1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5 *
6 * This file contains the interrupt descriptor management code. Detailed
7 * information is available in Documentation/core-api/genericirq.rst
8 *
9 */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 #include <linux/sysfs.h>
19
20 #include "internals.h"
21
22 /*
23 * lockdep: we want to handle all irq_desc locks as a single lock-class:
24 */
25 static struct lock_class_key irq_desc_lock_class;
26
27 #if defined(CONFIG_SMP)
irq_affinity_setup(char * str)28 static int __init irq_affinity_setup(char *str)
29 {
30 alloc_bootmem_cpumask_var(&irq_default_affinity);
31 cpulist_parse(str, irq_default_affinity);
32 /*
33 * Set at least the boot cpu. We don't want to end up with
34 * bugreports caused by random comandline masks
35 */
36 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40
init_irq_default_affinity(void)41 static void __init init_irq_default_affinity(void)
42 {
43 if (!cpumask_available(irq_default_affinity))
44 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 if (cpumask_empty(irq_default_affinity))
46 cpumask_setall(irq_default_affinity);
47 }
48 #else
init_irq_default_affinity(void)49 static void __init init_irq_default_affinity(void)
50 {
51 }
52 #endif
53
54 #ifdef CONFIG_SMP
alloc_masks(struct irq_desc * desc,int node)55 static int alloc_masks(struct irq_desc *desc, int node)
56 {
57 if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
58 GFP_KERNEL, node))
59 return -ENOMEM;
60
61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
62 if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
63 GFP_KERNEL, node)) {
64 free_cpumask_var(desc->irq_common_data.affinity);
65 return -ENOMEM;
66 }
67 #endif
68
69 #ifdef CONFIG_GENERIC_PENDING_IRQ
70 if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
72 free_cpumask_var(desc->irq_common_data.effective_affinity);
73 #endif
74 free_cpumask_var(desc->irq_common_data.affinity);
75 return -ENOMEM;
76 }
77 #endif
78 return 0;
79 }
80
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)81 static void desc_smp_init(struct irq_desc *desc, int node,
82 const struct cpumask *affinity)
83 {
84 if (!affinity)
85 affinity = irq_default_affinity;
86 cpumask_copy(desc->irq_common_data.affinity, affinity);
87
88 #ifdef CONFIG_GENERIC_PENDING_IRQ
89 cpumask_clear(desc->pending_mask);
90 #endif
91 #ifdef CONFIG_NUMA
92 desc->irq_common_data.node = node;
93 #endif
94 }
95
96 #else
97 static inline int
alloc_masks(struct irq_desc * desc,int node)98 alloc_masks(struct irq_desc *desc, int node) { return 0; }
99 static inline void
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)100 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101 #endif
102
desc_set_defaults(unsigned int irq,struct irq_desc * desc,int node,const struct cpumask * affinity,struct module * owner)103 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104 const struct cpumask *affinity, struct module *owner)
105 {
106 int cpu;
107
108 desc->irq_common_data.handler_data = NULL;
109 desc->irq_common_data.msi_desc = NULL;
110
111 desc->irq_data.common = &desc->irq_common_data;
112 desc->irq_data.irq = irq;
113 desc->irq_data.chip = &no_irq_chip;
114 desc->irq_data.chip_data = NULL;
115 irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116 irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117 irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118 desc->handle_irq = handle_bad_irq;
119 desc->depth = 1;
120 desc->irq_count = 0;
121 desc->irqs_unhandled = 0;
122 desc->tot_count = 0;
123 desc->name = NULL;
124 desc->owner = owner;
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
127 desc_smp_init(desc, node, affinity);
128 }
129
130 int nr_irqs = NR_IRQS;
131 EXPORT_SYMBOL_GPL(nr_irqs);
132
133 static DEFINE_MUTEX(sparse_irq_lock);
134 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
135
136 #ifdef CONFIG_SPARSE_IRQ
137
138 static void irq_kobj_release(struct kobject *kobj);
139
140 #ifdef CONFIG_SYSFS
141 static struct kobject *irq_kobj_base;
142
143 #define IRQ_ATTR_RO(_name) \
144 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
145
per_cpu_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)146 static ssize_t per_cpu_count_show(struct kobject *kobj,
147 struct kobj_attribute *attr, char *buf)
148 {
149 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
150 int cpu, irq = desc->irq_data.irq;
151 ssize_t ret = 0;
152 char *p = "";
153
154 for_each_possible_cpu(cpu) {
155 unsigned int c = kstat_irqs_cpu(irq, cpu);
156
157 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
158 p = ",";
159 }
160
161 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
162 return ret;
163 }
164 IRQ_ATTR_RO(per_cpu_count);
165
chip_name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)166 static ssize_t chip_name_show(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168 {
169 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
170 ssize_t ret = 0;
171
172 raw_spin_lock_irq(&desc->lock);
173 if (desc->irq_data.chip && desc->irq_data.chip->name) {
174 ret = scnprintf(buf, PAGE_SIZE, "%s\n",
175 desc->irq_data.chip->name);
176 }
177 raw_spin_unlock_irq(&desc->lock);
178
179 return ret;
180 }
181 IRQ_ATTR_RO(chip_name);
182
hwirq_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)183 static ssize_t hwirq_show(struct kobject *kobj,
184 struct kobj_attribute *attr, char *buf)
185 {
186 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
187 ssize_t ret = 0;
188
189 raw_spin_lock_irq(&desc->lock);
190 if (desc->irq_data.domain)
191 ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
192 raw_spin_unlock_irq(&desc->lock);
193
194 return ret;
195 }
196 IRQ_ATTR_RO(hwirq);
197
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)198 static ssize_t type_show(struct kobject *kobj,
199 struct kobj_attribute *attr, char *buf)
200 {
201 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
202 ssize_t ret = 0;
203
204 raw_spin_lock_irq(&desc->lock);
205 ret = sprintf(buf, "%s\n",
206 irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
207 raw_spin_unlock_irq(&desc->lock);
208
209 return ret;
210
211 }
212 IRQ_ATTR_RO(type);
213
wakeup_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)214 static ssize_t wakeup_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf)
216 {
217 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
218 ssize_t ret = 0;
219
220 raw_spin_lock_irq(&desc->lock);
221 ret = sprintf(buf, "%s\n",
222 irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
223 raw_spin_unlock_irq(&desc->lock);
224
225 return ret;
226
227 }
228 IRQ_ATTR_RO(wakeup);
229
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)230 static ssize_t name_show(struct kobject *kobj,
231 struct kobj_attribute *attr, char *buf)
232 {
233 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
234 ssize_t ret = 0;
235
236 raw_spin_lock_irq(&desc->lock);
237 if (desc->name)
238 ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
239 raw_spin_unlock_irq(&desc->lock);
240
241 return ret;
242 }
243 IRQ_ATTR_RO(name);
244
actions_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)245 static ssize_t actions_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf)
247 {
248 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
249 struct irqaction *action;
250 ssize_t ret = 0;
251 char *p = "";
252
253 raw_spin_lock_irq(&desc->lock);
254 for (action = desc->action; action != NULL; action = action->next) {
255 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
256 p, action->name);
257 p = ",";
258 }
259 raw_spin_unlock_irq(&desc->lock);
260
261 if (ret)
262 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
263
264 return ret;
265 }
266 IRQ_ATTR_RO(actions);
267
268 static struct attribute *irq_attrs[] = {
269 &per_cpu_count_attr.attr,
270 &chip_name_attr.attr,
271 &hwirq_attr.attr,
272 &type_attr.attr,
273 &wakeup_attr.attr,
274 &name_attr.attr,
275 &actions_attr.attr,
276 NULL
277 };
278 ATTRIBUTE_GROUPS(irq);
279
280 static struct kobj_type irq_kobj_type = {
281 .release = irq_kobj_release,
282 .sysfs_ops = &kobj_sysfs_ops,
283 .default_groups = irq_groups,
284 };
285
irq_sysfs_add(int irq,struct irq_desc * desc)286 static void irq_sysfs_add(int irq, struct irq_desc *desc)
287 {
288 if (irq_kobj_base) {
289 /*
290 * Continue even in case of failure as this is nothing
291 * crucial.
292 */
293 if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
294 pr_warn("Failed to add kobject for irq %d\n", irq);
295 }
296 }
297
irq_sysfs_del(struct irq_desc * desc)298 static void irq_sysfs_del(struct irq_desc *desc)
299 {
300 /*
301 * If irq_sysfs_init() has not yet been invoked (early boot), then
302 * irq_kobj_base is NULL and the descriptor was never added.
303 * kobject_del() complains about a object with no parent, so make
304 * it conditional.
305 */
306 if (irq_kobj_base)
307 kobject_del(&desc->kobj);
308 }
309
irq_sysfs_init(void)310 static int __init irq_sysfs_init(void)
311 {
312 struct irq_desc *desc;
313 int irq;
314
315 /* Prevent concurrent irq alloc/free */
316 irq_lock_sparse();
317
318 irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
319 if (!irq_kobj_base) {
320 irq_unlock_sparse();
321 return -ENOMEM;
322 }
323
324 /* Add the already allocated interrupts */
325 for_each_irq_desc(irq, desc)
326 irq_sysfs_add(irq, desc);
327 irq_unlock_sparse();
328
329 return 0;
330 }
331 postcore_initcall(irq_sysfs_init);
332
333 #else /* !CONFIG_SYSFS */
334
335 static struct kobj_type irq_kobj_type = {
336 .release = irq_kobj_release,
337 };
338
irq_sysfs_add(int irq,struct irq_desc * desc)339 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
irq_sysfs_del(struct irq_desc * desc)340 static void irq_sysfs_del(struct irq_desc *desc) {}
341
342 #endif /* CONFIG_SYSFS */
343
344 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
345
irq_insert_desc(unsigned int irq,struct irq_desc * desc)346 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
347 {
348 radix_tree_insert(&irq_desc_tree, irq, desc);
349 }
350
irq_to_desc(unsigned int irq)351 struct irq_desc *irq_to_desc(unsigned int irq)
352 {
353 return radix_tree_lookup(&irq_desc_tree, irq);
354 }
355 EXPORT_SYMBOL(irq_to_desc);
356
delete_irq_desc(unsigned int irq)357 static void delete_irq_desc(unsigned int irq)
358 {
359 radix_tree_delete(&irq_desc_tree, irq);
360 }
361
362 #ifdef CONFIG_SMP
free_masks(struct irq_desc * desc)363 static void free_masks(struct irq_desc *desc)
364 {
365 #ifdef CONFIG_GENERIC_PENDING_IRQ
366 free_cpumask_var(desc->pending_mask);
367 #endif
368 free_cpumask_var(desc->irq_common_data.affinity);
369 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
370 free_cpumask_var(desc->irq_common_data.effective_affinity);
371 #endif
372 }
373 #else
free_masks(struct irq_desc * desc)374 static inline void free_masks(struct irq_desc *desc) { }
375 #endif
376
irq_lock_sparse(void)377 void irq_lock_sparse(void)
378 {
379 mutex_lock(&sparse_irq_lock);
380 }
381
irq_unlock_sparse(void)382 void irq_unlock_sparse(void)
383 {
384 mutex_unlock(&sparse_irq_lock);
385 }
386
alloc_desc(int irq,int node,unsigned int flags,const struct cpumask * affinity,struct module * owner)387 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
388 const struct cpumask *affinity,
389 struct module *owner)
390 {
391 struct irq_desc *desc;
392
393 desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
394 if (!desc)
395 return NULL;
396 /* allocate based on nr_cpu_ids */
397 desc->kstat_irqs = alloc_percpu(unsigned int);
398 if (!desc->kstat_irqs)
399 goto err_desc;
400
401 if (alloc_masks(desc, node))
402 goto err_kstat;
403
404 raw_spin_lock_init(&desc->lock);
405 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
406 mutex_init(&desc->request_mutex);
407 init_rcu_head(&desc->rcu);
408
409 desc_set_defaults(irq, desc, node, affinity, owner);
410 irqd_set(&desc->irq_data, flags);
411 kobject_init(&desc->kobj, &irq_kobj_type);
412
413 return desc;
414
415 err_kstat:
416 free_percpu(desc->kstat_irqs);
417 err_desc:
418 kfree(desc);
419 return NULL;
420 }
421
irq_kobj_release(struct kobject * kobj)422 static void irq_kobj_release(struct kobject *kobj)
423 {
424 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
425
426 free_masks(desc);
427 free_percpu(desc->kstat_irqs);
428 kfree(desc);
429 }
430
delayed_free_desc(struct rcu_head * rhp)431 static void delayed_free_desc(struct rcu_head *rhp)
432 {
433 struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
434
435 kobject_put(&desc->kobj);
436 }
437
free_desc(unsigned int irq)438 static void free_desc(unsigned int irq)
439 {
440 struct irq_desc *desc = irq_to_desc(irq);
441
442 irq_remove_debugfs_entry(desc);
443 unregister_irq_proc(irq, desc);
444
445 /*
446 * sparse_irq_lock protects also show_interrupts() and
447 * kstat_irq_usr(). Once we deleted the descriptor from the
448 * sparse tree we can free it. Access in proc will fail to
449 * lookup the descriptor.
450 *
451 * The sysfs entry must be serialized against a concurrent
452 * irq_sysfs_init() as well.
453 */
454 irq_sysfs_del(desc);
455 delete_irq_desc(irq);
456
457 /*
458 * We free the descriptor, masks and stat fields via RCU. That
459 * allows demultiplex interrupts to do rcu based management of
460 * the child interrupts.
461 * This also allows us to use rcu in kstat_irqs_usr().
462 */
463 call_rcu(&desc->rcu, delayed_free_desc);
464 }
465
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct irq_affinity_desc * affinity,struct module * owner)466 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
467 const struct irq_affinity_desc *affinity,
468 struct module *owner)
469 {
470 struct irq_desc *desc;
471 int i;
472
473 /* Validate affinity mask(s) */
474 if (affinity) {
475 for (i = 0; i < cnt; i++) {
476 if (cpumask_empty(&affinity[i].mask))
477 return -EINVAL;
478 }
479 }
480
481 for (i = 0; i < cnt; i++) {
482 const struct cpumask *mask = NULL;
483 unsigned int flags = 0;
484
485 if (affinity) {
486 if (affinity->is_managed) {
487 flags = IRQD_AFFINITY_MANAGED |
488 IRQD_MANAGED_SHUTDOWN;
489 }
490 mask = &affinity->mask;
491 node = cpu_to_node(cpumask_first(mask));
492 affinity++;
493 }
494
495 desc = alloc_desc(start + i, node, flags, mask, owner);
496 if (!desc)
497 goto err;
498 irq_insert_desc(start + i, desc);
499 irq_sysfs_add(start + i, desc);
500 irq_add_debugfs_entry(start + i, desc);
501 }
502 bitmap_set(allocated_irqs, start, cnt);
503 return start;
504
505 err:
506 for (i--; i >= 0; i--)
507 free_desc(start + i);
508 return -ENOMEM;
509 }
510
irq_expand_nr_irqs(unsigned int nr)511 static int irq_expand_nr_irqs(unsigned int nr)
512 {
513 if (nr > IRQ_BITMAP_BITS)
514 return -ENOMEM;
515 nr_irqs = nr;
516 return 0;
517 }
518
early_irq_init(void)519 int __init early_irq_init(void)
520 {
521 int i, initcnt, node = first_online_node;
522 struct irq_desc *desc;
523
524 init_irq_default_affinity();
525
526 /* Let arch update nr_irqs and return the nr of preallocated irqs */
527 initcnt = arch_probe_nr_irqs();
528 printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
529 NR_IRQS, nr_irqs, initcnt);
530
531 if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
532 nr_irqs = IRQ_BITMAP_BITS;
533
534 if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
535 initcnt = IRQ_BITMAP_BITS;
536
537 if (initcnt > nr_irqs)
538 nr_irqs = initcnt;
539
540 for (i = 0; i < initcnt; i++) {
541 desc = alloc_desc(i, node, 0, NULL, NULL);
542 set_bit(i, allocated_irqs);
543 irq_insert_desc(i, desc);
544 }
545 return arch_early_irq_init();
546 }
547
548 #else /* !CONFIG_SPARSE_IRQ */
549
550 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
551 [0 ... NR_IRQS-1] = {
552 .handle_irq = handle_bad_irq,
553 .depth = 1,
554 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
555 }
556 };
557
early_irq_init(void)558 int __init early_irq_init(void)
559 {
560 int count, i, node = first_online_node;
561 struct irq_desc *desc;
562
563 init_irq_default_affinity();
564
565 printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
566
567 desc = irq_desc;
568 count = ARRAY_SIZE(irq_desc);
569
570 for (i = 0; i < count; i++) {
571 desc[i].kstat_irqs = alloc_percpu(unsigned int);
572 alloc_masks(&desc[i], node);
573 raw_spin_lock_init(&desc[i].lock);
574 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
575 mutex_init(&desc[i].request_mutex);
576 desc_set_defaults(i, &desc[i], node, NULL, NULL);
577 }
578 return arch_early_irq_init();
579 }
580
irq_to_desc(unsigned int irq)581 struct irq_desc *irq_to_desc(unsigned int irq)
582 {
583 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
584 }
585 EXPORT_SYMBOL(irq_to_desc);
586
free_desc(unsigned int irq)587 static void free_desc(unsigned int irq)
588 {
589 struct irq_desc *desc = irq_to_desc(irq);
590 unsigned long flags;
591
592 raw_spin_lock_irqsave(&desc->lock, flags);
593 desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
594 raw_spin_unlock_irqrestore(&desc->lock, flags);
595 }
596
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct irq_affinity_desc * affinity,struct module * owner)597 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
598 const struct irq_affinity_desc *affinity,
599 struct module *owner)
600 {
601 u32 i;
602
603 for (i = 0; i < cnt; i++) {
604 struct irq_desc *desc = irq_to_desc(start + i);
605
606 desc->owner = owner;
607 }
608 bitmap_set(allocated_irqs, start, cnt);
609 return start;
610 }
611
irq_expand_nr_irqs(unsigned int nr)612 static int irq_expand_nr_irqs(unsigned int nr)
613 {
614 return -ENOMEM;
615 }
616
irq_mark_irq(unsigned int irq)617 void irq_mark_irq(unsigned int irq)
618 {
619 mutex_lock(&sparse_irq_lock);
620 bitmap_set(allocated_irqs, irq, 1);
621 mutex_unlock(&sparse_irq_lock);
622 }
623
624 #ifdef CONFIG_GENERIC_IRQ_LEGACY
irq_init_desc(unsigned int irq)625 void irq_init_desc(unsigned int irq)
626 {
627 free_desc(irq);
628 }
629 #endif
630
631 #endif /* !CONFIG_SPARSE_IRQ */
632
633 /**
634 * generic_handle_irq - Invoke the handler for a particular irq
635 * @irq: The irq number to handle
636 *
637 */
generic_handle_irq(unsigned int irq)638 int generic_handle_irq(unsigned int irq)
639 {
640 struct irq_desc *desc = irq_to_desc(irq);
641 struct irq_data *data;
642
643 if (!desc)
644 return -EINVAL;
645
646 data = irq_desc_get_irq_data(desc);
647 if (WARN_ON_ONCE(!in_irq() && handle_enforce_irqctx(data)))
648 return -EPERM;
649
650 generic_handle_irq_desc(desc);
651 return 0;
652 }
653 EXPORT_SYMBOL_GPL(generic_handle_irq);
654
655 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
656 /**
657 * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
658 * @domain: The domain where to perform the lookup
659 * @hwirq: The HW irq number to convert to a logical one
660 * @lookup: Whether to perform the domain lookup or not
661 * @regs: Register file coming from the low-level handling code
662 *
663 * Returns: 0 on success, or -EINVAL if conversion has failed
664 */
__handle_domain_irq(struct irq_domain * domain,unsigned int hwirq,bool lookup,struct pt_regs * regs)665 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
666 bool lookup, struct pt_regs *regs)
667 {
668 struct pt_regs *old_regs = set_irq_regs(regs);
669 unsigned int irq = hwirq;
670 int ret = 0;
671
672 irq_enter();
673
674 #ifdef CONFIG_IRQ_DOMAIN
675 if (lookup)
676 irq = irq_find_mapping(domain, hwirq);
677 #endif
678
679 /*
680 * Some hardware gives randomly wrong interrupts. Rather
681 * than crashing, do something sensible.
682 */
683 if (unlikely(!irq || irq >= nr_irqs)) {
684 ack_bad_irq(irq);
685 ret = -EINVAL;
686 } else {
687 generic_handle_irq(irq);
688 }
689
690 irq_exit();
691 set_irq_regs(old_regs);
692 return ret;
693 }
694
695 #ifdef CONFIG_IRQ_DOMAIN
696 /**
697 * handle_domain_nmi - Invoke the handler for a HW irq belonging to a domain
698 * @domain: The domain where to perform the lookup
699 * @hwirq: The HW irq number to convert to a logical one
700 * @regs: Register file coming from the low-level handling code
701 *
702 * This function must be called from an NMI context.
703 *
704 * Returns: 0 on success, or -EINVAL if conversion has failed
705 */
handle_domain_nmi(struct irq_domain * domain,unsigned int hwirq,struct pt_regs * regs)706 int handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq,
707 struct pt_regs *regs)
708 {
709 struct pt_regs *old_regs = set_irq_regs(regs);
710 unsigned int irq;
711 int ret = 0;
712
713 /*
714 * NMI context needs to be setup earlier in order to deal with tracing.
715 */
716 WARN_ON(!in_nmi());
717
718 irq = irq_find_mapping(domain, hwirq);
719
720 /*
721 * ack_bad_irq is not NMI-safe, just report
722 * an invalid interrupt.
723 */
724 if (likely(irq))
725 generic_handle_irq(irq);
726 else
727 ret = -EINVAL;
728
729 set_irq_regs(old_regs);
730 return ret;
731 }
732 #endif
733 #endif
734
735 /* Dynamic interrupt handling */
736
737 /**
738 * irq_free_descs - free irq descriptors
739 * @from: Start of descriptor range
740 * @cnt: Number of consecutive irqs to free
741 */
irq_free_descs(unsigned int from,unsigned int cnt)742 void irq_free_descs(unsigned int from, unsigned int cnt)
743 {
744 int i;
745
746 if (from >= nr_irqs || (from + cnt) > nr_irqs)
747 return;
748
749 mutex_lock(&sparse_irq_lock);
750 for (i = 0; i < cnt; i++)
751 free_desc(from + i);
752
753 bitmap_clear(allocated_irqs, from, cnt);
754 mutex_unlock(&sparse_irq_lock);
755 }
756 EXPORT_SYMBOL_GPL(irq_free_descs);
757
758 /**
759 * __irq_alloc_descs - allocate and initialize a range of irq descriptors
760 * @irq: Allocate for specific irq number if irq >= 0
761 * @from: Start the search from this irq number
762 * @cnt: Number of consecutive irqs to allocate.
763 * @node: Preferred node on which the irq descriptor should be allocated
764 * @owner: Owning module (can be NULL)
765 * @affinity: Optional pointer to an affinity mask array of size @cnt which
766 * hints where the irq descriptors should be allocated and which
767 * default affinities to use
768 *
769 * Returns the first irq number or error code
770 */
771 int __ref
__irq_alloc_descs(int irq,unsigned int from,unsigned int cnt,int node,struct module * owner,const struct irq_affinity_desc * affinity)772 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
773 struct module *owner, const struct irq_affinity_desc *affinity)
774 {
775 int start, ret;
776
777 if (!cnt)
778 return -EINVAL;
779
780 if (irq >= 0) {
781 if (from > irq)
782 return -EINVAL;
783 from = irq;
784 } else {
785 /*
786 * For interrupts which are freely allocated the
787 * architecture can force a lower bound to the @from
788 * argument. x86 uses this to exclude the GSI space.
789 */
790 from = arch_dynirq_lower_bound(from);
791 }
792
793 mutex_lock(&sparse_irq_lock);
794
795 start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
796 from, cnt, 0);
797 ret = -EEXIST;
798 if (irq >=0 && start != irq)
799 goto unlock;
800
801 if (start + cnt > nr_irqs) {
802 ret = irq_expand_nr_irqs(start + cnt);
803 if (ret)
804 goto unlock;
805 }
806 ret = alloc_descs(start, cnt, node, affinity, owner);
807 unlock:
808 mutex_unlock(&sparse_irq_lock);
809 return ret;
810 }
811 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
812
813 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
814 /**
815 * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
816 * @cnt: number of interrupts to allocate
817 * @node: node on which to allocate
818 *
819 * Returns an interrupt number > 0 or 0, if the allocation fails.
820 */
irq_alloc_hwirqs(int cnt,int node)821 unsigned int irq_alloc_hwirqs(int cnt, int node)
822 {
823 int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
824
825 if (irq < 0)
826 return 0;
827
828 for (i = irq; cnt > 0; i++, cnt--) {
829 if (arch_setup_hwirq(i, node))
830 goto err;
831 irq_clear_status_flags(i, _IRQ_NOREQUEST);
832 }
833 return irq;
834
835 err:
836 for (i--; i >= irq; i--) {
837 irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
838 arch_teardown_hwirq(i);
839 }
840 irq_free_descs(irq, cnt);
841 return 0;
842 }
843 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
844
845 /**
846 * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
847 * @from: Free from irq number
848 * @cnt: number of interrupts to free
849 *
850 */
irq_free_hwirqs(unsigned int from,int cnt)851 void irq_free_hwirqs(unsigned int from, int cnt)
852 {
853 int i, j;
854
855 for (i = from, j = cnt; j > 0; i++, j--) {
856 irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
857 arch_teardown_hwirq(i);
858 }
859 irq_free_descs(from, cnt);
860 }
861 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
862 #endif
863
864 /**
865 * irq_get_next_irq - get next allocated irq number
866 * @offset: where to start the search
867 *
868 * Returns next irq number after offset or nr_irqs if none is found.
869 */
irq_get_next_irq(unsigned int offset)870 unsigned int irq_get_next_irq(unsigned int offset)
871 {
872 return find_next_bit(allocated_irqs, nr_irqs, offset);
873 }
874
875 struct irq_desc *
__irq_get_desc_lock(unsigned int irq,unsigned long * flags,bool bus,unsigned int check)876 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
877 unsigned int check)
878 {
879 struct irq_desc *desc = irq_to_desc(irq);
880
881 if (desc) {
882 if (check & _IRQ_DESC_CHECK) {
883 if ((check & _IRQ_DESC_PERCPU) &&
884 !irq_settings_is_per_cpu_devid(desc))
885 return NULL;
886
887 if (!(check & _IRQ_DESC_PERCPU) &&
888 irq_settings_is_per_cpu_devid(desc))
889 return NULL;
890 }
891
892 if (bus)
893 chip_bus_lock(desc);
894 raw_spin_lock_irqsave(&desc->lock, *flags);
895 }
896 return desc;
897 }
898
__irq_put_desc_unlock(struct irq_desc * desc,unsigned long flags,bool bus)899 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
900 __releases(&desc->lock)
901 {
902 raw_spin_unlock_irqrestore(&desc->lock, flags);
903 if (bus)
904 chip_bus_sync_unlock(desc);
905 }
906
irq_set_percpu_devid_partition(unsigned int irq,const struct cpumask * affinity)907 int irq_set_percpu_devid_partition(unsigned int irq,
908 const struct cpumask *affinity)
909 {
910 struct irq_desc *desc = irq_to_desc(irq);
911
912 if (!desc)
913 return -EINVAL;
914
915 if (desc->percpu_enabled)
916 return -EINVAL;
917
918 desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
919
920 if (!desc->percpu_enabled)
921 return -ENOMEM;
922
923 if (affinity)
924 desc->percpu_affinity = affinity;
925 else
926 desc->percpu_affinity = cpu_possible_mask;
927
928 irq_set_percpu_devid_flags(irq);
929 return 0;
930 }
931
irq_set_percpu_devid(unsigned int irq)932 int irq_set_percpu_devid(unsigned int irq)
933 {
934 return irq_set_percpu_devid_partition(irq, NULL);
935 }
936
irq_get_percpu_devid_partition(unsigned int irq,struct cpumask * affinity)937 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
938 {
939 struct irq_desc *desc = irq_to_desc(irq);
940
941 if (!desc || !desc->percpu_enabled)
942 return -EINVAL;
943
944 if (affinity)
945 cpumask_copy(affinity, desc->percpu_affinity);
946
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
950
kstat_incr_irq_this_cpu(unsigned int irq)951 void kstat_incr_irq_this_cpu(unsigned int irq)
952 {
953 kstat_incr_irqs_this_cpu(irq_to_desc(irq));
954 }
955
956 /**
957 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
958 * @irq: The interrupt number
959 * @cpu: The cpu number
960 *
961 * Returns the sum of interrupt counts on @cpu since boot for
962 * @irq. The caller must ensure that the interrupt is not removed
963 * concurrently.
964 */
kstat_irqs_cpu(unsigned int irq,int cpu)965 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
966 {
967 struct irq_desc *desc = irq_to_desc(irq);
968
969 return desc && desc->kstat_irqs ?
970 *per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
971 }
972
irq_is_nmi(struct irq_desc * desc)973 static bool irq_is_nmi(struct irq_desc *desc)
974 {
975 return desc->istate & IRQS_NMI;
976 }
977
978 /**
979 * kstat_irqs - Get the statistics for an interrupt
980 * @irq: The interrupt number
981 *
982 * Returns the sum of interrupt counts on all cpus since boot for
983 * @irq. The caller must ensure that the interrupt is not removed
984 * concurrently.
985 */
kstat_irqs(unsigned int irq)986 unsigned int kstat_irqs(unsigned int irq)
987 {
988 struct irq_desc *desc = irq_to_desc(irq);
989 unsigned int sum = 0;
990 int cpu;
991
992 if (!desc || !desc->kstat_irqs)
993 return 0;
994 if (!irq_settings_is_per_cpu_devid(desc) &&
995 !irq_settings_is_per_cpu(desc) &&
996 !irq_is_nmi(desc))
997 return desc->tot_count;
998
999 for_each_possible_cpu(cpu)
1000 sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
1001 return sum;
1002 }
1003
1004 /**
1005 * kstat_irqs_usr - Get the statistics for an interrupt
1006 * @irq: The interrupt number
1007 *
1008 * Returns the sum of interrupt counts on all cpus since boot for @irq.
1009 * Contrary to kstat_irqs() this can be called from any context.
1010 * It uses rcu since a concurrent removal of an interrupt descriptor is
1011 * observing an rcu grace period before delayed_free_desc()/irq_kobj_release().
1012 */
kstat_irqs_usr(unsigned int irq)1013 unsigned int kstat_irqs_usr(unsigned int irq)
1014 {
1015 unsigned int sum;
1016
1017 rcu_read_lock();
1018 sum = kstat_irqs(irq);
1019 rcu_read_unlock();
1020 return sum;
1021 }
1022