 
52 enum ipmi_panic_event_op {
53 	IPMI_SEND_PANIC_EVENT_NONE,
54 	IPMI_SEND_PANIC_EVENT,
55 	IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64 
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66 
panic_op_write_handler(const char * val,const struct kernel_param * kp)67 static int panic_op_write_handler(const char *val,
68 				  const struct kernel_param *kp)
69 {
70 	char valcp[16];
71 	char *s;
72 
73 	strncpy(valcp, val, 15);
74 	valcp[15] = '\0';
75 
76 	s = strstrip(valcp);
77 
78 	if (strcmp(s, "none") == 0)
79 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 	else if (strcmp(s, "event") == 0)
81 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 	else if (strcmp(s, "string") == 0)
83 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 	else
85 		return -EINVAL;
86 
87 	return 0;
88 }
89 
panic_op_read_handler(char * buffer,const struct kernel_param * kp)90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 	switch (ipmi_send_panic_event) {
93 	case IPMI_SEND_PANIC_EVENT_NONE:
94 		strcpy(buffer, "none\n");
95 		break;
96 
97 	case IPMI_SEND_PANIC_EVENT:
98 		strcpy(buffer, "event\n");
99 		break;
100 
101 	case IPMI_SEND_PANIC_EVENT_STRING:
102 		strcpy(buffer, "string\n");
103 		break;
104 
105 	default:
106 		strcpy(buffer, "???\n");
107 		break;
108 	}
109 
110 	return strlen(buffer);
111 }
112 
113 static const struct kernel_param_ops panic_op_ops = {
114 	.set = panic_op_write_handler,
115 	.get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119 
120 
121 #define MAX_EVENTS_IN_QUEUE	25
122 
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128 
129 /*
130  * Don't let a message sit in a queue forever, always time it with at lest
131  * the max message timer.  This is in milliseconds.
132  */
133 #define MAX_MSG_TIMEOUT		60000
134 
135 /*
136  * Timeout times below are in milliseconds, and are done off a 1
137  * second timer.  So setting the value to 1000 would mean anything
138  * between 0 and 1000ms.  So really the only reasonable minimum
139  * setting it 2000ms, which is between 1 and 2 seconds.
140  */
141 
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 		 "The time (milliseconds) between retry sends");
147 
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 		 "The time (milliseconds) between retry sends in maintenance mode");
153 
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 		 "The time (milliseconds) between retry sends in maintenance mode");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	/* Free must run in process context for RCU cleanup. */
203 	struct work_struct remove_work;
204 };
205 
206 static struct workqueue_struct *remove_work_wq;
207 
acquire_ipmi_user(struct ipmi_user * user,int * index)208 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
209 	__acquires(user->release_barrier)
210 {
211 	struct ipmi_user *ruser;
212 
213 	*index = srcu_read_lock(&user->release_barrier);
214 	ruser = srcu_dereference(user->self, &user->release_barrier);
215 	if (!ruser)
216 		srcu_read_unlock(&user->release_barrier, *index);
217 	return ruser;
218 }
219 
release_ipmi_user(struct ipmi_user * user,int index)220 static void release_ipmi_user(struct ipmi_user *user, int index)
221 {
222 	srcu_read_unlock(&user->release_barrier, index);
223 }
224 
225 struct cmd_rcvr {
226 	struct list_head link;
227 
228 	struct ipmi_user *user;
229 	unsigned char netfn;
230 	unsigned char cmd;
231 	unsigned int  chans;
232 
233 	/*
234 	 * This is used to form a linked lised during mass deletion.
235 	 * Since this is in an RCU list, we cannot use the link above
236 	 * or change any data until the RCU period completes.  So we
237 	 * use this next variable during mass deletion so we can have
238 	 * a list and don't have to wait and restart the search on
239 	 * every individual deletion of a command.
240 	 */
241 	struct cmd_rcvr *next;
242 };
243 
244 struct seq_table {
245 	unsigned int         inuse : 1;
246 	unsigned int         broadcast : 1;
247 
248 	unsigned long        timeout;
249 	unsigned long        orig_timeout;
250 	unsigned int         retries_left;
251 
252 	/*
253 	 * To verify on an incoming send message response that this is
254 	 * the message that the response is for, we keep a sequence id
255 	 * and increment it every time we send a message.
256 	 */
257 	long                 seqid;
258 
259 	/*
260 	 * This is held so we can properly respond to the message on a
261 	 * timeout, and it is used to hold the temporary data for
262 	 * retransmission, too.
263 	 */
264 	struct ipmi_recv_msg *recv_msg;
265 };
266 
267 /*
268  * Store the information in a msgid (long) to allow us to find a
269  * sequence table entry from the msgid.
270  */
271 #define STORE_SEQ_IN_MSGID(seq, seqid) \
272 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
273 
274 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
275 	do {								\
276 		seq = (((msgid) >> 26) & 0x3f);				\
277 		seqid = ((msgid) & 0x3ffffff);				\
278 	} while (0)
279 
280 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
281 
282 #define IPMI_MAX_CHANNELS       16
283 struct ipmi_channel {
284 	unsigned char medium;
285 	unsigned char protocol;
286 };
287 
288 struct ipmi_channel_set {
289 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
290 };
291 
292 struct ipmi_my_addrinfo {
293 	/*
294 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
295 	 * but may be changed by the user.
296 	 */
297 	unsigned char address;
298 
299 	/*
300 	 * My LUN.  This should generally stay the SMS LUN, but just in
301 	 * case...
302 	 */
303 	unsigned char lun;
304 };
305 
306 /*
307  * Note that the product id, manufacturer id, guid, and device id are
308  * immutable in this structure, so dyn_mutex is not required for
309  * accessing those.  If those change on a BMC, a new BMC is allocated.
310  */
311 struct bmc_device {
312 	struct platform_device pdev;
313 	struct list_head       intfs; /* Interfaces on this BMC. */
314 	struct ipmi_device_id  id;
315 	struct ipmi_device_id  fetch_id;
316 	int                    dyn_id_set;
317 	unsigned long          dyn_id_expiry;
318 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
319 	guid_t                 guid;
320 	guid_t                 fetch_guid;
321 	int                    dyn_guid_set;
322 	struct kref	       usecount;
323 	struct work_struct     remove_work;
324 	unsigned char	       cc; /* completion code */
325 };
326 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
327 
328 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
329 			     struct ipmi_device_id *id,
330 			     bool *guid_set, guid_t *guid);
331 
332 /*
333  * Various statistics for IPMI, these index stats[] in the ipmi_smi
334  * structure.
335  */
336 enum ipmi_stat_indexes {
337 	/* Commands we got from the user that were invalid. */
338 	IPMI_STAT_sent_invalid_commands = 0,
339 
340 	/* Commands we sent to the MC. */
341 	IPMI_STAT_sent_local_commands,
342 
343 	/* Responses from the MC that were delivered to a user. */
344 	IPMI_STAT_handled_local_responses,
345 
346 	/* Responses from the MC that were not delivered to a user. */
347 	IPMI_STAT_unhandled_local_responses,
348 
349 	/* Commands we sent out to the IPMB bus. */
350 	IPMI_STAT_sent_ipmb_commands,
351 
352 	/* Commands sent on the IPMB that had errors on the SEND CMD */
353 	IPMI_STAT_sent_ipmb_command_errs,
354 
355 	/* Each retransmit increments this count. */
356 	IPMI_STAT_retransmitted_ipmb_commands,
357 
358 	/*
359 	 * When a message times out (runs out of retransmits) this is
360 	 * incremented.
361 	 */
362 	IPMI_STAT_timed_out_ipmb_commands,
363 
364 	/*
365 	 * This is like above, but for broadcasts.  Broadcasts are
366 	 * *not* included in the above count (they are expected to
367 	 * time out).
368 	 */
369 	IPMI_STAT_timed_out_ipmb_broadcasts,
370 
371 	/* Responses I have sent to the IPMB bus. */
372 	IPMI_STAT_sent_ipmb_responses,
373 
374 	/* The response was delivered to the user. */
375 	IPMI_STAT_handled_ipmb_responses,
376 
377 	/* The response had invalid data in it. */
378 	IPMI_STAT_invalid_ipmb_responses,
379 
380 	/* The response didn't have anyone waiting for it. */
381 	IPMI_STAT_unhandled_ipmb_responses,
382 
383 	/* Commands we sent out to the IPMB bus. */
384 	IPMI_STAT_sent_lan_commands,
385 
386 	/* Commands sent on the IPMB that had errors on the SEND CMD */
387 	IPMI_STAT_sent_lan_command_errs,
388 
389 	/* Each retransmit increments this count. */
390 	IPMI_STAT_retransmitted_lan_commands,
391 
392 	/*
393 	 * When a message times out (runs out of retransmits) this is
394 	 * incremented.
395 	 */
396 	IPMI_STAT_timed_out_lan_commands,
397 
398 	/* Responses I have sent to the IPMB bus. */
399 	IPMI_STAT_sent_lan_responses,
400 
401 	/* The response was delivered to the user. */
402 	IPMI_STAT_handled_lan_responses,
403 
404 	/* The response had invalid data in it. */
405 	IPMI_STAT_invalid_lan_responses,
406 
407 	/* The response didn't have anyone waiting for it. */
408 	IPMI_STAT_unhandled_lan_responses,
409 
410 	/* The command was delivered to the user. */
411 	IPMI_STAT_handled_commands,
412 
413 	/* The command had invalid data in it. */
414 	IPMI_STAT_invalid_commands,
415 
416 	/* The command didn't have anyone waiting for it. */
417 	IPMI_STAT_unhandled_commands,
418 
419 	/* Invalid data in an event. */
420 	IPMI_STAT_invalid_events,
421 
422 	/* Events that were received with the proper format. */
423 	IPMI_STAT_events,
424 
425 	/* Retransmissions on IPMB that failed. */
426 	IPMI_STAT_dropped_rexmit_ipmb_commands,
427 
428 	/* Retransmissions on LAN that failed. */
429 	IPMI_STAT_dropped_rexmit_lan_commands,
430 
431 	/* This *must* remain last, add new values above this. */
432 	IPMI_NUM_STATS
433 };
434 
435 
436 #define IPMI_IPMB_NUM_SEQ	64
437 struct ipmi_smi {
438 	struct module *owner;
439 
440 	/* What interface number are we? */
441 	int intf_num;
442 
443 	struct kref refcount;
444 
445 	/* Set when the interface is being unregistered. */
446 	bool in_shutdown;
447 
448 	/* Used for a list of interfaces. */
449 	struct list_head link;
450 
451 	/*
452 	 * The list of upper layers that are using me.  seq_lock write
453 	 * protects this.  Read protection is with srcu.
454 	 */
455 	struct list_head users;
456 	struct srcu_struct users_srcu;
457 
458 	/* Used for wake ups at startup. */
459 	wait_queue_head_t waitq;
460 
461 	/*
462 	 * Prevents the interface from being unregistered when the
463 	 * interface is used by being looked up through the BMC
464 	 * structure.
465 	 */
466 	struct mutex bmc_reg_mutex;
467 
468 	struct bmc_device tmp_bmc;
469 	struct bmc_device *bmc;
470 	bool bmc_registered;
471 	struct list_head bmc_link;
472 	char *my_dev_name;
473 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
474 	struct work_struct bmc_reg_work;
475 
476 	const struct ipmi_smi_handlers *handlers;
477 	void                     *send_info;
478 
479 	/* Driver-model device for the system interface. */
480 	struct device          *si_dev;
481 
482 	/*
483 	 * A table of sequence numbers for this interface.  We use the
484 	 * sequence numbers for IPMB messages that go out of the
485 	 * interface to match them up with their responses.  A routine
486 	 * is called periodically to time the items in this list.
487 	 */
488 	spinlock_t       seq_lock;
489 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
490 	int curr_seq;
491 
492 	/*
493 	 * Messages queued for delivery.  If delivery fails (out of memory
494 	 * for instance), They will stay in here to be processed later in a
495 	 * periodic timer interrupt.  The tasklet is for handling received
496 	 * messages directly from the handler.
497 	 */
498 	spinlock_t       waiting_rcv_msgs_lock;
499 	struct list_head waiting_rcv_msgs;
500 	atomic_t	 watchdog_pretimeouts_to_deliver;
501 	struct tasklet_struct recv_tasklet;
502 
503 	spinlock_t             xmit_msgs_lock;
504 	struct list_head       xmit_msgs;
505 	struct ipmi_smi_msg    *curr_msg;
506 	struct list_head       hp_xmit_msgs;
507 
508 	/*
509 	 * The list of command receivers that are registered for commands
510 	 * on this interface.
511 	 */
512 	struct mutex     cmd_rcvrs_mutex;
513 	struct list_head cmd_rcvrs;
514 
515 	/*
516 	 * Events that were queues because no one was there to receive
517 	 * them.
518 	 */
519 	spinlock_t       events_lock; /* For dealing with event stuff. */
520 	struct list_head waiting_events;
521 	unsigned int     waiting_events_count; /* How many events in queue? */
522 	char             delivering_events;
523 	char             event_msg_printed;
524 
525 	/* How many users are waiting for events? */
526 	atomic_t         event_waiters;
527 	unsigned int     ticks_to_req_ev;
528 
529 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
530 
531 	/* How many users are waiting for commands? */
532 	unsigned int     command_waiters;
533 
534 	/* How many users are waiting for watchdogs? */
535 	unsigned int     watchdog_waiters;
536 
537 	/* How many users are waiting for message responses? */
538 	unsigned int     response_waiters;
539 
540 	/*
541 	 * Tells what the lower layer has last been asked to watch for,
542 	 * messages and/or watchdogs.  Protected by watch_lock.
543 	 */
544 	unsigned int     last_watch_mask;
545 
546 	/*
547 	 * The event receiver for my BMC, only really used at panic
548 	 * shutdown as a place to store this.
549 	 */
550 	unsigned char event_receiver;
551 	unsigned char event_receiver_lun;
552 	unsigned char local_sel_device;
553 	unsigned char local_event_generator;
554 
555 	/* For handling of maintenance mode. */
556 	int maintenance_mode;
557 	bool maintenance_mode_enable;
558 	int auto_maintenance_timeout;
559 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
560 
561 	/*
562 	 * If we are doing maintenance on something on IPMB, extend
563 	 * the timeout time to avoid timeouts writing firmware and
564 	 * such.
565 	 */
566 	int ipmb_maintenance_mode_timeout;
567 
568 	/*
569 	 * A cheap hack, if this is non-null and a message to an
570 	 * interface comes in with a NULL user, call this routine with
571 	 * it.  Note that the message will still be freed by the
572 	 * caller.  This only works on the system interface.
573 	 *
574 	 * Protected by bmc_reg_mutex.
575 	 */
576 	void (*null_user_handler)(struct ipmi_smi *intf,
577 				  struct ipmi_recv_msg *msg);
578 
579 	/*
580 	 * When we are scanning the channels for an SMI, this will
581 	 * tell which channel we are scanning.
582 	 */
583 	int curr_channel;
584 
585 	/* Channel information */
586 	struct ipmi_channel_set *channel_list;
587 	unsigned int curr_working_cset; /* First index into the following. */
588 	struct ipmi_channel_set wchannels[2];
589 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
590 	bool channels_ready;
591 
592 	atomic_t stats[IPMI_NUM_STATS];
593 
594 	/*
595 	 * run_to_completion duplicate of smb_info, smi_info
596 	 * and ipmi_serial_info structures. Used to decrease numbers of
597 	 * parameters passed by "low" level IPMI code.
598 	 */
599 	int run_to_completion;
600 };
601 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
602 
603 static void __get_guid(struct ipmi_smi *intf);
604 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
605 static int __ipmi_bmc_register(struct ipmi_smi *intf,
606 			       struct ipmi_device_id *id,
607 			       bool guid_set, guid_t *guid, int intf_num);
608 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
609 
610 
611 /**
612  * The driver model view of the IPMI messaging driver.
613  */
614 static struct platform_driver ipmidriver = {
615 	.driver = {
616 		.name = "ipmi",
617 		.bus = &platform_bus_type
618 	}
619 };
620 /*
621  * This mutex keeps us from adding the same BMC twice.
622  */
623 static DEFINE_MUTEX(ipmidriver_mutex);
624 
625 static LIST_HEAD(ipmi_interfaces);
626 static DEFINE_MUTEX(ipmi_interfaces_mutex);
627 #define ipmi_interfaces_mutex_held() \
628 	lockdep_is_held(&ipmi_interfaces_mutex)
629 static struct srcu_struct ipmi_interfaces_srcu;
630 
631 /*
632  * List of watchers that want to know when smi's are added and deleted.
633  */
634 static LIST_HEAD(smi_watchers);
635 static DEFINE_MUTEX(smi_watchers_mutex);
636 
637 #define ipmi_inc_stat(intf, stat) \
638 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
639 #define ipmi_get_stat(intf, stat) \
640 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
641 
642 static const char * const addr_src_to_str[] = {
643 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
644 	"device-tree", "platform"
645 };
646 
ipmi_addr_src_to_str(enum ipmi_addr_src src)647 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
648 {
649 	if (src >= SI_LAST)
650 		src = 0; /* Invalid */
651 	return addr_src_to_str[src];
652 }
653 EXPORT_SYMBOL(ipmi_addr_src_to_str);
654 
is_lan_addr(struct ipmi_addr * addr)655 static int is_lan_addr(struct ipmi_addr *addr)
656 {
657 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
658 }
659 
is_ipmb_addr(struct ipmi_addr * addr)660 static int is_ipmb_addr(struct ipmi_addr *addr)
661 {
662 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
663 }
664 
is_ipmb_bcast_addr(struct ipmi_addr * addr)665 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
666 {
667 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
668 }
669 
free_recv_msg_list(struct list_head * q)670 static void free_recv_msg_list(struct list_head *q)
671 {
672 	struct ipmi_recv_msg *msg, *msg2;
673 
674 	list_for_each_entry_safe(msg, msg2, q, link) {
675 		list_del(&msg->link);
676 		ipmi_free_recv_msg(msg);
677 	}
678 }
679 
free_smi_msg_list(struct list_head * q)680 static void free_smi_msg_list(struct list_head *q)
681 {
682 	struct ipmi_smi_msg *msg, *msg2;
683 
684 	list_for_each_entry_safe(msg, msg2, q, link) {
685 		list_del(&msg->link);
686 		ipmi_free_smi_msg(msg);
687 	}
688 }
689 
clean_up_interface_data(struct ipmi_smi * intf)690 static void clean_up_interface_data(struct ipmi_smi *intf)
691 {
692 	int              i;
693 	struct cmd_rcvr  *rcvr, *rcvr2;
694 	struct list_head list;
695 
696 	tasklet_kill(&intf->recv_tasklet);
697 
698 	free_smi_msg_list(&intf->waiting_rcv_msgs);
699 	free_recv_msg_list(&intf->waiting_events);
700 
701 	/*
702 	 * Wholesale remove all the entries from the list in the
703 	 * interface and wait for RCU to know that none are in use.
704 	 */
705 	mutex_lock(&intf->cmd_rcvrs_mutex);
706 	INIT_LIST_HEAD(&list);
707 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
708 	mutex_unlock(&intf->cmd_rcvrs_mutex);
709 
710 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
711 		kfree(rcvr);
712 
713 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
714 		if ((intf->seq_table[i].inuse)
715 					&& (intf->seq_table[i].recv_msg))
716 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
717 	}
718 }
719 
intf_free(struct kref * ref)720 static void intf_free(struct kref *ref)
721 {
722 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
723 
724 	clean_up_interface_data(intf);
725 	kfree(intf);
726 }
727 
728 struct watcher_entry {
729 	int              intf_num;
730 	struct ipmi_smi  *intf;
731 	struct list_head link;
732 };
733 
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)734 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
735 {
736 	struct ipmi_smi *intf;
737 	int index, rv;
738 
739 	/*
740 	 * Make sure the driver is actually initialized, this handles
741 	 * problems with initialization order.
742 	 */
743 	rv = ipmi_init_msghandler();
744 	if (rv)
745 		return rv;
746 
747 	mutex_lock(&smi_watchers_mutex);
748 
749 	list_add(&watcher->link, &smi_watchers);
750 
751 	index = srcu_read_lock(&ipmi_interfaces_srcu);
752 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
753 		int intf_num = READ_ONCE(intf->intf_num);
754 
755 		if (intf_num == -1)
756 			continue;
757 		watcher->new_smi(intf_num, intf->si_dev);
758 	}
759 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
760 
761 	mutex_unlock(&smi_watchers_mutex);
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL(ipmi_smi_watcher_register);
766 
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)767 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
768 {
769 	mutex_lock(&smi_watchers_mutex);
770 	list_del(&watcher->link);
771 	mutex_unlock(&smi_watchers_mutex);
772 	return 0;
773 }
774 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
775 
776 /*
777  * Must be called with smi_watchers_mutex held.
778  */
779 static void
call_smi_watchers(int i,struct device * dev)780 call_smi_watchers(int i, struct device *dev)
781 {
782 	struct ipmi_smi_watcher *w;
783 
784 	mutex_lock(&smi_watchers_mutex);
785 	list_for_each_entry(w, &smi_watchers, link) {
786 		if (try_module_get(w->owner)) {
787 			w->new_smi(i, dev);
788 			module_put(w->owner);
789 		}
790 	}
791 	mutex_unlock(&smi_watchers_mutex);
792 }
793 
794 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)795 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
796 {
797 	if (addr1->addr_type != addr2->addr_type)
798 		return 0;
799 
800 	if (addr1->channel != addr2->channel)
801 		return 0;
802 
803 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
804 		struct ipmi_system_interface_addr *smi_addr1
805 		    = (struct ipmi_system_interface_addr *) addr1;
806 		struct ipmi_system_interface_addr *smi_addr2
807 		    = (struct ipmi_system_interface_addr *) addr2;
808 		return (smi_addr1->lun == smi_addr2->lun);
809 	}
810 
811 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
812 		struct ipmi_ipmb_addr *ipmb_addr1
813 		    = (struct ipmi_ipmb_addr *) addr1;
814 		struct ipmi_ipmb_addr *ipmb_addr2
815 		    = (struct ipmi_ipmb_addr *) addr2;
816 
817 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
818 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
819 	}
820 
821 	if (is_lan_addr(addr1)) {
822 		struct ipmi_lan_addr *lan_addr1
823 			= (struct ipmi_lan_addr *) addr1;
824 		struct ipmi_lan_addr *lan_addr2
825 		    = (struct ipmi_lan_addr *) addr2;
826 
827 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
828 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
829 			&& (lan_addr1->session_handle
830 			    == lan_addr2->session_handle)
831 			&& (lan_addr1->lun == lan_addr2->lun));
832 	}
833 
834 	return 1;
835 }
836 
ipmi_validate_addr(struct ipmi_addr * addr,int len)837 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
838 {
839 	if (len < sizeof(struct ipmi_system_interface_addr))
840 		return -EINVAL;
841 
842 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
843 		if (addr->channel != IPMI_BMC_CHANNEL)
844 			return -EINVAL;
845 		return 0;
846 	}
847 
848 	if ((addr->channel == IPMI_BMC_CHANNEL)
849 	    || (addr->channel >= IPMI_MAX_CHANNELS)
850 	    || (addr->channel < 0))
851 		return -EINVAL;
852 
853 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
854 		if (len < sizeof(struct ipmi_ipmb_addr))
855 			return -EINVAL;
856 		return 0;
857 	}
858 
859 	if (is_lan_addr(addr)) {
860 		if (len < sizeof(struct ipmi_lan_addr))
861 			return -EINVAL;
862 		return 0;
863 	}
864 
865 	return -EINVAL;
866 }
867 EXPORT_SYMBOL(ipmi_validate_addr);
868 
ipmi_addr_length(int addr_type)869 unsigned int ipmi_addr_length(int addr_type)
870 {
871 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
872 		return sizeof(struct ipmi_system_interface_addr);
873 
874 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
875 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
876 		return sizeof(struct ipmi_ipmb_addr);
877 
878 	if (addr_type == IPMI_LAN_ADDR_TYPE)
879 		return sizeof(struct ipmi_lan_addr);
880 
881 	return 0;
882 }
883 EXPORT_SYMBOL(ipmi_addr_length);
884 
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)885 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
886 {
887 	int rv = 0;
888 
889 	if (!msg->user) {
890 		/* Special handling for NULL users. */
891 		if (intf->null_user_handler) {
892 			intf->null_user_handler(intf, msg);
893 		} else {
894 			/* No handler, so give up. */
895 			rv = -EINVAL;
896 		}
897 		ipmi_free_recv_msg(msg);
898 	} else if (oops_in_progress) {
899 		/*
900 		 * If we are running in the panic context, calling the
901 		 * receive handler doesn't much meaning and has a deadlock
902 		 * risk.  At this moment, simply skip it in that case.
903 		 */
904 		ipmi_free_recv_msg(msg);
905 	} else {
906 		int index;
907 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
908 
909 		if (user) {
910 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
911 			release_ipmi_user(user, index);
912 		} else {
913 			/* User went away, give up. */
914 			ipmi_free_recv_msg(msg);
915 			rv = -EINVAL;
916 		}
917 	}
918 
919 	return rv;
920 }
921 
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)922 static void deliver_local_response(struct ipmi_smi *intf,
923 				   struct ipmi_recv_msg *msg)
924 {
925 	if (deliver_response(intf, msg))
926 		ipmi_inc_stat(intf, unhandled_local_responses);
927 	else
928 		ipmi_inc_stat(intf, handled_local_responses);
929 }
930 
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)931 static void deliver_err_response(struct ipmi_smi *intf,
932 				 struct ipmi_recv_msg *msg, int err)
933 {
934 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
935 	msg->msg_data[0] = err;
936 	msg->msg.netfn |= 1; /* Convert to a response. */
937 	msg->msg.data_len = 1;
938 	msg->msg.data = msg->msg_data;
939 	deliver_local_response(intf, msg);
940 }
941 
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)942 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
943 {
944 	unsigned long iflags;
945 
946 	if (!intf->handlers->set_need_watch)
947 		return;
948 
949 	spin_lock_irqsave(&intf->watch_lock, iflags);
950 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
951 		intf->response_waiters++;
952 
953 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
954 		intf->watchdog_waiters++;
955 
956 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
957 		intf->command_waiters++;
958 
959 	if ((intf->last_watch_mask & flags) != flags) {
960 		intf->last_watch_mask |= flags;
961 		intf->handlers->set_need_watch(intf->send_info,
962 					       intf->last_watch_mask);
963 	}
964 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
965 }
966 
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)967 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
968 {
969 	unsigned long iflags;
970 
971 	if (!intf->handlers->set_need_watch)
972 		return;
973 
974 	spin_lock_irqsave(&intf->watch_lock, iflags);
975 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
976 		intf->response_waiters--;
977 
978 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
979 		intf->watchdog_waiters--;
980 
981 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
982 		intf->command_waiters--;
983 
984 	flags = 0;
985 	if (intf->response_waiters)
986 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
987 	if (intf->watchdog_waiters)
988 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
989 	if (intf->command_waiters)
990 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
991 
992 	if (intf->last_watch_mask != flags) {
993 		intf->last_watch_mask = flags;
994 		intf->handlers->set_need_watch(intf->send_info,
995 					       intf->last_watch_mask);
996 	}
997 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
998 }
999 
1000 /*
1001  * Find the next sequence number not being used and add the given
1002  * message with the given timeout to the sequence table.  This must be
1003  * called with the interface's seq_lock held.
1004  */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1005 static int intf_next_seq(struct ipmi_smi      *intf,
1006 			 struct ipmi_recv_msg *recv_msg,
1007 			 unsigned long        timeout,
1008 			 int                  retries,
1009 			 int                  broadcast,
1010 			 unsigned char        *seq,
1011 			 long                 *seqid)
1012 {
1013 	int          rv = 0;
1014 	unsigned int i;
1015 
1016 	if (timeout == 0)
1017 		timeout = default_retry_ms;
1018 	if (retries < 0)
1019 		retries = default_max_retries;
1020 
1021 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1022 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1023 		if (!intf->seq_table[i].inuse)
1024 			break;
1025 	}
1026 
1027 	if (!intf->seq_table[i].inuse) {
1028 		intf->seq_table[i].recv_msg = recv_msg;
1029 
1030 		/*
1031 		 * Start with the maximum timeout, when the send response
1032 		 * comes in we will start the real timer.
1033 		 */
1034 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1035 		intf->seq_table[i].orig_timeout = timeout;
1036 		intf->seq_table[i].retries_left = retries;
1037 		intf->seq_table[i].broadcast = broadcast;
1038 		intf->seq_table[i].inuse = 1;
1039 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1040 		*seq = i;
1041 		*seqid = intf->seq_table[i].seqid;
1042 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1043 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1044 		need_waiter(intf);
1045 	} else {
1046 		rv = -EAGAIN;
1047 	}
1048 
1049 	return rv;
1050 }
1051 
1052 /*
1053  * Return the receive message for the given sequence number and
1054  * release the sequence number so it can be reused.  Some other data
1055  * is passed in to be sure the message matches up correctly (to help
1056  * guard against message coming in after their timeout and the
1057  * sequence number being reused).
1058  */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1059 static int intf_find_seq(struct ipmi_smi      *intf,
1060 			 unsigned char        seq,
1061 			 short                channel,
1062 			 unsigned char        cmd,
1063 			 unsigned char        netfn,
1064 			 struct ipmi_addr     *addr,
1065 			 struct ipmi_recv_msg **recv_msg)
1066 {
1067 	int           rv = -ENODEV;
1068 	unsigned long flags;
1069 
1070 	if (seq >= IPMI_IPMB_NUM_SEQ)
1071 		return -EINVAL;
1072 
1073 	spin_lock_irqsave(&intf->seq_lock, flags);
1074 	if (intf->seq_table[seq].inuse) {
1075 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1076 
1077 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1078 				&& (msg->msg.netfn == netfn)
1079 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1080 			*recv_msg = msg;
1081 			intf->seq_table[seq].inuse = 0;
1082 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1083 			rv = 0;
1084 		}
1085 	}
1086 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1087 
1088 	return rv;
1089 }
1090 
1091 
1092 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1093 static int intf_start_seq_timer(struct ipmi_smi *intf,
1094 				long       msgid)
1095 {
1096 	int           rv = -ENODEV;
1097 	unsigned long flags;
1098 	unsigned char seq;
1099 	unsigned long seqid;
1100 
1101 
1102 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1103 
1104 	spin_lock_irqsave(&intf->seq_lock, flags);
1105 	/*
1106 	 * We do this verification because the user can be deleted
1107 	 * while a message is outstanding.
1108 	 */
1109 	if ((intf->seq_table[seq].inuse)
1110 				&& (intf->seq_table[seq].seqid == seqid)) {
1111 		struct seq_table *ent = &intf->seq_table[seq];
1112 		ent->timeout = ent->orig_timeout;
1113 		rv = 0;
1114 	}
1115 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1116 
1117 	return rv;
1118 }
1119 
1120 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1121 static int intf_err_seq(struct ipmi_smi *intf,
1122 			long         msgid,
1123 			unsigned int err)
1124 {
1125 	int                  rv = -ENODEV;
1126 	unsigned long        flags;
1127 	unsigned char        seq;
1128 	unsigned long        seqid;
1129 	struct ipmi_recv_msg *msg = NULL;
1130 
1131 
1132 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1133 
1134 	spin_lock_irqsave(&intf->seq_lock, flags);
1135 	/*
1136 	 * We do this verification because the user can be deleted
1137 	 * while a message is outstanding.
1138 	 */
1139 	if ((intf->seq_table[seq].inuse)
1140 				&& (intf->seq_table[seq].seqid == seqid)) {
1141 		struct seq_table *ent = &intf->seq_table[seq];
1142 
1143 		ent->inuse = 0;
1144 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1145 		msg = ent->recv_msg;
1146 		rv = 0;
1147 	}
1148 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1149 
1150 	if (msg)
1151 		deliver_err_response(intf, msg, err);
1152 
1153 	return rv;
1154 }
1155 
free_user_work(struct work_struct * work)1156 static void free_user_work(struct work_struct *work)
1157 {
1158 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1159 					      remove_work);
1160 
1161 	cleanup_srcu_struct(&user->release_barrier);
1162 	vfree(user);
1163 }
1164 
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1165 int ipmi_create_user(unsigned int          if_num,
1166 		     const struct ipmi_user_hndl *handler,
1167 		     void                  *handler_data,
1168 		     struct ipmi_user      **user)
1169 {
1170 	unsigned long flags;
1171 	struct ipmi_user *new_user;
1172 	int           rv, index;
1173 	struct ipmi_smi *intf;
1174 
1175 	/*
1176 	 * There is no module usecount here, because it's not
1177 	 * required.  Since this can only be used by and called from
1178 	 * other modules, they will implicitly use this module, and
1179 	 * thus this can't be removed unless the other modules are
1180 	 * removed.
1181 	 */
1182 
1183 	if (handler == NULL)
1184 		return -EINVAL;
1185 
1186 	/*
1187 	 * Make sure the driver is actually initialized, this handles
1188 	 * problems with initialization order.
1189 	 */
1190 	rv = ipmi_init_msghandler();
1191 	if (rv)
1192 		return rv;
1193 
1194 	new_user = vzalloc(sizeof(*new_user));
1195 	if (!new_user)
1196 		return -ENOMEM;
1197 
1198 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1199 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1200 		if (intf->intf_num == if_num)
1201 			goto found;
1202 	}
1203 	/* Not found, return an error */
1204 	rv = -EINVAL;
1205 	goto out_kfree;
1206 
1207  found:
1208 	INIT_WORK(&new_user->remove_work, free_user_work);
1209 
1210 	rv = init_srcu_struct(&new_user->release_barrier);
1211 	if (rv)
1212 		goto out_kfree;
1213 
1214 	if (!try_module_get(intf->owner)) {
1215 		rv = -ENODEV;
1216 		goto out_kfree;
1217 	}
1218 
1219 	/* Note that each existing user holds a refcount to the interface. */
1220 	kref_get(&intf->refcount);
1221 
1222 	kref_init(&new_user->refcount);
1223 	new_user->handler = handler;
1224 	new_user->handler_data = handler_data;
1225 	new_user->intf = intf;
1226 	new_user->gets_events = false;
1227 
1228 	rcu_assign_pointer(new_user->self, new_user);
1229 	spin_lock_irqsave(&intf->seq_lock, flags);
1230 	list_add_rcu(&new_user->link, &intf->users);
1231 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1232 	if (handler->ipmi_watchdog_pretimeout)
1233 		/* User wants pretimeouts, so make sure to watch for them. */
1234 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1235 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1236 	*user = new_user;
1237 	return 0;
1238 
1239 out_kfree:
1240 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1241 	vfree(new_user);
1242 	return rv;
1243 }
1244 EXPORT_SYMBOL(ipmi_create_user);
1245 
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1246 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1247 {
1248 	int rv, index;
1249 	struct ipmi_smi *intf;
1250 
1251 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1252 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1253 		if (intf->intf_num == if_num)
1254 			goto found;
1255 	}
1256 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1257 
1258 	/* Not found, return an error */
1259 	return -EINVAL;
1260 
1261 found:
1262 	if (!intf->handlers->get_smi_info)
1263 		rv = -ENOTTY;
1264 	else
1265 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1266 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1267 
1268 	return rv;
1269 }
1270 EXPORT_SYMBOL(ipmi_get_smi_info);
1271 
free_user(struct kref * ref)1272 static void free_user(struct kref *ref)
1273 {
1274 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1275 
1276 	/* SRCU cleanup must happen in task context. */
1277 	queue_work(remove_work_wq, &user->remove_work);
1278 }
1279 
_ipmi_destroy_user(struct ipmi_user * user)1280 static void _ipmi_destroy_user(struct ipmi_user *user)
1281 {
1282 	struct ipmi_smi  *intf = user->intf;
1283 	int              i;
1284 	unsigned long    flags;
1285 	struct cmd_rcvr  *rcvr;
1286 	struct cmd_rcvr  *rcvrs = NULL;
1287 
1288 	if (!acquire_ipmi_user(user, &i)) {
1289 		/*
1290 		 * The user has already been cleaned up, just make sure
1291 		 * nothing is using it and return.
1292 		 */
1293 		synchronize_srcu(&user->release_barrier);
1294 		return;
1295 	}
1296 
1297 	rcu_assign_pointer(user->self, NULL);
1298 	release_ipmi_user(user, i);
1299 
1300 	synchronize_srcu(&user->release_barrier);
1301 
1302 	if (user->handler->shutdown)
1303 		user->handler->shutdown(user->handler_data);
1304 
1305 	if (user->handler->ipmi_watchdog_pretimeout)
1306 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1307 
1308 	if (user->gets_events)
1309 		atomic_dec(&intf->event_waiters);
1310 
1311 	/* Remove the user from the interface's sequence table. */
1312 	spin_lock_irqsave(&intf->seq_lock, flags);
1313 	list_del_rcu(&user->link);
1314 
1315 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1316 		if (intf->seq_table[i].inuse
1317 		    && (intf->seq_table[i].recv_msg->user == user)) {
1318 			intf->seq_table[i].inuse = 0;
1319 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1320 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1321 		}
1322 	}
1323 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1324 
1325 	/*
1326 	 * Remove the user from the command receiver's table.  First
1327 	 * we build a list of everything (not using the standard link,
1328 	 * since other things may be using it till we do
1329 	 * synchronize_srcu()) then free everything in that list.
1330 	 */
1331 	mutex_lock(&intf->cmd_rcvrs_mutex);
1332 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1333 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1334 		if (rcvr->user == user) {
1335 			list_del_rcu(&rcvr->link);
1336 			rcvr->next = rcvrs;
1337 			rcvrs = rcvr;
1338 		}
1339 	}
1340 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1341 	synchronize_rcu();
1342 	while (rcvrs) {
1343 		rcvr = rcvrs;
1344 		rcvrs = rcvr->next;
1345 		kfree(rcvr);
1346 	}
1347 
1348 	kref_put(&intf->refcount, intf_free);
1349 	module_put(intf->owner);
1350 }
1351 
ipmi_destroy_user(struct ipmi_user * user)1352 int ipmi_destroy_user(struct ipmi_user *user)
1353 {
1354 	_ipmi_destroy_user(user);
1355 
1356 	kref_put(&user->refcount, free_user);
1357 
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL(ipmi_destroy_user);
1361 
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1362 int ipmi_get_version(struct ipmi_user *user,
1363 		     unsigned char *major,
1364 		     unsigned char *minor)
1365 {
1366 	struct ipmi_device_id id;
1367 	int rv, index;
1368 
1369 	user = acquire_ipmi_user(user, &index);
1370 	if (!user)
1371 		return -ENODEV;
1372 
1373 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1374 	if (!rv) {
1375 		*major = ipmi_version_major(&id);
1376 		*minor = ipmi_version_minor(&id);
1377 	}
1378 	release_ipmi_user(user, index);
1379 
1380 	return rv;
1381 }
1382 EXPORT_SYMBOL(ipmi_get_version);
1383 
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1384 int ipmi_set_my_address(struct ipmi_user *user,
1385 			unsigned int  channel,
1386 			unsigned char address)
1387 {
1388 	int index, rv = 0;
1389 
1390 	user = acquire_ipmi_user(user, &index);
1391 	if (!user)
1392 		return -ENODEV;
1393 
1394 	if (channel >= IPMI_MAX_CHANNELS) {
1395 		rv = -EINVAL;
1396 	} else {
1397 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1398 		user->intf->addrinfo[channel].address = address;
1399 	}
1400 	release_ipmi_user(user, index);
1401 
1402 	return rv;
1403 }
1404 EXPORT_SYMBOL(ipmi_set_my_address);
1405 
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1406 int ipmi_get_my_address(struct ipmi_user *user,
1407 			unsigned int  channel,
1408 			unsigned char *address)
1409 {
1410 	int index, rv = 0;
1411 
1412 	user = acquire_ipmi_user(user, &index);
1413 	if (!user)
1414 		return -ENODEV;
1415 
1416 	if (channel >= IPMI_MAX_CHANNELS) {
1417 		rv = -EINVAL;
1418 	} else {
1419 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1420 		*address = user->intf->addrinfo[channel].address;
1421 	}
1422 	release_ipmi_user(user, index);
1423 
1424 	return rv;
1425 }
1426 EXPORT_SYMBOL(ipmi_get_my_address);
1427 
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1428 int ipmi_set_my_LUN(struct ipmi_user *user,
1429 		    unsigned int  channel,
1430 		    unsigned char LUN)
1431 {
1432 	int index, rv = 0;
1433 
1434 	user = acquire_ipmi_user(user, &index);
1435 	if (!user)
1436 		return -ENODEV;
1437 
1438 	if (channel >= IPMI_MAX_CHANNELS) {
1439 		rv = -EINVAL;
1440 	} else {
1441 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1442 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1443 	}
1444 	release_ipmi_user(user, index);
1445 
1446 	return rv;
1447 }
1448 EXPORT_SYMBOL(ipmi_set_my_LUN);
1449 
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1450 int ipmi_get_my_LUN(struct ipmi_user *user,
1451 		    unsigned int  channel,
1452 		    unsigned char *address)
1453 {
1454 	int index, rv = 0;
1455 
1456 	user = acquire_ipmi_user(user, &index);
1457 	if (!user)
1458 		return -ENODEV;
1459 
1460 	if (channel >= IPMI_MAX_CHANNELS) {
1461 		rv = -EINVAL;
1462 	} else {
1463 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1464 		*address = user->intf->addrinfo[channel].lun;
1465 	}
1466 	release_ipmi_user(user, index);
1467 
1468 	return rv;
1469 }
1470 EXPORT_SYMBOL(ipmi_get_my_LUN);
1471 
ipmi_get_maintenance_mode(struct ipmi_user * user)1472 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1473 {
1474 	int mode, index;
1475 	unsigned long flags;
1476 
1477 	user = acquire_ipmi_user(user, &index);
1478 	if (!user)
1479 		return -ENODEV;
1480 
1481 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1482 	mode = user->intf->maintenance_mode;
1483 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1484 	release_ipmi_user(user, index);
1485 
1486 	return mode;
1487 }
1488 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1489 
maintenance_mode_update(struct ipmi_smi * intf)1490 static void maintenance_mode_update(struct ipmi_smi *intf)
1491 {
1492 	if (intf->handlers->set_maintenance_mode)
1493 		intf->handlers->set_maintenance_mode(
1494 			intf->send_info, intf->maintenance_mode_enable);
1495 }
1496 
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1497 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1498 {
1499 	int rv = 0, index;
1500 	unsigned long flags;
1501 	struct ipmi_smi *intf = user->intf;
1502 
1503 	user = acquire_ipmi_user(user, &index);
1504 	if (!user)
1505 		return -ENODEV;
1506 
1507 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1508 	if (intf->maintenance_mode != mode) {
1509 		switch (mode) {
1510 		case IPMI_MAINTENANCE_MODE_AUTO:
1511 			intf->maintenance_mode_enable
1512 				= (intf->auto_maintenance_timeout > 0);
1513 			break;
1514 
1515 		case IPMI_MAINTENANCE_MODE_OFF:
1516 			intf->maintenance_mode_enable = false;
1517 			break;
1518 
1519 		case IPMI_MAINTENANCE_MODE_ON:
1520 			intf->maintenance_mode_enable = true;
1521 			break;
1522 
1523 		default:
1524 			rv = -EINVAL;
1525 			goto out_unlock;
1526 		}
1527 		intf->maintenance_mode = mode;
1528 
1529 		maintenance_mode_update(intf);
1530 	}
1531  out_unlock:
1532 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1533 	release_ipmi_user(user, index);
1534 
1535 	return rv;
1536 }
1537 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1538 
ipmi_set_gets_events(struct ipmi_user * user,bool val)1539 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1540 {
1541 	unsigned long        flags;
1542 	struct ipmi_smi      *intf = user->intf;
1543 	struct ipmi_recv_msg *msg, *msg2;
1544 	struct list_head     msgs;
1545 	int index;
1546 
1547 	user = acquire_ipmi_user(user, &index);
1548 	if (!user)
1549 		return -ENODEV;
1550 
1551 	INIT_LIST_HEAD(&msgs);
1552 
1553 	spin_lock_irqsave(&intf->events_lock, flags);
1554 	if (user->gets_events == val)
1555 		goto out;
1556 
1557 	user->gets_events = val;
1558 
1559 	if (val) {
1560 		if (atomic_inc_return(&intf->event_waiters) == 1)
1561 			need_waiter(intf);
1562 	} else {
1563 		atomic_dec(&intf->event_waiters);
1564 	}
1565 
1566 	if (intf->delivering_events)
1567 		/*
1568 		 * Another thread is delivering events for this, so
1569 		 * let it handle any new events.
1570 		 */
1571 		goto out;
1572 
1573 	/* Deliver any queued events. */
1574 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1575 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1576 			list_move_tail(&msg->link, &msgs);
1577 		intf->waiting_events_count = 0;
1578 		if (intf->event_msg_printed) {
1579 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1580 			intf->event_msg_printed = 0;
1581 		}
1582 
1583 		intf->delivering_events = 1;
1584 		spin_unlock_irqrestore(&intf->events_lock, flags);
1585 
1586 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1587 			msg->user = user;
1588 			kref_get(&user->refcount);
1589 			deliver_local_response(intf, msg);
1590 		}
1591 
1592 		spin_lock_irqsave(&intf->events_lock, flags);
1593 		intf->delivering_events = 0;
1594 	}
1595 
1596  out:
1597 	spin_unlock_irqrestore(&intf->events_lock, flags);
1598 	release_ipmi_user(user, index);
1599 
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL(ipmi_set_gets_events);
1603 
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1604 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1605 				      unsigned char netfn,
1606 				      unsigned char cmd,
1607 				      unsigned char chan)
1608 {
1609 	struct cmd_rcvr *rcvr;
1610 
1611 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1612 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1613 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1614 					&& (rcvr->chans & (1 << chan)))
1615 			return rcvr;
1616 	}
1617 	return NULL;
1618 }
1619 
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1620 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1621 				 unsigned char netfn,
1622 				 unsigned char cmd,
1623 				 unsigned int  chans)
1624 {
1625 	struct cmd_rcvr *rcvr;
1626 
1627 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1628 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1629 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1630 					&& (rcvr->chans & chans))
1631 			return 0;
1632 	}
1633 	return 1;
1634 }
1635 
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1636 int ipmi_register_for_cmd(struct ipmi_user *user,
1637 			  unsigned char netfn,
1638 			  unsigned char cmd,
1639 			  unsigned int  chans)
1640 {
1641 	struct ipmi_smi *intf = user->intf;
1642 	struct cmd_rcvr *rcvr;
1643 	int rv = 0, index;
1644 
1645 	user = acquire_ipmi_user(user, &index);
1646 	if (!user)
1647 		return -ENODEV;
1648 
1649 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1650 	if (!rcvr) {
1651 		rv = -ENOMEM;
1652 		goto out_release;
1653 	}
1654 	rcvr->cmd = cmd;
1655 	rcvr->netfn = netfn;
1656 	rcvr->chans = chans;
1657 	rcvr->user = user;
1658 
1659 	mutex_lock(&intf->cmd_rcvrs_mutex);
1660 	/* Make sure the command/netfn is not already registered. */
1661 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1662 		rv = -EBUSY;
1663 		goto out_unlock;
1664 	}
1665 
1666 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1667 
1668 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1669 
1670 out_unlock:
1671 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1672 	if (rv)
1673 		kfree(rcvr);
1674 out_release:
1675 	release_ipmi_user(user, index);
1676 
1677 	return rv;
1678 }
1679 EXPORT_SYMBOL(ipmi_register_for_cmd);
1680 
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1681 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1682 			    unsigned char netfn,
1683 			    unsigned char cmd,
1684 			    unsigned int  chans)
1685 {
1686 	struct ipmi_smi *intf = user->intf;
1687 	struct cmd_rcvr *rcvr;
1688 	struct cmd_rcvr *rcvrs = NULL;
1689 	int i, rv = -ENOENT, index;
1690 
1691 	user = acquire_ipmi_user(user, &index);
1692 	if (!user)
1693 		return -ENODEV;
1694 
1695 	mutex_lock(&intf->cmd_rcvrs_mutex);
1696 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1697 		if (((1 << i) & chans) == 0)
1698 			continue;
1699 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1700 		if (rcvr == NULL)
1701 			continue;
1702 		if (rcvr->user == user) {
1703 			rv = 0;
1704 			rcvr->chans &= ~chans;
1705 			if (rcvr->chans == 0) {
1706 				list_del_rcu(&rcvr->link);
1707 				rcvr->next = rcvrs;
1708 				rcvrs = rcvr;
1709 			}
1710 		}
1711 	}
1712 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1713 	synchronize_rcu();
1714 	release_ipmi_user(user, index);
1715 	while (rcvrs) {
1716 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1717 		rcvr = rcvrs;
1718 		rcvrs = rcvr->next;
1719 		kfree(rcvr);
1720 	}
1721 
1722 	return rv;
1723 }
1724 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1725 
1726 static unsigned char
ipmb_checksum(unsigned char * data,int size)1727 ipmb_checksum(unsigned char *data, int size)
1728 {
1729 	unsigned char csum = 0;
1730 
1731 	for (; size > 0; size--, data++)
1732 		csum += *data;
1733 
1734 	return -csum;
1735 }
1736 
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1737 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1738 				   struct kernel_ipmi_msg *msg,
1739 				   struct ipmi_ipmb_addr *ipmb_addr,
1740 				   long                  msgid,
1741 				   unsigned char         ipmb_seq,
1742 				   int                   broadcast,
1743 				   unsigned char         source_address,
1744 				   unsigned char         source_lun)
1745 {
1746 	int i = broadcast;
1747 
1748 	/* Format the IPMB header data. */
1749 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1750 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1751 	smi_msg->data[2] = ipmb_addr->channel;
1752 	if (broadcast)
1753 		smi_msg->data[3] = 0;
1754 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1755 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1756 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1757 	smi_msg->data[i+6] = source_address;
1758 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1759 	smi_msg->data[i+8] = msg->cmd;
1760 
1761 	/* Now tack on the data to the message. */
1762 	if (msg->data_len > 0)
1763 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1764 	smi_msg->data_size = msg->data_len + 9;
1765 
1766 	/* Now calculate the checksum and tack it on. */
1767 	smi_msg->data[i+smi_msg->data_size]
1768 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1769 
1770 	/*
1771 	 * Add on the checksum size and the offset from the
1772 	 * broadcast.
1773 	 */
1774 	smi_msg->data_size += 1 + i;
1775 
1776 	smi_msg->msgid = msgid;
1777 }
1778 
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1779 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1780 				  struct kernel_ipmi_msg *msg,
1781 				  struct ipmi_lan_addr  *lan_addr,
1782 				  long                  msgid,
1783 				  unsigned char         ipmb_seq,
1784 				  unsigned char         source_lun)
1785 {
1786 	/* Format the IPMB header data. */
1787 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1788 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1789 	smi_msg->data[2] = lan_addr->channel;
1790 	smi_msg->data[3] = lan_addr->session_handle;
1791 	smi_msg->data[4] = lan_addr->remote_SWID;
1792 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1793 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1794 	smi_msg->data[7] = lan_addr->local_SWID;
1795 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1796 	smi_msg->data[9] = msg->cmd;
1797 
1798 	/* Now tack on the data to the message. */
1799 	if (msg->data_len > 0)
1800 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1801 	smi_msg->data_size = msg->data_len + 10;
1802 
1803 	/* Now calculate the checksum and tack it on. */
1804 	smi_msg->data[smi_msg->data_size]
1805 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1806 
1807 	/*
1808 	 * Add on the checksum size and the offset from the
1809 	 * broadcast.
1810 	 */
1811 	smi_msg->data_size += 1;
1812 
1813 	smi_msg->msgid = msgid;
1814 }
1815 
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1816 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1817 					     struct ipmi_smi_msg *smi_msg,
1818 					     int priority)
1819 {
1820 	if (intf->curr_msg) {
1821 		if (priority > 0)
1822 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1823 		else
1824 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1825 		smi_msg = NULL;
1826 	} else {
1827 		intf->curr_msg = smi_msg;
1828 	}
1829 
1830 	return smi_msg;
1831 }
1832 
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1833 static void smi_send(struct ipmi_smi *intf,
1834 		     const struct ipmi_smi_handlers *handlers,
1835 		     struct ipmi_smi_msg *smi_msg, int priority)
1836 {
1837 	int run_to_completion = intf->run_to_completion;
1838 	unsigned long flags = 0;
1839 
1840 	if (!run_to_completion)
1841 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1842 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1843 
1844 	if (!run_to_completion)
1845 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1846 
1847 	if (smi_msg)
1848 		handlers->sender(intf->send_info, smi_msg);
1849 }
1850 
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1851 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1852 {
1853 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1854 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1855 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1856 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1857 }
1858 
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1859 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1860 			      struct ipmi_addr       *addr,
1861 			      long                   msgid,
1862 			      struct kernel_ipmi_msg *msg,
1863 			      struct ipmi_smi_msg    *smi_msg,
1864 			      struct ipmi_recv_msg   *recv_msg,
1865 			      int                    retries,
1866 			      unsigned int           retry_time_ms)
1867 {
1868 	struct ipmi_system_interface_addr *smi_addr;
1869 
1870 	if (msg->netfn & 1)
1871 		/* Responses are not allowed to the SMI. */
1872 		return -EINVAL;
1873 
1874 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1875 	if (smi_addr->lun > 3) {
1876 		ipmi_inc_stat(intf, sent_invalid_commands);
1877 		return -EINVAL;
1878 	}
1879 
1880 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1881 
1882 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1883 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1884 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1885 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1886 		/*
1887 		 * We don't let the user do these, since we manage
1888 		 * the sequence numbers.
1889 		 */
1890 		ipmi_inc_stat(intf, sent_invalid_commands);
1891 		return -EINVAL;
1892 	}
1893 
1894 	if (is_maintenance_mode_cmd(msg)) {
1895 		unsigned long flags;
1896 
1897 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1898 		intf->auto_maintenance_timeout
1899 			= maintenance_mode_timeout_ms;
1900 		if (!intf->maintenance_mode
1901 		    && !intf->maintenance_mode_enable) {
1902 			intf->maintenance_mode_enable = true;
1903 			maintenance_mode_update(intf);
1904 		}
1905 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1906 				       flags);
1907 	}
1908 
1909 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1910 		ipmi_inc_stat(intf, sent_invalid_commands);
1911 		return -EMSGSIZE;
1912 	}
1913 
1914 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1915 	smi_msg->data[1] = msg->cmd;
1916 	smi_msg->msgid = msgid;
1917 	smi_msg->user_data = recv_msg;
1918 	if (msg->data_len > 0)
1919 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1920 	smi_msg->data_size = msg->data_len + 2;
1921 	ipmi_inc_stat(intf, sent_local_commands);
1922 
1923 	return 0;
1924 }
1925 
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1926 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1927 			   struct ipmi_addr       *addr,
1928 			   long                   msgid,
1929 			   struct kernel_ipmi_msg *msg,
1930 			   struct ipmi_smi_msg    *smi_msg,
1931 			   struct ipmi_recv_msg   *recv_msg,
1932 			   unsigned char          source_address,
1933 			   unsigned char          source_lun,
1934 			   int                    retries,
1935 			   unsigned int           retry_time_ms)
1936 {
1937 	struct ipmi_ipmb_addr *ipmb_addr;
1938 	unsigned char ipmb_seq;
1939 	long seqid;
1940 	int broadcast = 0;
1941 	struct ipmi_channel *chans;
1942 	int rv = 0;
1943 
1944 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1945 		ipmi_inc_stat(intf, sent_invalid_commands);
1946 		return -EINVAL;
1947 	}
1948 
1949 	chans = READ_ONCE(intf->channel_list)->c;
1950 
1951 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1952 		ipmi_inc_stat(intf, sent_invalid_commands);
1953 		return -EINVAL;
1954 	}
1955 
1956 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1957 		/*
1958 		 * Broadcasts add a zero at the beginning of the
1959 		 * message, but otherwise is the same as an IPMB
1960 		 * address.
1961 		 */
1962 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1963 		broadcast = 1;
1964 		retries = 0; /* Don't retry broadcasts. */
1965 	}
1966 
1967 	/*
1968 	 * 9 for the header and 1 for the checksum, plus
1969 	 * possibly one for the broadcast.
1970 	 */
1971 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1972 		ipmi_inc_stat(intf, sent_invalid_commands);
1973 		return -EMSGSIZE;
1974 	}
1975 
1976 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1977 	if (ipmb_addr->lun > 3) {
1978 		ipmi_inc_stat(intf, sent_invalid_commands);
1979 		return -EINVAL;
1980 	}
1981 
1982 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1983 
1984 	if (recv_msg->msg.netfn & 0x1) {
1985 		/*
1986 		 * It's a response, so use the user's sequence
1987 		 * from msgid.
1988 		 */
1989 		ipmi_inc_stat(intf, sent_ipmb_responses);
1990 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1991 				msgid, broadcast,
1992 				source_address, source_lun);
1993 
1994 		/*
1995 		 * Save the receive message so we can use it
1996 		 * to deliver the response.
1997 		 */
1998 		smi_msg->user_data = recv_msg;
1999 	} else {
2000 		/* It's a command, so get a sequence for it. */
2001 		unsigned long flags;
2002 
2003 		spin_lock_irqsave(&intf->seq_lock, flags);
2004 
2005 		if (is_maintenance_mode_cmd(msg))
2006 			intf->ipmb_maintenance_mode_timeout =
2007 				maintenance_mode_timeout_ms;
2008 
2009 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2010 			/* Different default in maintenance mode */
2011 			retry_time_ms = default_maintenance_retry_ms;
2012 
2013 		/*
2014 		 * Create a sequence number with a 1 second
2015 		 * timeout and 4 retries.
2016 		 */
2017 		rv = intf_next_seq(intf,
2018 				   recv_msg,
2019 				   retry_time_ms,
2020 				   retries,
2021 				   broadcast,
2022 				   &ipmb_seq,
2023 				   &seqid);
2024 		if (rv)
2025 			/*
2026 			 * We have used up all the sequence numbers,
2027 			 * probably, so abort.
2028 			 */
2029 			goto out_err;
2030 
2031 		ipmi_inc_stat(intf, sent_ipmb_commands);
2032 
2033 		/*
2034 		 * Store the sequence number in the message,
2035 		 * so that when the send message response
2036 		 * comes back we can start the timer.
2037 		 */
2038 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2039 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2040 				ipmb_seq, broadcast,
2041 				source_address, source_lun);
2042 
2043 		/*
2044 		 * Copy the message into the recv message data, so we
2045 		 * can retransmit it later if necessary.
2046 		 */
2047 		memcpy(recv_msg->msg_data, smi_msg->data,
2048 		       smi_msg->data_size);
2049 		recv_msg->msg.data = recv_msg->msg_data;
2050 		recv_msg->msg.data_len = smi_msg->data_size;
2051 
2052 		/*
2053 		 * We don't unlock until here, because we need
2054 		 * to copy the completed message into the
2055 		 * recv_msg before we release the lock.
2056 		 * Otherwise, race conditions may bite us.  I
2057 		 * know that's pretty paranoid, but I prefer
2058 		 * to be correct.
2059 		 */
2060 out_err:
2061 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2062 	}
2063 
2064 	return rv;
2065 }
2066 
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2067 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2068 			  struct ipmi_addr       *addr,
2069 			  long                   msgid,
2070 			  struct kernel_ipmi_msg *msg,
2071 			  struct ipmi_smi_msg    *smi_msg,
2072 			  struct ipmi_recv_msg   *recv_msg,
2073 			  unsigned char          source_lun,
2074 			  int                    retries,
2075 			  unsigned int           retry_time_ms)
2076 {
2077 	struct ipmi_lan_addr  *lan_addr;
2078 	unsigned char ipmb_seq;
2079 	long seqid;
2080 	struct ipmi_channel *chans;
2081 	int rv = 0;
2082 
2083 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2084 		ipmi_inc_stat(intf, sent_invalid_commands);
2085 		return -EINVAL;
2086 	}
2087 
2088 	chans = READ_ONCE(intf->channel_list)->c;
2089 
2090 	if ((chans[addr->channel].medium
2091 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2092 			&& (chans[addr->channel].medium
2093 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2094 		ipmi_inc_stat(intf, sent_invalid_commands);
2095 		return -EINVAL;
2096 	}
2097 
2098 	/* 11 for the header and 1 for the checksum. */
2099 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2100 		ipmi_inc_stat(intf, sent_invalid_commands);
2101 		return -EMSGSIZE;
2102 	}
2103 
2104 	lan_addr = (struct ipmi_lan_addr *) addr;
2105 	if (lan_addr->lun > 3) {
2106 		ipmi_inc_stat(intf, sent_invalid_commands);
2107 		return -EINVAL;
2108 	}
2109 
2110 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2111 
2112 	if (recv_msg->msg.netfn & 0x1) {
2113 		/*
2114 		 * It's a response, so use the user's sequence
2115 		 * from msgid.
2116 		 */
2117 		ipmi_inc_stat(intf, sent_lan_responses);
2118 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2119 			       msgid, source_lun);
2120 
2121 		/*
2122 		 * Save the receive message so we can use it
2123 		 * to deliver the response.
2124 		 */
2125 		smi_msg->user_data = recv_msg;
2126 	} else {
2127 		/* It's a command, so get a sequence for it. */
2128 		unsigned long flags;
2129 
2130 		spin_lock_irqsave(&intf->seq_lock, flags);
2131 
2132 		/*
2133 		 * Create a sequence number with a 1 second
2134 		 * timeout and 4 retries.
2135 		 */
2136 		rv = intf_next_seq(intf,
2137 				   recv_msg,
2138 				   retry_time_ms,
2139 				   retries,
2140 				   0,
2141 				   &ipmb_seq,
2142 				   &seqid);
2143 		if (rv)
2144 			/*
2145 			 * We have used up all the sequence numbers,
2146 			 * probably, so abort.
2147 			 */
2148 			goto out_err;
2149 
2150 		ipmi_inc_stat(intf, sent_lan_commands);
2151 
2152 		/*
2153 		 * Store the sequence number in the message,
2154 		 * so that when the send message response
2155 		 * comes back we can start the timer.
2156 		 */
2157 		format_lan_msg(smi_msg, msg, lan_addr,
2158 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2159 			       ipmb_seq, source_lun);
2160 
2161 		/*
2162 		 * Copy the message into the recv message data, so we
2163 		 * can retransmit it later if necessary.
2164 		 */
2165 		memcpy(recv_msg->msg_data, smi_msg->data,
2166 		       smi_msg->data_size);
2167 		recv_msg->msg.data = recv_msg->msg_data;
2168 		recv_msg->msg.data_len = smi_msg->data_size;
2169 
2170 		/*
2171 		 * We don't unlock until here, because we need
2172 		 * to copy the completed message into the
2173 		 * recv_msg before we release the lock.
2174 		 * Otherwise, race conditions may bite us.  I
2175 		 * know that's pretty paranoid, but I prefer
2176 		 * to be correct.
2177 		 */
2178 out_err:
2179 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2180 	}
2181 
2182 	return rv;
2183 }
2184 
2185 /*
2186  * Separate from ipmi_request so that the user does not have to be
2187  * supplied in certain circumstances (mainly at panic time).  If
2188  * messages are supplied, they will be freed, even if an error
2189  * occurs.
2190  */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2191 static int i_ipmi_request(struct ipmi_user     *user,
2192 			  struct ipmi_smi      *intf,
2193 			  struct ipmi_addr     *addr,
2194 			  long                 msgid,
2195 			  struct kernel_ipmi_msg *msg,
2196 			  void                 *user_msg_data,
2197 			  void                 *supplied_smi,
2198 			  struct ipmi_recv_msg *supplied_recv,
2199 			  int                  priority,
2200 			  unsigned char        source_address,
2201 			  unsigned char        source_lun,
2202 			  int                  retries,
2203 			  unsigned int         retry_time_ms)
2204 {
2205 	struct ipmi_smi_msg *smi_msg;
2206 	struct ipmi_recv_msg *recv_msg;
2207 	int rv = 0;
2208 
2209 	if (supplied_recv)
2210 		recv_msg = supplied_recv;
2211 	else {
2212 		recv_msg = ipmi_alloc_recv_msg();
2213 		if (recv_msg == NULL) {
2214 			rv = -ENOMEM;
2215 			goto out;
2216 		}
2217 	}
2218 	recv_msg->user_msg_data = user_msg_data;
2219 
2220 	if (supplied_smi)
2221 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2222 	else {
2223 		smi_msg = ipmi_alloc_smi_msg();
2224 		if (smi_msg == NULL) {
2225 			if (!supplied_recv)
2226 				ipmi_free_recv_msg(recv_msg);
2227 			rv = -ENOMEM;
2228 			goto out;
2229 		}
2230 	}
2231 
2232 	rcu_read_lock();
2233 	if (intf->in_shutdown) {
2234 		rv = -ENODEV;
2235 		goto out_err;
2236 	}
2237 
2238 	recv_msg->user = user;
2239 	if (user)
2240 		/* The put happens when the message is freed. */
2241 		kref_get(&user->refcount);
2242 	recv_msg->msgid = msgid;
2243 	/*
2244 	 * Store the message to send in the receive message so timeout
2245 	 * responses can get the proper response data.
2246 	 */
2247 	recv_msg->msg = *msg;
2248 
2249 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2250 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2251 					recv_msg, retries, retry_time_ms);
2252 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2253 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2254 				     source_address, source_lun,
2255 				     retries, retry_time_ms);
2256 	} else if (is_lan_addr(addr)) {
2257 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2258 				    source_lun, retries, retry_time_ms);
2259 	} else {
2260 	    /* Unknown address type. */
2261 		ipmi_inc_stat(intf, sent_invalid_commands);
2262 		rv = -EINVAL;
2263 	}
2264 
2265 	if (rv) {
2266 out_err:
2267 		ipmi_free_smi_msg(smi_msg);
2268 		ipmi_free_recv_msg(recv_msg);
2269 	} else {
2270 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2271 
2272 		smi_send(intf, intf->handlers, smi_msg, priority);
2273 	}
2274 	rcu_read_unlock();
2275 
2276 out:
2277 	return rv;
2278 }
2279 
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2280 static int check_addr(struct ipmi_smi  *intf,
2281 		      struct ipmi_addr *addr,
2282 		      unsigned char    *saddr,
2283 		      unsigned char    *lun)
2284 {
2285 	if (addr->channel >= IPMI_MAX_CHANNELS)
2286 		return -EINVAL;
2287 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2288 	*lun = intf->addrinfo[addr->channel].lun;
2289 	*saddr = intf->addrinfo[addr->channel].address;
2290 	return 0;
2291 }
2292 
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2293 int ipmi_request_settime(struct ipmi_user *user,
2294 			 struct ipmi_addr *addr,
2295 			 long             msgid,
2296 			 struct kernel_ipmi_msg  *msg,
2297 			 void             *user_msg_data,
2298 			 int              priority,
2299 			 int              retries,
2300 			 unsigned int     retry_time_ms)
2301 {
2302 	unsigned char saddr = 0, lun = 0;
2303 	int rv, index;
2304 
2305 	if (!user)
2306 		return -EINVAL;
2307 
2308 	user = acquire_ipmi_user(user, &index);
2309 	if (!user)
2310 		return -ENODEV;
2311 
2312 	rv = check_addr(user->intf, addr, &saddr, &lun);
2313 	if (!rv)
2314 		rv = i_ipmi_request(user,
2315 				    user->intf,
2316 				    addr,
2317 				    msgid,
2318 				    msg,
2319 				    user_msg_data,
2320 				    NULL, NULL,
2321 				    priority,
2322 				    saddr,
2323 				    lun,
2324 				    retries,
2325 				    retry_time_ms);
2326 
2327 	release_ipmi_user(user, index);
2328 	return rv;
2329 }
2330 EXPORT_SYMBOL(ipmi_request_settime);
2331 
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2332 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2333 			     struct ipmi_addr     *addr,
2334 			     long                 msgid,
2335 			     struct kernel_ipmi_msg *msg,
2336 			     void                 *user_msg_data,
2337 			     void                 *supplied_smi,
2338 			     struct ipmi_recv_msg *supplied_recv,
2339 			     int                  priority)
2340 {
2341 	unsigned char saddr = 0, lun = 0;
2342 	int rv, index;
2343 
2344 	if (!user)
2345 		return -EINVAL;
2346 
2347 	user = acquire_ipmi_user(user, &index);
2348 	if (!user)
2349 		return -ENODEV;
2350 
2351 	rv = check_addr(user->intf, addr, &saddr, &lun);
2352 	if (!rv)
2353 		rv = i_ipmi_request(user,
2354 				    user->intf,
2355 				    addr,
2356 				    msgid,
2357 				    msg,
2358 				    user_msg_data,
2359 				    supplied_smi,
2360 				    supplied_recv,
2361 				    priority,
2362 				    saddr,
2363 				    lun,
2364 				    -1, 0);
2365 
2366 	release_ipmi_user(user, index);
2367 	return rv;
2368 }
2369 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2370 
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2371 static void bmc_device_id_handler(struct ipmi_smi *intf,
2372 				  struct ipmi_recv_msg *msg)
2373 {
2374 	int rv;
2375 
2376 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2377 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2378 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2379 		dev_warn(intf->si_dev,
2380 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2381 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2382 		return;
2383 	}
2384 
2385 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2386 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2387 	if (rv) {
2388 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2389 		/* record completion code when error */
2390 		intf->bmc->cc = msg->msg.data[0];
2391 		intf->bmc->dyn_id_set = 0;
2392 	} else {
2393 		/*
2394 		 * Make sure the id data is available before setting
2395 		 * dyn_id_set.
2396 		 */
2397 		smp_wmb();
2398 		intf->bmc->dyn_id_set = 1;
2399 	}
2400 
2401 	wake_up(&intf->waitq);
2402 }
2403 
2404 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2405 send_get_device_id_cmd(struct ipmi_smi *intf)
2406 {
2407 	struct ipmi_system_interface_addr si;
2408 	struct kernel_ipmi_msg msg;
2409 
2410 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2411 	si.channel = IPMI_BMC_CHANNEL;
2412 	si.lun = 0;
2413 
2414 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2415 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2416 	msg.data = NULL;
2417 	msg.data_len = 0;
2418 
2419 	return i_ipmi_request(NULL,
2420 			      intf,
2421 			      (struct ipmi_addr *) &si,
2422 			      0,
2423 			      &msg,
2424 			      intf,
2425 			      NULL,
2426 			      NULL,
2427 			      0,
2428 			      intf->addrinfo[0].address,
2429 			      intf->addrinfo[0].lun,
2430 			      -1, 0);
2431 }
2432 
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2433 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2434 {
2435 	int rv;
2436 	unsigned int retry_count = 0;
2437 
2438 	intf->null_user_handler = bmc_device_id_handler;
2439 
2440 retry:
2441 	bmc->cc = 0;
2442 	bmc->dyn_id_set = 2;
2443 
2444 	rv = send_get_device_id_cmd(intf);
2445 	if (rv)
2446 		goto out_reset_handler;
2447 
2448 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2449 
2450 	if (!bmc->dyn_id_set) {
2451 		if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2452 		     || bmc->cc ==  IPMI_DEVICE_IN_INIT_ERR
2453 		     || bmc->cc ==  IPMI_NOT_IN_MY_STATE_ERR)
2454 		     && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2455 			msleep(500);
2456 			dev_warn(intf->si_dev,
2457 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2458 			    bmc->cc);
2459 			goto retry;
2460 		}
2461 
2462 		rv = -EIO; /* Something went wrong in the fetch. */
2463 	}
2464 
2465 	/* dyn_id_set makes the id data available. */
2466 	smp_rmb();
2467 
2468 out_reset_handler:
2469 	intf->null_user_handler = NULL;
2470 
2471 	return rv;
2472 }
2473 
2474 /*
2475  * Fetch the device id for the bmc/interface.  You must pass in either
2476  * bmc or intf, this code will get the other one.  If the data has
2477  * been recently fetched, this will just use the cached data.  Otherwise
2478  * it will run a new fetch.
2479  *
2480  * Except for the first time this is called (in ipmi_add_smi()),
2481  * this will always return good data;
2482  */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2483 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2484 			       struct ipmi_device_id *id,
2485 			       bool *guid_set, guid_t *guid, int intf_num)
2486 {
2487 	int rv = 0;
2488 	int prev_dyn_id_set, prev_guid_set;
2489 	bool intf_set = intf != NULL;
2490 
2491 	if (!intf) {
2492 		mutex_lock(&bmc->dyn_mutex);
2493 retry_bmc_lock:
2494 		if (list_empty(&bmc->intfs)) {
2495 			mutex_unlock(&bmc->dyn_mutex);
2496 			return -ENOENT;
2497 		}
2498 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2499 					bmc_link);
2500 		kref_get(&intf->refcount);
2501 		mutex_unlock(&bmc->dyn_mutex);
2502 		mutex_lock(&intf->bmc_reg_mutex);
2503 		mutex_lock(&bmc->dyn_mutex);
2504 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2505 					     bmc_link)) {
2506 			mutex_unlock(&intf->bmc_reg_mutex);
2507 			kref_put(&intf->refcount, intf_free);
2508 			goto retry_bmc_lock;
2509 		}
2510 	} else {
2511 		mutex_lock(&intf->bmc_reg_mutex);
2512 		bmc = intf->bmc;
2513 		mutex_lock(&bmc->dyn_mutex);
2514 		kref_get(&intf->refcount);
2515 	}
2516 
2517 	/* If we have a valid and current ID, just return that. */
2518 	if (intf->in_bmc_register ||
2519 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2520 		goto out_noprocessing;
2521 
2522 	prev_guid_set = bmc->dyn_guid_set;
2523 	__get_guid(intf);
2524 
2525 	prev_dyn_id_set = bmc->dyn_id_set;
2526 	rv = __get_device_id(intf, bmc);
2527 	if (rv)
2528 		goto out;
2529 
2530 	/*
2531 	 * The guid, device id, manufacturer id, and product id should
2532 	 * not change on a BMC.  If it does we have to do some dancing.
2533 	 */
2534 	if (!intf->bmc_registered
2535 	    || (!prev_guid_set && bmc->dyn_guid_set)
2536 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2537 	    || (prev_guid_set && bmc->dyn_guid_set
2538 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2539 	    || bmc->id.device_id != bmc->fetch_id.device_id
2540 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2541 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2542 		struct ipmi_device_id id = bmc->fetch_id;
2543 		int guid_set = bmc->dyn_guid_set;
2544 		guid_t guid;
2545 
2546 		guid = bmc->fetch_guid;
2547 		mutex_unlock(&bmc->dyn_mutex);
2548 
2549 		__ipmi_bmc_unregister(intf);
2550 		/* Fill in the temporary BMC for good measure. */
2551 		intf->bmc->id = id;
2552 		intf->bmc->dyn_guid_set = guid_set;
2553 		intf->bmc->guid = guid;
2554 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2555 			need_waiter(intf); /* Retry later on an error. */
2556 		else
2557 			__scan_channels(intf, &id);
2558 
2559 
2560 		if (!intf_set) {
2561 			/*
2562 			 * We weren't given the interface on the
2563 			 * command line, so restart the operation on
2564 			 * the next interface for the BMC.
2565 			 */
2566 			mutex_unlock(&intf->bmc_reg_mutex);
2567 			mutex_lock(&bmc->dyn_mutex);
2568 			goto retry_bmc_lock;
2569 		}
2570 
2571 		/* We have a new BMC, set it up. */
2572 		bmc = intf->bmc;
2573 		mutex_lock(&bmc->dyn_mutex);
2574 		goto out_noprocessing;
2575 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2576 		/* Version info changes, scan the channels again. */
2577 		__scan_channels(intf, &bmc->fetch_id);
2578 
2579 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2580 
2581 out:
2582 	if (rv && prev_dyn_id_set) {
2583 		rv = 0; /* Ignore failures if we have previous data. */
2584 		bmc->dyn_id_set = prev_dyn_id_set;
2585 	}
2586 	if (!rv) {
2587 		bmc->id = bmc->fetch_id;
2588 		if (bmc->dyn_guid_set)
2589 			bmc->guid = bmc->fetch_guid;
2590 		else if (prev_guid_set)
2591 			/*
2592 			 * The guid used to be valid and it failed to fetch,
2593 			 * just use the cached value.
2594 			 */
2595 			bmc->dyn_guid_set = prev_guid_set;
2596 	}
2597 out_noprocessing:
2598 	if (!rv) {
2599 		if (id)
2600 			*id = bmc->id;
2601 
2602 		if (guid_set)
2603 			*guid_set = bmc->dyn_guid_set;
2604 
2605 		if (guid && bmc->dyn_guid_set)
2606 			*guid =  bmc->guid;
2607 	}
2608 
2609 	mutex_unlock(&bmc->dyn_mutex);
2610 	mutex_unlock(&intf->bmc_reg_mutex);
2611 
2612 	kref_put(&intf->refcount, intf_free);
2613 	return rv;
2614 }
2615 
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2616 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2617 			     struct ipmi_device_id *id,
2618 			     bool *guid_set, guid_t *guid)
2619 {
2620 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2621 }
2622 
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2623 static ssize_t device_id_show(struct device *dev,
2624 			      struct device_attribute *attr,
2625 			      char *buf)
2626 {
2627 	struct bmc_device *bmc = to_bmc_device(dev);
2628 	struct ipmi_device_id id;
2629 	int rv;
2630 
2631 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2632 	if (rv)
2633 		return rv;
2634 
2635 	return snprintf(buf, 10, "%u\n", id.device_id);
2636 }
2637 static DEVICE_ATTR_RO(device_id);
2638 
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2639 static ssize_t provides_device_sdrs_show(struct device *dev,
2640 					 struct device_attribute *attr,
2641 					 char *buf)
2642 {
2643 	struct bmc_device *bmc = to_bmc_device(dev);
2644 	struct ipmi_device_id id;
2645 	int rv;
2646 
2647 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2648 	if (rv)
2649 		return rv;
2650 
2651 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2652 }
2653 static DEVICE_ATTR_RO(provides_device_sdrs);
2654 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2655 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2656 			     char *buf)
2657 {
2658 	struct bmc_device *bmc = to_bmc_device(dev);
2659 	struct ipmi_device_id id;
2660 	int rv;
2661 
2662 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2663 	if (rv)
2664 		return rv;
2665 
2666 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2667 }
2668 static DEVICE_ATTR_RO(revision);
2669 
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2670 static ssize_t firmware_revision_show(struct device *dev,
2671 				      struct device_attribute *attr,
2672 				      char *buf)
2673 {
2674 	struct bmc_device *bmc = to_bmc_device(dev);
2675 	struct ipmi_device_id id;
2676 	int rv;
2677 
2678 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2679 	if (rv)
2680 		return rv;
2681 
2682 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2683 			id.firmware_revision_2);
2684 }
2685 static DEVICE_ATTR_RO(firmware_revision);
2686 
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2687 static ssize_t ipmi_version_show(struct device *dev,
2688 				 struct device_attribute *attr,
2689 				 char *buf)
2690 {
2691 	struct bmc_device *bmc = to_bmc_device(dev);
2692 	struct ipmi_device_id id;
2693 	int rv;
2694 
2695 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2696 	if (rv)
2697 		return rv;
2698 
2699 	return snprintf(buf, 20, "%u.%u\n",
2700 			ipmi_version_major(&id),
2701 			ipmi_version_minor(&id));
2702 }
2703 static DEVICE_ATTR_RO(ipmi_version);
2704 
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2705 static ssize_t add_dev_support_show(struct device *dev,
2706 				    struct device_attribute *attr,
2707 				    char *buf)
2708 {
2709 	struct bmc_device *bmc = to_bmc_device(dev);
2710 	struct ipmi_device_id id;
2711 	int rv;
2712 
2713 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2714 	if (rv)
2715 		return rv;
2716 
2717 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2718 }
2719 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2720 		   NULL);
2721 
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2722 static ssize_t manufacturer_id_show(struct device *dev,
2723 				    struct device_attribute *attr,
2724 				    char *buf)
2725 {
2726 	struct bmc_device *bmc = to_bmc_device(dev);
2727 	struct ipmi_device_id id;
2728 	int rv;
2729 
2730 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2731 	if (rv)
2732 		return rv;
2733 
2734 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2735 }
2736 static DEVICE_ATTR_RO(manufacturer_id);
2737 
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2738 static ssize_t product_id_show(struct device *dev,
2739 			       struct device_attribute *attr,
2740 			       char *buf)
2741 {
2742 	struct bmc_device *bmc = to_bmc_device(dev);
2743 	struct ipmi_device_id id;
2744 	int rv;
2745 
2746 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2747 	if (rv)
2748 		return rv;
2749 
2750 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2751 }
2752 static DEVICE_ATTR_RO(product_id);
2753 
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2754 static ssize_t aux_firmware_rev_show(struct device *dev,
2755 				     struct device_attribute *attr,
2756 				     char *buf)
2757 {
2758 	struct bmc_device *bmc = to_bmc_device(dev);
2759 	struct ipmi_device_id id;
2760 	int rv;
2761 
2762 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2763 	if (rv)
2764 		return rv;
2765 
2766 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2767 			id.aux_firmware_revision[3],
2768 			id.aux_firmware_revision[2],
2769 			id.aux_firmware_revision[1],
2770 			id.aux_firmware_revision[0]);
2771 }
2772 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2773 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2774 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2775 			 char *buf)
2776 {
2777 	struct bmc_device *bmc = to_bmc_device(dev);
2778 	bool guid_set;
2779 	guid_t guid;
2780 	int rv;
2781 
2782 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2783 	if (rv)
2784 		return rv;
2785 	if (!guid_set)
2786 		return -ENOENT;
2787 
2788 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2789 }
2790 static DEVICE_ATTR_RO(guid);
2791 
2792 static struct attribute *bmc_dev_attrs[] = {
2793 	&dev_attr_device_id.attr,
2794 	&dev_attr_provides_device_sdrs.attr,
2795 	&dev_attr_revision.attr,
2796 	&dev_attr_firmware_revision.attr,
2797 	&dev_attr_ipmi_version.attr,
2798 	&dev_attr_additional_device_support.attr,
2799 	&dev_attr_manufacturer_id.attr,
2800 	&dev_attr_product_id.attr,
2801 	&dev_attr_aux_firmware_revision.attr,
2802 	&dev_attr_guid.attr,
2803 	NULL
2804 };
2805 
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2806 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2807 				       struct attribute *attr, int idx)
2808 {
2809 	struct device *dev = kobj_to_dev(kobj);
2810 	struct bmc_device *bmc = to_bmc_device(dev);
2811 	umode_t mode = attr->mode;
2812 	int rv;
2813 
2814 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2815 		struct ipmi_device_id id;
2816 
2817 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2818 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2819 	}
2820 	if (attr == &dev_attr_guid.attr) {
2821 		bool guid_set;
2822 
2823 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2824 		return (!rv && guid_set) ? mode : 0;
2825 	}
2826 	return mode;
2827 }
2828 
2829 static const struct attribute_group bmc_dev_attr_group = {
2830 	.attrs		= bmc_dev_attrs,
2831 	.is_visible	= bmc_dev_attr_is_visible,
2832 };
2833 
2834 static const struct attribute_group *bmc_dev_attr_groups[] = {
2835 	&bmc_dev_attr_group,
2836 	NULL
2837 };
2838 
2839 static const struct device_type bmc_device_type = {
2840 	.groups		= bmc_dev_attr_groups,
2841 };
2842 
__find_bmc_guid(struct device * dev,const void * data)2843 static int __find_bmc_guid(struct device *dev, const void *data)
2844 {
2845 	const guid_t *guid = data;
2846 	struct bmc_device *bmc;
2847 	int rv;
2848 
2849 	if (dev->type != &bmc_device_type)
2850 		return 0;
2851 
2852 	bmc = to_bmc_device(dev);
2853 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2854 	if (rv)
2855 		rv = kref_get_unless_zero(&bmc->usecount);
2856 	return rv;
2857 }
2858 
2859 /*
2860  * Returns with the bmc's usecount incremented, if it is non-NULL.
2861  */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2862 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2863 					     guid_t *guid)
2864 {
2865 	struct device *dev;
2866 	struct bmc_device *bmc = NULL;
2867 
2868 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2869 	if (dev) {
2870 		bmc = to_bmc_device(dev);
2871 		put_device(dev);
2872 	}
2873 	return bmc;
2874 }
2875 
2876 struct prod_dev_id {
2877 	unsigned int  product_id;
2878 	unsigned char device_id;
2879 };
2880 
__find_bmc_prod_dev_id(struct device * dev,const void * data)2881 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2882 {
2883 	const struct prod_dev_id *cid = data;
2884 	struct bmc_device *bmc;
2885 	int rv;
2886 
2887 	if (dev->type != &bmc_device_type)
2888 		return 0;
2889 
2890 	bmc = to_bmc_device(dev);
2891 	rv = (bmc->id.product_id == cid->product_id
2892 	      && bmc->id.device_id == cid->device_id);
2893 	if (rv)
2894 		rv = kref_get_unless_zero(&bmc->usecount);
2895 	return rv;
2896 }
2897 
2898 /*
2899  * Returns with the bmc's usecount incremented, if it is non-NULL.
2900  */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)2901 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2902 	struct device_driver *drv,
2903 	unsigned int product_id, unsigned char device_id)
2904 {
2905 	struct prod_dev_id id = {
2906 		.product_id = product_id,
2907 		.device_id = device_id,
2908 	};
2909 	struct device *dev;
2910 	struct bmc_device *bmc = NULL;
2911 
2912 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2913 	if (dev) {
2914 		bmc = to_bmc_device(dev);
2915 		put_device(dev);
2916 	}
2917 	return bmc;
2918 }
2919 
2920 static DEFINE_IDA(ipmi_bmc_ida);
2921 
2922 static void
release_bmc_device(struct device * dev)2923 release_bmc_device(struct device *dev)
2924 {
2925 	kfree(to_bmc_device(dev));
2926 }
2927 
cleanup_bmc_work(struct work_struct * work)2928 static void cleanup_bmc_work(struct work_struct *work)
2929 {
2930 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2931 					      remove_work);
2932 	int id = bmc->pdev.id; /* Unregister overwrites id */
2933 
2934 	platform_device_unregister(&bmc->pdev);
2935 	ida_simple_remove(&ipmi_bmc_ida, id);
2936 }
2937 
2938 static void
cleanup_bmc_device(struct kref * ref)2939 cleanup_bmc_device(struct kref *ref)
2940 {
2941 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2942 
2943 	/*
2944 	 * Remove the platform device in a work queue to avoid issues
2945 	 * with removing the device attributes while reading a device
2946 	 * attribute.
2947 	 */
2948 	queue_work(remove_work_wq, &bmc->remove_work);
2949 }
2950 
2951 /*
2952  * Must be called with intf->bmc_reg_mutex held.
2953  */
__ipmi_bmc_unregister(struct ipmi_smi * intf)2954 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2955 {
2956 	struct bmc_device *bmc = intf->bmc;
2957 
2958 	if (!intf->bmc_registered)
2959 		return;
2960 
2961 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2962 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2963 	kfree(intf->my_dev_name);
2964 	intf->my_dev_name = NULL;
2965 
2966 	mutex_lock(&bmc->dyn_mutex);
2967 	list_del(&intf->bmc_link);
2968 	mutex_unlock(&bmc->dyn_mutex);
2969 	intf->bmc = &intf->tmp_bmc;
2970 	kref_put(&bmc->usecount, cleanup_bmc_device);
2971 	intf->bmc_registered = false;
2972 }
2973 
ipmi_bmc_unregister(struct ipmi_smi * intf)2974 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2975 {
2976 	mutex_lock(&intf->bmc_reg_mutex);
2977 	__ipmi_bmc_unregister(intf);
2978 	mutex_unlock(&intf->bmc_reg_mutex);
2979 }
2980 
2981 /*
2982  * Must be called with intf->bmc_reg_mutex held.
2983  */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)2984 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2985 			       struct ipmi_device_id *id,
2986 			       bool guid_set, guid_t *guid, int intf_num)
2987 {
2988 	int               rv;
2989 	struct bmc_device *bmc;
2990 	struct bmc_device *old_bmc;
2991 
2992 	/*
2993 	 * platform_device_register() can cause bmc_reg_mutex to
2994 	 * be claimed because of the is_visible functions of
2995 	 * the attributes.  Eliminate possible recursion and
2996 	 * release the lock.
2997 	 */
2998 	intf->in_bmc_register = true;
2999 	mutex_unlock(&intf->bmc_reg_mutex);
3000 
3001 	/*
3002 	 * Try to find if there is an bmc_device struct
3003 	 * representing the interfaced BMC already
3004 	 */
3005 	mutex_lock(&ipmidriver_mutex);
3006 	if (guid_set)
3007 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3008 	else
3009 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3010 						    id->product_id,
3011 						    id->device_id);
3012 
3013 	/*
3014 	 * If there is already an bmc_device, free the new one,
3015 	 * otherwise register the new BMC device
3016 	 */
3017 	if (old_bmc) {
3018 		bmc = old_bmc;
3019 		/*
3020 		 * Note: old_bmc already has usecount incremented by
3021 		 * the BMC find functions.
3022 		 */
3023 		intf->bmc = old_bmc;
3024 		mutex_lock(&bmc->dyn_mutex);
3025 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3026 		mutex_unlock(&bmc->dyn_mutex);
3027 
3028 		dev_info(intf->si_dev,
3029 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3030 			 bmc->id.manufacturer_id,
3031 			 bmc->id.product_id,
3032 			 bmc->id.device_id);
3033 	} else {
3034 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3035 		if (!bmc) {
3036 			rv = -ENOMEM;
3037 			goto out;
3038 		}
3039 		INIT_LIST_HEAD(&bmc->intfs);
3040 		mutex_init(&bmc->dyn_mutex);
3041 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3042 
3043 		bmc->id = *id;
3044 		bmc->dyn_id_set = 1;
3045 		bmc->dyn_guid_set = guid_set;
3046 		bmc->guid = *guid;
3047 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3048 
3049 		bmc->pdev.name = "ipmi_bmc";
3050 
3051 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3052 		if (rv < 0) {
3053 			kfree(bmc);
3054 			goto out;
3055 		}
3056 
3057 		bmc->pdev.dev.driver = &ipmidriver.driver;
3058 		bmc->pdev.id = rv;
3059 		bmc->pdev.dev.release = release_bmc_device;
3060 		bmc->pdev.dev.type = &bmc_device_type;
3061 		kref_init(&bmc->usecount);
3062 
3063 		intf->bmc = bmc;
3064 		mutex_lock(&bmc->dyn_mutex);
3065 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3066 		mutex_unlock(&bmc->dyn_mutex);
3067 
3068 		rv = platform_device_register(&bmc->pdev);
3069 		if (rv) {
3070 			dev_err(intf->si_dev,
3071 				"Unable to register bmc device: %d\n",
3072 				rv);
3073 			goto out_list_del;
3074 		}
3075 
3076 		dev_info(intf->si_dev,
3077 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3078 			 bmc->id.manufacturer_id,
3079 			 bmc->id.product_id,
3080 			 bmc->id.device_id);
3081 	}
3082 
3083 	/*
3084 	 * create symlink from system interface device to bmc device
3085 	 * and back.
3086 	 */
3087 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3088 	if (rv) {
3089 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3090 		goto out_put_bmc;
3091 	}
3092 
3093 	if (intf_num == -1)
3094 		intf_num = intf->intf_num;
3095 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3096 	if (!intf->my_dev_name) {
3097 		rv = -ENOMEM;
3098 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3099 			rv);
3100 		goto out_unlink1;
3101 	}
3102 
3103 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3104 			       intf->my_dev_name);
3105 	if (rv) {
3106 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3107 			rv);
3108 		goto out_free_my_dev_name;
3109 	}
3110 
3111 	intf->bmc_registered = true;
3112 
3113 out:
3114 	mutex_unlock(&ipmidriver_mutex);
3115 	mutex_lock(&intf->bmc_reg_mutex);
3116 	intf->in_bmc_register = false;
3117 	return rv;
3118 
3119 
3120 out_free_my_dev_name:
3121 	kfree(intf->my_dev_name);
3122 	intf->my_dev_name = NULL;
3123 
3124 out_unlink1:
3125 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3126 
3127 out_put_bmc:
3128 	mutex_lock(&bmc->dyn_mutex);
3129 	list_del(&intf->bmc_link);
3130 	mutex_unlock(&bmc->dyn_mutex);
3131 	intf->bmc = &intf->tmp_bmc;
3132 	kref_put(&bmc->usecount, cleanup_bmc_device);
3133 	goto out;
3134 
3135 out_list_del:
3136 	mutex_lock(&bmc->dyn_mutex);
3137 	list_del(&intf->bmc_link);
3138 	mutex_unlock(&bmc->dyn_mutex);
3139 	intf->bmc = &intf->tmp_bmc;
3140 	put_device(&bmc->pdev.dev);
3141 	goto out;
3142 }
3143 
3144 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3145 send_guid_cmd(struct ipmi_smi *intf, int chan)
3146 {
3147 	struct kernel_ipmi_msg            msg;
3148 	struct ipmi_system_interface_addr si;
3149 
3150 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3151 	si.channel = IPMI_BMC_CHANNEL;
3152 	si.lun = 0;
3153 
3154 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3155 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3156 	msg.data = NULL;
3157 	msg.data_len = 0;
3158 	return i_ipmi_request(NULL,
3159 			      intf,
3160 			      (struct ipmi_addr *) &si,
3161 			      0,
3162 			      &msg,
3163 			      intf,
3164 			      NULL,
3165 			      NULL,
3166 			      0,
3167 			      intf->addrinfo[0].address,
3168 			      intf->addrinfo[0].lun,
3169 			      -1, 0);
3170 }
3171 
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3172 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3173 {
3174 	struct bmc_device *bmc = intf->bmc;
3175 
3176 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3177 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3178 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3179 		/* Not for me */
3180 		return;
3181 
3182 	if (msg->msg.data[0] != 0) {
3183 		/* Error from getting the GUID, the BMC doesn't have one. */
3184 		bmc->dyn_guid_set = 0;
3185 		goto out;
3186 	}
3187 
3188 	if (msg->msg.data_len < UUID_SIZE + 1) {
3189 		bmc->dyn_guid_set = 0;
3190 		dev_warn(intf->si_dev,
3191 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3192 			 msg->msg.data_len, UUID_SIZE + 1);
3193 		goto out;
3194 	}
3195 
3196 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3197 	/*
3198 	 * Make sure the guid data is available before setting
3199 	 * dyn_guid_set.
3200 	 */
3201 	smp_wmb();
3202 	bmc->dyn_guid_set = 1;
3203  out:
3204 	wake_up(&intf->waitq);
3205 }
3206 
__get_guid(struct ipmi_smi * intf)3207 static void __get_guid(struct ipmi_smi *intf)
3208 {
3209 	int rv;
3210 	struct bmc_device *bmc = intf->bmc;
3211 
3212 	bmc->dyn_guid_set = 2;
3213 	intf->null_user_handler = guid_handler;
3214 	rv = send_guid_cmd(intf, 0);
3215 	if (rv)
3216 		/* Send failed, no GUID available. */
3217 		bmc->dyn_guid_set = 0;
3218 	else
3219 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3220 
3221 	/* dyn_guid_set makes the guid data available. */
3222 	smp_rmb();
3223 
3224 	intf->null_user_handler = NULL;
3225 }
3226 
3227 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3228 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3229 {
3230 	struct kernel_ipmi_msg            msg;
3231 	unsigned char                     data[1];
3232 	struct ipmi_system_interface_addr si;
3233 
3234 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3235 	si.channel = IPMI_BMC_CHANNEL;
3236 	si.lun = 0;
3237 
3238 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3239 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3240 	msg.data = data;
3241 	msg.data_len = 1;
3242 	data[0] = chan;
3243 	return i_ipmi_request(NULL,
3244 			      intf,
3245 			      (struct ipmi_addr *) &si,
3246 			      0,
3247 			      &msg,
3248 			      intf,
3249 			      NULL,
3250 			      NULL,
3251 			      0,
3252 			      intf->addrinfo[0].address,
3253 			      intf->addrinfo[0].lun,
3254 			      -1, 0);
3255 }
3256 
3257 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3258 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3259 {
3260 	int rv = 0;
3261 	int ch;
3262 	unsigned int set = intf->curr_working_cset;
3263 	struct ipmi_channel *chans;
3264 
3265 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3266 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3267 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3268 		/* It's the one we want */
3269 		if (msg->msg.data[0] != 0) {
3270 			/* Got an error from the channel, just go on. */
3271 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3272 				/*
3273 				 * If the MC does not support this
3274 				 * command, that is legal.  We just
3275 				 * assume it has one IPMB at channel
3276 				 * zero.
3277 				 */
3278 				intf->wchannels[set].c[0].medium
3279 					= IPMI_CHANNEL_MEDIUM_IPMB;
3280 				intf->wchannels[set].c[0].protocol
3281 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3282 
3283 				intf->channel_list = intf->wchannels + set;
3284 				intf->channels_ready = true;
3285 				wake_up(&intf->waitq);
3286 				goto out;
3287 			}
3288 			goto next_channel;
3289 		}
3290 		if (msg->msg.data_len < 4) {
3291 			/* Message not big enough, just go on. */
3292 			goto next_channel;
3293 		}
3294 		ch = intf->curr_channel;
3295 		chans = intf->wchannels[set].c;
3296 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3297 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3298 
3299  next_channel:
3300 		intf->curr_channel++;
3301 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3302 			intf->channel_list = intf->wchannels + set;
3303 			intf->channels_ready = true;
3304 			wake_up(&intf->waitq);
3305 		} else {
3306 			intf->channel_list = intf->wchannels + set;
3307 			intf->channels_ready = true;
3308 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3309 		}
3310 
3311 		if (rv) {
3312 			/* Got an error somehow, just give up. */
3313 			dev_warn(intf->si_dev,
3314 				 "Error sending channel information for channel %d: %d\n",
3315 				 intf->curr_channel, rv);
3316 
3317 			intf->channel_list = intf->wchannels + set;
3318 			intf->channels_ready = true;
3319 			wake_up(&intf->waitq);
3320 		}
3321 	}
3322  out:
3323 	return;
3324 }
3325 
3326 /*
3327  * Must be holding intf->bmc_reg_mutex to call this.
3328  */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3329 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3330 {
3331 	int rv;
3332 
3333 	if (ipmi_version_major(id) > 1
3334 			|| (ipmi_version_major(id) == 1
3335 			    && ipmi_version_minor(id) >= 5)) {
3336 		unsigned int set;
3337 
3338 		/*
3339 		 * Start scanning the channels to see what is
3340 		 * available.
3341 		 */
3342 		set = !intf->curr_working_cset;
3343 		intf->curr_working_cset = set;
3344 		memset(&intf->wchannels[set], 0,
3345 		       sizeof(struct ipmi_channel_set));
3346 
3347 		intf->null_user_handler = channel_handler;
3348 		intf->curr_channel = 0;
3349 		rv = send_channel_info_cmd(intf, 0);
3350 		if (rv) {
3351 			dev_warn(intf->si_dev,
3352 				 "Error sending channel information for channel 0, %d\n",
3353 				 rv);
3354 			intf->null_user_handler = NULL;
3355 			return -EIO;
3356 		}
3357 
3358 		/* Wait for the channel info to be read. */
3359 		wait_event(intf->waitq, intf->channels_ready);
3360 		intf->null_user_handler = NULL;
3361 	} else {
3362 		unsigned int set = intf->curr_working_cset;
3363 
3364 		/* Assume a single IPMB channel at zero. */
3365 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3366 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3367 		intf->channel_list = intf->wchannels + set;
3368 		intf->channels_ready = true;
3369 	}
3370 
3371 	return 0;
3372 }
3373 
ipmi_poll(struct ipmi_smi * intf)3374 static void ipmi_poll(struct ipmi_smi *intf)
3375 {
3376 	if (intf->handlers->poll)
3377 		intf->handlers->poll(intf->send_info);
3378 	/* In case something came in */
3379 	handle_new_recv_msgs(intf);
3380 }
3381 
ipmi_poll_interface(struct ipmi_user * user)3382 void ipmi_poll_interface(struct ipmi_user *user)
3383 {
3384 	ipmi_poll(user->intf);
3385 }
3386 EXPORT_SYMBOL(ipmi_poll_interface);
3387 
redo_bmc_reg(struct work_struct * work)3388 static void redo_bmc_reg(struct work_struct *work)
3389 {
3390 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3391 					     bmc_reg_work);
3392 
3393 	if (!intf->in_shutdown)
3394 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3395 
3396 	kref_put(&intf->refcount, intf_free);
3397 }
3398 
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3399 int ipmi_add_smi(struct module         *owner,
3400 		 const struct ipmi_smi_handlers *handlers,
3401 		 void		       *send_info,
3402 		 struct device         *si_dev,
3403 		 unsigned char         slave_addr)
3404 {
3405 	int              i, j;
3406 	int              rv;
3407 	struct ipmi_smi *intf, *tintf;
3408 	struct list_head *link;
3409 	struct ipmi_device_id id;
3410 
3411 	/*
3412 	 * Make sure the driver is actually initialized, this handles
3413 	 * problems with initialization order.
3414 	 */
3415 	rv = ipmi_init_msghandler();
3416 	if (rv)
3417 		return rv;
3418 
3419 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3420 	if (!intf)
3421 		return -ENOMEM;
3422 
3423 	rv = init_srcu_struct(&intf->users_srcu);
3424 	if (rv) {
3425 		kfree(intf);
3426 		return rv;
3427 	}
3428 
3429 	intf->owner = owner;
3430 	intf->bmc = &intf->tmp_bmc;
3431 	INIT_LIST_HEAD(&intf->bmc->intfs);
3432 	mutex_init(&intf->bmc->dyn_mutex);
3433 	INIT_LIST_HEAD(&intf->bmc_link);
3434 	mutex_init(&intf->bmc_reg_mutex);
3435 	intf->intf_num = -1; /* Mark it invalid for now. */
3436 	kref_init(&intf->refcount);
3437 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3438 	intf->si_dev = si_dev;
3439 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3440 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3441 		intf->addrinfo[j].lun = 2;
3442 	}
3443 	if (slave_addr != 0)
3444 		intf->addrinfo[0].address = slave_addr;
3445 	INIT_LIST_HEAD(&intf->users);
3446 	intf->handlers = handlers;
3447 	intf->send_info = send_info;
3448 	spin_lock_init(&intf->seq_lock);
3449 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3450 		intf->seq_table[j].inuse = 0;
3451 		intf->seq_table[j].seqid = 0;
3452 	}
3453 	intf->curr_seq = 0;
3454 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3455 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3456 	tasklet_setup(&intf->recv_tasklet,
3457 		     smi_recv_tasklet);
3458 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3459 	spin_lock_init(&intf->xmit_msgs_lock);
3460 	INIT_LIST_HEAD(&intf->xmit_msgs);
3461 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3462 	spin_lock_init(&intf->events_lock);
3463 	spin_lock_init(&intf->watch_lock);
3464 	atomic_set(&intf->event_waiters, 0);
3465 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3466 	INIT_LIST_HEAD(&intf->waiting_events);
3467 	intf->waiting_events_count = 0;
3468 	mutex_init(&intf->cmd_rcvrs_mutex);
3469 	spin_lock_init(&intf->maintenance_mode_lock);
3470 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3471 	init_waitqueue_head(&intf->waitq);
3472 	for (i = 0; i < IPMI_NUM_STATS; i++)
3473 		atomic_set(&intf->stats[i], 0);
3474 
3475 	mutex_lock(&ipmi_interfaces_mutex);
3476 	/* Look for a hole in the numbers. */
3477 	i = 0;
3478 	link = &ipmi_interfaces;
3479 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3480 				ipmi_interfaces_mutex_held()) {
3481 		if (tintf->intf_num != i) {
3482 			link = &tintf->link;
3483 			break;
3484 		}
3485 		i++;
3486 	}
3487 	/* Add the new interface in numeric order. */
3488 	if (i == 0)
3489 		list_add_rcu(&intf->link, &ipmi_interfaces);
3490 	else
3491 		list_add_tail_rcu(&intf->link, link);
3492 
3493 	rv = handlers->start_processing(send_info, intf);
3494 	if (rv)
3495 		goto out_err;
3496 
3497 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3498 	if (rv) {
3499 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3500 		goto out_err_started;
3501 	}
3502 
3503 	mutex_lock(&intf->bmc_reg_mutex);
3504 	rv = __scan_channels(intf, &id);
3505 	mutex_unlock(&intf->bmc_reg_mutex);
3506 	if (rv)
3507 		goto out_err_bmc_reg;
3508 
3509 	/*
3510 	 * Keep memory order straight for RCU readers.  Make
3511 	 * sure everything else is committed to memory before
3512 	 * setting intf_num to mark the interface valid.
3513 	 */
3514 	smp_wmb();
3515 	intf->intf_num = i;
3516 	mutex_unlock(&ipmi_interfaces_mutex);
3517 
3518 	/* After this point the interface is legal to use. */
3519 	call_smi_watchers(i, intf->si_dev);
3520 
3521 	return 0;
3522 
3523  out_err_bmc_reg:
3524 	ipmi_bmc_unregister(intf);
3525  out_err_started:
3526 	if (intf->handlers->shutdown)
3527 		intf->handlers->shutdown(intf->send_info);
3528  out_err:
3529 	list_del_rcu(&intf->link);
3530 	mutex_unlock(&ipmi_interfaces_mutex);
3531 	synchronize_srcu(&ipmi_interfaces_srcu);
3532 	cleanup_srcu_struct(&intf->users_srcu);
3533 	kref_put(&intf->refcount, intf_free);
3534 
3535 	return rv;
3536 }
3537 EXPORT_SYMBOL(ipmi_add_smi);
3538 
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3539 static void deliver_smi_err_response(struct ipmi_smi *intf,
3540 				     struct ipmi_smi_msg *msg,
3541 				     unsigned char err)
3542 {
3543 	msg->rsp[0] = msg->data[0] | 4;
3544 	msg->rsp[1] = msg->data[1];
3545 	msg->rsp[2] = err;
3546 	msg->rsp_size = 3;
3547 	/* It's an error, so it will never requeue, no need to check return. */
3548 	handle_one_recv_msg(intf, msg);
3549 }
3550 
cleanup_smi_msgs(struct ipmi_smi * intf)3551 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3552 {
3553 	int              i;
3554 	struct seq_table *ent;
3555 	struct ipmi_smi_msg *msg;
3556 	struct list_head *entry;
3557 	struct list_head tmplist;
3558 
3559 	/* Clear out our transmit queues and hold the messages. */
3560 	INIT_LIST_HEAD(&tmplist);
3561 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3562 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3563 
3564 	/* Current message first, to preserve order */
3565 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3566 		/* Wait for the message to clear out. */
3567 		schedule_timeout(1);
3568 	}
3569 
3570 	/* No need for locks, the interface is down. */
3571 
3572 	/*
3573 	 * Return errors for all pending messages in queue and in the
3574 	 * tables waiting for remote responses.
3575 	 */
3576 	while (!list_empty(&tmplist)) {
3577 		entry = tmplist.next;
3578 		list_del(entry);
3579 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3580 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3581 	}
3582 
3583 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3584 		ent = &intf->seq_table[i];
3585 		if (!ent->inuse)
3586 			continue;
3587 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3588 	}
3589 }
3590 
ipmi_unregister_smi(struct ipmi_smi * intf)3591 void ipmi_unregister_smi(struct ipmi_smi *intf)
3592 {
3593 	struct ipmi_smi_watcher *w;
3594 	int intf_num = intf->intf_num, index;
3595 
3596 	mutex_lock(&ipmi_interfaces_mutex);
3597 	intf->intf_num = -1;
3598 	intf->in_shutdown = true;
3599 	list_del_rcu(&intf->link);
3600 	mutex_unlock(&ipmi_interfaces_mutex);
3601 	synchronize_srcu(&ipmi_interfaces_srcu);
3602 
3603 	/* At this point no users can be added to the interface. */
3604 
3605 	/*
3606 	 * Call all the watcher interfaces to tell them that
3607 	 * an interface is going away.
3608 	 */
3609 	mutex_lock(&smi_watchers_mutex);
3610 	list_for_each_entry(w, &smi_watchers, link)
3611 		w->smi_gone(intf_num);
3612 	mutex_unlock(&smi_watchers_mutex);
3613 
3614 	index = srcu_read_lock(&intf->users_srcu);
3615 	while (!list_empty(&intf->users)) {
3616 		struct ipmi_user *user =
3617 			container_of(list_next_rcu(&intf->users),
3618 				     struct ipmi_user, link);
3619 
3620 		_ipmi_destroy_user(user);
3621 	}
3622 	srcu_read_unlock(&intf->users_srcu, index);
3623 
3624 	if (intf->handlers->shutdown)
3625 		intf->handlers->shutdown(intf->send_info);
3626 
3627 	cleanup_smi_msgs(intf);
3628 
3629 	ipmi_bmc_unregister(intf);
3630 
3631 	cleanup_srcu_struct(&intf->users_srcu);
3632 	kref_put(&intf->refcount, intf_free);
3633 }
3634 EXPORT_SYMBOL(ipmi_unregister_smi);
3635 
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3636 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3637 				   struct ipmi_smi_msg *msg)
3638 {
3639 	struct ipmi_ipmb_addr ipmb_addr;
3640 	struct ipmi_recv_msg  *recv_msg;
3641 
3642 	/*
3643 	 * This is 11, not 10, because the response must contain a
3644 	 * completion code.
3645 	 */
3646 	if (msg->rsp_size < 11) {
3647 		/* Message not big enough, just ignore it. */
3648 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3649 		return 0;
3650 	}
3651 
3652 	if (msg->rsp[2] != 0) {
3653 		/* An error getting the response, just ignore it. */
3654 		return 0;
3655 	}
3656 
3657 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3658 	ipmb_addr.slave_addr = msg->rsp[6];
3659 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3660 	ipmb_addr.lun = msg->rsp[7] & 3;
3661 
3662 	/*
3663 	 * It's a response from a remote entity.  Look up the sequence
3664 	 * number and handle the response.
3665 	 */
3666 	if (intf_find_seq(intf,
3667 			  msg->rsp[7] >> 2,
3668 			  msg->rsp[3] & 0x0f,
3669 			  msg->rsp[8],
3670 			  (msg->rsp[4] >> 2) & (~1),
3671 			  (struct ipmi_addr *) &ipmb_addr,
3672 			  &recv_msg)) {
3673 		/*
3674 		 * We were unable to find the sequence number,
3675 		 * so just nuke the message.
3676 		 */
3677 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3678 		return 0;
3679 	}
3680 
3681 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3682 	/*
3683 	 * The other fields matched, so no need to set them, except
3684 	 * for netfn, which needs to be the response that was
3685 	 * returned, not the request value.
3686 	 */
3687 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3688 	recv_msg->msg.data = recv_msg->msg_data;
3689 	recv_msg->msg.data_len = msg->rsp_size - 10;
3690 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3691 	if (deliver_response(intf, recv_msg))
3692 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3693 	else
3694 		ipmi_inc_stat(intf, handled_ipmb_responses);
3695 
3696 	return 0;
3697 }
3698 
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3699 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3700 				   struct ipmi_smi_msg *msg)
3701 {
3702 	struct cmd_rcvr          *rcvr;
3703 	int                      rv = 0;
3704 	unsigned char            netfn;
3705 	unsigned char            cmd;
3706 	unsigned char            chan;
3707 	struct ipmi_user         *user = NULL;
3708 	struct ipmi_ipmb_addr    *ipmb_addr;
3709 	struct ipmi_recv_msg     *recv_msg;
3710 
3711 	if (msg->rsp_size < 10) {
3712 		/* Message not big enough, just ignore it. */
3713 		ipmi_inc_stat(intf, invalid_commands);
3714 		return 0;
3715 	}
3716 
3717 	if (msg->rsp[2] != 0) {
3718 		/* An error getting the response, just ignore it. */
3719 		return 0;
3720 	}
3721 
3722 	netfn = msg->rsp[4] >> 2;
3723 	cmd = msg->rsp[8];
3724 	chan = msg->rsp[3] & 0xf;
3725 
3726 	rcu_read_lock();
3727 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3728 	if (rcvr) {
3729 		user = rcvr->user;
3730 		kref_get(&user->refcount);
3731 	} else
3732 		user = NULL;
3733 	rcu_read_unlock();
3734 
3735 	if (user == NULL) {
3736 		/* We didn't find a user, deliver an error response. */
3737 		ipmi_inc_stat(intf, unhandled_commands);
3738 
3739 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3740 		msg->data[1] = IPMI_SEND_MSG_CMD;
3741 		msg->data[2] = msg->rsp[3];
3742 		msg->data[3] = msg->rsp[6];
3743 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3744 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3745 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3746 		/* rqseq/lun */
3747 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3748 		msg->data[8] = msg->rsp[8]; /* cmd */
3749 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3750 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3751 		msg->data_size = 11;
3752 
3753 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3754 
3755 		rcu_read_lock();
3756 		if (!intf->in_shutdown) {
3757 			smi_send(intf, intf->handlers, msg, 0);
3758 			/*
3759 			 * We used the message, so return the value
3760 			 * that causes it to not be freed or
3761 			 * queued.
3762 			 */
3763 			rv = -1;
3764 		}
3765 		rcu_read_unlock();
3766 	} else {
3767 		recv_msg = ipmi_alloc_recv_msg();
3768 		if (!recv_msg) {
3769 			/*
3770 			 * We couldn't allocate memory for the
3771 			 * message, so requeue it for handling
3772 			 * later.
3773 			 */
3774 			rv = 1;
3775 			kref_put(&user->refcount, free_user);
3776 		} else {
3777 			/* Extract the source address from the data. */
3778 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3779 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3780 			ipmb_addr->slave_addr = msg->rsp[6];
3781 			ipmb_addr->lun = msg->rsp[7] & 3;
3782 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3783 
3784 			/*
3785 			 * Extract the rest of the message information
3786 			 * from the IPMB header.
3787 			 */
3788 			recv_msg->user = user;
3789 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3790 			recv_msg->msgid = msg->rsp[7] >> 2;
3791 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3792 			recv_msg->msg.cmd = msg->rsp[8];
3793 			recv_msg->msg.data = recv_msg->msg_data;
3794 
3795 			/*
3796 			 * We chop off 10, not 9 bytes because the checksum
3797 			 * at the end also needs to be removed.
3798 			 */
3799 			recv_msg->msg.data_len = msg->rsp_size - 10;
3800 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3801 			       msg->rsp_size - 10);
3802 			if (deliver_response(intf, recv_msg))
3803 				ipmi_inc_stat(intf, unhandled_commands);
3804 			else
3805 				ipmi_inc_stat(intf, handled_commands);
3806 		}
3807 	}
3808 
3809 	return rv;
3810 }
3811 
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3812 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3813 				  struct ipmi_smi_msg *msg)
3814 {
3815 	struct ipmi_lan_addr  lan_addr;
3816 	struct ipmi_recv_msg  *recv_msg;
3817 
3818 
3819 	/*
3820 	 * This is 13, not 12, because the response must contain a
3821 	 * completion code.
3822 	 */
3823 	if (msg->rsp_size < 13) {
3824 		/* Message not big enough, just ignore it. */
3825 		ipmi_inc_stat(intf, invalid_lan_responses);
3826 		return 0;
3827 	}
3828 
3829 	if (msg->rsp[2] != 0) {
3830 		/* An error getting the response, just ignore it. */
3831 		return 0;
3832 	}
3833 
3834 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3835 	lan_addr.session_handle = msg->rsp[4];
3836 	lan_addr.remote_SWID = msg->rsp[8];
3837 	lan_addr.local_SWID = msg->rsp[5];
3838 	lan_addr.channel = msg->rsp[3] & 0x0f;
3839 	lan_addr.privilege = msg->rsp[3] >> 4;
3840 	lan_addr.lun = msg->rsp[9] & 3;
3841 
3842 	/*
3843 	 * It's a response from a remote entity.  Look up the sequence
3844 	 * number and handle the response.
3845 	 */
3846 	if (intf_find_seq(intf,
3847 			  msg->rsp[9] >> 2,
3848 			  msg->rsp[3] & 0x0f,
3849 			  msg->rsp[10],
3850 			  (msg->rsp[6] >> 2) & (~1),
3851 			  (struct ipmi_addr *) &lan_addr,
3852 			  &recv_msg)) {
3853 		/*
3854 		 * We were unable to find the sequence number,
3855 		 * so just nuke the message.
3856 		 */
3857 		ipmi_inc_stat(intf, unhandled_lan_responses);
3858 		return 0;
3859 	}
3860 
3861 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3862 	/*
3863 	 * The other fields matched, so no need to set them, except
3864 	 * for netfn, which needs to be the response that was
3865 	 * returned, not the request value.
3866 	 */
3867 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3868 	recv_msg->msg.data = recv_msg->msg_data;
3869 	recv_msg->msg.data_len = msg->rsp_size - 12;
3870 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3871 	if (deliver_response(intf, recv_msg))
3872 		ipmi_inc_stat(intf, unhandled_lan_responses);
3873 	else
3874 		ipmi_inc_stat(intf, handled_lan_responses);
3875 
3876 	return 0;
3877 }
3878 
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3879 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3880 				  struct ipmi_smi_msg *msg)
3881 {
3882 	struct cmd_rcvr          *rcvr;
3883 	int                      rv = 0;
3884 	unsigned char            netfn;
3885 	unsigned char            cmd;
3886 	unsigned char            chan;
3887 	struct ipmi_user         *user = NULL;
3888 	struct ipmi_lan_addr     *lan_addr;
3889 	struct ipmi_recv_msg     *recv_msg;
3890 
3891 	if (msg->rsp_size < 12) {
3892 		/* Message not big enough, just ignore it. */
3893 		ipmi_inc_stat(intf, invalid_commands);
3894 		return 0;
3895 	}
3896 
3897 	if (msg->rsp[2] != 0) {
3898 		/* An error getting the response, just ignore it. */
3899 		return 0;
3900 	}
3901 
3902 	netfn = msg->rsp[6] >> 2;
3903 	cmd = msg->rsp[10];
3904 	chan = msg->rsp[3] & 0xf;
3905 
3906 	rcu_read_lock();
3907 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3908 	if (rcvr) {
3909 		user = rcvr->user;
3910 		kref_get(&user->refcount);
3911 	} else
3912 		user = NULL;
3913 	rcu_read_unlock();
3914 
3915 	if (user == NULL) {
3916 		/* We didn't find a user, just give up. */
3917 		ipmi_inc_stat(intf, unhandled_commands);
3918 
3919 		/*
3920 		 * Don't do anything with these messages, just allow
3921 		 * them to be freed.
3922 		 */
3923 		rv = 0;
3924 	} else {
3925 		recv_msg = ipmi_alloc_recv_msg();
3926 		if (!recv_msg) {
3927 			/*
3928 			 * We couldn't allocate memory for the
3929 			 * message, so requeue it for handling later.
3930 			 */
3931 			rv = 1;
3932 			kref_put(&user->refcount, free_user);
3933 		} else {
3934 			/* Extract the source address from the data. */
3935 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3936 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3937 			lan_addr->session_handle = msg->rsp[4];
3938 			lan_addr->remote_SWID = msg->rsp[8];
3939 			lan_addr->local_SWID = msg->rsp[5];
3940 			lan_addr->lun = msg->rsp[9] & 3;
3941 			lan_addr->channel = msg->rsp[3] & 0xf;
3942 			lan_addr->privilege = msg->rsp[3] >> 4;
3943 
3944 			/*
3945 			 * Extract the rest of the message information
3946 			 * from the IPMB header.
3947 			 */
3948 			recv_msg->user = user;
3949 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3950 			recv_msg->msgid = msg->rsp[9] >> 2;
3951 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3952 			recv_msg->msg.cmd = msg->rsp[10];
3953 			recv_msg->msg.data = recv_msg->msg_data;
3954 
3955 			/*
3956 			 * We chop off 12, not 11 bytes because the checksum
3957 			 * at the end also needs to be removed.
3958 			 */
3959 			recv_msg->msg.data_len = msg->rsp_size - 12;
3960 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3961 			       msg->rsp_size - 12);
3962 			if (deliver_response(intf, recv_msg))
3963 				ipmi_inc_stat(intf, unhandled_commands);
3964 			else
3965 				ipmi_inc_stat(intf, handled_commands);
3966 		}
3967 	}
3968 
3969 	return rv;
3970 }
3971 
3972 /*
3973  * This routine will handle "Get Message" command responses with
3974  * channels that use an OEM Medium. The message format belongs to
3975  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3976  * Chapter 22, sections 22.6 and 22.24 for more details.
3977  */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3978 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3979 				  struct ipmi_smi_msg *msg)
3980 {
3981 	struct cmd_rcvr       *rcvr;
3982 	int                   rv = 0;
3983 	unsigned char         netfn;
3984 	unsigned char         cmd;
3985 	unsigned char         chan;
3986 	struct ipmi_user *user = NULL;
3987 	struct ipmi_system_interface_addr *smi_addr;
3988 	struct ipmi_recv_msg  *recv_msg;
3989 
3990 	/*
3991 	 * We expect the OEM SW to perform error checking
3992 	 * so we just do some basic sanity checks
3993 	 */
3994 	if (msg->rsp_size < 4) {
3995 		/* Message not big enough, just ignore it. */
3996 		ipmi_inc_stat(intf, invalid_commands);
3997 		return 0;
3998 	}
3999 
4000 	if (msg->rsp[2] != 0) {
4001 		/* An error getting the response, just ignore it. */
4002 		return 0;
4003 	}
4004 
4005 	/*
4006 	 * This is an OEM Message so the OEM needs to know how
4007 	 * handle the message. We do no interpretation.
4008 	 */
4009 	netfn = msg->rsp[0] >> 2;
4010 	cmd = msg->rsp[1];
4011 	chan = msg->rsp[3] & 0xf;
4012 
4013 	rcu_read_lock();
4014 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4015 	if (rcvr) {
4016 		user = rcvr->user;
4017 		kref_get(&user->refcount);
4018 	} else
4019 		user = NULL;
4020 	rcu_read_unlock();
4021 
4022 	if (user == NULL) {
4023 		/* We didn't find a user, just give up. */
4024 		ipmi_inc_stat(intf, unhandled_commands);
4025 
4026 		/*
4027 		 * Don't do anything with these messages, just allow
4028 		 * them to be freed.
4029 		 */
4030 
4031 		rv = 0;
4032 	} else {
4033 		recv_msg = ipmi_alloc_recv_msg();
4034 		if (!recv_msg) {
4035 			/*
4036 			 * We couldn't allocate memory for the
4037 			 * message, so requeue it for handling
4038 			 * later.
4039 			 */
4040 			rv = 1;
4041 			kref_put(&user->refcount, free_user);
4042 		} else {
4043 			/*
4044 			 * OEM Messages are expected to be delivered via
4045 			 * the system interface to SMS software.  We might
4046 			 * need to visit this again depending on OEM
4047 			 * requirements
4048 			 */
4049 			smi_addr = ((struct ipmi_system_interface_addr *)
4050 				    &recv_msg->addr);
4051 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4052 			smi_addr->channel = IPMI_BMC_CHANNEL;
4053 			smi_addr->lun = msg->rsp[0] & 3;
4054 
4055 			recv_msg->user = user;
4056 			recv_msg->user_msg_data = NULL;
4057 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4058 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4059 			recv_msg->msg.cmd = msg->rsp[1];
4060 			recv_msg->msg.data = recv_msg->msg_data;
4061 
4062 			/*
4063 			 * The message starts at byte 4 which follows the
4064 			 * the Channel Byte in the "GET MESSAGE" command
4065 			 */
4066 			recv_msg->msg.data_len = msg->rsp_size - 4;
4067 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4068 			       msg->rsp_size - 4);
4069 			if (deliver_response(intf, recv_msg))
4070 				ipmi_inc_stat(intf, unhandled_commands);
4071 			else
4072 				ipmi_inc_stat(intf, handled_commands);
4073 		}
4074 	}
4075 
4076 	return rv;
4077 }
4078 
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4079 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4080 				     struct ipmi_smi_msg  *msg)
4081 {
4082 	struct ipmi_system_interface_addr *smi_addr;
4083 
4084 	recv_msg->msgid = 0;
4085 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4086 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4087 	smi_addr->channel = IPMI_BMC_CHANNEL;
4088 	smi_addr->lun = msg->rsp[0] & 3;
4089 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4090 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4091 	recv_msg->msg.cmd = msg->rsp[1];
4092 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4093 	recv_msg->msg.data = recv_msg->msg_data;
4094 	recv_msg->msg.data_len = msg->rsp_size - 3;
4095 }
4096 
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4097 static int handle_read_event_rsp(struct ipmi_smi *intf,
4098 				 struct ipmi_smi_msg *msg)
4099 {
4100 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4101 	struct list_head     msgs;
4102 	struct ipmi_user     *user;
4103 	int rv = 0, deliver_count = 0, index;
4104 	unsigned long        flags;
4105 
4106 	if (msg->rsp_size < 19) {
4107 		/* Message is too small to be an IPMB event. */
4108 		ipmi_inc_stat(intf, invalid_events);
4109 		return 0;
4110 	}
4111 
4112 	if (msg->rsp[2] != 0) {
4113 		/* An error getting the event, just ignore it. */
4114 		return 0;
4115 	}
4116 
4117 	INIT_LIST_HEAD(&msgs);
4118 
4119 	spin_lock_irqsave(&intf->events_lock, flags);
4120 
4121 	ipmi_inc_stat(intf, events);
4122 
4123 	/*
4124 	 * Allocate and fill in one message for every user that is
4125 	 * getting events.
4126 	 */
4127 	index = srcu_read_lock(&intf->users_srcu);
4128 	list_for_each_entry_rcu(user, &intf->users, link) {
4129 		if (!user->gets_events)
4130 			continue;
4131 
4132 		recv_msg = ipmi_alloc_recv_msg();
4133 		if (!recv_msg) {
4134 			rcu_read_unlock();
4135 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4136 						 link) {
4137 				list_del(&recv_msg->link);
4138 				ipmi_free_recv_msg(recv_msg);
4139 			}
4140 			/*
4141 			 * We couldn't allocate memory for the
4142 			 * message, so requeue it for handling
4143 			 * later.
4144 			 */
4145 			rv = 1;
4146 			goto out;
4147 		}
4148 
4149 		deliver_count++;
4150 
4151 		copy_event_into_recv_msg(recv_msg, msg);
4152 		recv_msg->user = user;
4153 		kref_get(&user->refcount);
4154 		list_add_tail(&recv_msg->link, &msgs);
4155 	}
4156 	srcu_read_unlock(&intf->users_srcu, index);
4157 
4158 	if (deliver_count) {
4159 		/* Now deliver all the messages. */
4160 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4161 			list_del(&recv_msg->link);
4162 			deliver_local_response(intf, recv_msg);
4163 		}
4164 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4165 		/*
4166 		 * No one to receive the message, put it in queue if there's
4167 		 * not already too many things in the queue.
4168 		 */
4169 		recv_msg = ipmi_alloc_recv_msg();
4170 		if (!recv_msg) {
4171 			/*
4172 			 * We couldn't allocate memory for the
4173 			 * message, so requeue it for handling
4174 			 * later.
4175 			 */
4176 			rv = 1;
4177 			goto out;
4178 		}
4179 
4180 		copy_event_into_recv_msg(recv_msg, msg);
4181 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4182 		intf->waiting_events_count++;
4183 	} else if (!intf->event_msg_printed) {
4184 		/*
4185 		 * There's too many things in the queue, discard this
4186 		 * message.
4187 		 */
4188 		dev_warn(intf->si_dev,
4189 			 "Event queue full, discarding incoming events\n");
4190 		intf->event_msg_printed = 1;
4191 	}
4192 
4193  out:
4194 	spin_unlock_irqrestore(&intf->events_lock, flags);
4195 
4196 	return rv;
4197 }
4198 
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4199 static int handle_bmc_rsp(struct ipmi_smi *intf,
4200 			  struct ipmi_smi_msg *msg)
4201 {
4202 	struct ipmi_recv_msg *recv_msg;
4203 	struct ipmi_system_interface_addr *smi_addr;
4204 
4205 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4206 	if (recv_msg == NULL) {
4207 		dev_warn(intf->si_dev,
4208 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4209 		return 0;
4210 	}
4211 
4212 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4213 	recv_msg->msgid = msg->msgid;
4214 	smi_addr = ((struct ipmi_system_interface_addr *)
4215 		    &recv_msg->addr);
4216 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4217 	smi_addr->channel = IPMI_BMC_CHANNEL;
4218 	smi_addr->lun = msg->rsp[0] & 3;
4219 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4220 	recv_msg->msg.cmd = msg->rsp[1];
4221 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4222 	recv_msg->msg.data = recv_msg->msg_data;
4223 	recv_msg->msg.data_len = msg->rsp_size - 2;
4224 	deliver_local_response(intf, recv_msg);
4225 
4226 	return 0;
4227 }
4228 
4229 /*
4230  * Handle a received message.  Return 1 if the message should be requeued,
4231  * 0 if the message should be freed, or -1 if the message should not
4232  * be freed or requeued.
4233  */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4234 static int handle_one_recv_msg(struct ipmi_smi *intf,
4235 			       struct ipmi_smi_msg *msg)
4236 {
4237 	int requeue;
4238 	int chan;
4239 
4240 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4241 
4242 	if ((msg->data_size >= 2)
4243 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4244 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4245 	    && (msg->user_data == NULL)) {
4246 
4247 		if (intf->in_shutdown)
4248 			goto free_msg;
4249 
4250 		/*
4251 		 * This is the local response to a command send, start
4252 		 * the timer for these.  The user_data will not be
4253 		 * NULL if this is a response send, and we will let
4254 		 * response sends just go through.
4255 		 */
4256 
4257 		/*
4258 		 * Check for errors, if we get certain errors (ones
4259 		 * that mean basically we can try again later), we
4260 		 * ignore them and start the timer.  Otherwise we
4261 		 * report the error immediately.
4262 		 */
4263 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4264 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4265 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4266 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4267 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4268 			int ch = msg->rsp[3] & 0xf;
4269 			struct ipmi_channel *chans;
4270 
4271 			/* Got an error sending the message, handle it. */
4272 
4273 			chans = READ_ONCE(intf->channel_list)->c;
4274 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4275 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4276 				ipmi_inc_stat(intf, sent_lan_command_errs);
4277 			else
4278 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4279 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4280 		} else
4281 			/* The message was sent, start the timer. */
4282 			intf_start_seq_timer(intf, msg->msgid);
4283 free_msg:
4284 		requeue = 0;
4285 		goto out;
4286 
4287 	} else if (msg->rsp_size < 2) {
4288 		/* Message is too small to be correct. */
4289 		dev_warn(intf->si_dev,
4290 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4291 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4292 
4293 		/* Generate an error response for the message. */
4294 		msg->rsp[0] = msg->data[0] | (1 << 2);
4295 		msg->rsp[1] = msg->data[1];
4296 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4297 		msg->rsp_size = 3;
4298 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4299 		   || (msg->rsp[1] != msg->data[1])) {
4300 		/*
4301 		 * The NetFN and Command in the response is not even
4302 		 * marginally correct.
4303 		 */
4304 		dev_warn(intf->si_dev,
4305 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4306 			 (msg->data[0] >> 2) | 1, msg->data[1],
4307 			 msg->rsp[0] >> 2, msg->rsp[1]);
4308 
4309 		/* Generate an error response for the message. */
4310 		msg->rsp[0] = msg->data[0] | (1 << 2);
4311 		msg->rsp[1] = msg->data[1];
4312 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4313 		msg->rsp_size = 3;
4314 	}
4315 
4316 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4317 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4318 	    && (msg->user_data != NULL)) {
4319 		/*
4320 		 * It's a response to a response we sent.  For this we
4321 		 * deliver a send message response to the user.
4322 		 */
4323 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4324 
4325 		requeue = 0;
4326 		if (msg->rsp_size < 2)
4327 			/* Message is too small to be correct. */
4328 			goto out;
4329 
4330 		chan = msg->data[2] & 0x0f;
4331 		if (chan >= IPMI_MAX_CHANNELS)
4332 			/* Invalid channel number */
4333 			goto out;
4334 
4335 		if (!recv_msg)
4336 			goto out;
4337 
4338 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4339 		recv_msg->msg.data = recv_msg->msg_data;
4340 		recv_msg->msg.data_len = 1;
4341 		recv_msg->msg_data[0] = msg->rsp[2];
4342 		deliver_local_response(intf, recv_msg);
4343 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4344 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4345 		struct ipmi_channel   *chans;
4346 
4347 		/* It's from the receive queue. */
4348 		chan = msg->rsp[3] & 0xf;
4349 		if (chan >= IPMI_MAX_CHANNELS) {
4350 			/* Invalid channel number */
4351 			requeue = 0;
4352 			goto out;
4353 		}
4354 
4355 		/*
4356 		 * We need to make sure the channels have been initialized.
4357 		 * The channel_handler routine will set the "curr_channel"
4358 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4359 		 * channels for this interface have been initialized.
4360 		 */
4361 		if (!intf->channels_ready) {
4362 			requeue = 0; /* Throw the message away */
4363 			goto out;
4364 		}
4365 
4366 		chans = READ_ONCE(intf->channel_list)->c;
4367 
4368 		switch (chans[chan].medium) {
4369 		case IPMI_CHANNEL_MEDIUM_IPMB:
4370 			if (msg->rsp[4] & 0x04) {
4371 				/*
4372 				 * It's a response, so find the
4373 				 * requesting message and send it up.
4374 				 */
4375 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4376 			} else {
4377 				/*
4378 				 * It's a command to the SMS from some other
4379 				 * entity.  Handle that.
4380 				 */
4381 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4382 			}
4383 			break;
4384 
4385 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4386 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4387 			if (msg->rsp[6] & 0x04) {
4388 				/*
4389 				 * It's a response, so find the
4390 				 * requesting message and send it up.
4391 				 */
4392 				requeue = handle_lan_get_msg_rsp(intf, msg);
4393 			} else {
4394 				/*
4395 				 * It's a command to the SMS from some other
4396 				 * entity.  Handle that.
4397 				 */
4398 				requeue = handle_lan_get_msg_cmd(intf, msg);
4399 			}
4400 			break;
4401 
4402 		default:
4403 			/* Check for OEM Channels.  Clients had better
4404 			   register for these commands. */
4405 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4406 			    && (chans[chan].medium
4407 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4408 				requeue = handle_oem_get_msg_cmd(intf, msg);
4409 			} else {
4410 				/*
4411 				 * We don't handle the channel type, so just
4412 				 * free the message.
4413 				 */
4414 				requeue = 0;
4415 			}
4416 		}
4417 
4418 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4419 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4420 		/* It's an asynchronous event. */
4421 		requeue = handle_read_event_rsp(intf, msg);
4422 	} else {
4423 		/* It's a response from the local BMC. */
4424 		requeue = handle_bmc_rsp(intf, msg);
4425 	}
4426 
4427  out:
4428 	return requeue;
4429 }
4430 
4431 /*
4432  * If there are messages in the queue or pretimeouts, handle them.
4433  */
handle_new_recv_msgs(struct ipmi_smi * intf)4434 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4435 {
4436 	struct ipmi_smi_msg  *smi_msg;
4437 	unsigned long        flags = 0;
4438 	int                  rv;
4439 	int                  run_to_completion = intf->run_to_completion;
4440 
4441 	/* See if any waiting messages need to be processed. */
4442 	if (!run_to_completion)
4443 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4444 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4445 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4446 				     struct ipmi_smi_msg, link);
4447 		list_del(&smi_msg->link);
4448 		if (!run_to_completion)
4449 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4450 					       flags);
4451 		rv = handle_one_recv_msg(intf, smi_msg);
4452 		if (!run_to_completion)
4453 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4454 		if (rv > 0) {
4455 			/*
4456 			 * To preserve message order, quit if we
4457 			 * can't handle a message.  Add the message
4458 			 * back at the head, this is safe because this
4459 			 * tasklet is the only thing that pulls the
4460 			 * messages.
4461 			 */
4462 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4463 			break;
4464 		} else {
4465 			if (rv == 0)
4466 				/* Message handled */
4467 				ipmi_free_smi_msg(smi_msg);
4468 			/* If rv < 0, fatal error, del but don't free. */
4469 		}
4470 	}
4471 	if (!run_to_completion)
4472 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4473 
4474 	/*
4475 	 * If the pretimout count is non-zero, decrement one from it and
4476 	 * deliver pretimeouts to all the users.
4477 	 */
4478 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4479 		struct ipmi_user *user;
4480 		int index;
4481 
4482 		index = srcu_read_lock(&intf->users_srcu);
4483 		list_for_each_entry_rcu(user, &intf->users, link) {
4484 			if (user->handler->ipmi_watchdog_pretimeout)
4485 				user->handler->ipmi_watchdog_pretimeout(
4486 					user->handler_data);
4487 		}
4488 		srcu_read_unlock(&intf->users_srcu, index);
4489 	}
4490 }
4491 
smi_recv_tasklet(struct tasklet_struct * t)4492 static void smi_recv_tasklet(struct tasklet_struct *t)
4493 {
4494 	unsigned long flags = 0; /* keep us warning-free. */
4495 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4496 	int run_to_completion = intf->run_to_completion;
4497 	struct ipmi_smi_msg *newmsg = NULL;
4498 
4499 	/*
4500 	 * Start the next message if available.
4501 	 *
4502 	 * Do this here, not in the actual receiver, because we may deadlock
4503 	 * because the lower layer is allowed to hold locks while calling
4504 	 * message delivery.
4505 	 */
4506 
4507 	rcu_read_lock();
4508 
4509 	if (!run_to_completion)
4510 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4511 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4512 		struct list_head *entry = NULL;
4513 
4514 		/* Pick the high priority queue first. */
4515 		if (!list_empty(&intf->hp_xmit_msgs))
4516 			entry = intf->hp_xmit_msgs.next;
4517 		else if (!list_empty(&intf->xmit_msgs))
4518 			entry = intf->xmit_msgs.next;
4519 
4520 		if (entry) {
4521 			list_del(entry);
4522 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4523 			intf->curr_msg = newmsg;
4524 		}
4525 	}
4526 
4527 	if (!run_to_completion)
4528 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4529 	if (newmsg)
4530 		intf->handlers->sender(intf->send_info, newmsg);
4531 
4532 	rcu_read_unlock();
4533 
4534 	handle_new_recv_msgs(intf);
4535 }
4536 
4537 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4538 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4539 			   struct ipmi_smi_msg *msg)
4540 {
4541 	unsigned long flags = 0; /* keep us warning-free. */
4542 	int run_to_completion = intf->run_to_completion;
4543 
4544 	/*
4545 	 * To preserve message order, we keep a queue and deliver from
4546 	 * a tasklet.
4547 	 */
4548 	if (!run_to_completion)
4549 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4550 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4551 	if (!run_to_completion)
4552 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4553 				       flags);
4554 
4555 	if (!run_to_completion)
4556 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4557 	/*
4558 	 * We can get an asynchronous event or receive message in addition
4559 	 * to commands we send.
4560 	 */
4561 	if (msg == intf->curr_msg)
4562 		intf->curr_msg = NULL;
4563 	if (!run_to_completion)
4564 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4565 
4566 	if (run_to_completion)
4567 		smi_recv_tasklet(&intf->recv_tasklet);
4568 	else
4569 		tasklet_schedule(&intf->recv_tasklet);
4570 }
4571 EXPORT_SYMBOL(ipmi_smi_msg_received);
4572 
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4573 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4574 {
4575 	if (intf->in_shutdown)
4576 		return;
4577 
4578 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4579 	tasklet_schedule(&intf->recv_tasklet);
4580 }
4581 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4582 
4583 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4584 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4585 		  unsigned char seq, long seqid)
4586 {
4587 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4588 	if (!smi_msg)
4589 		/*
4590 		 * If we can't allocate the message, then just return, we
4591 		 * get 4 retries, so this should be ok.
4592 		 */
4593 		return NULL;
4594 
4595 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4596 	smi_msg->data_size = recv_msg->msg.data_len;
4597 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4598 
4599 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4600 
4601 	return smi_msg;
4602 }
4603 
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4604 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4605 			      struct list_head *timeouts,
4606 			      unsigned long timeout_period,
4607 			      int slot, unsigned long *flags,
4608 			      bool *need_timer)
4609 {
4610 	struct ipmi_recv_msg *msg;
4611 
4612 	if (intf->in_shutdown)
4613 		return;
4614 
4615 	if (!ent->inuse)
4616 		return;
4617 
4618 	if (timeout_period < ent->timeout) {
4619 		ent->timeout -= timeout_period;
4620 		*need_timer = true;
4621 		return;
4622 	}
4623 
4624 	if (ent->retries_left == 0) {
4625 		/* The message has used all its retries. */
4626 		ent->inuse = 0;
4627 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4628 		msg = ent->recv_msg;
4629 		list_add_tail(&msg->link, timeouts);
4630 		if (ent->broadcast)
4631 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4632 		else if (is_lan_addr(&ent->recv_msg->addr))
4633 			ipmi_inc_stat(intf, timed_out_lan_commands);
4634 		else
4635 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4636 	} else {
4637 		struct ipmi_smi_msg *smi_msg;
4638 		/* More retries, send again. */
4639 
4640 		*need_timer = true;
4641 
4642 		/*
4643 		 * Start with the max timer, set to normal timer after
4644 		 * the message is sent.
4645 		 */
4646 		ent->timeout = MAX_MSG_TIMEOUT;
4647 		ent->retries_left--;
4648 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4649 					    ent->seqid);
4650 		if (!smi_msg) {
4651 			if (is_lan_addr(&ent->recv_msg->addr))
4652 				ipmi_inc_stat(intf,
4653 					      dropped_rexmit_lan_commands);
4654 			else
4655 				ipmi_inc_stat(intf,
4656 					      dropped_rexmit_ipmb_commands);
4657 			return;
4658 		}
4659 
4660 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4661 
4662 		/*
4663 		 * Send the new message.  We send with a zero
4664 		 * priority.  It timed out, I doubt time is that
4665 		 * critical now, and high priority messages are really
4666 		 * only for messages to the local MC, which don't get
4667 		 * resent.
4668 		 */
4669 		if (intf->handlers) {
4670 			if (is_lan_addr(&ent->recv_msg->addr))
4671 				ipmi_inc_stat(intf,
4672 					      retransmitted_lan_commands);
4673 			else
4674 				ipmi_inc_stat(intf,
4675 					      retransmitted_ipmb_commands);
4676 
4677 			smi_send(intf, intf->handlers, smi_msg, 0);
4678 		} else
4679 			ipmi_free_smi_msg(smi_msg);
4680 
4681 		spin_lock_irqsave(&intf->seq_lock, *flags);
4682 	}
4683 }
4684 
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)4685 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4686 				 unsigned long timeout_period)
4687 {
4688 	struct list_head     timeouts;
4689 	struct ipmi_recv_msg *msg, *msg2;
4690 	unsigned long        flags;
4691 	int                  i;
4692 	bool                 need_timer = false;
4693 
4694 	if (!intf->bmc_registered) {
4695 		kref_get(&intf->refcount);
4696 		if (!schedule_work(&intf->bmc_reg_work)) {
4697 			kref_put(&intf->refcount, intf_free);
4698 			need_timer = true;
4699 		}
4700 	}
4701 
4702 	/*
4703 	 * Go through the seq table and find any messages that
4704 	 * have timed out, putting them in the timeouts
4705 	 * list.
4706 	 */
4707 	INIT_LIST_HEAD(&timeouts);
4708 	spin_lock_irqsave(&intf->seq_lock, flags);
4709 	if (intf->ipmb_maintenance_mode_timeout) {
4710 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4711 			intf->ipmb_maintenance_mode_timeout = 0;
4712 		else
4713 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4714 	}
4715 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4716 		check_msg_timeout(intf, &intf->seq_table[i],
4717 				  &timeouts, timeout_period, i,
4718 				  &flags, &need_timer);
4719 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4720 
4721 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4722 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4723 
4724 	/*
4725 	 * Maintenance mode handling.  Check the timeout
4726 	 * optimistically before we claim the lock.  It may
4727 	 * mean a timeout gets missed occasionally, but that
4728 	 * only means the timeout gets extended by one period
4729 	 * in that case.  No big deal, and it avoids the lock
4730 	 * most of the time.
4731 	 */
4732 	if (intf->auto_maintenance_timeout > 0) {
4733 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4734 		if (intf->auto_maintenance_timeout > 0) {
4735 			intf->auto_maintenance_timeout
4736 				-= timeout_period;
4737 			if (!intf->maintenance_mode
4738 			    && (intf->auto_maintenance_timeout <= 0)) {
4739 				intf->maintenance_mode_enable = false;
4740 				maintenance_mode_update(intf);
4741 			}
4742 		}
4743 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4744 				       flags);
4745 	}
4746 
4747 	tasklet_schedule(&intf->recv_tasklet);
4748 
4749 	return need_timer;
4750 }
4751 
ipmi_request_event(struct ipmi_smi * intf)4752 static void ipmi_request_event(struct ipmi_smi *intf)
4753 {
4754 	/* No event requests when in maintenance mode. */
4755 	if (intf->maintenance_mode_enable)
4756 		return;
4757 
4758 	if (!intf->in_shutdown)
4759 		intf->handlers->request_events(intf->send_info);
4760 }
4761 
4762 static struct timer_list ipmi_timer;
4763 
4764 static atomic_t stop_operation;
4765 
ipmi_timeout(struct timer_list * unused)4766 static void ipmi_timeout(struct timer_list *unused)
4767 {
4768 	struct ipmi_smi *intf;
4769 	bool need_timer = false;
4770 	int index;
4771 
4772 	if (atomic_read(&stop_operation))
4773 		return;
4774 
4775 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4776 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4777 		if (atomic_read(&intf->event_waiters)) {
4778 			intf->ticks_to_req_ev--;
4779 			if (intf->ticks_to_req_ev == 0) {
4780 				ipmi_request_event(intf);
4781 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4782 			}
4783 			need_timer = true;
4784 		}
4785 
4786 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4787 	}
4788 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4789 
4790 	if (need_timer)
4791 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4792 }
4793 
need_waiter(struct ipmi_smi * intf)4794 static void need_waiter(struct ipmi_smi *intf)
4795 {
4796 	/* Racy, but worst case we start the timer twice. */
4797 	if (!timer_pending(&ipmi_timer))
4798 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4799 }
4800 
4801 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4802 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4803 
free_smi_msg(struct ipmi_smi_msg * msg)4804 static void free_smi_msg(struct ipmi_smi_msg *msg)
4805 {
4806 	atomic_dec(&smi_msg_inuse_count);
4807 	/* Try to keep as much stuff out of the panic path as possible. */
4808 	if (!oops_in_progress)
4809 		kfree(msg);
4810 }
4811 
ipmi_alloc_smi_msg(void)4812 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4813 {
4814 	struct ipmi_smi_msg *rv;
4815 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4816 	if (rv) {
4817 		rv->done = free_smi_msg;
4818 		rv->user_data = NULL;
4819 		atomic_inc(&smi_msg_inuse_count);
4820 	}
4821 	return rv;
4822 }
4823 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4824 
free_recv_msg(struct ipmi_recv_msg * msg)4825 static void free_recv_msg(struct ipmi_recv_msg *msg)
4826 {
4827 	atomic_dec(&recv_msg_inuse_count);
4828 	/* Try to keep as much stuff out of the panic path as possible. */
4829 	if (!oops_in_progress)
4830 		kfree(msg);
4831 }
4832 
ipmi_alloc_recv_msg(void)4833 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4834 {
4835 	struct ipmi_recv_msg *rv;
4836 
4837 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4838 	if (rv) {
4839 		rv->user = NULL;
4840 		rv->done = free_recv_msg;
4841 		atomic_inc(&recv_msg_inuse_count);
4842 	}
4843 	return rv;
4844 }
4845 
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)4846 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4847 {
4848 	if (msg->user && !oops_in_progress)
4849 		kref_put(&msg->user->refcount, free_user);
4850 	msg->done(msg);
4851 }
4852 EXPORT_SYMBOL(ipmi_free_recv_msg);
4853 
4854 static atomic_t panic_done_count = ATOMIC_INIT(0);
4855 
dummy_smi_done_handler(struct ipmi_smi_msg * msg)4856 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4857 {
4858 	atomic_dec(&panic_done_count);
4859 }
4860 
dummy_recv_done_handler(struct ipmi_recv_msg * msg)4861 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4862 {
4863 	atomic_dec(&panic_done_count);
4864 }
4865 
4866 /*
4867  * Inside a panic, send a message and wait for a response.
4868  */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)4869 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4870 					struct ipmi_addr *addr,
4871 					struct kernel_ipmi_msg *msg)
4872 {
4873 	struct ipmi_smi_msg  smi_msg;
4874 	struct ipmi_recv_msg recv_msg;
4875 	int rv;
4876 
4877 	smi_msg.done = dummy_smi_done_handler;
4878 	recv_msg.done = dummy_recv_done_handler;
4879 	atomic_add(2, &panic_done_count);
4880 	rv = i_ipmi_request(NULL,
4881 			    intf,
4882 			    addr,
4883 			    0,
4884 			    msg,
4885 			    intf,
4886 			    &smi_msg,
4887 			    &recv_msg,
4888 			    0,
4889 			    intf->addrinfo[0].address,
4890 			    intf->addrinfo[0].lun,
4891 			    0, 1); /* Don't retry, and don't wait. */
4892 	if (rv)
4893 		atomic_sub(2, &panic_done_count);
4894 	else if (intf->handlers->flush_messages)
4895 		intf->handlers->flush_messages(intf->send_info);
4896 
4897 	while (atomic_read(&panic_done_count) != 0)
4898 		ipmi_poll(intf);
4899 }
4900 
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4901 static void event_receiver_fetcher(struct ipmi_smi *intf,
4902 				   struct ipmi_recv_msg *msg)
4903 {
4904 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4905 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4906 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4907 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4908 		/* A get event receiver command, save it. */
4909 		intf->event_receiver = msg->msg.data[1];
4910 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4911 	}
4912 }
4913 
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4914 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4915 {
4916 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4917 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4918 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4919 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4920 		/*
4921 		 * A get device id command, save if we are an event
4922 		 * receiver or generator.
4923 		 */
4924 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4925 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4926 	}
4927 }
4928 
send_panic_events(struct ipmi_smi * intf,char * str)4929 static void send_panic_events(struct ipmi_smi *intf, char *str)
4930 {
4931 	struct kernel_ipmi_msg msg;
4932 	unsigned char data[16];
4933 	struct ipmi_system_interface_addr *si;
4934 	struct ipmi_addr addr;
4935 	char *p = str;
4936 	struct ipmi_ipmb_addr *ipmb;
4937 	int j;
4938 
4939 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4940 		return;
4941 
4942 	si = (struct ipmi_system_interface_addr *) &addr;
4943 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4944 	si->channel = IPMI_BMC_CHANNEL;
4945 	si->lun = 0;
4946 
4947 	/* Fill in an event telling that we have failed. */
4948 	msg.netfn = 0x04; /* Sensor or Event. */
4949 	msg.cmd = 2; /* Platform event command. */
4950 	msg.data = data;
4951 	msg.data_len = 8;
4952 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4953 	data[1] = 0x03; /* This is for IPMI 1.0. */
4954 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4955 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4956 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4957 
4958 	/*
4959 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4960 	 * to make the panic events more useful.
4961 	 */
4962 	if (str) {
4963 		data[3] = str[0];
4964 		data[6] = str[1];
4965 		data[7] = str[2];
4966 	}
4967 
4968 	/* Send the event announcing the panic. */
4969 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4970 
4971 	/*
4972 	 * On every interface, dump a bunch of OEM event holding the
4973 	 * string.
4974 	 */
4975 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4976 		return;
4977 
4978 	/*
4979 	 * intf_num is used as an marker to tell if the
4980 	 * interface is valid.  Thus we need a read barrier to
4981 	 * make sure data fetched before checking intf_num
4982 	 * won't be used.
4983 	 */
4984 	smp_rmb();
4985 
4986 	/*
4987 	 * First job here is to figure out where to send the
4988 	 * OEM events.  There's no way in IPMI to send OEM
4989 	 * events using an event send command, so we have to
4990 	 * find the SEL to put them in and stick them in
4991 	 * there.
4992 	 */
4993 
4994 	/* Get capabilities from the get device id. */
4995 	intf->local_sel_device = 0;
4996 	intf->local_event_generator = 0;
4997 	intf->event_receiver = 0;
4998 
4999 	/* Request the device info from the local MC. */
5000 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5001 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5002 	msg.data = NULL;
5003 	msg.data_len = 0;
5004 	intf->null_user_handler = device_id_fetcher;
5005 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5006 
5007 	if (intf->local_event_generator) {
5008 		/* Request the event receiver from the local MC. */
5009 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5010 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5011 		msg.data = NULL;
5012 		msg.data_len = 0;
5013 		intf->null_user_handler = event_receiver_fetcher;
5014 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5015 	}
5016 	intf->null_user_handler = NULL;
5017 
5018 	/*
5019 	 * Validate the event receiver.  The low bit must not
5020 	 * be 1 (it must be a valid IPMB address), it cannot
5021 	 * be zero, and it must not be my address.
5022 	 */
5023 	if (((intf->event_receiver & 1) == 0)
5024 	    && (intf->event_receiver != 0)
5025 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5026 		/*
5027 		 * The event receiver is valid, send an IPMB
5028 		 * message.
5029 		 */
5030 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5031 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5032 		ipmb->channel = 0; /* FIXME - is this right? */
5033 		ipmb->lun = intf->event_receiver_lun;
5034 		ipmb->slave_addr = intf->event_receiver;
5035 	} else if (intf->local_sel_device) {
5036 		/*
5037 		 * The event receiver was not valid (or was
5038 		 * me), but I am an SEL device, just dump it
5039 		 * in my SEL.
5040 		 */
5041 		si = (struct ipmi_system_interface_addr *) &addr;
5042 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5043 		si->channel = IPMI_BMC_CHANNEL;
5044 		si->lun = 0;
5045 	} else
5046 		return; /* No where to send the event. */
5047 
5048 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5049 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5050 	msg.data = data;
5051 	msg.data_len = 16;
5052 
5053 	j = 0;
5054 	while (*p) {
5055 		int size = strlen(p);
5056 
5057 		if (size > 11)
5058 			size = 11;
5059 		data[0] = 0;
5060 		data[1] = 0;
5061 		data[2] = 0xf0; /* OEM event without timestamp. */
5062 		data[3] = intf->addrinfo[0].address;
5063 		data[4] = j++; /* sequence # */
5064 		/*
5065 		 * Always give 11 bytes, so strncpy will fill
5066 		 * it with zeroes for me.
5067 		 */
5068 		strncpy(data+5, p, 11);
5069 		p += size;
5070 
5071 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5072 	}
5073 }
5074 
5075 static int has_panicked;
5076 
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5077 static int panic_event(struct notifier_block *this,
5078 		       unsigned long         event,
5079 		       void                  *ptr)
5080 {
5081 	struct ipmi_smi *intf;
5082 	struct ipmi_user *user;
5083 
5084 	if (has_panicked)
5085 		return NOTIFY_DONE;
5086 	has_panicked = 1;
5087 
5088 	/* For every registered interface, set it to run to completion. */
5089 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5090 		if (!intf->handlers || intf->intf_num == -1)
5091 			/* Interface is not ready. */
5092 			continue;
5093 
5094 		if (!intf->handlers->poll)
5095 			continue;
5096 
5097 		/*
5098 		 * If we were interrupted while locking xmit_msgs_lock or
5099 		 * waiting_rcv_msgs_lock, the corresponding list may be
5100 		 * corrupted.  In this case, drop items on the list for
5101 		 * the safety.
5102 		 */
5103 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5104 			INIT_LIST_HEAD(&intf->xmit_msgs);
5105 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5106 		} else
5107 			spin_unlock(&intf->xmit_msgs_lock);
5108 
5109 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5110 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5111 		else
5112 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5113 
5114 		intf->run_to_completion = 1;
5115 		if (intf->handlers->set_run_to_completion)
5116 			intf->handlers->set_run_to_completion(intf->send_info,
5117 							      1);
5118 
5119 		list_for_each_entry_rcu(user, &intf->users, link) {
5120 			if (user->handler->ipmi_panic_handler)
5121 				user->handler->ipmi_panic_handler(
5122 					user->handler_data);
5123 		}
5124 
5125 		send_panic_events(intf, ptr);
5126 	}
5127 
5128 	return NOTIFY_DONE;
5129 }
5130 
5131 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5132 static int ipmi_register_driver(void)
5133 {
5134 	int rv;
5135 
5136 	if (drvregistered)
5137 		return 0;
5138 
5139 	rv = driver_register(&ipmidriver.driver);
5140 	if (rv)
5141 		pr_err("Could not register IPMI driver\n");
5142 	else
5143 		drvregistered = true;
5144 	return rv;
5145 }
5146 
5147 static struct notifier_block panic_block = {
5148 	.notifier_call	= panic_event,
5149 	.next		= NULL,
5150 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5151 };
5152 
ipmi_init_msghandler(void)5153 static int ipmi_init_msghandler(void)
5154 {
5155 	int rv;
5156 
5157 	mutex_lock(&ipmi_interfaces_mutex);
5158 	rv = ipmi_register_driver();
5159 	if (rv)
5160 		goto out;
5161 	if (initialized)
5162 		goto out;
5163 
5164 	rv = init_srcu_struct(&ipmi_interfaces_srcu);
5165 	if (rv)
5166 		goto out;
5167 
5168 	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5169 	if (!remove_work_wq) {
5170 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5171 		rv = -ENOMEM;
5172 		goto out_wq;
5173 	}
5174 
5175 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5176 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5177 
5178 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5179 
5180 	initialized = true;
5181 
5182 out_wq:
5183 	if (rv)
5184 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5185 out:
5186 	mutex_unlock(&ipmi_interfaces_mutex);
5187 	return rv;
5188 }
5189 
ipmi_init_msghandler_mod(void)5190 static int __init ipmi_init_msghandler_mod(void)
5191 {
5192 	int rv;
5193 
5194 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5195 
5196 	mutex_lock(&ipmi_interfaces_mutex);
5197 	rv = ipmi_register_driver();
5198 	mutex_unlock(&ipmi_interfaces_mutex);
5199 
5200 	return rv;
5201 }
5202 
cleanup_ipmi(void)5203 static void __exit cleanup_ipmi(void)
5204 {
5205 	int count;
5206 
5207 	if (initialized) {
5208 		destroy_workqueue(remove_work_wq);
5209 
5210 		atomic_notifier_chain_unregister(&panic_notifier_list,
5211 						 &panic_block);
5212 
5213 		/*
5214 		 * This can't be called if any interfaces exist, so no worry
5215 		 * about shutting down the interfaces.
5216 		 */
5217 
5218 		/*
5219 		 * Tell the timer to stop, then wait for it to stop.  This
5220 		 * avoids problems with race conditions removing the timer
5221 		 * here.
5222 		 */
5223 		atomic_set(&stop_operation, 1);
5224 		del_timer_sync(&ipmi_timer);
5225 
5226 		initialized = false;
5227 
5228 		/* Check for buffer leaks. */
5229 		count = atomic_read(&smi_msg_inuse_count);
5230 		if (count != 0)
5231 			pr_warn("SMI message count %d at exit\n", count);
5232 		count = atomic_read(&recv_msg_inuse_count);
5233 		if (count != 0)
5234 			pr_warn("recv message count %d at exit\n", count);
5235 
5236 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5237 	}
5238 	if (drvregistered)
5239 		driver_unregister(&ipmidriver.driver);
5240 }
5241 module_exit(cleanup_ipmi);
5242 
5243 module_init(ipmi_init_msghandler_mod);
5244 MODULE_LICENSE("GPL");
5245 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5246 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5247 		   " interface.");
5248 MODULE_VERSION(IPMI_DRIVER_VERSION);
5249 MODULE_SOFTDEP("post: ipmi_devintf");
5250