1 /*
2 * Copyright © 2019 Google, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler/nir/nir.h"
25 #include "compiler/nir/nir_builder.h"
26 #include "util/u_math.h"
27 #include "ir3_compiler.h"
28 #include "ir3_nir.h"
29
30 static inline bool
get_ubo_load_range(nir_shader * nir,nir_intrinsic_instr * instr,uint32_t alignment,struct ir3_ubo_range * r)31 get_ubo_load_range(nir_shader *nir, nir_intrinsic_instr *instr,
32 uint32_t alignment, struct ir3_ubo_range *r)
33 {
34 uint32_t offset = nir_intrinsic_range_base(instr);
35 uint32_t size = nir_intrinsic_range(instr);
36
37 /* If the offset is constant, the range is trivial (and NIR may not have
38 * figured it out).
39 */
40 if (nir_src_is_const(instr->src[1])) {
41 offset = nir_src_as_uint(instr->src[1]);
42 size = nir_intrinsic_dest_components(instr) * 4;
43 }
44
45 /* If we haven't figured out the range accessed in the UBO, bail. */
46 if (size == ~0)
47 return false;
48
49 r->start = ROUND_DOWN_TO(offset, alignment * 16);
50 r->end = ALIGN(offset + size, alignment * 16);
51
52 return true;
53 }
54
55 static bool
get_ubo_info(nir_intrinsic_instr * instr,struct ir3_ubo_info * ubo)56 get_ubo_info(nir_intrinsic_instr *instr, struct ir3_ubo_info *ubo)
57 {
58 if (nir_src_is_const(instr->src[0])) {
59 ubo->block = nir_src_as_uint(instr->src[0]);
60 ubo->bindless_base = 0;
61 ubo->bindless = false;
62 return true;
63 } else {
64 nir_intrinsic_instr *rsrc = ir3_bindless_resource(instr->src[0]);
65 if (rsrc && nir_src_is_const(rsrc->src[0])) {
66 ubo->block = nir_src_as_uint(rsrc->src[0]);
67 ubo->bindless_base = nir_intrinsic_desc_set(rsrc);
68 ubo->bindless = true;
69 return true;
70 }
71 }
72 return false;
73 }
74
75 /**
76 * Finds the given instruction's UBO load in the UBO upload plan, if any.
77 */
78 static const struct ir3_ubo_range *
get_existing_range(nir_intrinsic_instr * instr,const struct ir3_ubo_analysis_state * state,struct ir3_ubo_range * r)79 get_existing_range(nir_intrinsic_instr *instr,
80 const struct ir3_ubo_analysis_state *state,
81 struct ir3_ubo_range *r)
82 {
83 struct ir3_ubo_info ubo = {};
84
85 if (!get_ubo_info(instr, &ubo))
86 return NULL;
87
88 for (int i = 0; i < state->num_enabled; i++) {
89 const struct ir3_ubo_range *range = &state->range[i];
90 if (!memcmp(&range->ubo, &ubo, sizeof(ubo)) && r->start >= range->start &&
91 r->end <= range->end) {
92 return range;
93 }
94 }
95
96 return NULL;
97 }
98
99 /**
100 * Merges together neighboring/overlapping ranges in the range plan with a
101 * newly updated range.
102 */
103 static void
merge_neighbors(struct ir3_ubo_analysis_state * state,int index)104 merge_neighbors(struct ir3_ubo_analysis_state *state, int index)
105 {
106 struct ir3_ubo_range *a = &state->range[index];
107
108 /* index is always the first slot that would have neighbored/overlapped with
109 * the new range.
110 */
111 for (int i = index + 1; i < state->num_enabled; i++) {
112 struct ir3_ubo_range *b = &state->range[i];
113 if (memcmp(&a->ubo, &b->ubo, sizeof(a->ubo)))
114 continue;
115
116 if (a->start > b->end || a->end < b->start)
117 continue;
118
119 /* Merge B into A. */
120 a->start = MIN2(a->start, b->start);
121 a->end = MAX2(a->end, b->end);
122
123 /* Swap the last enabled range into B's now unused slot */
124 *b = state->range[--state->num_enabled];
125 }
126 }
127
128 /**
129 * During the first pass over the shader, makes the plan of which UBO upload
130 * should include the range covering this UBO load.
131 *
132 * We are passed in an upload_remaining of how much space is left for us in
133 * the const file, and we make sure our plan doesn't exceed that.
134 */
135 static void
gather_ubo_ranges(nir_shader * nir,nir_intrinsic_instr * instr,struct ir3_ubo_analysis_state * state,uint32_t alignment,uint32_t * upload_remaining)136 gather_ubo_ranges(nir_shader *nir, nir_intrinsic_instr *instr,
137 struct ir3_ubo_analysis_state *state, uint32_t alignment,
138 uint32_t *upload_remaining)
139 {
140 if (ir3_shader_debug & IR3_DBG_NOUBOOPT)
141 return;
142
143 struct ir3_ubo_info ubo = {};
144 if (!get_ubo_info(instr, &ubo))
145 return;
146
147 struct ir3_ubo_range r;
148 if (!get_ubo_load_range(nir, instr, alignment, &r))
149 return;
150
151 /* See if there's an existing range for this UBO we want to merge into. */
152 for (int i = 0; i < state->num_enabled; i++) {
153 struct ir3_ubo_range *plan_r = &state->range[i];
154 if (memcmp(&plan_r->ubo, &ubo, sizeof(ubo)))
155 continue;
156
157 /* Don't extend existing uploads unless they're
158 * neighboring/overlapping.
159 */
160 if (r.start > plan_r->end || r.end < plan_r->start)
161 continue;
162
163 r.start = MIN2(r.start, plan_r->start);
164 r.end = MAX2(r.end, plan_r->end);
165
166 uint32_t added = (plan_r->start - r.start) + (r.end - plan_r->end);
167 if (added >= *upload_remaining)
168 return;
169
170 plan_r->start = r.start;
171 plan_r->end = r.end;
172 *upload_remaining -= added;
173
174 merge_neighbors(state, i);
175 return;
176 }
177
178 if (state->num_enabled == ARRAY_SIZE(state->range))
179 return;
180
181 uint32_t added = r.end - r.start;
182 if (added >= *upload_remaining)
183 return;
184
185 struct ir3_ubo_range *plan_r = &state->range[state->num_enabled++];
186 plan_r->ubo = ubo;
187 plan_r->start = r.start;
188 plan_r->end = r.end;
189 *upload_remaining -= added;
190 }
191
192 /* For indirect offset, it is common to see a pattern of multiple
193 * loads with the same base, but different constant offset, ie:
194 *
195 * vec1 32 ssa_33 = iadd ssa_base, const_offset
196 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0)
197 *
198 * Detect this, and peel out the const_offset part, to end up with:
199 *
200 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset,
201 * 0, 0)
202 *
203 * Or similarly:
204 *
205 * vec1 32 ssa_33 = imad24_ir3 a, b, const_offset
206 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0)
207 *
208 * Can be converted to:
209 *
210 * vec1 32 ssa_base = imul24 a, b
211 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset,
212 * 0, 0)
213 *
214 * This gives the other opt passes something much easier to work
215 * with (ie. not requiring value range tracking)
216 */
217 static void
handle_partial_const(nir_builder * b,nir_ssa_def ** srcp,int * offp)218 handle_partial_const(nir_builder *b, nir_ssa_def **srcp, int *offp)
219 {
220 if ((*srcp)->parent_instr->type != nir_instr_type_alu)
221 return;
222
223 nir_alu_instr *alu = nir_instr_as_alu((*srcp)->parent_instr);
224
225 if (alu->op == nir_op_imad24_ir3) {
226 /* This case is slightly more complicated as we need to
227 * replace the imad24_ir3 with an imul24:
228 */
229 if (!nir_src_is_const(alu->src[2].src))
230 return;
231
232 *offp += nir_src_as_uint(alu->src[2].src);
233 *srcp = nir_imul24(b, nir_ssa_for_alu_src(b, alu, 0),
234 nir_ssa_for_alu_src(b, alu, 1));
235
236 return;
237 }
238
239 if (alu->op != nir_op_iadd)
240 return;
241
242 if (!(alu->src[0].src.is_ssa && alu->src[1].src.is_ssa))
243 return;
244
245 if (nir_src_is_const(alu->src[0].src)) {
246 *offp += nir_src_as_uint(alu->src[0].src);
247 *srcp = alu->src[1].src.ssa;
248 } else if (nir_src_is_const(alu->src[1].src)) {
249 *srcp = alu->src[0].src.ssa;
250 *offp += nir_src_as_uint(alu->src[1].src);
251 }
252 }
253
254 /* Tracks the maximum bindful UBO accessed so that we reduce the UBO
255 * descriptors emitted in the fast path for GL.
256 */
257 static void
track_ubo_use(nir_intrinsic_instr * instr,nir_builder * b,int * num_ubos)258 track_ubo_use(nir_intrinsic_instr *instr, nir_builder *b, int *num_ubos)
259 {
260 if (ir3_bindless_resource(instr->src[0])) {
261 assert(!b->shader->info.first_ubo_is_default_ubo); /* only set for GL */
262 return;
263 }
264
265 if (nir_src_is_const(instr->src[0])) {
266 int block = nir_src_as_uint(instr->src[0]);
267 *num_ubos = MAX2(*num_ubos, block + 1);
268 } else {
269 *num_ubos = b->shader->info.num_ubos;
270 }
271 }
272
273 static bool
lower_ubo_load_to_uniform(nir_intrinsic_instr * instr,nir_builder * b,const struct ir3_ubo_analysis_state * state,int * num_ubos,uint32_t alignment)274 lower_ubo_load_to_uniform(nir_intrinsic_instr *instr, nir_builder *b,
275 const struct ir3_ubo_analysis_state *state,
276 int *num_ubos, uint32_t alignment)
277 {
278 b->cursor = nir_before_instr(&instr->instr);
279
280 struct ir3_ubo_range r;
281 if (!get_ubo_load_range(b->shader, instr, alignment, &r)) {
282 track_ubo_use(instr, b, num_ubos);
283 return false;
284 }
285
286 /* We don't lower dynamic block index UBO loads to load_uniform, but we
287 * could probably with some effort determine a block stride in number of
288 * registers.
289 */
290 const struct ir3_ubo_range *range = get_existing_range(instr, state, &r);
291 if (!range) {
292 track_ubo_use(instr, b, num_ubos);
293 return false;
294 }
295
296 nir_ssa_def *ubo_offset = nir_ssa_for_src(b, instr->src[1], 1);
297 int const_offset = 0;
298
299 handle_partial_const(b, &ubo_offset, &const_offset);
300
301 /* UBO offset is in bytes, but uniform offset is in units of
302 * dwords, so we need to divide by 4 (right-shift by 2). For ldc the
303 * offset is in units of 16 bytes, so we need to multiply by 4. And
304 * also the same for the constant part of the offset:
305 */
306 const int shift = -2;
307 nir_ssa_def *new_offset = ir3_nir_try_propagate_bit_shift(b, ubo_offset, -2);
308 nir_ssa_def *uniform_offset = NULL;
309 if (new_offset) {
310 uniform_offset = new_offset;
311 } else {
312 uniform_offset = shift > 0
313 ? nir_ishl(b, ubo_offset, nir_imm_int(b, shift))
314 : nir_ushr(b, ubo_offset, nir_imm_int(b, -shift));
315 }
316
317 debug_assert(!(const_offset & 0x3));
318 const_offset >>= 2;
319
320 const int range_offset = ((int)range->offset - (int)range->start) / 4;
321 const_offset += range_offset;
322
323 /* The range_offset could be negative, if if only part of the UBO
324 * block is accessed, range->start can be greater than range->offset.
325 * But we can't underflow const_offset. If necessary we need to
326 * insert nir instructions to compensate (which can hopefully be
327 * optimized away)
328 */
329 if (const_offset < 0) {
330 uniform_offset = nir_iadd_imm(b, uniform_offset, const_offset);
331 const_offset = 0;
332 }
333
334 nir_ssa_def *uniform =
335 nir_load_uniform(b, instr->num_components, instr->dest.ssa.bit_size,
336 uniform_offset, .base = const_offset);
337
338 nir_ssa_def_rewrite_uses(&instr->dest.ssa, uniform);
339
340 nir_instr_remove(&instr->instr);
341
342 return true;
343 }
344
345 static bool
instr_is_load_ubo(nir_instr * instr)346 instr_is_load_ubo(nir_instr *instr)
347 {
348 if (instr->type != nir_instr_type_intrinsic)
349 return false;
350
351 nir_intrinsic_op op = nir_instr_as_intrinsic(instr)->intrinsic;
352
353 /* nir_lower_ubo_vec4 happens after this pass. */
354 assert(op != nir_intrinsic_load_ubo_vec4);
355
356 return op == nir_intrinsic_load_ubo;
357 }
358
359 void
ir3_nir_analyze_ubo_ranges(nir_shader * nir,struct ir3_shader_variant * v)360 ir3_nir_analyze_ubo_ranges(nir_shader *nir, struct ir3_shader_variant *v)
361 {
362 struct ir3_const_state *const_state = ir3_const_state(v);
363 struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
364 struct ir3_compiler *compiler = v->shader->compiler;
365
366 /* Limit our uploads to the amount of constant buffer space available in
367 * the hardware, minus what the shader compiler may need for various
368 * driver params. We do this UBO-to-push-constant before the real
369 * allocation of the driver params' const space, because UBO pointers can
370 * be driver params but this pass usually eliminatings them.
371 */
372 struct ir3_const_state worst_case_const_state = {};
373 ir3_setup_const_state(nir, v, &worst_case_const_state);
374 const uint32_t max_upload =
375 (ir3_max_const(v) - worst_case_const_state.offsets.immediate) * 16;
376
377 memset(state, 0, sizeof(*state));
378
379 uint32_t upload_remaining = max_upload;
380 nir_foreach_function (function, nir) {
381 if (function->impl) {
382 nir_foreach_block (block, function->impl) {
383 nir_foreach_instr (instr, block) {
384 if (instr_is_load_ubo(instr))
385 gather_ubo_ranges(nir, nir_instr_as_intrinsic(instr), state,
386 compiler->const_upload_unit,
387 &upload_remaining);
388 }
389 }
390 }
391 }
392
393 /* For now, everything we upload is accessed statically and thus will be
394 * used by the shader. Once we can upload dynamically indexed data, we may
395 * upload sparsely accessed arrays, at which point we probably want to
396 * give priority to smaller UBOs, on the assumption that big UBOs will be
397 * accessed dynamically. Alternatively, we can track statically and
398 * dynamically accessed ranges separately and upload static rangtes
399 * first.
400 */
401
402 uint32_t offset = v->shader->num_reserved_user_consts * 16;
403 for (uint32_t i = 0; i < state->num_enabled; i++) {
404 uint32_t range_size = state->range[i].end - state->range[i].start;
405
406 debug_assert(offset <= max_upload);
407 state->range[i].offset = offset;
408 assert(offset <= max_upload);
409 offset += range_size;
410 }
411 state->size = offset;
412 }
413
414 bool
ir3_nir_lower_ubo_loads(nir_shader * nir,struct ir3_shader_variant * v)415 ir3_nir_lower_ubo_loads(nir_shader *nir, struct ir3_shader_variant *v)
416 {
417 struct ir3_compiler *compiler = v->shader->compiler;
418 /* For the binning pass variant, we re-use the corresponding draw-pass
419 * variants const_state and ubo state. To make these clear, in this
420 * pass it is const (read-only)
421 */
422 const struct ir3_const_state *const_state = ir3_const_state(v);
423 const struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
424
425 int num_ubos = 0;
426 bool progress = false;
427 nir_foreach_function (function, nir) {
428 if (function->impl) {
429 nir_builder builder;
430 nir_builder_init(&builder, function->impl);
431 nir_foreach_block (block, function->impl) {
432 nir_foreach_instr_safe (instr, block) {
433 if (!instr_is_load_ubo(instr))
434 continue;
435 progress |= lower_ubo_load_to_uniform(
436 nir_instr_as_intrinsic(instr), &builder, state, &num_ubos,
437 compiler->const_upload_unit);
438 }
439 }
440
441 nir_metadata_preserve(
442 function->impl, nir_metadata_block_index | nir_metadata_dominance);
443 }
444 }
445 /* Update the num_ubos field for GL (first_ubo_is_default_ubo). With
446 * Vulkan's bindless, we don't use the num_ubos field, so we can leave it
447 * incremented.
448 */
449 if (nir->info.first_ubo_is_default_ubo)
450 nir->info.num_ubos = num_ubos;
451
452 return progress;
453 }
454
455 static bool
fixup_load_uniform_filter(const nir_instr * instr,const void * arg)456 fixup_load_uniform_filter(const nir_instr *instr, const void *arg)
457 {
458 if (instr->type != nir_instr_type_intrinsic)
459 return false;
460 return nir_instr_as_intrinsic(instr)->intrinsic ==
461 nir_intrinsic_load_uniform;
462 }
463
464 static nir_ssa_def *
fixup_load_uniform_instr(struct nir_builder * b,nir_instr * instr,void * arg)465 fixup_load_uniform_instr(struct nir_builder *b, nir_instr *instr, void *arg)
466 {
467 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
468
469 /* We don't need to worry about non-indirect case: */
470 if (nir_src_is_const(intr->src[0]))
471 return NULL;
472
473 const unsigned base_offset_limit = (1 << 9); /* 9 bits */
474 unsigned base_offset = nir_intrinsic_base(intr);
475
476 /* Or cases were base offset is lower than the hw limit: */
477 if (base_offset < base_offset_limit)
478 return NULL;
479
480 b->cursor = nir_before_instr(instr);
481
482 nir_ssa_def *offset = nir_ssa_for_src(b, intr->src[0], 1);
483
484 /* We'd like to avoid a sequence like:
485 *
486 * vec4 32 ssa_18 = intrinsic load_uniform (ssa_4) (1024, 0, 0)
487 * vec4 32 ssa_19 = intrinsic load_uniform (ssa_4) (1072, 0, 0)
488 * vec4 32 ssa_20 = intrinsic load_uniform (ssa_4) (1120, 0, 0)
489 *
490 * From turning into a unique offset value (which requires reloading
491 * a0.x for each instruction). So instead of just adding the constant
492 * base_offset to the non-const offset, be a bit more clever and only
493 * extract the part that cannot be encoded. Afterwards CSE should
494 * turn the result into:
495 *
496 * vec1 32 ssa_5 = load_const (1024)
497 * vec4 32 ssa_6 = iadd ssa4_, ssa_5
498 * vec4 32 ssa_18 = intrinsic load_uniform (ssa_5) (0, 0, 0)
499 * vec4 32 ssa_19 = intrinsic load_uniform (ssa_5) (48, 0, 0)
500 * vec4 32 ssa_20 = intrinsic load_uniform (ssa_5) (96, 0, 0)
501 */
502 unsigned new_base_offset = base_offset % base_offset_limit;
503
504 nir_intrinsic_set_base(intr, new_base_offset);
505 offset = nir_iadd_imm(b, offset, base_offset - new_base_offset);
506
507 nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(offset));
508
509 return NIR_LOWER_INSTR_PROGRESS;
510 }
511
512 /**
513 * For relative CONST file access, we can only encode 10b worth of fixed offset,
514 * so in cases where the base offset is larger, we need to peel it out into
515 * ALU instructions.
516 *
517 * This should run late, after constant folding has had a chance to do it's
518 * thing, so we can actually know if it is an indirect uniform offset or not.
519 */
520 bool
ir3_nir_fixup_load_uniform(nir_shader * nir)521 ir3_nir_fixup_load_uniform(nir_shader *nir)
522 {
523 return nir_shader_lower_instructions(nir, fixup_load_uniform_filter,
524 fixup_load_uniform_instr, NULL);
525 }
526 static nir_ssa_def *
ir3_nir_lower_load_const_instr(nir_builder * b,nir_instr * in_instr,void * data)527 ir3_nir_lower_load_const_instr(nir_builder *b, nir_instr *in_instr, void *data)
528 {
529 struct ir3_const_state *const_state = data;
530 nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in_instr);
531
532 /* Pick a UBO index to use as our constant data. Skip UBO 0 since that's
533 * reserved for gallium's cb0.
534 */
535 if (const_state->constant_data_ubo == -1) {
536 if (b->shader->info.num_ubos == 0)
537 b->shader->info.num_ubos++;
538 const_state->constant_data_ubo = b->shader->info.num_ubos++;
539 }
540
541 unsigned num_components = instr->num_components;
542 if (nir_dest_bit_size(instr->dest) == 16) {
543 /* We can't do 16b loads -- either from LDC (32-bit only in any of our
544 * traces, and disasm that doesn't look like it really supports it) or
545 * from the constant file (where CONSTANT_DEMOTION_ENABLE means we get
546 * automatic 32b-to-16b conversions when we ask for 16b from it).
547 * Instead, we'll load 32b from a UBO and unpack from there.
548 */
549 num_components = DIV_ROUND_UP(num_components, 2);
550 }
551 unsigned base = nir_intrinsic_base(instr);
552 nir_ssa_def *index = nir_imm_int(b, const_state->constant_data_ubo);
553 nir_ssa_def *offset =
554 nir_iadd_imm(b, nir_ssa_for_src(b, instr->src[0], 1), base);
555
556 nir_ssa_def *result =
557 nir_load_ubo(b, num_components, 32, index, offset,
558 .align_mul = nir_intrinsic_align_mul(instr),
559 .align_offset = nir_intrinsic_align_offset(instr),
560 .range_base = base, .range = nir_intrinsic_range(instr));
561
562 if (nir_dest_bit_size(instr->dest) == 16) {
563 result = nir_bitcast_vector(b, result, 16);
564 result = nir_channels(b, result, BITSET_MASK(instr->num_components));
565 }
566
567 return result;
568 }
569
570 static bool
ir3_lower_load_const_filter(const nir_instr * instr,const void * data)571 ir3_lower_load_const_filter(const nir_instr *instr, const void *data)
572 {
573 return (instr->type == nir_instr_type_intrinsic &&
574 nir_instr_as_intrinsic(instr)->intrinsic ==
575 nir_intrinsic_load_constant);
576 }
577
578 /* Lowers load_constant intrinsics to UBO accesses so we can run them through
579 * the general "upload to const file or leave as UBO access" code.
580 */
581 bool
ir3_nir_lower_load_constant(nir_shader * nir,struct ir3_shader_variant * v)582 ir3_nir_lower_load_constant(nir_shader *nir, struct ir3_shader_variant *v)
583 {
584 struct ir3_const_state *const_state = ir3_const_state(v);
585
586 const_state->constant_data_ubo = -1;
587
588 bool progress = nir_shader_lower_instructions(
589 nir, ir3_lower_load_const_filter, ir3_nir_lower_load_const_instr,
590 const_state);
591
592 if (progress) {
593 struct ir3_compiler *compiler = v->shader->compiler;
594
595 /* Save a copy of the NIR constant data to the variant for
596 * inclusion in the final assembly.
597 */
598 v->constant_data_size =
599 align(nir->constant_data_size,
600 compiler->const_upload_unit * 4 * sizeof(uint32_t));
601 v->constant_data = rzalloc_size(v, v->constant_data_size);
602 memcpy(v->constant_data, nir->constant_data, nir->constant_data_size);
603 }
604
605 return progress;
606 }
607