1 /*
2 * Copyright (c) 2012 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "ir3.h"
25
26 #include <assert.h>
27 #include <errno.h>
28 #include <stdbool.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32
33 #include "util/bitscan.h"
34 #include "util/half_float.h"
35 #include "util/ralloc.h"
36 #include "util/u_math.h"
37
38 #include "instr-a3xx.h"
39 #include "ir3_shader.h"
40
41 /* simple allocator to carve allocations out of an up-front allocated heap,
42 * so that we can free everything easily in one shot.
43 */
44 void *
ir3_alloc(struct ir3 * shader,int sz)45 ir3_alloc(struct ir3 *shader, int sz)
46 {
47 return rzalloc_size(shader, sz); /* TODO: don't use rzalloc */
48 }
49
50 struct ir3 *
ir3_create(struct ir3_compiler * compiler,struct ir3_shader_variant * v)51 ir3_create(struct ir3_compiler *compiler, struct ir3_shader_variant *v)
52 {
53 struct ir3 *shader = rzalloc(v, struct ir3);
54
55 shader->compiler = compiler;
56 shader->type = v->type;
57
58 list_inithead(&shader->block_list);
59 list_inithead(&shader->array_list);
60
61 return shader;
62 }
63
64 void
ir3_destroy(struct ir3 * shader)65 ir3_destroy(struct ir3 *shader)
66 {
67 ralloc_free(shader);
68 }
69
70 static void
collect_reg_info(struct ir3_instruction * instr,struct ir3_register * reg,struct ir3_info * info)71 collect_reg_info(struct ir3_instruction *instr, struct ir3_register *reg,
72 struct ir3_info *info)
73 {
74 struct ir3_shader_variant *v = info->data;
75 unsigned repeat = instr->repeat;
76
77 if (reg->flags & IR3_REG_IMMED) {
78 /* nothing to do */
79 return;
80 }
81
82 if (!(reg->flags & IR3_REG_R)) {
83 repeat = 0;
84 }
85
86 unsigned components;
87 int16_t max;
88
89 if (reg->flags & IR3_REG_RELATIV) {
90 components = reg->size;
91 max = (reg->array.base + components - 1);
92 } else {
93 components = util_last_bit(reg->wrmask);
94 max = (reg->num + repeat + components - 1);
95 }
96
97 if (reg->flags & IR3_REG_CONST) {
98 info->max_const = MAX2(info->max_const, max >> 2);
99 } else if (max < regid(48, 0)) {
100 if (reg->flags & IR3_REG_HALF) {
101 if (v->mergedregs) {
102 /* starting w/ a6xx, half regs conflict with full regs: */
103 info->max_reg = MAX2(info->max_reg, max >> 3);
104 } else {
105 info->max_half_reg = MAX2(info->max_half_reg, max >> 2);
106 }
107 } else {
108 info->max_reg = MAX2(info->max_reg, max >> 2);
109 }
110 }
111 }
112
113 bool
ir3_should_double_threadsize(struct ir3_shader_variant * v,unsigned regs_count)114 ir3_should_double_threadsize(struct ir3_shader_variant *v, unsigned regs_count)
115 {
116 const struct ir3_compiler *compiler = v->shader->compiler;
117
118 /* We can't support more than compiler->branchstack_size diverging threads
119 * in a wave. Thus, doubling the threadsize is only possible if we don't
120 * exceed the branchstack size limit.
121 */
122 if (MIN2(v->branchstack, compiler->threadsize_base * 2) >
123 compiler->branchstack_size) {
124 return false;
125 }
126
127 switch (v->type) {
128 case MESA_SHADER_COMPUTE: {
129 unsigned threads_per_wg =
130 v->local_size[0] * v->local_size[1] * v->local_size[2];
131
132 /* For a5xx, if the workgroup size is greater than the maximum number
133 * of threads per core with 32 threads per wave (512) then we have to
134 * use the doubled threadsize because otherwise the workgroup wouldn't
135 * fit. For smaller workgroup sizes, we follow the blob and use the
136 * smaller threadsize.
137 */
138 if (compiler->gen < 6) {
139 return v->local_size_variable ||
140 threads_per_wg >
141 compiler->threadsize_base * compiler->max_waves;
142 }
143
144 /* On a6xx, we prefer the larger threadsize unless the workgroup is
145 * small enough that it would be useless. Note that because
146 * threadsize_base is bumped to 64, we don't have to worry about the
147 * workgroup fitting, unlike the a5xx case.
148 */
149 if (!v->local_size_variable) {
150 if (threads_per_wg <= compiler->threadsize_base)
151 return false;
152 }
153 }
154 FALLTHROUGH;
155 case MESA_SHADER_FRAGMENT: {
156 /* Check that doubling the threadsize wouldn't exceed the regfile size */
157 return regs_count * 2 <= compiler->reg_size_vec4;
158 }
159
160 default:
161 /* On a6xx+, it's impossible to use a doubled wavesize in the geometry
162 * stages - the bit doesn't exist. The blob never used it for the VS
163 * on earlier gen's anyway.
164 */
165 return false;
166 }
167 }
168
169 /* Get the maximum number of waves that could be used even if this shader
170 * didn't use any registers.
171 */
172 unsigned
ir3_get_reg_independent_max_waves(struct ir3_shader_variant * v,bool double_threadsize)173 ir3_get_reg_independent_max_waves(struct ir3_shader_variant *v,
174 bool double_threadsize)
175 {
176 const struct ir3_compiler *compiler = v->shader->compiler;
177 unsigned max_waves = compiler->max_waves;
178
179 /* If this is a compute shader, compute the limit based on shared size */
180 if (v->type == MESA_SHADER_COMPUTE) {
181 /* Shared is allocated in chunks of 1k */
182 unsigned shared_per_wg = ALIGN_POT(v->shared_size, 1024);
183 if (shared_per_wg > 0 && !v->local_size_variable) {
184 unsigned wgs_per_core = compiler->local_mem_size / shared_per_wg;
185 unsigned threads_per_wg =
186 v->local_size[0] * v->local_size[1] * v->local_size[2];
187 unsigned waves_per_wg =
188 DIV_ROUND_UP(threads_per_wg, compiler->threadsize_base *
189 (double_threadsize ? 2 : 1) *
190 compiler->wave_granularity);
191 max_waves = MIN2(max_waves, waves_per_wg * wgs_per_core *
192 compiler->wave_granularity);
193 }
194 }
195
196 /* Compute the limit based on branchstack */
197 if (v->branchstack > 0) {
198 unsigned branchstack_max_waves = compiler->branchstack_size /
199 v->branchstack *
200 compiler->wave_granularity;
201 max_waves = MIN2(max_waves, branchstack_max_waves);
202 }
203
204 return max_waves;
205 }
206
207 /* Get the maximum number of waves that could be launched limited by reg size.
208 */
209 unsigned
ir3_get_reg_dependent_max_waves(const struct ir3_compiler * compiler,unsigned reg_count,bool double_threadsize)210 ir3_get_reg_dependent_max_waves(const struct ir3_compiler *compiler,
211 unsigned reg_count, bool double_threadsize)
212 {
213 return reg_count ? (compiler->reg_size_vec4 /
214 (reg_count * (double_threadsize ? 2 : 1)) *
215 compiler->wave_granularity)
216 : compiler->max_waves;
217 }
218
219 void
ir3_collect_info(struct ir3_shader_variant * v)220 ir3_collect_info(struct ir3_shader_variant *v)
221 {
222 struct ir3_info *info = &v->info;
223 struct ir3 *shader = v->ir;
224 const struct ir3_compiler *compiler = v->shader->compiler;
225
226 memset(info, 0, sizeof(*info));
227 info->data = v;
228 info->max_reg = -1;
229 info->max_half_reg = -1;
230 info->max_const = -1;
231 info->multi_dword_ldp_stp = false;
232
233 uint32_t instr_count = 0;
234 foreach_block (block, &shader->block_list) {
235 foreach_instr (instr, &block->instr_list) {
236 instr_count++;
237 }
238 }
239
240 v->instrlen = DIV_ROUND_UP(instr_count, compiler->instr_align);
241
242 /* Pad out with NOPs to instrlen, including at least 4 so that cffdump
243 * doesn't try to decode the following data as instructions (such as the
244 * next stage's shader in turnip)
245 */
246 info->size = MAX2(v->instrlen * compiler->instr_align, instr_count + 4) * 8;
247 info->sizedwords = info->size / 4;
248
249 foreach_block (block, &shader->block_list) {
250 int sfu_delay = 0;
251
252 foreach_instr (instr, &block->instr_list) {
253
254 foreach_src (reg, instr) {
255 collect_reg_info(instr, reg, info);
256 }
257
258 foreach_dst (reg, instr) {
259 if (is_dest_gpr(reg)) {
260 collect_reg_info(instr, reg, info);
261 }
262 }
263
264 if ((instr->opc == OPC_STP || instr->opc == OPC_LDP)) {
265 unsigned components = instr->srcs[2]->uim_val;
266 if (components * type_size(instr->cat6.type) > 32) {
267 info->multi_dword_ldp_stp = true;
268 }
269
270 if (instr->opc == OPC_STP)
271 info->stp_count += components;
272 else
273 info->ldp_count += components;
274 }
275
276 if ((instr->opc == OPC_BARY_F) && (instr->dsts[0]->flags & IR3_REG_EI))
277 info->last_baryf = info->instrs_count;
278
279 unsigned instrs_count = 1 + instr->repeat + instr->nop;
280 unsigned nops_count = instr->nop;
281
282 if (instr->opc == OPC_NOP) {
283 nops_count = 1 + instr->repeat;
284 info->instrs_per_cat[0] += nops_count;
285 } else {
286 info->instrs_per_cat[opc_cat(instr->opc)] += 1 + instr->repeat;
287 info->instrs_per_cat[0] += nops_count;
288 }
289
290 if (instr->opc == OPC_MOV) {
291 if (instr->cat1.src_type == instr->cat1.dst_type) {
292 info->mov_count += 1 + instr->repeat;
293 } else {
294 info->cov_count += 1 + instr->repeat;
295 }
296 }
297
298 info->instrs_count += instrs_count;
299 info->nops_count += nops_count;
300
301 if (instr->flags & IR3_INSTR_SS) {
302 info->ss++;
303 info->sstall += sfu_delay;
304 sfu_delay = 0;
305 }
306
307 if (instr->flags & IR3_INSTR_SY)
308 info->sy++;
309
310 if (is_sfu(instr)) {
311 sfu_delay = 10;
312 } else {
313 int n = MIN2(sfu_delay, 1 + instr->repeat + instr->nop);
314 sfu_delay -= n;
315 }
316 }
317 }
318
319 /* TODO: for a5xx and below, is there a separate regfile for
320 * half-registers?
321 */
322 unsigned regs_count =
323 info->max_reg + 1 +
324 (compiler->gen >= 6 ? ((info->max_half_reg + 2) / 2) : 0);
325
326 info->double_threadsize = ir3_should_double_threadsize(v, regs_count);
327 unsigned reg_independent_max_waves =
328 ir3_get_reg_independent_max_waves(v, info->double_threadsize);
329 unsigned reg_dependent_max_waves = ir3_get_reg_dependent_max_waves(
330 compiler, regs_count, info->double_threadsize);
331 info->max_waves = MIN2(reg_independent_max_waves, reg_dependent_max_waves);
332 assert(info->max_waves <= v->shader->compiler->max_waves);
333 }
334
335 static struct ir3_register *
reg_create(struct ir3 * shader,int num,int flags)336 reg_create(struct ir3 *shader, int num, int flags)
337 {
338 struct ir3_register *reg = ir3_alloc(shader, sizeof(struct ir3_register));
339 reg->wrmask = 1;
340 reg->flags = flags;
341 reg->num = num;
342 return reg;
343 }
344
345 static void
insert_instr(struct ir3_block * block,struct ir3_instruction * instr)346 insert_instr(struct ir3_block *block, struct ir3_instruction *instr)
347 {
348 struct ir3 *shader = block->shader;
349
350 instr->serialno = ++shader->instr_count;
351
352 list_addtail(&instr->node, &block->instr_list);
353
354 if (is_input(instr))
355 array_insert(shader, shader->baryfs, instr);
356 }
357
358 struct ir3_block *
ir3_block_create(struct ir3 * shader)359 ir3_block_create(struct ir3 *shader)
360 {
361 struct ir3_block *block = ir3_alloc(shader, sizeof(*block));
362 #ifdef DEBUG
363 block->serialno = ++shader->block_count;
364 #endif
365 block->shader = shader;
366 list_inithead(&block->node);
367 list_inithead(&block->instr_list);
368 return block;
369 }
370
371 void
ir3_block_add_predecessor(struct ir3_block * block,struct ir3_block * pred)372 ir3_block_add_predecessor(struct ir3_block *block, struct ir3_block *pred)
373 {
374 array_insert(block, block->predecessors, pred);
375 }
376
377 void
ir3_block_add_physical_predecessor(struct ir3_block * block,struct ir3_block * pred)378 ir3_block_add_physical_predecessor(struct ir3_block *block,
379 struct ir3_block *pred)
380 {
381 array_insert(block, block->physical_predecessors, pred);
382 }
383
384 void
ir3_block_remove_predecessor(struct ir3_block * block,struct ir3_block * pred)385 ir3_block_remove_predecessor(struct ir3_block *block, struct ir3_block *pred)
386 {
387 for (unsigned i = 0; i < block->predecessors_count; i++) {
388 if (block->predecessors[i] == pred) {
389 if (i < block->predecessors_count - 1) {
390 block->predecessors[i] =
391 block->predecessors[block->predecessors_count - 1];
392 }
393
394 block->predecessors_count--;
395 return;
396 }
397 }
398 }
399
400 void
ir3_block_remove_physical_predecessor(struct ir3_block * block,struct ir3_block * pred)401 ir3_block_remove_physical_predecessor(struct ir3_block *block, struct ir3_block *pred)
402 {
403 for (unsigned i = 0; i < block->physical_predecessors_count; i++) {
404 if (block->physical_predecessors[i] == pred) {
405 if (i < block->predecessors_count - 1) {
406 block->physical_predecessors[i] =
407 block->physical_predecessors[block->predecessors_count - 1];
408 }
409
410 block->physical_predecessors_count--;
411 return;
412 }
413 }
414 }
415
416 unsigned
ir3_block_get_pred_index(struct ir3_block * block,struct ir3_block * pred)417 ir3_block_get_pred_index(struct ir3_block *block, struct ir3_block *pred)
418 {
419 for (unsigned i = 0; i < block->predecessors_count; i++) {
420 if (block->predecessors[i] == pred) {
421 return i;
422 }
423 }
424
425 unreachable("ir3_block_get_pred_index() invalid predecessor");
426 }
427
428 static struct ir3_instruction *
instr_create(struct ir3_block * block,opc_t opc,int ndst,int nsrc)429 instr_create(struct ir3_block *block, opc_t opc, int ndst, int nsrc)
430 {
431 /* Add extra sources for array destinations and the address reg */
432 if (1 <= opc_cat(opc))
433 nsrc += 2;
434 struct ir3_instruction *instr;
435 unsigned sz = sizeof(*instr) + (ndst * sizeof(instr->dsts[0])) +
436 (nsrc * sizeof(instr->srcs[0]));
437 char *ptr = ir3_alloc(block->shader, sz);
438
439 instr = (struct ir3_instruction *)ptr;
440 ptr += sizeof(*instr);
441 instr->dsts = (struct ir3_register **)ptr;
442 instr->srcs = instr->dsts + ndst;
443
444 #ifdef DEBUG
445 instr->dsts_max = ndst;
446 instr->srcs_max = nsrc;
447 #endif
448
449 return instr;
450 }
451
452 struct ir3_instruction *
ir3_instr_create(struct ir3_block * block,opc_t opc,int ndst,int nsrc)453 ir3_instr_create(struct ir3_block *block, opc_t opc, int ndst, int nsrc)
454 {
455 struct ir3_instruction *instr = instr_create(block, opc, ndst, nsrc);
456 instr->block = block;
457 instr->opc = opc;
458 insert_instr(block, instr);
459 return instr;
460 }
461
462 struct ir3_instruction *
ir3_instr_clone(struct ir3_instruction * instr)463 ir3_instr_clone(struct ir3_instruction *instr)
464 {
465 struct ir3_instruction *new_instr = instr_create(
466 instr->block, instr->opc, instr->dsts_count, instr->srcs_count);
467 struct ir3_register **dsts, **srcs;
468
469 dsts = new_instr->dsts;
470 srcs = new_instr->srcs;
471 *new_instr = *instr;
472 new_instr->dsts = dsts;
473 new_instr->srcs = srcs;
474
475 insert_instr(instr->block, new_instr);
476
477 /* clone registers: */
478 new_instr->dsts_count = 0;
479 new_instr->srcs_count = 0;
480 foreach_dst (reg, instr) {
481 struct ir3_register *new_reg =
482 ir3_dst_create(new_instr, reg->num, reg->flags);
483 *new_reg = *reg;
484 if (new_reg->instr)
485 new_reg->instr = new_instr;
486 }
487 foreach_src (reg, instr) {
488 struct ir3_register *new_reg =
489 ir3_src_create(new_instr, reg->num, reg->flags);
490 *new_reg = *reg;
491 }
492
493 if (instr->address) {
494 assert(instr->srcs_count > 0);
495 new_instr->address = new_instr->srcs[instr->srcs_count - 1];
496 }
497
498 return new_instr;
499 }
500
501 /* Add a false dependency to instruction, to ensure it is scheduled first: */
502 void
ir3_instr_add_dep(struct ir3_instruction * instr,struct ir3_instruction * dep)503 ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep)
504 {
505 for (unsigned i = 0; i < instr->deps_count; i++) {
506 if (instr->deps[i] == dep)
507 return;
508 }
509
510 array_insert(instr, instr->deps, dep);
511 }
512
513 struct ir3_register *
ir3_src_create(struct ir3_instruction * instr,int num,int flags)514 ir3_src_create(struct ir3_instruction *instr, int num, int flags)
515 {
516 struct ir3 *shader = instr->block->shader;
517 #ifdef DEBUG
518 debug_assert(instr->srcs_count < instr->srcs_max);
519 #endif
520 struct ir3_register *reg = reg_create(shader, num, flags);
521 instr->srcs[instr->srcs_count++] = reg;
522 return reg;
523 }
524
525 struct ir3_register *
ir3_dst_create(struct ir3_instruction * instr,int num,int flags)526 ir3_dst_create(struct ir3_instruction *instr, int num, int flags)
527 {
528 struct ir3 *shader = instr->block->shader;
529 #ifdef DEBUG
530 debug_assert(instr->dsts_count < instr->dsts_max);
531 #endif
532 struct ir3_register *reg = reg_create(shader, num, flags);
533 instr->dsts[instr->dsts_count++] = reg;
534 return reg;
535 }
536
537 struct ir3_register *
ir3_reg_clone(struct ir3 * shader,struct ir3_register * reg)538 ir3_reg_clone(struct ir3 *shader, struct ir3_register *reg)
539 {
540 struct ir3_register *new_reg = reg_create(shader, 0, 0);
541 *new_reg = *reg;
542 return new_reg;
543 }
544
545 void
ir3_reg_set_last_array(struct ir3_instruction * instr,struct ir3_register * reg,struct ir3_register * last_write)546 ir3_reg_set_last_array(struct ir3_instruction *instr, struct ir3_register *reg,
547 struct ir3_register *last_write)
548 {
549 assert(reg->flags & IR3_REG_ARRAY);
550 struct ir3_register *new_reg = ir3_src_create(instr, 0, 0);
551 *new_reg = *reg;
552 new_reg->def = last_write;
553 ir3_reg_tie(reg, new_reg);
554 }
555
556 void
ir3_instr_set_address(struct ir3_instruction * instr,struct ir3_instruction * addr)557 ir3_instr_set_address(struct ir3_instruction *instr,
558 struct ir3_instruction *addr)
559 {
560 if (!instr->address) {
561 struct ir3 *ir = instr->block->shader;
562
563 debug_assert(instr->block == addr->block);
564
565 instr->address =
566 ir3_src_create(instr, addr->dsts[0]->num, addr->dsts[0]->flags);
567 instr->address->def = addr->dsts[0];
568 debug_assert(reg_num(addr->dsts[0]) == REG_A0);
569 unsigned comp = reg_comp(addr->dsts[0]);
570 if (comp == 0) {
571 array_insert(ir, ir->a0_users, instr);
572 } else {
573 debug_assert(comp == 1);
574 array_insert(ir, ir->a1_users, instr);
575 }
576 } else {
577 debug_assert(instr->address->def->instr == addr);
578 }
579 }
580
581 void
ir3_block_clear_mark(struct ir3_block * block)582 ir3_block_clear_mark(struct ir3_block *block)
583 {
584 foreach_instr (instr, &block->instr_list)
585 instr->flags &= ~IR3_INSTR_MARK;
586 }
587
588 void
ir3_clear_mark(struct ir3 * ir)589 ir3_clear_mark(struct ir3 *ir)
590 {
591 foreach_block (block, &ir->block_list) {
592 ir3_block_clear_mark(block);
593 }
594 }
595
596 unsigned
ir3_count_instructions(struct ir3 * ir)597 ir3_count_instructions(struct ir3 *ir)
598 {
599 unsigned cnt = 1;
600 foreach_block (block, &ir->block_list) {
601 block->start_ip = cnt;
602 foreach_instr (instr, &block->instr_list) {
603 instr->ip = cnt++;
604 }
605 block->end_ip = cnt;
606 }
607 return cnt;
608 }
609
610 /* When counting instructions for RA, we insert extra fake instructions at the
611 * beginning of each block, where values become live, and at the end where
612 * values die. This prevents problems where values live-in at the beginning or
613 * live-out at the end of a block from being treated as if they were
614 * live-in/live-out at the first/last instruction, which would be incorrect.
615 * In ir3_legalize these ip's are assumed to be actual ip's of the final
616 * program, so it would be incorrect to use this everywhere.
617 */
618
619 unsigned
ir3_count_instructions_ra(struct ir3 * ir)620 ir3_count_instructions_ra(struct ir3 *ir)
621 {
622 unsigned cnt = 1;
623 foreach_block (block, &ir->block_list) {
624 block->start_ip = cnt++;
625 foreach_instr (instr, &block->instr_list) {
626 instr->ip = cnt++;
627 }
628 block->end_ip = cnt++;
629 }
630 return cnt;
631 }
632
633 struct ir3_array *
ir3_lookup_array(struct ir3 * ir,unsigned id)634 ir3_lookup_array(struct ir3 *ir, unsigned id)
635 {
636 foreach_array (arr, &ir->array_list)
637 if (arr->id == id)
638 return arr;
639 return NULL;
640 }
641
642 void
ir3_find_ssa_uses(struct ir3 * ir,void * mem_ctx,bool falsedeps)643 ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps)
644 {
645 /* We could do this in a single pass if we can assume instructions
646 * are always sorted. Which currently might not always be true.
647 * (In particular after ir3_group pass, but maybe other places.)
648 */
649 foreach_block (block, &ir->block_list)
650 foreach_instr (instr, &block->instr_list)
651 instr->uses = NULL;
652
653 foreach_block (block, &ir->block_list) {
654 foreach_instr (instr, &block->instr_list) {
655 foreach_ssa_src_n (src, n, instr) {
656 if (__is_false_dep(instr, n) && !falsedeps)
657 continue;
658 if (!src->uses)
659 src->uses = _mesa_pointer_set_create(mem_ctx);
660 _mesa_set_add(src->uses, instr);
661 }
662 }
663 }
664 }
665
666 /**
667 * Set the destination type of an instruction, for example if a
668 * conversion is folded in, handling the special cases where the
669 * instruction's dest type or opcode needs to be fixed up.
670 */
671 void
ir3_set_dst_type(struct ir3_instruction * instr,bool half)672 ir3_set_dst_type(struct ir3_instruction *instr, bool half)
673 {
674 if (half) {
675 instr->dsts[0]->flags |= IR3_REG_HALF;
676 } else {
677 instr->dsts[0]->flags &= ~IR3_REG_HALF;
678 }
679
680 switch (opc_cat(instr->opc)) {
681 case 1: /* move instructions */
682 if (half) {
683 instr->cat1.dst_type = half_type(instr->cat1.dst_type);
684 } else {
685 instr->cat1.dst_type = full_type(instr->cat1.dst_type);
686 }
687 break;
688 case 4:
689 if (half) {
690 instr->opc = cat4_half_opc(instr->opc);
691 } else {
692 instr->opc = cat4_full_opc(instr->opc);
693 }
694 break;
695 case 5:
696 if (half) {
697 instr->cat5.type = half_type(instr->cat5.type);
698 } else {
699 instr->cat5.type = full_type(instr->cat5.type);
700 }
701 break;
702 }
703 }
704
705 /**
706 * One-time fixup for instruction src-types. Other than cov's that
707 * are folded, an instruction's src type does not change.
708 */
709 void
ir3_fixup_src_type(struct ir3_instruction * instr)710 ir3_fixup_src_type(struct ir3_instruction *instr)
711 {
712 switch (opc_cat(instr->opc)) {
713 case 1: /* move instructions */
714 if (instr->srcs[0]->flags & IR3_REG_HALF) {
715 instr->cat1.src_type = half_type(instr->cat1.src_type);
716 } else {
717 instr->cat1.src_type = full_type(instr->cat1.src_type);
718 }
719 break;
720 case 3:
721 if (instr->srcs[0]->flags & IR3_REG_HALF) {
722 instr->opc = cat3_half_opc(instr->opc);
723 } else {
724 instr->opc = cat3_full_opc(instr->opc);
725 }
726 break;
727 }
728 }
729
730 /**
731 * Map a floating point immed to FLUT (float lookup table) value,
732 * returns negative for immediates that cannot be mapped.
733 */
734 int
ir3_flut(struct ir3_register * src_reg)735 ir3_flut(struct ir3_register *src_reg)
736 {
737 static const struct {
738 uint32_t f32;
739 uint16_t f16;
740 } flut[] = {
741 { .f32 = 0x00000000, .f16 = 0x0000 }, /* 0.0 */
742 { .f32 = 0x3f000000, .f16 = 0x3800 }, /* 0.5 */
743 { .f32 = 0x3f800000, .f16 = 0x3c00 }, /* 1.0 */
744 { .f32 = 0x40000000, .f16 = 0x4000 }, /* 2.0 */
745 { .f32 = 0x402df854, .f16 = 0x4170 }, /* e */
746 { .f32 = 0x40490fdb, .f16 = 0x4248 }, /* pi */
747 { .f32 = 0x3ea2f983, .f16 = 0x3518 }, /* 1/pi */
748 { .f32 = 0x3f317218, .f16 = 0x398c }, /* 1/log2(e) */
749 { .f32 = 0x3fb8aa3b, .f16 = 0x3dc5 }, /* log2(e) */
750 { .f32 = 0x3e9a209b, .f16 = 0x34d1 }, /* 1/log2(10) */
751 { .f32 = 0x40549a78, .f16 = 0x42a5 }, /* log2(10) */
752 { .f32 = 0x40800000, .f16 = 0x4400 }, /* 4.0 */
753 };
754
755 if (src_reg->flags & IR3_REG_HALF) {
756 /* Note that half-float immeds are already lowered to 16b in nir: */
757 uint32_t imm = src_reg->uim_val;
758 for (unsigned i = 0; i < ARRAY_SIZE(flut); i++) {
759 if (flut[i].f16 == imm) {
760 return i;
761 }
762 }
763 } else {
764 uint32_t imm = src_reg->uim_val;
765 for (unsigned i = 0; i < ARRAY_SIZE(flut); i++) {
766 if (flut[i].f32 == imm) {
767 return i;
768 }
769 }
770 }
771
772 return -1;
773 }
774
775 static unsigned
cp_flags(unsigned flags)776 cp_flags(unsigned flags)
777 {
778 /* only considering these flags (at least for now): */
779 flags &= (IR3_REG_CONST | IR3_REG_IMMED | IR3_REG_FNEG | IR3_REG_FABS |
780 IR3_REG_SNEG | IR3_REG_SABS | IR3_REG_BNOT | IR3_REG_RELATIV |
781 IR3_REG_SHARED);
782 return flags;
783 }
784
785 bool
ir3_valid_flags(struct ir3_instruction * instr,unsigned n,unsigned flags)786 ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags)
787 {
788 struct ir3_compiler *compiler = instr->block->shader->compiler;
789 unsigned valid_flags;
790
791 if ((flags & IR3_REG_SHARED) && opc_cat(instr->opc) > 3)
792 return false;
793
794 flags = cp_flags(flags);
795
796 /* If destination is indirect, then source cannot be.. at least
797 * I don't think so..
798 */
799 if (instr->dsts_count > 0 && (instr->dsts[0]->flags & IR3_REG_RELATIV) &&
800 (flags & IR3_REG_RELATIV))
801 return false;
802
803 if (flags & IR3_REG_RELATIV) {
804 /* TODO need to test on earlier gens.. pretty sure the earlier
805 * problem was just that we didn't check that the src was from
806 * same block (since we can't propagate address register values
807 * across blocks currently)
808 */
809 if (compiler->gen < 6)
810 return false;
811
812 /* NOTE in the special try_swap_mad_two_srcs() case we can be
813 * called on a src that has already had an indirect load folded
814 * in, in which case ssa() returns NULL
815 */
816 if (instr->srcs[n]->flags & IR3_REG_SSA) {
817 struct ir3_instruction *src = ssa(instr->srcs[n]);
818 if (src->address->def->instr->block != instr->block)
819 return false;
820 }
821 }
822
823 if (is_meta(instr)) {
824 /* collect and phi nodes support const/immed sources, which will be
825 * turned into move instructions, but not anything else.
826 */
827 if (flags & ~(IR3_REG_IMMED | IR3_REG_CONST | IR3_REG_SHARED))
828 return false;
829
830 if ((flags & IR3_REG_SHARED) && !(instr->dsts[0]->flags & IR3_REG_SHARED))
831 return false;
832
833 return true;
834 }
835
836 switch (opc_cat(instr->opc)) {
837 case 0: /* end, chmask */
838 return flags == 0;
839 case 1:
840 switch (instr->opc) {
841 case OPC_MOVMSK:
842 case OPC_SWZ:
843 case OPC_SCT:
844 case OPC_GAT:
845 valid_flags = IR3_REG_SHARED;
846 break;
847 default:
848 valid_flags =
849 IR3_REG_IMMED | IR3_REG_CONST | IR3_REG_RELATIV | IR3_REG_SHARED;
850 }
851 if (flags & ~valid_flags)
852 return false;
853 break;
854 case 2:
855 valid_flags = ir3_cat2_absneg(instr->opc) | IR3_REG_CONST |
856 IR3_REG_RELATIV | IR3_REG_IMMED | IR3_REG_SHARED;
857
858 if (flags & ~valid_flags)
859 return false;
860
861 if (flags & (IR3_REG_CONST | IR3_REG_IMMED | IR3_REG_SHARED)) {
862 unsigned m = n ^ 1;
863 /* cannot deal w/ const or shared in both srcs:
864 * (note that some cat2 actually only have a single src)
865 */
866 if (m < instr->srcs_count) {
867 struct ir3_register *reg = instr->srcs[m];
868 if ((flags & (IR3_REG_CONST | IR3_REG_SHARED)) &&
869 (reg->flags & (IR3_REG_CONST | IR3_REG_SHARED)))
870 return false;
871 if ((flags & IR3_REG_IMMED) && reg->flags & (IR3_REG_IMMED))
872 return false;
873 }
874 }
875 break;
876 case 3:
877 valid_flags =
878 ir3_cat3_absneg(instr->opc) | IR3_REG_RELATIV | IR3_REG_SHARED;
879
880 if (instr->opc == OPC_SHLG_B16) {
881 valid_flags |= IR3_REG_IMMED;
882 /* shlg.b16 can be RELATIV+CONST but not CONST: */
883 if (flags & IR3_REG_RELATIV)
884 valid_flags |= IR3_REG_CONST;
885 } else {
886 valid_flags |= IR3_REG_CONST;
887 }
888
889 if (flags & ~valid_flags)
890 return false;
891
892 if (flags & (IR3_REG_CONST | IR3_REG_SHARED | IR3_REG_RELATIV)) {
893 /* cannot deal w/ const/shared/relativ in 2nd src: */
894 if (n == 1)
895 return false;
896 }
897
898 break;
899 case 4:
900 /* seems like blob compiler avoids const as src.. */
901 /* TODO double check if this is still the case on a4xx */
902 if (flags & (IR3_REG_CONST | IR3_REG_IMMED))
903 return false;
904 if (flags & (IR3_REG_SABS | IR3_REG_SNEG))
905 return false;
906 break;
907 case 5:
908 /* no flags allowed */
909 if (flags)
910 return false;
911 break;
912 case 6:
913 valid_flags = IR3_REG_IMMED;
914 if (flags & ~valid_flags)
915 return false;
916
917 if (flags & IR3_REG_IMMED) {
918 /* doesn't seem like we can have immediate src for store
919 * instructions:
920 *
921 * TODO this restriction could also apply to load instructions,
922 * but for load instructions this arg is the address (and not
923 * really sure any good way to test a hard-coded immed addr src)
924 */
925 if (is_store(instr) && (instr->opc != OPC_STG) && (n == 1))
926 return false;
927
928 if ((instr->opc == OPC_LDL) && (n == 0))
929 return false;
930
931 if ((instr->opc == OPC_STL) && (n != 2))
932 return false;
933
934 if ((instr->opc == OPC_LDP) && (n == 0))
935 return false;
936
937 if ((instr->opc == OPC_STP) && (n != 2))
938 return false;
939
940 if (instr->opc == OPC_STLW && n == 0)
941 return false;
942
943 if (instr->opc == OPC_LDLW && n == 0)
944 return false;
945
946 /* disallow immediates in anything but the SSBO slot argument for
947 * cat6 instructions:
948 */
949 if (is_atomic(instr->opc) && (n != 0))
950 return false;
951
952 if (is_atomic(instr->opc) && !(instr->flags & IR3_INSTR_G))
953 return false;
954
955 if (instr->opc == OPC_STG && (n == 2))
956 return false;
957
958 if (instr->opc == OPC_STG_A && (n == 4))
959 return false;
960
961 /* as with atomics, these cat6 instrs can only have an immediate
962 * for SSBO/IBO slot argument
963 */
964 switch (instr->opc) {
965 case OPC_LDIB:
966 case OPC_STIB:
967 case OPC_RESINFO:
968 if (n != 0)
969 return false;
970 break;
971 default:
972 break;
973 }
974 }
975
976 break;
977 }
978
979 return true;
980 }
981
982 bool
ir3_valid_immediate(struct ir3_instruction * instr,int32_t immed)983 ir3_valid_immediate(struct ir3_instruction *instr, int32_t immed)
984 {
985 if (instr->opc == OPC_MOV || is_meta(instr))
986 return true;
987
988 if (is_mem(instr)) {
989 switch (instr->opc) {
990 /* Some load/store instructions have a 13-bit offset and size which must
991 * always be an immediate and the rest of the sources cannot be
992 * immediates, so the frontend is responsible for checking the size:
993 */
994 case OPC_LDL:
995 case OPC_STL:
996 case OPC_LDP:
997 case OPC_STP:
998 case OPC_LDG:
999 case OPC_STG:
1000 case OPC_SPILL_MACRO:
1001 case OPC_RELOAD_MACRO:
1002 case OPC_LDG_A:
1003 case OPC_STG_A:
1004 case OPC_LDLW:
1005 case OPC_STLW:
1006 case OPC_LDLV:
1007 return true;
1008 default:
1009 /* most cat6 src immediates can only encode 8 bits: */
1010 return !(immed & ~0xff);
1011 }
1012 }
1013
1014 /* Other than cat1 (mov) we can only encode up to 10 bits, sign-extended: */
1015 return !(immed & ~0x1ff) || !(-immed & ~0x1ff);
1016 }
1017